Title: PRESENTATION SERVICE ARCHITECTURES FOR NETCENTRIC COMPUTING SYSTEMS

[Continued on next page]
(57) Abstract: A presentation service architecture in a netcentric computing system that includes a client connected with a web server. A desktop manager service for allowing users to manipulate files and launch applications that are located on the client. The presentation service architecture includes a direct manipulation service, a form service, an input device service, a report and print service, a user navigation service, a web browser service and a window system service. Each of these services of the presentation service architecture provides an optimal arrangement for a business enterprise to use in a netcentric computing system.
This application claims the benefit under 35 U.S.C. §119(e) of U.S. provisional application Serial No: 60/156,962 filed on October 1, 1999.

Field of the Invention

The present invention relates generally to computing systems, and more particularly to presentation service architectures for netcentric computing systems.

Background of the Invention

Computer based business solutions have existed for various different types of transactions since the mid-to-late 1960s. During this time period, the technology focused on the use of batch technology. In batch processing, the business user would present a file of transactions to the application. The computer system would then run through the transactions, processing each one, essentially without user intervention. The system would provide reporting at some point in the batch processing. Typically, the reports would be batch printed, which in turn, would be used by the business user to correct the input transactions that were resubmitted along with the next batch of transactions.

In the 1970s, businesses began a transition to on-line, interactive transactions. At a conceptual level, this processing opened up the file of transactions found in batch transactions and allowed the user to submit them one at a time, receiving either immediate confirmation of the success of the transaction or else feedback on the nature of the transaction error. The conceptually simple change of having the user interact with the computer on a transaction-at-a-time basis caused huge changes in the nature of business computing. More important, users saw huge changes in what they could do on a day-to-day basis. Customers were no longer forced to wait for a batch run to process the particular application. In essence, the computer had an impact on the entire work flow of the business user.

Along with the advent of on-line interactive systems, it was equally significant that the systems provided a means for the business user to communicate with others in the business as the day-to-day business went along. This capability was provided on the backbone of a wide area network (WAN). The WAN was in itself a demanding technology
during this time period and because of these demands telecommunications groups emerged within organizations, charged with the responsibility to maintain, evolve, and manage the network over a period of time.

The theme of the 1980s was database management systems (DBMSs).

Organizations used and applied database technology in the 1970s, but in the 1980s they grew more confident in the application of DBMS technology. Because of the advances in network technology, the focus was now on the sharing of data across organizational and application boundaries. Curiously, database technology did not change the fundamental way in which business processing was done. DBMS made it more convenient to access the data and to ensure that it could be updated while maintaining the integrity of the data.

In the 1990s, technology began to shift toward client/server computing. Client/server computing is a style of computing involving multiple processors, one of which is typically a workstation, and across which a single business transaction is completed. Using the workstation, the transaction entered by the user could now be processed on a keystroke-by-keystroke basis.

Furthermore, there was a change in the communications. With client/server, users could communicate with others in the work group via a local area network (LAN). The LAN permitted workstation-to-workstation communications at speeds of 100 to 1,000 times what was typically available on a WAN. The LAN was a technology that could be grown and evolved in a local office with little need for direct interaction from the telecommunications group.

During the late 1990s, the Internet began to receive widespread use by consumers and businesses. In the business world, the Internet has caused the concept of business users to expand greatly because of the way in which computers are now capable of being interconnected. In addition, the cost of computers has dropped to the point that it is affordable for almost every household to own a computer if they so desire. As such, a need to expand the reach of computing both within and outside the enterprise, and that enables the sharing of data and content between individuals and applications has developed.

Summary of the Invention

One aspect of the present invention discloses a presentation service architecture for a netcentric computing system. In the preferred embodiment of the present invention, the
presentation service architecture includes a web server that is connected with a client. The presentation service architecture includes desktop manager services, direct manipulation services, form services, input device services, report and print services, user navigation services, web browser services and windows system services. These services are preferentially located on the client and interact with the web server to generate and pass information to and from the web server and/or client during operation.

