

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
9 February 2012 (09.02.2012)

(10) International Publication Number
WO 2012/018857 A2

(51) International Patent Classification:
C12Q 1/68 (2006.01) *G01N 33/15* (2006.01)

25 Copley Street, Brookline, MA 02446 (US). **MANI, SENDURAI** [IN/US]; 8333 Braesmain Drive, Apt 1427, Houston, TX 77025 (US).

(21) International Application Number:

PCT/US2011/046325

(74) Agents: **ELRIFI, Ivor R.** et al.; Mintz Levin Cohn Ferris Glovsky and Popeo, P.C., One Financial Center, Boston, MA 02111 (US).

(22) International Filing Date:

2 August 2011 (02.08.2011)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language:

English

(26) Publication Language:

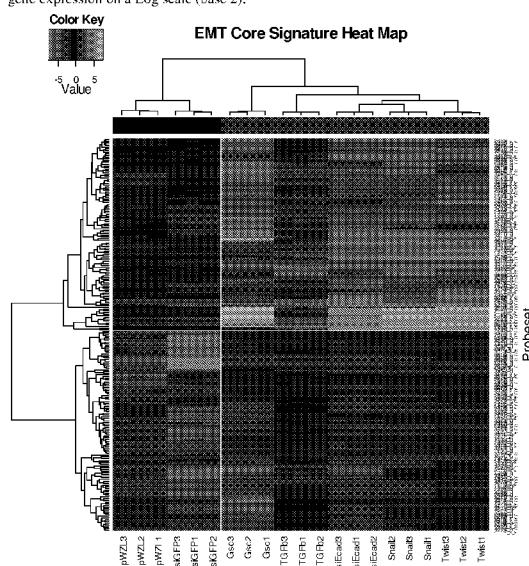
English

(30) Priority Data:

61/369,928 2 August 2010 (02.08.2010) US

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

(71) Applicants (for all designated States except US): **THE BROAD INSTITUTE OF MIT AND HARVARD** [US/US]; 7 Cambridge Center, Cambridge, MA 02142 (US). **WHITEHEAD INSTITUTE** [US/US]; Nine Cambridge Center, Cambridge, MA 02142-1479 (US).


(72) Inventors; and

(75) Inventors/Applicants (for US only): **GUPTA, Plyush** [US/US]; 9 Hawthorne Place, Apt 10B, Boston, MA 02114 (US). **ONDER, Tamer, T.** [TR/US]; 100 Memorial Drive, Apt 8-5A, Cambridge, MA 02142 (US). **LANDER, Eric, S** [US/US]; 74r Fayerweather Street, Cambridge, MA 02138 (US). **WEINBERG, Robert** [US/US];

[Continued on next page]

(54) Title: PREDICTION OF AND MONITORING CANCER THERAPY RESPONSE BASED ON GENE EXPRESSION PROFILING

Figure 1. Heatmap summary of gene expression data from cells cultured in triplicate expressing one of five EMT-inducing factors (Goosecoid, TCFb, Snail, Twist or shRNA against E-cadherin) or expressing two control vectors (pWZL, shRNA against GFP). The legend depicts relative gene expression on a Log scale (base 2).

(57) Abstract: The invention utilizes gene expression profiles in methods of predicting the likelihood that a patient's cancer will respond to standard-of-care therapy. Also provided are methods of identifying therapeutic agents that target cancer stem cells or epithelial cancers that have undergone an epithelial to mesenchymal transition using such gene expression profiles.

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG). **Published:**

— *without international search report and to be republished
upon receipt of that report (Rule 48.2(g))*

PREDICTION OF AND MONITORING CANCER THERAPY RESPONSE BASED ON GENE EXPRESSION PROFILING

5

RELATED APPLICATIONS

This application claims priority to USSN 61/369,928, filed on August 2, 2010, which is herein incorporated by reference in its entirety.

10

FIELD OF THE INVENTION

This invention concerns gene sets relevant to the treatment of epithelial cancers, and methods for assigning treatment options to epithelial cancer patients based upon knowledge derived from gene expression studies of cancer tissue.

15

BACKGROUND OF THE INVENTION

Previous work has shown that epithelial-to-mesenchymal transition (“EMT”) is associated with metastasis and cancer stem cells (Creighton et al., 2009; Mani et al., 2008; Morel et al., 2008; Yang et al., 2006; Yang et al., 2004; Yauch et al., 2005). Importantly, induction of EMT across epithelial cancer types (*e.g.*, lung, breast) also results in resistance to cancer therapies, including chemotherapies and kinase-targeted anti-cancer agents (*e.g.*, erlotinib). Those skilled in the art will recognize that the EMT produces cancer cells that are invasive, migratory, and have stem-cell characteristics, which are all hallmarks of cells that have the potential to generate metastases.

