[54] 发明名称 测位系统

[57] 摘要

提供一种测位系统，解决如下问题：为使用基站信号获取准确时间、缩短测位时间并能在接收不到必要数量卫星信号的位置测位，需用LMU计测基站信号的码相位。 有第1信号发生源、第2信号发生源、计测单元、控制单元、测位终端和通信单元，计测单元确定接收到第1信号发生源信号的位置P和参考时间，根据参考时间计测第2信号发生源信号的事件的接收时间T_h，控制单元根据位置P和第2信号发生源的位置Q算出计测单元和第2信号发生源的相对距离|P-Q|，用信号传输速度除|P-Q|，算出计测单元和第2信号发生源之间的信号传输时间t，用T_h-t计算第2信号发生源发生规定事件的时间T_f，测位终端以T_f为基准接收第1信号发生源的信号进行测位终端的测位。
1. 一种测位系统，具有：产生与参考时间同步的信号的一个或多个第 1 信号发生源；产生与所述第 1 信号发生源不同步的信号的一个或多个第 2 信号发生源；计测单元；控制单元；具有用于接收所述第 1 和第 2 信号发生源信号的接收单元的测位终端；以及在所述控制单元和所述测位终端之间进行通信的通信单元，其特征在于，

所述计测单元确定接收到所述第 1 信号发生源的信号的位置 P 和参考时间，根据所述参考时间计测所述第 2 信号发生源的信号的接收事件的接收时间 T_e；

所述控制单元根据所述计测单元计测的所述计测单元的位置 P 和所述第 2 信号发生源的位置 Q 算出所述计测单元和所述第 2 信号发生源的相对距离 |P-Q|，用信号传输速度除所述 |P-Q|，计算出所述计测单元和第 2 信号发生源之间的信号传输时间 t，用 T_e-t 计算所述第 2 信号发生源发生规定事件的时间 T_r。

所述测位终端使用所述 T_r 为基准，进行来自所述第 1 信号发生源的信号的接收，进行所述测位终端的测位。

2. 一种测位系统，具有：产生与参考时间同步的信号的一个或多个第 1 信号发生源；产生与所述信号发生源不同步的信号的一个或多个第 2 信号发生源；计测单元；控制单元；具有用于接收所述第 1 和第 2 信号发生源信号的接收单元的测位终端；以及在所述控制单元和所述测位终端之间进行通信的通信单元，其特征在于，

所述计测单元确定接收到所述第 1 信号发生源的信号的位置 P 和参考时间，根据所述参考时间计测所述第 2 信号发生源的信号的接收事件的接收时间 T_e；

所述控制单元根据所述计测单元计测的所述计测单元的位置 P 和所述第 2 信号发生源的位置 Q 算出所述计测单元和所述第 2 信号发生源的相对距离 |P-Q|，用信号传输速度除所述 |P-Q|，计算出所述计测单元和所述第 2 信号发生源之间的信号传输时间 t，用 T_e-t 计算所述第
2 信号发生源发生规定事件的时间 T_r。

所述测位终端使用所述 T_r 为基准，接收来自所述第 1 信号发生源的信号或来自所述第 2 信号发生源的信号，进行所述测位终端的测位。

3. 如权利要求 1 或 2 所述的测位系统，其特征在于，所述第 1 信号发生源是 GPS 卫星。

4. 如权利要求 1 至 3 中任何一项所述的测位系统，其特征在于，所述第 2 信号发生源是移动通信网用的基站。

5. 如权利要求 4 所述的测位系统，其特征在于，所述计测单元是移动终端，计测所述 P 和所述 T_r，并主动将计测的所述 P 和所述 T_r 通知给所述移动通信网内的所述控制单元。

6. 如权利要求 4 所述的测位系统，其特征在于，所述计测单元是移动终端，根据来自所述移动通信网内的控制单元的请求，计测所述 P 和所述 T_r，并将计测的所述 P 和所述 T_r 通知给所述控制单元。

7. 如权利要求 1 至 6 中任何一项所述的测位系统，其特征在于，所述第 2 信号发生源是电视发射台。
测位系统

技术领域
本发明涉及用移动电话网等支持 GPS（Global Positioning System：全球定位系统）进行测位的测位系统。

背景技术

非专利文献 1: 3GPP Specification TS25.305 V5.4.0

GPS 作为全球测位系统正在工作。在 GPS 中，接收由卫星产生的信号，确定到卫星的距离，检测接收地点的位置。因此，在 GPS 中，必须知道卫星产生信号时的位置和时间。虽然卫星位置信息从卫星自身作为年历、星历信息被发送，通过接收卫星，能够得到这些信息，但接收全部信息需要 15 分钟左右的时间。此外，由于通常很难提供准确的时间信息，因此接收从 4 个卫星发出的信号，根据有三维位置坐标及时间 4 个未知数的联立方程式计算出位置和时间。作为现有的技术，有网络支持型 GPS，该网络支持型 GPS 不是从卫星信号而是例如从移动电话网等别的途径取得这些卫星位置信息和时间等测位所需的信息，可明显改善测位所需的时间和精度。对于 WCDMA 方式的移动电话，通过 3GPP（Third Generation Partnership Project）对网络支持型 GPS 的测位方法进行了标准化（参考非专利文献 1）。