The desktop manager service is provided to allows users to manipulate files and launch applications that are located on the client. The direct manipulation service allows users to manage at least one software application object by manipulating visual representations of the application objects located on the client. The form service enables applications from the web server to use at least one field to display and collect data from the client.

In the preferred embodiment of the present invention, the presentation service architecture includes input device services for detecting user inputs from at least one input device located on the client. The report and print service enables on-screen previewing and printing of documents that contain data that are generated on the client by the web server. The user navigation service provides users with the ability to access or navigate between functions within or across applications that are generated on the client by the web server. The web browser service allows users to view and interact with applications and documents also located on the client. The window system service for providing a base functionality for creating and managing a graphical user interface is also located on the client.

In a netcentric computing system, an effective presentation service architecture controls how users interact with the web server and thereby the netcentric computing system. The services that the presentation service architecture perform include capturing user actions, generating events, presenting data to the user and assisting in the management of the window flow. During operation, the preferential presentation service architecture includes services that are capable of providing applications that satisfy the needs of the user that is using a client that may be located hundreds of miles away. The web browser services provide this interaction by allowing the client and the web server to interact and pass information to and from each other.
Further objects and advantages of the present invention will be apparent from the following description, reference being made to the accompanying drawings wherein preferred embodiments of the present invention are clearly shown.

5 **Brief Description of the Drawings**

Figure 1 illustrates a preferred presentation service architecture for a netcentric computing system.

Figure 2 illustrates a representative netcentric computing system.

10 **Detailed Description of the Preferred Embodiments of the Present Invention**

Referring to Figs. 1 and 2, the present invention discloses a presentation service architecture 10 for a netcentric computing system 12 that includes at least one client 14 connected with at least one web server 16. Referring to Fig. 2, the physical picture of an illustrative example of a netcentric computing system 12 is illustrated. A business enterprise 18 may include at least one client 20, at least one database server 22, at least one firewall 24, at least one application server 26, at least one web server 28 and a LAN connection 30, connected as illustrated in Fig. 2. The LAN connection 30 is used to interconnect various components or computing devices that are located at a first enterprise location 32 within the business enterprise 18. Those skilled in the art would recognize that various types of LAN connections 30 exist and may be used in the present invention.

For the purpose of the present invention, the firewall 24 is used to isolate internal systems from unwanted intruders. As known in the art, firewalls 24 isolate the web servers 28 from all Internet traffic that is not relevant to the netcentric computing system 12. In the preferred embodiment, the only requests allowed through the firewall 24 are for services on the web servers 28. All requests for other applications (e.g., FTP, Telnet) and other IP addresses are blocked by the firewall 24.

The web servers 28 are the primary interface to the clients 14, 20 for all interactions with the applications or services of the netcentric computing system 12. The main task of the web servers 28 is to authenticate the clients 14, 20, establish a secure connection from the clients 14, 20 to the web servers 28 using encrypted messages, and allow the applications the clients 14, 20 are using to transparently access the resources of the netcentric computing system 12. The web servers 28 are responsible for accepting incoming HTTP messages and fulfilling the requests. For dynamic HTML page
generation, requests are forwarded to the application servers 26. Static pages, such as help
pages, are preferably generated by the web servers 28.

In the preferred embodiment, the primary function of the application servers 26 is to
provide a link through which the web servers 28 can interact with the clients 14, 20, trigger
business transactions, and send back resulting data to the clients 14, 20. A fundamental
role of the application servers 26 is to manage the logical flow of the transactions and keep
track of the state of the sessions. The application servers 26 are also responsible for
managing all sessions.

Further, in the preferred embodiment of the present invention, the main purpose of
the database servers 22 is to handle an application log. All requests sent to the web servers
28 and application servers 26 as well as responses are logged in the application log. The
application log is preferentially used for traceability. In the preferred embodiment, requests
are logged in the application log directly by the application server 26. Those skilled in the
art would recognize that any number of data items can be monitored by the application log.