25

EMT is a process in which adherent epithelial cells shed their epithelial characteristics and acquire, in their stead, mesenchymal properties, including fibroblastoid morphology, characteristic gene expression changes, increased potential for motility, and in the case of cancer cells, increased invasion, metastasis and resistance to chemotherapy. (See Kalluri et al., J Clin Invest 119(6):1420-28 (2009); Gupta et al., Cell 138(4):645-59 (2009)). Recent studies have linked EMTs with both metastatic progression of cancer (*see* Yang et al., Cell 117(7):927-39 (2004); Frixen et al., J Cell Biol 113(1):173-85 (1991); Sabbah et al., Drug Resist Updat 11(4-5):123-51 (2008)) and acquisition of stem-cell characteristics (*see* Mani et al., Cell 133(4):704-15 (2008); Morel et al., PLoS One 3(8):e288 (2008)), leading to the hypothesis that cancer cells that undergo an EMT are capable of metastasizing through their acquired invasiveness and, following dissemination, through their acquired self-renewal

potential; the latter trait enables them to spawn the large cell populations that constitute macroscopic metastases.

Given these observations, one might predict that cancers harboring significant populations (or subpopulations) of cells having undergone EMT would be likely to exhibit 5 reduced responsiveness to chemotherapies and anti-kinase targeted therapies.

SUMMARY OF THE INVENTION

The present invention is a method for deriving a molecular signature of epithelial cancers that would not be responsive to chemotherapies and anti-kinase targeted therapies.

10 The present invention also covers any patient stratification scheme that takes advantage of the biomarkers described herein, whether for the purpose of treatment selection and/or prognosis determination. Treatment selection could be either positive or negative and with respect to any class of anti-cancer agents. The method utilizes assays for the expression of biomarker genes that are upregulated in cancer cells post-EMT (Table 1) and assays for other biomarker 15 genes upregulated in cells that have not undergone EMT (Table 2). Using these biomarker assays, it is possible to identify cancers that would not be responsive to conventional cancer therapies.

The invention provides methods of predicting the likelihood that a patient's epithelial cancer will respond to a standard-of-care therapy, following surgical removal of the primary 20 tumor, by determining the expression level in cancer (*i.e.*, in an epithelial cancer cell from the removed primary tumor) of genes in Tables 1 and/or 2, wherein the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be resistant to the standard-of-care therapy and overexpression of genes in Table 2 indicates an increased likelihood that the tumor will be sensitive to the standard-of-care therapy.

25 Overexpression of genes in Table 1 (or any suitable subset thereof) indicates an increased likelihood that the epithelial cancer will be resistant to standard-of-care therapies such as paclitaxel but sensitive to a cancer stem-cell selective agent ("CSS agent") such as, for example, but not limited to, salinomycin. Moreover, underexpression of genes in Table 2 (or any suitable subset thereof) indicates an increased likelihood that the epithelial cancer will 30 be resistant to standard-of-care therapy such as paclitaxel but sensitive to a CSS agent such as salinomycin.

Additionally, those skilled in the art will recognize that the underexpression of genes in Table 1 indicates an increased likelihood that the tumor will be sensitive to standard-of-care. Similarly, the overexpression of genes in Table 2 indicates an increased likelihood that the tumor will be resistant to standard-of-care therapy.

5 Those skilled in the art will recognize that determining the expression level of genes in Tables 1 and/or 2 occurs *in vitro* in the removed primary tumor.

Specifically, those skilled in the art will recognize that the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be resistant to standard-of-care therapy. For example, the overexpression of genes in Table 1 indicates an increased 10 likelihood that the tumor will be resistant to paclitaxel.

Examples of standard-of-care therapy can include, but are not limited to, kinase-targeted therapy, such as EGFR-inhibition, radiation, a hormonal therapy, paclitaxel and/or any combination(s) thereof.

In various embodiments, those skilled in the art will recognize that the expression 15 level of the genes assayed may constitute any subset of the genes in Table 1 and/or Table 2. Specifically, the gene subset is any subset of genes is one for which an appropriate statistical test (*i.e.*, Gene Set Enrichment Analysis (“GSEA”)) demonstrates that the genes in the subset are differentially expressed in populations treated with a cancer therapy at a level of significance (*e.g.* p-value) less than 0.1, relative to an appropriate control population (*e.g.*, 20 DMSO treatment). Any appropriate statistical test(s) known to those skilled in the art and/or any appropriate control population(s) known to those skilled in the art can be used in identifying the gene subsets. For example, the appropriate control population(s) can be any population of cells (*i.e.*, cancer cells) that have not been treated with a given cancer therapy.