此外，GPS 中，为了检测纬度、经度、高度 3 维位置坐标和时间，必须接收至少 4 个卫星信号，而如果假定高度为地表面，则为了检测纬度、经度 2 维位置坐标和时间，必须接收至少 3 个卫星信号。在室内、城市的高楼之间等到卫星的视场条件不好时，有时不一定能接收必要数量的卫星信号。在这种情况下，已知有一种把电话网的基站电波信号视为卫星信号进行测位的技术，其在非专利文献 1 中已被标准化为 OTDOA（Observed Time Difference Of Arrival：可观察的到达时间差）方式
测位技术。图 3 是表示在非专利文献 1 中规定的现有的网络支持型 GPS 的原理的图。SAS (Stand Alone Serving Mobile Location Center: 独立服务移动位置中心) 12 接收 GPS 卫星信号，取得位置检测所需的年历、星历数据，此外已知 SAS12 的某位置，根据该已知的位置与从 GPS 信号得到的测位结果的差异，也可以生成用于校正测位误差的数据。而且，有时 SAS12 也执行 RNC (Radio Network Controller: 无线网络控制器) 13a 应该执行的 SMLC (Serving Mobile Location Center: 服务移动位置中心) 的功能的一部分。RNC13a 控制基站 15a，进行测位所需的顺序控制和无线资源管理。RNC13a 根据测位对象的移动终端 (UE: User Equipment: 用户设备) 的测位能力，从 SAS12 确定必要的支持数据，根据测位顺序通过基站 15a 发送给 UE16。UE 进行测位所需的定时可以利用基站 15a 发送的导频信号等。一般，WCDMA 方式中，基站和 GPS 卫星不同步，测定设置在每个基站中的 LMU (Location Measurement Unit: 位置测量单元) 和 GPS 时间的偏差。LMU 有与基站无线连接的类型 A 和与基站有线连接的类型 B。

这样，要在现有的 WCDMA 方式下的移动电话网中实现网络支持型 GPS 时，每个基站都必须有计测从没有任何同步关系的无线接入网的基站发出的信号和 GPS 产生发出的信号之间的时间偏差的装置 (LMU)。

此外，由于现有的 OTDOA 技术中，基站彼此之间的信号也不同步，必须用某种方法计测基站之间的定时差。也是在每个基站中设置 LMU，检测基站之间信号的定时差。

发明内容

本发明的目的在于实现下述测位系统：基站非同步的 WCDMA 方式移动电话网中，不用在每个基站设置 LMU，就可以向测位对象移动终端通知准确的时间、可以通过 OTDOA 方式进行测位，价格便宜而且可靠性高。

本发明的另一目的在于提供一种不设置 LMU 而可以在短时间内进行测位而且精度高的测位系统。

本发明的测位系统，具有：产生与参考时间同步的信号的一个或多
个第1信号发生源；产生与所述第1信号发生源不同步的信号的一个或多个第2信号发生源；计测单元；控制单元；具有用于接收所述第1和第2信号发生源信号的接收单元的测位终端；以及在所述控制单元和所述测位终端之间进行通信的通信单元，其特征在于，所述计测单元确定接到所述第1信号发生源的信号的位置P和所述参考时间，根据所述参考时间计测所述第2信号发生源的信号的规定事件的接收时间T_{r}；所述控制单元根据所述计测单元计测的所述计测单元的位置P和所述第2信号发生源的位置Q算出所述计测单元和所述第2信号发生源的相对距离|P-Q|，用信号传输速度除所述|P-Q|，计算出所述计测单元和所述第2信号发生源之间的信号传输时间t，用T_{r}-t计算所述第2信号发生源发生规定事件的时间T_{r}，所述测位终端使用所述T_{r}为基准，接收来自所述第1信号发生源的信号的接收，进行所述测位终端的测位。

通过采取上述构成，具有以下效果：使用在条件好的地方的移动终端，计测基站信号的发送定时，通过把该时间通知给测位对象移动终端，即使不在每个基站都设置LMU，测位对象移动终端也能知道准确的时间、能够缩短测位时间。此外，因为不需要LMU，所以具有可减少构筑系统所需的成本的效果。