As further illustrated in Fig. 2, a second business enterprise location 34 may be
connected with the first business enterprise location 32 using an intranet connection 36.
Those skilled in the art would recognize that various intranet connections 36 exist and may
be used in the present invention. As those skilled in the art would recognize, the intranet
connection 36 allows the computing resources of the second business enterprise location 34
to be shared or connected with the computing resources available at the first business
enterprise location 32. Although not illustrated, several other enterprise locations may be
connected with the netcentric computing system 12.

In the preferred embodiment the firewall 24 of the first business enterprise location
32 is connected with a dedicated Internet connection 38 to a plurality of remote clients 14.
Preferentially, the remote clients 14 that are connected to the Internet connection 38 access
data at the business enterprise 18 through the Internet connection 38 using a browser
application. The Internet connection 38 gives the remote clients 14 the ability to gain
access to information and data content contained on the database server 22, the application
server 26 and the web server 28. For a detailed discussion of the architecture for the
preferred netcentric computing system 12, refer to co-pending U.S. patent application
Serial Number ___________ entitled ARCHITECTURES FOR NETCENTRIC
COMPUTING SYSTEMS, which was filed on September 29, 2000, and is hereby incorporated by reference, in its entirety.

In the preferred embodiment, the presentation service architecture 10 uses various software applications to manage the human-computer interface in the netcentric computing system 12. These software applications capture user actions and generate resulting events, present data to the user, and assist in the management of the dialog flow of processing. Typically, the presentation service architecture 10 is only required by the clients 14, 20 in the netcentric computing system 12. During operation, the applications in the presentation service architecture 10 pass information and interact with the web server 28.

As set forth in Fig. 1, the preferred presentation service architecture 10 consists of software applications that provide desktop manager services 42, direct manipulation services 44, forms services 46, input device services 48, report and print services 50, user navigation services 52, web browser services 54 and window system services 56. The term service, as used in this disclosure, should be construed to include software applications that enable and support certain features of the preferred presentation service architecture 10. Those skilled in the art of programming should recognize that various software applications exist and may be created for use in the preferred embodiment of the present invention.

The desktop manager services 42 provides for implementing the “desktop metaphor,” which is commonly used to refer to a style of user interface that emulates a physical desktop. It allows the user to place documents on the desktop, launch applications by clicking on a graphical icon, or discard files by dragging them onto a picture of a wastebasket. The desktop manager service 42 includes facilities and devices for launching applications and desktop utilities and managing their integration. Most windowing systems contain elementary desktop manager functionality (e.g., the Windows 95 and 98 desktop), but often more user-friendly or functional desktop manager services are required. Some representative products that provide desktop manager services include Norton Navigator, Microsoft Windows 95 and 98 Task Bar, Xerox Tabworks and Starfish Software Dashboard.

The direct manipulation services 44 use applications to provide a direct manipulation interface (often called “drag and drop”). A direct manipulation interface allows users to manage multiple application objects by manipulating visual representations of those objects
on the clients 14, 20. For example, a user may sell stock by dragging stock icons out of a portfolio icon and onto a trading floor icon.

The direct manipulation services 44 can be divided into display validation services 58 and input validation services 60. The display validation services 58 enable applications to represent application objects as icons and control the display characteristics (color, location, etc.) of these icons on the clients 14, 20. The input/validation services 60 enable applications to invoke validation or processing logic when an end user "acts on" an application object. "Acting on" an object may include single clicking, double clicking, dragging or sizing. The method of selecting an object may vary from application to application, however, those skilled in the art would recognize that several methods of selecting or acting on an object exist and are envisioned by the present invention.