Examples of cancer therapy may include, but are not limited to, salinomycin treatment 25 and paclitaxel treatment. Moreover, in various embodiments, the subset of genes may include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the genes in Table 1 and/or Table 2.

The overexpression of genes in Table 1 may also indicate an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells resistant to 30 standard-of-care therapies. Moreover, the overexpression of genes in Table 1 may also indicate an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer stem cells or to therapeutic agents that target invasive and/or metastatic cancer

cells. In still other embodiments, the overexpression of genes in Table 1 may indicate an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells that have undergone an epithelial-to-mesenchymal transition. Moreover, the overexpression of genes in Table 1 also indicates an increased likelihood that the tumor will 5 be sensitive to a CSS agent (*e.g.*, salinomycin).

Also provided are methods of predicting the likelihood that a patient's epithelial cancer will respond to standard-of-care therapy, following surgical removal of the primary tumor, comprising determining the expression level in cancer (*i.e.*, in an epithelial cancer cell from the removed tumor) of genes in Table 2. Those skilled in the art will recognize that the 10 reduced expression of genes in Table 2 indicates an increased likelihood that the tumor will be resistant to standard-of-care therapy. Standard-of-care therapy can include, but is not limited to, a kinase-targeted therapy, such as EGFR-inhibition; a radiation therapy; a hormonal therapy; paclitaxel; and/or any combination(s) thereof.

Those skilled in the art will recognize that determining the expression level of genes 15 in Table 2 occurs *in vitro* in the removed primary tumor. Again, those skilled in the art will recognize that the expression level of the genes assayed may constitute any subset of the genes in Table 2. Specifically, the gene subset is any subset of genes is one for which an appropriate statistical test (*i.e.*, Gene Set Enrichment Analysis ("GSEA")) demonstrates that the genes in the subset are differentially expressed in populations treated with a cancer 20 therapy at a level of significance (*e.g.* p-value) less than 0.1, relative to an appropriate control population (*e.g.*, DMSO treatment). Any appropriate statistical test(s) known to those skilled in the art and/or any appropriate control population(s) known to those skilled in the art can be used in identifying the gene subsets. For example, the appropriate control 25 population(s) can be any population of cells (*i.e.*, cancer cells) that have not been treated with a given cancer therapy.

Examples of cancer therapy may include, but are not limited to, salinomycin treatment and paclitaxel treatment. Moreover, in various embodiments, the subset of genes may include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the genes in Table 2.

30 In these methods, the reduced expression of genes in Table 2 may indicate an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells resistant to standard-of-care therapies. Similarly, the reduced expression of

genes in Table 2 may indicate an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer stem cells. Likewise, the reduced expression of genes in Table 2 may indicate an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells that have undergone an epithelial-to-mesenchymal transition.

5 The invention further provides methods of identifying therapeutic agents that target cancer stem cells or epithelial cancers that have undergone an epithelial to mesenchymal transition by screening candidate agents to identify those that increase the levels of expression of the genes in Table 2, wherein an increase in the expression of genes in Table 2 indicates that the candidate agent targets cancer stem cells or epithelial cancers that have undergone an epithelial to mesenchymal transition. Moreover, the reduced expression of genes in Table 2 also indicates an increased likelihood that the tumor will be sensitive to a CSS agent (e.g., salinomycin).

10 Such methods are preferably performed *in vitro* on cancer (*i.e.*, on epithelial cancer cells obtained following surgical removal of a primary tumor).

15 The methods of identifying therapeutic agents that target cancer stem cells or epithelial cancers that have undergone an EMT according to the invention can be performed independently, simultaneously, or sequentially.

20 Those skilled in the art will recognize that in these screening methods, any subset of genes in Table 2 is evaluated for its expression levels. Preferably, the subset of genes is one for which a statistical test demonstrates that the genes in the subset are differentially expressed in populations treated with a cancer therapy (e.g., salinomycin treatment or paclitaxel treatment) at a level of significance (e.g., p-value) less than 0.1, relative to an appropriate control population (e.g., DMSO treatment). For example, the subset of genes 25 may include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the genes in Table 2.

30 Any appropriate statistical test(s) known to those skilled in the art and/or any appropriate control population(s) known to those skilled in the art can be used in identifying the gene subsets. For example, the appropriate control population(s) can be any population of cells (*i.e.*, cancer cells) that have not been treated with a given cancer therapy.

In still further embodiments, the invention provides methods of identifying therapeutic agents that target cancer stem cells or epithelial cancers that have undergone an

epithelial to mesenchymal transition comprising screening candidate agents to identify those that decrease the levels of expression of the genes in Table 1, wherein a decrease in the expression of genes in Table 1 indicates that the candidate agent targets cancer stem cells or epithelial cancers that have undergone an epithelial to mesenchymal transition. Such 5 methods are preferably performed *in vitro* on cancer (*i.e.*, epithelial cancer cells obtained following surgical removal of a primary tumor).