本发明的测位系统，具有：产生与参考时间同步的信号的一个或多个第1信号发生源；产生与所述第1信号发生源不同步的信号的一个或多个第2信号发生源；计测单元；控制单元；具有用于接收所述第1和第2信号发生源信号的接收单元的测位终端；以及在所述控制单元和所述测位终端之间进行通信的通信单元，其特征在于，所述计测单元确定接到所述第1信号发生源的信号的位置P和参考时间，根据所述参考时间计测所述第2信号发生源的信号的规定事件的接收时间T_{r}；所述控制单元根据所述计测单元计测的所述计测单元的位置P和所述第2信号发生源的位置Q算出所述计测单元和所述第2信号发生源的相对距离|P-Q|，用信号传输速度除所述|P-Q|，计算出所述计测单元和所述第2信号发生源之间的信号传输时间t，用T_{r}-t计算所述第2信号发生源发生规定事件的时间T_{r}，所述测位终端使用所述T_{r}为基准，接收来自所述第
1 信号发生源的信号或来自所述第 2 信号发生源的信号，进行所述测位终端的测位。

根据本发明的上述构成，具有以下效果：不用设置高价的 LMU，通过由测位对象移动终端测得来自基站的规定信号的接收时间，使用该值和条件好的地方的移动终端计算出的 T，能够计算出测位对象移动终端到基站的距离，即使在 GPS 卫星不一定在有必要数量的视场中的情况下也可以进行测位。

附图说明

图 1 是表示本发明的测位系统的图。
图 2 是表示在本发明的测位系统中使用的移动终端的方框图。
图 3 是表示现有的 WCDMA 方式移动电话系统中的测位系统的图。

符号说明
1a、1b、1c、1d：GPS 卫星；2a、2b：基站；3：移动终端 a；4：移动终端 b；6：RNC（SMLC）；7：SAS。

具体实施方式

下面，根据附图，说明本发明的实施方式。

实施例 1

图 1 是表示本发明的测位系统的主要部分的图。参考站 8 接收 GPS 卫星的信号，取得测位所需的天文年历和星历数据。此外，参考站 8 的位置是已知的，比较该位置和从 GPS 信号得到的测位结果，生成测位校正数据。得到的数据被存储在 SAS 7 中。移动终端 a 3 是如下终端：它根据前次的测位位置得知其大概的位置和时间，处于能够良好地接收测位所需的足够数量的卫星的条件好的地方。RNC 6 有 SMLC 功能，进行测位所需的资源管理和顺序控制。移动终端 b 4 是进行测位的目标终端。如图 2 所示，各移动终端具有接收 GPS 信号的 GPS 接收机 9 和用于作为移动电话机工作的 WCDMA 基带处理部 10。

GPS 卫星 1a、1b、1c、1d 以原子钟的精度与被称为 GPS 时间的参考
时间对时，与 GPS 时间同步发出信号。使用 GPS 进行了测位时，除了位置外，可以检测出该 GPS 时间。

移动终端 a3 是如下的移动终端：其通过上次测位知道 GPS 时间，校正内置于终端的时钟，获知准确的时间，或者即使不知道准确的时间，也可以用足够的信号强度接收卫星 1a、1b、1c、1d 的波，能够单独进行测位。RNC 6 通过基站 a2a，定期向移动终端 a3 询问当前位置 P 和观测到基站 a2a 发出的号的特定事件的 GPS 时间 T_x，根据该结果计算基站 a2a 发出信号的特定事件的 GPS 时间 T_r。作为基站发生的特定事件，例如由基站发出的导频信号的帧边界和特定的系统帧编号（如系统帧编号 0）的发送等比较合适。原因是：GPS 中每 20 毫秒发送 1 比特的信息；另一方面，由于将 WCDMA 的帧设定为 10 毫秒，所以计算比较容易。此外，当所有的移动终端在小区内时，由于通过接收导频信号，可以知道帧的定时，所以没有必要为了测位而新设置特别的信号。在图 2 中，将该帧的定时及/或系统帧编号从 WCDMA 基带处理部 10 传送到 GPS 接收机 9。

可按下述方法根据时间 T_x 计算时间 T_r。已知基站 a2a 的位置 Q，可以根据下式进行计算。

(公式 1) \[T_r = T_x - \left| P - Q \right| / c \]

其中，c 是光速。而 \(\left| P - Q \right| \) 表示 P、Q 之间的距离，还有

(公式 2) \[t = \left| P - Q \right| / c \]