The form services 46 include applications that use fields to display and collect data. A field may be a traditional 3270-style field used to display or input textual data, or it may be a graphical field such as a check box, a list box, or an image. The form services 46 provide support for display, input-validation, mapping support and field interaction management.

In the preferred embodiment, the form services 46 enables applications to use fields to display and collect data. During operation, the form services 46 provide support for displaying objects by being capable of displaying various data types (e.g., text, numeric, date, etc.) in various formats (e.g., American/European data, double-byte characters, icons, etc.). In addition, the form services 46 enable applications to collect information from the user, edit it according to the display options, and perform basic validation such as range or format checks.

The form services 46 eliminates the need for applications to communicate directly with the window system service 56; rather, applications retrieve or display data by automatically copying the contents of a window's fields to a copybook structure in memory. These services may also be used to automate the merging of application data with predefined electronic form templates. The form services 46 is capable of coordinating activity across fields in a window by managing field interdependencies and invoking application logic based on the state of fields and user actions. For example, a field interaction manager in the form services 46 may disable the "OK" button until all required
input fields contain valid data. These services significantly reduce the application logic complexity inherent to an interactive windowed interface.

The input device services 48 detect user input from a variety of input technologies, such as pen based, voice recognition and response systems, keyboards, touch-screens, mice, digital cameras, and scanners. Voice response systems are used to provide prompts and responses to users through the use of phones. Voice response systems have scripted call flows, which guide a caller through a series of questions. Based on the user’s keypad response, the voice response system can execute simple calculations, make database calls, call a mainframe legacy application, or call out to a custom C routine. Representative voice response system vendors include VoiceTek and Periphonics.

Voice recognition systems are becoming more popular in conjunction with voice response systems. Users are able to speak to the phone in addition to using a keypad. Voice recognition can be an extremely powerful technology in cases where a keypad entry would be limiting (e.g., date/time or location). Sophisticated voice recognition systems have been built that support speaker independence, continuous speech and large vocabularies.

Those skilled in the art would recognize that various input device services 24 exist and may be used with the present invention. These applications within the input device services 48 will need to be tailored to the needs of the particular enterprise using the presentation services architecture 10. As such, those skilled in the art would recognize that the scope of the present invention should not be limited by the illustrative input devices set forth briefly above.

The report and print services 50 support the creation and on-screen previewing of paper or photographic documents, which contain screen data, application data, graphics or images. In order to perform optimally, the report and print services 50 must take into consideration varying print scenarios common in netcentric computing system environments, including varying graphics/file types (Adobe, .PDF, .GIF, .JPEG), page margins and breaks, HTML constructs including tables and frames, headers/titles, extended character set support, etc. Those skilled in the art would recognize that various report and print services 50 may be used in the present invention.

The user navigation services 52 provide a user with a way to access or navigate between functions within or across applications. A common method for allowing a user to
navigate within an application is to list available functions or information by means of a menu bar with associated pull-down menus or context-sensitive pop-up menus. This method conserves screen real estate by hiding functions and options within menus, but for this very reason can be more difficult for first-time or infrequent users. This point is important when implementing electronic commerce solutions where the target customer may use the application only once or very infrequently (e.g., purchasing auto insurance). A text-based menuing system that provides a list of applications or activities for the user to choose from may also be used. Those skilled in the art would recognize that various user navigation services 52 may be incorporated in the present invention as they become available.

The web browser services 54 provide applications that allow users to view and interact with applications and documents made up of varying data types, such as text, graphics and audio that are stored or located on the netcentric computing system 12. As such, in the preferred embodiment the web browser services 30 provide support for navigation within and across documents and files no matter where they are located through the use of links embedded into the document content or the file structure. The web browser services 54 retain the link connection, i.e., document physical location, and mask the complexities of that connection from the user.