In these methods, any subset of genes in Table 1 is evaluated for its expression levels. Preferably, the subset of genes is one for which a statistical test demonstrates that the genes in the subset are differentially expressed in populations treated with a cancer therapy (*e.g.*, 10 salinomycin treatment or paclitaxel treatment) at a level of significance (*e.g.*, p-value) less than 0.1, relative to an appropriate control population (*e.g.*, DMSO treatment). For example, the subset of genes may include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the genes in Table 1.

Any appropriate statistical test(s) known to those skilled in the art and/or any 15 appropriate control population(s) known to those skilled in the art can be used in identifying the gene subsets. For example, the appropriate control population(s) can be any population of cells (*i.e.*, cancer cells) that have not been treated with a given cancer therapy.

In other embodiments, the invention provides methods of predicting the likelihood 20 that a patient's epithelial cancer will respond to therapy, following surgical removal of the primary tumor, comprising determining the expression level in cancer of genes in Table 1. Those skilled in the art will recognize that the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be sensitive to therapy with salinomycin or other CSS agents. Moreover, the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be resistant to standard-of-care therapy such as, for example, paclitaxel.

25 Those skilled in the art will recognize that in such methods, determining the expression level of genes in Table 1 occurs *in vitro* in the removed primary tumor. In any of these methods of predicting the likelihood that a patient's epithelial cancer will respond to therapy, any subset of genes in Table 1 is evaluated for its expression levels. Preferably, the subset of the genes whose expression is evaluated is one for which a statistical test 30 demonstrates that the genes in the subset are differentially expressed in populations treated with a cancer therapy (*e.g.*, salinomycin treatment or paclitaxel treatment) at a level of significance (*e.g.*, p-value) less than 0.1, relative to an appropriate control population (*e.g.*,

DMSO treatment). Those skilled in the art will recognize that the subset of genes can include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the genes in Table 1.

Those skilled in the art will readily recognize that any appropriate statistical test(s) 5 known to those skilled in the art and/or any appropriate control population(s) known to those skilled in the art can be used in identifying the gene subsets. For example, the appropriate control population(s) can be any population of cells (*i.e.*, cancer cells) that have not been treated with a given cancer therapy.

In some embodiments, the methods of the invention provide intermediate information 10 that may be useful to a skilled practitioner in selecting a future course of action, therapy, and/or treatment in a patient. For example, any of the methods described herein can further involve the step(s) of summarizing the data obtained by the determination of the gene expression levels. By way of non-limiting example, the summarizing may include prediction of the likelihood of long term survival of said patient without recurrence of the cancer 15 following surgical removal of the primary tumor. Additionally (or alternatively), the summarizing may include recommendation for a treatment modality of said patient.

Also provided by the instant invention are kits containing, in one or more containers, 20 at least one detectably labeled reagent that specifically recognizes one or more of the genes in Table 1 and/or Table 2. For example, the kits can be used to determine the level of expression of the one or more genes in Table 1 and/or Table 2 in cancer (*i.e.*, in an epithelial cancer cell). In some embodiments, the kit is used to generate a biomarker profile of an epithelial cancer. Kits according to the invention can also contain at least one pharmaceutical excipient, diluent, adjuvant, or any combination(s) thereof.

Moreover, in any of the methods of the invention, the RNA expression levels are 25 indirectly evaluated by determining protein expression levels of the corresponding gene products. For example, in one embodiment, the RNA expression levels are indirectly evaluated by determining chromatin states of the corresponding genes.

Those skilled in the art will readily recognize that the RNA is isolated from a fixed, 30 wax-embedded breast cancer tissue specimen of said patient; the RNA is fragmented RNA; and/or the RNA is isolated from a fine needle biopsy sample.

In any of the methods described herein, the cancer may be an epithelial cancer, a lung cancer, breast cancer, prostate cancer, gastric cancer, colon cancer, pancreatic cancer, brain cancer, and/or melanoma cancer.

The invention additionally provides *in vitro* for determining whether or predicting the

5 likelihood that a patient's epithelial cancer will respond to a standard-of-care therapy. Such methods involve the steps of determining the expression level in cancer (*i.e.*, in an epithelial cancer cell obtained following surgical removal of a primary tumor from a patient having epithelial cancer) of genes in Tables 1 and/or 2, wherein the overexpression of genes in Table 1 indicates an increased likelihood that the patient's epithelial cancer will be resistant to the
10 standard-of-care therapy and overexpression of genes in Table 2 indicates an increased likelihood that the patient's epithelial cancer will be sensitive to the standard-of-care therapy. More specifically, the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be resistant to standard-of-care therapy and/or an increased likelihood that the tumor will be resistant to paclitaxel. Moreover, the overexpression of genes in Table 1
15 indicates an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells resistant to standard-of-care therapies; an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer stem cells or to therapeutic agents that target invasive, metastatic, or invasive and metastatic cancer cells; and/or an increased likelihood that the tumor will be sensitive to therapeutic agents that are
20 toxic to cancer cells that have undergone an epithelial-to-mesenchymal transition.