是波从基站 a2a 传播到移动终端 3 所需的时间。由于移动终端 a3 即使在条件好位置，从卫星取得测位所需的全部天文年历和星历数据也需要十几分钟，这不实际，因此，通常通过 RNC 6 取得存储在 SAS 7 中的支持数据进行利用。

所有的移动终端一旦接通电源，就检索基站信号，确定当前所在的小区，报告给 RNC 6。因而，RNC 6 具有该小区内所有移动终端的列表。RNC 6 根据该列表定期向条件好地方的移动终端询问 P 和 T_x，使 T_r 总是保持最新状态。或者也可以使移动终端在位于条件好的位置时，主动地定期报告 P 和 T_x。当然，在条件好的地方的移动终端不是一个，通常有多个，RNC 6 能够利用来自这些所有终端的报告，利用最小 2 乘法等计算
法，确定精度更高的 T_r。

移动终端 b 4 是在室内、高楼之间等条件非常差的位置的终端。即使在这样的位置，也可以通过对卫星信号进行几次累计，来提高灵敏度进行测位。但是如果知道准确的时间，不对开始累计的时间进行某种程度的限制，则检测信号花费的时间非常长，导致事实上不可能进行测位。移动终端 b 4 能够根据基站 a 2a 的导频信号和 RNC 6 算出的 T_r，计算大致的时间。即，移动终端 b 4 接收的特定帧的接收时间 T 可以用下式表示。

（公式 3） $T = T_r + n \times 10$ 微秒 + T_r。

(10) 这里，n 是从观测到 T_r 开始到移动终端 b 4 接收该帧为止基站 a 2a 所发送的帧的个数，T_r 是信号从基站 a 2a 到移动终端 b 4 的传输时间。帧时间（10 微秒）根据 3GPP 标准被控制在±0.05ppm 以内，如果以某种程度的频度进行 T_r 的更新，则误差小。此外，由于 T_r 不能确定所以忽略其进行利用。

移动终端 b 4 根据通过 RNC6 取得的由 SAS7 提供的支持数据和 T，限定卫星信号的检索窗口进行信号检测来测位。

移动终端 b 4 通过获知 T，限定检索窗口，即使条件差，也可以通过接收 4 个卫星，得到把移动终端 b 4 的三维位置和时间作为未知数的 4 个联立方程式，从而得知其位置。

移动终端 b 4 通过获知 T，限定检索窗口，即使条件差，也可以通过接收 3 个卫星的信号，得到把移动终端 b 4 的二维位置和时间作为未知数的 3 个联立方程式，从而得知其位置。

由于公式 3 的 T 可以代替 GPS 时间，基站的位置也是已知的，因此，可以用基站信号代替 GPS 时间。即，移动终端 b 4 可以通过接收 3 个卫星和一个基站信号，得到把移动终端 b 4 的 3 维位置和时间作为未知数的 4 个联立方程式，从而得知其位置。

移动终端 b 4 还可以通过接收 2 个卫星和 1 个基站信号，得到把移动终端 b 4 的 2 维位置和时间作为未知数的 3 个联立方程式，来得知其位置。
移动终端 b 4 还可以通过接收 2 个卫星和 2 个基站信号，得到把移动终端 b 4 的 3 维位置和时间作为未知数的 4 个联立方程式，从而得知其位置。

以下同样，移动终端 b 4 在能够接收的卫星和基站信号合计是 4 时，可以得到把移动终端 b 4 的 3 维位置和时间作为未知数的 4 个联立方程式，从而得知其位置。而在能够接收的卫星和基站的合计是 3 时，能够知道 2 维位置和时间。这里，卫星或基站的个数也包括零的时候。也就是说，例如如果能够接收的基站个数为 3，则即使完全不能接收卫星，也能确定 2 维位置。

此外，即使不把基站信号作为基准使用，也可以把例如电视台电波的同步信号、叠加在无线电广播电波中的特定的信号等信号作为基准。特别是随着作为第 3 代移动电话的特征的多媒体功能的强化，在内置有电视图象接收机的移动终端等情况下，效果比较好。

根据本发明，因为由移动终端测定基站信号定时，所以不用特别配备 LMU，在基站彼此间不同步的移动电话网系统中，也可以根据基站信号把准确的时间通知给测位终端，测位终端使用该时间，能够以短测位时间进行高精度的测位。

此外，根据本发明，不使用 LMU 而由移动终端测定基站定时，能够确定基站信号的相位，即使在使用基站信号和 GPS 卫星不能接收到必要数量的 GPS 信号的情况下，也能够进行测位。
图 2

GPS 接收机

WCDMA BBP

图 2