As known in the art, much of the appeal of web browsers is the ability to provide a "universal client" that offers users a consistent and familiar user interface from which all types of applications can be executed and all types of documents can be viewed, regardless of the type of operating system or machine as well as independent of where these applications and documents reside. Web browsers employ standard protocols, such as Hypertext Transfer Protocol (HTTP) and File Transfer Protocofol (FTP) to provide seamless access to documents across machine and network boundaries.

Examples of products that provide web browser services include Netscape Navigator. One of the original browsers, Navigator currently has a large share of the installed browser market and strong developer support, and Microsoft Internet Explorer (IE). Leveraging the market strength of Windows, Internet Explorer is tightly integrated with Windows and supports the major features of the Netscape Navigator as well as Microsoft's own ActiveX technologies.
It should be noted that the distinction between desktop and web browsers may well disappear with the release of products that integrate web browsing into the desktop and give a user the ability to view directories as through they were web pages. Web browser, as a distinct entity, may even fade away with time. As known in the art, browsers require new or at least revised development tools for working with new languages and standards such as HTML and Java. Many browser content development tools have flooded the market recently. The following are several representative products that provide browser services.

Netscape LiveWire and LiveWire Pro – visual tool suite designed for building and managing complex, dynamic Web sites and creating live on-line applications. Symantec Visual Café – the first complete Rapid Application Development (RAD) environment for Java. With Visual Café, one can assemble complete Java applets and applications from a library of standard and third-party objects, without writing source code, for very simple applications. Visual Café also provides an extensive set of text-based development tools. Microsoft FrontPage – provides an integrated development environment for building Web sites, including WebBots, which provide services for implementing common features such as search engines and discussion groups. Microsoft Visual J++ - a product similar to Visual C++, VJ++ allows the construction of Java applications through an integrated graphical development environment.

As illustrated in Fig. 1, the web browser services can be further subdivided into browser extension services, web browser form services, and web browser user navigation services. The browser extension services provide support for executing different types of applications from within the web browser services. These applications provide functionality that extends web browser capabilities. The key web browser extensions are plug-ins, helper application/viewers, Java applets, Active/X controls and Java beans.

A plug-in is a software program that is specifically written to be executed within a browser for the purpose of providing additional functionality that is not natively supported by the browser, such as viewing and playing unique data or media types. For example, early browsers did not natively support multimedia data types such as sound. Sound plug-ins were used by the browser to play back the sound component of a document. Other plug-ins allow mainframe 3270-based applications to be viewed directly or mapped into a
more friendly form-style interface. Plug-ins cover everything from streaming video to interactive conferencing, and new ones are being released every week.

Typically, to use a plug-in, a user is required to download and install the plug-in on his/her client machine. Once the plug-in is installed, it is integrated into the web browser on the client machine. The next time the web browser opens a web page that requires that plug-in to view a specific data format, the browser initiates the execution of the plug-in. Special plug-in APIs are used when developing plug-ins. Until recently, plug-ins were only accessible from the Netscape browser. Now, other browsers such as Microsoft's Internet Explorer are beginning to support plug-in technology as well. However, plug-ins written for one browser will generally need to be modified to work with other browsers. Also, plug-ins are operating-system dependent. Therefore, separate versions of a plug-in are required to support Windows, Macintosh and Unix platforms.

Unlike a plug-in, a helper application is not integrated with the web browser, although it is launched from a web browser. A helper application generally runs in its own window, contrary to a plug-in, which is generally integrated into a web page. Like a plug-in, the user installs the helper application. However, because the helper application is not integrated with the browser, the user tends to do more work during installation specifying additional information needed by the browser to launch the helper application.

A Java applet is a program written in Java that runs within or is launched from the client's browser. This program is loaded into the client device's memory at run time and then unloaded when the application shuts down. A Java applet can be as simple as an animated object on an HTML page or can be as complex as a complete windows application running within the browser.