Similarly, the reduced expression of genes in Table 2 indicates an increased likelihood that the tumor will be resistant to standard-of-care therapy; an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells resistant to standard-of-care therapies; an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer stem cells; and/or an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells that have undergone an epithelial-to-mesenchymal transition.

Those skilled in the art will readily recognize that the standard-of-care therapy can be a kinase-targeted therapy, such as EGFR-inhibition; a radiation; a hormonal therapy;
30 paclitaxel; and/or any combination thereof.

In any of these *in vitro* methods, the expression level of the genes assayed constitutes any subset of the genes in Table 1 and/or Table 2. Specifically, the subset of genes is one for

which a statistical test (*e.g.*, Gene Set Enrichment Analysis) demonstrates that the genes in the subset are differentially expressed in populations treated with a cancer therapy at a level of significance (*e.g.*, p-value) less than 0.1, relative to an appropriate control population (*e.g.*, DMSO treatment). Examples of cancer therapy include, but are not limited to salinomycin
5 treatment and paclitaxel treatment. Those skilled in the art will recognize that the subset of genes assayed can include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the genes in Table 1 and/or Table 2.

The details of one or more embodiments of the invention have been set forth in the accompanying description below. Although any methods and materials similar or equivalent
10 to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described. Other features, objects, and advantages of the invention will be apparent from the description and from the claims. In the specification and the appended claims, the singular forms include plural references unless the context clearly dictates otherwise. Unless defined otherwise, all technical and scientific
15 terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. All patents and publications cited in this specification are incorporated by reference in their entirety.

BRIEF DESCRIPTION OF THE FIGURES

20 Figure 1: Heatmap summary of gene expression data from cells cultured in triplicate expressing one of five EMT-inducing factors (Goosecoid, TGFb, Snail, Twist or shRNA against E-cadherin) or expressing two control vectors (pWZL, shRNA against GFP). The legend depicts relative gene expression on a Log scale (base 2).

25 Figure 2: Gene-set enrichment analysis using subsets of genes in Table 1. Shown is the enrichment level of subsets of EMT-associated genes in HMLER cancer cells treated with paclitaxel. The gene sets are named EMT_UP_NUM, where NUM is the number of genes in the subset. The plots show the enrichment score as a function of rank and indicate that each of the EMT_UP gene sets is enriched in its expression in cells following paclitaxel treatment.

30 Figure 3: Gene-set enrichment analysis with subsets of genes in Table 2. Shown is the enrichment level of subsets of non-EMT-associated genes in HMLER cancer cells treated with paclitaxel. The gene sets are named EMT_DN_NUM, where NUM is the number of genes in the subset. The plots show the enrichment score as a function of rank and indicate

that each of the EMT_DN gene sets is enriched in its expression in cells that are treated with DMSO control relative to cells treated with paclitaxel.

Figure 4: Gene-set enrichment analysis with subsets of genes in Table 2. Shown is the enrichment level of subsets of non-EMT-associated genes in HMLER cancer cells treated with salinomycin. The gene sets are named EMT_DN_NUM, where NUM is the number of genes in the subset. The plots show the enrichment score as a function of rank and indicate that each of the EMT_DN gene sets is enriched in its expression in cells following salinomycin treatment relative to control treatment.

Figure 5: Gene-set enrichment analysis with subsets of genes in Table 1. Shown is the enrichment level of subsets of EMT-associated genes in HMLER cancer cells treated with salinomycin. The gene sets are named EMT_UP_NUM, where NUM is the number of genes in the subset. The plots show the enrichment score as a function of rank and indicate that each of the EMT_UP gene sets is enriched in its expression in cells that are treated with DMSO control relative to cells treated with salinomycin.

15

DETAILED DESCRIPTION OF THE INVENTION

Prior to setting forth the invention, it may be helpful to an understanding thereof to set forth definitions of certain terms that will be used hereinafter.

A "biomarker" in the context of the present invention is a molecular indicator of a specific biological property; a biochemical feature or facet that can be used to detect and/or categorize an epithelial cancer. "Biomarker" encompasses, without limitation, proteins, nucleic acids, and metabolites, together with their polymorphisms, mutations, variants, modifications, subunits, fragments, protein-ligand complexes, and degradation products, protein-ligand complexes, elements, related metabolites, and other analytes or sample-derived measures. Biomarkers can also include mutated proteins or mutated nucleic acids. In the instant invention, measurement of mRNA is preferred.

A "biological sample" or "sample" in the context of the present invention is a biological sample isolated from a subject and can include, by way of example and not limitation, whole blood, blood fraction, serum, plasma, blood cells, tissue biopsies, a cellular extract, a muscle or tissue sample, a muscle or tissue biopsy, or any other secretion, excretion, or other bodily fluids.

The phrase "differentially expressed" refers to differences in the quantity and/or the frequency of a biomarker present in a sample taken from patients having for example, epithelial cancer as compared to a control subject. For example without limitation, a biomarker can be an mRNA or a polypeptide which is present at an elevated level (*i.e.*, overexpressed) or at a decreased level (*i.e.*, underexpressed) in samples of patients with cancer as compared to samples of control subjects. Alternatively, a biomarker can be a polypeptide which is detected at a higher frequency (*i.e.*, overexpressed) or at a lower frequency (*i.e.*, underexpressed) in samples of patients compared to samples of control subjects. A biomarker can be differentially present in terms of quantity, frequency or both.

5 Previous work has shown that agents that selectively target cells induced into EMT also selectively kill cancer stem cells. Since cancer cells induced into EMT are also highly invasive, the hypothesis is that anti-cancer therapies that target invasive and/or metastatic cancer cells are likely to also target cancer cells induced into EMT.

10 According to one embodiment, this invention provides a method for determining which patient subpopulations harbor tumors responsive to three classes of essentially overlapping anti-cancer therapies or treatments -- *i.e.*, (a) therapies that target invasive/metastatic cells, (b) therapies that target cancer stem cells and (c) therapies that target cells post-EMT. Specifically, the invention provides methods for determining which therapies or treatments would be effective in cancers that express genetic biomarkers that are 15 upregulated in cancer cells post-EMT (Table 1) and would not be effective in cancers that express genetic markers upregulated in cancer cells that have not undergone an EMT (Table 20 2).

25 The cancers that the methods of this invention are contemplated to be useful for include any epithelial cancers, and specifically include breast cancer, melanoma, brain, gastric, pancreatic cancer and carcinomas of the lung, prostate, and colon.

30 The anti-cancer therapies and treatments in which the methods of this invention are contemplated to be useful for include standard-of-care therapies such as paclitaxel, DNA damaging agents, kinase inhibitors (*e.g.*, erlotinib), and radiation therapies, as well as therapies that target cancer stem cells and/or therapies that target cells post-EMT, including, for example, CSS agents such as salinomycin.

A set of genes differentially expressed in cancer cells that have undergone an EMT (Table 1) and genes expressed in cancer cells that have not undergone an EMT (Table 2) was

determined. These genes were obtained by collecting RNA and performing microarray gene-expression analyses on breast cancer cells that were cultured either expressing one of 5 EMT-inducing genetic factors or 2 control genetic factors that did not induce EMT (control vectors). Cells were cultured in triplicate for each treatment condition. A global analysis of 5 the gene expression data is shown as a heatmap in Figure 1, where the top sets of genes in Tables 1 and 2 were used to construct the heatmap.

To demonstrate that the responsiveness of cancer cell populations to therapy can be both measured by and predicted by the various subsets of the genes identified in Tables 1 and 2, HMLER breast cancer populations were treated with a commonly used anti-cancer 10 chemotherapy paclitaxel (Taxol) or with control DMSO treatment. mRNA was then isolated, and global gene expression data was collected. The collective expression levels of the genes in Tables 1 and 2 after paclitaxel treatment were then determined. For these analyses, which are shown in Figures 2 and 3, collections of gene subsets of various sizes were chosen.

Those skilled in the art will recognize that determining the expression level of genes 15 in Tables 1 and/or 2 occurs *in vitro* in the removed primary tumor.

The analyses show that the genes expressed in Table 1 and/or many subsets thereof are over-expressed upon treatment with paclitaxel, indicating that these genes identify cancer cellular subpopulations that are resistant to treatment with paclitaxel. As a consequence, measurement of the expression of the genes in Table 1 would serve to identify tumors that 20 would fail to be responsive to paclitaxel treatment when applied as a single agent.