A ActiveX control is also a program that can be run within a browser, from an application independent of a browser, or on its own. ActiveX controls are components, developed using Microsoft's standards that define how software components should be built. Although Microsoft is positioning ActiveX controls to be language- and platform-independent, today they are limited to the Intel platforms. Within the context of a browser, ActiveX controls add functionality to Web pages. These controls can be written to add new features such as dynamic charts, animation or audio. Plug-ins and ActiveX controls are functionally similar, but ActiveX controls provide more functionality, such as a self-installing capability.
JavaBeans – JavaSoft's (i.e., Sun's Java development and marketing unit) counterpart to ActiveX controls, based on CORBA standards. JavaBeans can also be anything from small visual controls, such as a button or a date field, to full-fledged applications, such as word processors, spreadsheets, browsers, etc. Viewers and plug-ins are some of the most dynamic segments of the browser market due to quickly changing technologies and companies.

The following are examples of plug-in execution products that may be used in the preferred presentation services architecture 10: Real Audio – a plug-in designed to play audio in real-time on the Internet without needing to download the entire audio file before you can begin listening. VDOLive – a plug-in designed to view real-time video streams on the Internet without needing to download the entire video file before you can begin viewing; similar in concept to Real Audio. Macromedia Shockwave – a plug-in used to play back complex multimedia documents created using Macromedia Director or other products. Internet Phone – one of several applications that allows two-way voice conversation over the Internet, similar to a telephone call. Information Builder's Web3270 – a plug-in that allows mainframe 3270-based applications to be viewed across the Internet from within a browser. The Web3270 server provides translation services to transform a standard 3270 screen into an HTML-based form. Interest in Web3270 and similar plug-ins has increased with the Internet's ability to provide customers and trading partners direct access to an organization's applications and data. "Screen scraping" viewers can bring legacy applications to the Internet or intranet very quickly.

The web browser form services 64, like the forms services 46 outside of the web browser services 54, enable applications to use fields to display and collect data. The difference between the two services is the technology used to develop the forms that are used by the web browser form services 64. The most common type of web browser form services 64 within the web browser is Hyper-Text Mark-up Language (HTML). Currently, HTML browsers support only the most rudimentary forms, basically providing the presentation and collection of without validation or mapping support. When implementing forms with HTML, additional services may be required such as client side-scripting (e.g., VB Script of JavaScript).

Microsoft has introduced ActiveX documents that allow forms such as Word documents, Excel spreadsheets, and Visual Basic windows to be viewed directly from
Internet Explorer just like HTML pages. Today, different technologies are used to create forms that are accessible outside of the browser from those that are accessible within the browser. However, with the introduction of ActiveX documents, these differences are getting narrower. Those skilled in the art would recognize that as the web browser services expand various other types of web browser form services will be readily incorporated into the present invention.

The web browser user navigation services, like the user navigation services outside the web browser services, provide users with a way to access or navigate between functions within or across applications located on the web server. The preferred web browser user navigation services can be subdivided into three categories: hyperlink, customized menu and virtual reality services.

A hyperlink has popularized the use of underlined key words, icons and pictures that act as links to additional pages. The hyperlink mechanism is not constrained to a menu, but can be used anywhere within a page or document to provide the user with navigation options. It can also take a user to another location within the same document or a different document altogether or even a different server or company for that matter. There are three types of hyperlinks: hypertext, icon and image map.

Hypertext is very similar to the concept of "Context Sensitive Help" in Windows, where the reader can move from one topic to another by selecting a highlighted word or phrase. Icon is similar to the hypertext menu above, but selections are represented as a series of icons. The HTML standard and popular browsers provide hyperlinking services for non-text items such as graphics. Image map is also similar to the hypertext menus, but selections are represented as a series of pictures. A further evolution of image map menu is to display an image depicting some place or thing (e.g., a picture of a bank branch with tellers and loan officers).