Also covered in this invention is any subset of the genes in Table 1 for which a statistical test (such as, for example, Gene Set Enrichment Analysis (*see* Subramanian, Tamayo, et al., PNAS 102:15545-50 (2005) and Mootha, Lindgren et al., Nat. Genet 34:267-73 (2003), each of which is herein incorporated by reference in its entirety) demonstrates that 25 the genes in the subset are over-expressed in paclitaxel-treated populations at a level of significance (*e.g.* p-value) less than 0.1, more preferably less than 0.05, relative to an appropriate control population (*e.g.*, DMSO treatment). In one embodiment it was contemplated that the subset of genes from Table 1 comprises at least 2 genes, 10 genes, 15 genes, 20 genes or 30 genes (or any range intervening therebetween). For example, the 30 subset might include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 genes.

Those skilled in the art will recognize that any other appropriate statistical test(s) for gene enrichment or differential expression can also be used to identify the desired subset of genes from Table 1. For example, the summation of the log-transformed gene expression scores for the genes in a set could identify a metric that could be used to compare differential gene expression between two profiles using a t-test, modified t-test, or non-parametric test such as Mann-Whitney.

Moreover, those skilled in the art will also recognize that any appropriate control population(s) can also be used to identify the desired subset of genes from Table 1. For example, the appropriate control population(s) can be any population of cells (*i.e.*, cancer cells) that have not been treated with a given cancer therapy.

Alternatively, the subsets of the genes in Table 1 may be identified as any subset for which a statistical test (such as, for example, Gene Set Enrichment Analysis) demonstrates that the genes in the subset are under-expressed in salinomycin-treated populations at a level of significance (*e.g.* p-value) less than 0.1, more preferably less than 0.05, relative to an appropriate control population (*e.g.*, DMSO treatment). In one embodiment it was contemplated that the subset of genes from Table 1 comprises at least 2 genes, 10 genes, 15 genes, 20 genes or 30 genes (or any range intervening therebetween). For example, the subset might include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 genes. For those skilled in the art, any other appropriate statistical test(s) for gene expression or differential expression can also be used to identify the desired subset of genes from Table 1. For example, the summation of the log-transformed gene expression scores for the genes in a set could identify a metric that could be used to compare differential gene expression between two profiles using a t-test, modified t-test, or non-parametric test such as Mann-Whitney.

Likewise, any appropriate control population(s) can also be used to identify the desired subset of genes from Table 1. For example, the appropriate control population(s) can be any population of cells (*i.e.*, cancer cells) that have not been treated with a given cancer therapy.

Those skilled in the art will recognize that the statistical test used to determine suitable subsets of the genes in Table 1 could be Gene Set Enrichment Analysis (GSEA) (*see* Subramanian, Tamayo, et al., PNAS 102:15545-50 (2005) and Mootha, Lindgren et al., Nat. Genet 34:267-73 (2003), each of which is herein incorporated by reference in its entirety) as

used for the purposes of elucidation in this application, or it could be any other statistical test of enrichment or expression known in the art. For example, the summation of the log-transformed gene expression scores for the genes in a set could identify a metric that could be used to compare differential gene expression between two profiles using a t-test, modified t-test, or non-parametric test such as Mann-Whitney.

5 The populations of cells being treated for the purposes of this evaluation could be cancer cells of any type or normal cellular populations.

10 **Table 1.** Genes identified that are over-expressed in cancer populations having undergone an EMT, relative to cancer populations that have not undergone an EMT.

Symbol	Description	GenBank	Mean Fold OverExpression Upon EMT
DCN	Decorin	AF138300	137.6156
COL3A1	collagen, type III, alpha 1 (Ehlers-Danlos syndrome type IV, autosomal dominant)	AU144167	132.1195
COL1A2	collagen, type I, alpha 2	AA788711	88.05054
FBN1	fibrillin 1 (Marfan syndrome)	NM_000138	76.51337
GREM1	gremlin 1, cysteine knot superfamily, homolog (Xenopus laevis)	NM_013372	75.35859
POSTN	periostin, osteoblast specific factor	D13665	73.18114
NID1	nidogen 1	BF940043	51.91502
FBLN5	fibulin 5	NM_006329	34.4268
SDC2	syndecan 2 (heparan sulfate proteoglycan 1, cell surface-associated, fibroglycan)	AL577322	32.48001
COL5A2	collagen, type V, alpha 2	NM_000393	26.66545
PRG1	proteoglycan 1, secretory granule	J03223	23.46014
TCF8	transcription factor 8 (represses interleukin 2 expression)	AI806174	22.83413
ENPP2	ectonucleotide pyrophosphatase/phosphodiesterase 2 (autotaxin)	L35594	22.72739
NR2F1	nuclear receptor subfamily 2, group F, member 1	AI951185	20.64471
COL6A1	collagen, type VI, alpha 1	AA292373	17.36271
RGS4	regulator of G-protein signalling 4	AL514445	16.63788
CDH11	cadherin 11, type 2, OB-cadherin (osteoblast)	D21254	16.61483
PRRX1	paired related homeobox 1	NM_006902	14.73362
OLFM13	olfactomedin-like 3	NM_020190	14.0984
SPOCK	sparc/osteonectin, cwcv and kazal-like domains proteoglycan (testican)	AF231124	13.99112
WNT5A	wingless-type MMTV integration site family, member 5A	NM_003392	13.33384
MAP1B	microtubule-associated protein 1B	AL523076	13.0877
		BG109855	12.44401
PTX3	pentraxin-related gene, rapidly induced by IL-1 beta	NM_002852	12.01196
C5orf13	chromosome 5 open reading frame 13	U36189	11.95863
IGFBP4	insulin-like growth factor binding protein 4	NM_001552	11.09963