A customized menu is a common method for allowing a user to navigate within an application is to list available functions or information by means of a menu bar with associated pull-down menus or context-sensitive pop-up menus. This method conserves screen real estate by hiding functions and options within menus; but, for this very reason, it can be more difficult for first-time or infrequent users. This point is important when implementing electronic commerce solutions in which the target customer may use the application only once or very infrequently (e.g., pricing and purchasing auto insurance).
Also, browsers themselves can be programmed to support customized menus. This capability might be more applicable for intranet environments where the browsers need to be customized for specific business applications.

A virtual reality service or virtual environment interface takes the idea of a graphical map to the next level by creating a three-dimensional environment for the user to "walk" around in. Popularized by such PC games as Doom, the virtual environment interface can be used for business applications. The consumer can walk through a shopping mall and into and around virtual stores or "fly" around a three-dimensional (3D) virtual version of a resort complex being considered for holiday.

To create sophisticated user navigation interfaces such as these requires additional architectural services and languages. The Virtual Reality Modeling Language (VRML) is one such language gaining in popularity on the Internet. Additionally, many tool kits and code libraries are available to speed development of virtual reality services. Those skilled in the art would recognize that as virtual reality services develop, they may be incorporated into the presently disclosed invention.

The windows system services 56, which is typically part of the operating system used on the clients, provide the base functionality for creating and managing a graphical user interface on the workstations. As known in the art, a graphical user interface can detect user actions, manipulate windows on the display, and display information through windows and graphical controls. Examples of windows system services 32 include Microsoft Windows, Windows 95/98 and Windows NT, Macintosh OS, Presentation Manager for OS/2, and X-Windows/Motif.

Window system services 56 expose their functionality to applications through a set of APIs. For the Microsoft windowing platforms, this API is called Win32, a documented set of over 400 C functions that allow developers to access the functionality of the windowing system as well as various other operating system functions. Developers are able to call the Win32 API or its equivalent on other platforms directly, using a C language compiler; however, most development is done using higher-level development languages, such as Visual Basic or PowerBuilder, which make the lower level calls to the operating system on behalf of the developer.

While the invention has been described in its currently best known modes of operation and embodiments, other modes and embodiments of the invention will be
apparent to those skilled in the art and are contemplated. For other features, advantages and combinations of the present invention refer to U.S. provisional application Serial No: 60/156,962, entitled NETCENTRIC AND CLIENT/SERVER COMPUTING which is herein incorporated by reference, in its entirety.
What is claimed is:

1. A presentation service architecture for a netcentric computing system, comprising:
 a client connected with a web server; and
 a desktop manager service, a direct manipulation service, a forms service, an input device service, a report and print service, a user navigation service, web browser services and window system services located on said client for interacting with said web server.

2. The presentation service architecture of claim 1, wherein said desktop manager service allows users to manipulate files and launch applications located on said client.

3. The presentation service architecture of claim 1, wherein said direct manipulation service allows users to manage at least one software application object by manipulating visual representations of said application objects located on said client.

4. The presentation service architecture of claim 1, wherein said direct manipulation service includes display services and input/validation services.

5. The presentation service architecture of claim 4, wherein said display services enable applications to represent application objects as at least one icon and control the display characteristics of said icon.

6. The presentation service architecture of claim 4, wherein said input/validation services enable applications to invoke validation logic when a user selects an application object.

7. The presentation service architecture of claim 1, wherein said form service enables applications from said web server to use at least one field to display and collect data from said client through said web browser services.

8. The presentation service architecture of claim 1, wherein said input device service detects user input from at least one input device located on said client.
9. The presentation services of claim 1, wherein said report and print service enables on-screen previewing and printing of documents that contain data that are generated on said client by said web server.

10. The presentation services of claim 1, where said user navigation service provide users with the ability to access or navigate between functions within or across applications that are generated on said client by said web server.

11. The presentation services of claim 1, wherein said web browser service allows users to view and interact with applications and documents located on said client and said web server.

12. The presentation service architecture of claim 1, wherein said web browser services includes web browser extension services, web browser form services and web browser user navigation services.

13. The presentation service architecture of claim 12, wherein said web browser extension services may be selected from the group consisting of plug-ins, helper application/viewers, Java applets, Active/X controls and Java beans.

14. The presentation service architecture of claim 12, wherein said web browser form service enables applications on said web server to use fields to display and collect data within said web browser services on said client.

15. The presentation service architecture of claim 12, wherein said web browser user navigation services provide users on said client with the ability to access or navigate between functions within or across applications located on said web server.

16. The presentation service architecture of claim 12, wherein said web browser user navigation services may be selected from the group consisting of hyperlinks, customized menus and virtual reality services.
17. The presentation service architecture of claim 1, wherein said window system service provides the base functionality for creating and managing a graphical user interface.

18. A presentation service architecture for a netcentric computing system, comprising:

a client connected with a web server;

a desktop manager service for allowing users to manipulate files and launch applications located on said client;

a direct manipulation service for allowing users to manage at least one software application object by manipulating visual representations of said application objects located on said client;

a form service for enabling applications from said web server to use at least one field to display and collect data from said client;

a input device service for detecting user input from at least one input device located on said client;

a report and print service for enabling on-screen previewing and printing of documents that contain data that are generated on said client by said web server;

a user navigation service for providing users with the ability to access or navigate between functions within or across applications that are generated on said client by said web server;

a web browser service for allowing users to view and interact with applications and documents located on said client and said web server; and

a window system service for providing a base functionality for creating and managing a graphical user interface.

19. The presentation service architecture of claim 18, wherein said direct manipulation service includes display services and input/validation services.

20. The presentation service architecture of claim 19, wherein said display services enable applications to represent application objects as at least one icon and control the display characteristics of said icon.
21. The presentation service architecture of claim 19, wherein said input/validation services enable applications to invoke validation logic when a user selects an application object.

22. The presentation service architecture of claim 18, wherein said web browser services include web browser extension services, web browser form services and web browser user navigation services.

23. The presentation service architecture of claim 22, wherein said web browser extension services may be selected from the group consisting of plug-ins, helper application/viewers, Java applets, Active/X controls and Java beans.

24. The presentation service architecture of claim 22, wherein said web browser form service enables applications to use fields to display and collect data within said web browser services on said client.

25. The presentation service architecture of claim 22, wherein said web browser user navigation services provide users on said client with the ability to access or navigate between functions within or across applications located on said web server.

26. The presentation service architecture of claim 22, wherein said web browser user navigation services may be selected from the group consisting of hyperlinks, customized menus and virtual reality services.

27. A method of providing a presentation service architecture for a netcentric computing system, comprising the steps of:

 providing at least one client connected with a web server;
 manipulating files and launching applications with a desktop manager service on said client;
 allowing users to manage at least one software application object by manipulating visual representations of said application objects with a direct manipulation service on said client;
 displaying and collecting data with a forms service on said client;
detecting user inputs from at least one input device with an input device service located on said client;
previewing and printing documents that contain data with a report and print service located on said client;
accessing or navigating between functions within or across applications with a user navigation service on said client;
viewing and interacting with applications and documents on said web server with a web browser service on said client; and providing a window system service that is capable of creating and managing a graphical user interface on said client.

28. The method of claim 27, wherein said web browser services include web browser extension services, web browser form services and web browser user navigation services.

29. The method of claim 28, wherein said web browser extension services may be selected from the group consisting of plug-ins, helper application/viewers, Java applets, Active/X controls and Java beans.

30. The method of claim 28, wherein said web browser form service enables applications to use fields to display and collect data within said web browser services on said client.

31. The method of claim 28, wherein said web browser user navigation services provide users on said client with the ability to access or navigate between functions within or across applications located on said web server.

32. The method of claim 22, wherein said web browser user navigation services may be selected from the group consisting of hyperlinks, customized menus and virtual reality services.
Fig. 1
Fig. 2