PCOLCE	procollagen C-endopeptidase enhancer	NM_002593	11.04575
TNFAIP6	tumor necrosis factor, alpha-induced protein 6	NM_007115	11.02984
LOC51334	NM_016644		10.91454
CYP1B1	cytochrome P450, family 1, subfamily B, polypeptide 1	NM_000104	10.47429
TFPI	tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor)	BF511231	10.42648
PVRL3	poliovirus receptor-related 3	AA129716	10.30262
ROR1	receptor tyrosine kinase-like orphan receptor 1	NM_005012	10.10474
FBLN1	fibulin 1	NM_006486	10.09844
BIN1	bridging integrator 1	AF043899	9.928529
LUM	Lumican	NM_002345	9.727574
RGL1	ral guanine nucleotide dissociation stimulator-like 1	AF186779	9.643922
PTGFR	prostaglandin F receptor (FP)	NM_000959	8.939536
TGFBR3	transforming growth factor, beta receptor III (betaglycan, 300kDa)	NM_003243	8.838
COL1A1	collagen, type I, alpha 1	Y15916	8.667645
DLC1	deleted in liver cancer 1	AF026219	8.610518
PMP22	peripheral myelin protein 22	L03203	8.560648
PRKCA	protein kinase C, alpha	AI471375	8.338108
MMP2	matrix metallopeptidase 2 (gelatinase A, 72kDa gelatinase, 72kDa type IV collagenase)	NM_004530	8.268926
CTGF	connective tissue growth factor	M92934	8.168776
CDH2	cadherin 2, type 1, N-cadherin (neuronal)	M34064	7.987921
GNG11	guanine nucleotide binding protein (G protein), gamma 11	NM_004126	7.953115
PPAP2B	phosphatidic acid phosphatase type 2B	AA628586	7.907272
NEBL	Nebulette	AL157398	7.817894
MYL9	myosin, light polypeptide 9, regulatory	NM_006097	7.780485
KCNMA1	potassium large conductance calcium-activated channel, subfamily M, alpha member 1	AI129381	7.747227
IGFBP3	insulin-like growth factor binding protein 3	BF340228	7.57812
CSPG2	chondroitin sulfate proteoglycan 2 (versican)	NM_004385	7.318764
SEMA5A	sema domain, seven thrombospondin repeats (type 1 and type 1-like), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 5A	NM_003966	7.298702
CITED2	Cbp/p300-interacting transactivator, with Glu/Asp-rich carboxy-terminal domain, 2	AF109161	7.220907
MME	membrane metallo-endopeptidase (neutral endopeptidase, enkephalinase, CALLA, CD10)	AI433463	7.05859
DOCK10	dedicator of cytokinesis 10	NM_017718	6.972809
DNAJB4	DnaJ (Hsp40) homolog, subfamily B, member 4	BG252490	6.782043
PCDH9	protocadherin 9	AI524125	6.711987
NID2	nidogen 2 (osteonidogen)	NM_007361	6.54739
HAS2	hyaluronan synthase 2	NM_005328	6.520398
PTGER4	prostaglandin E receptor 4 (subtype EP4)	AA897516	6.396133
TRAM2	translocation associated membrane protein 2	AI986461	6.275542
SYT11	synaptotagmin XI	BC004291	6.149546
BGN	Biglycan	AA845258	5.838023
CYBRD1	cytochrome b reductase 1	NM_024843	5.710828
CHN1	chimerin (chimaerin) 1	BF339445	5.687127
DPT	Dermatopontin	AI146848	5.573023

ITGBL1	integrin, beta-like 1 (with EGF-like repeat domains)	AL359052	5.511939
FLJ22471		NM_025140	5.364784
LOC22136			
2	AL577024		5.35364
MLPH	Melanophilin	NM_024101	5.296062
ANXA6	annexin A6	NM_001155	5.18628
EML1	echinoderm microtubule associated protein like 1	NM_004434	5.138332
CREB3L1	cAMP responsive element binding protein 3-like 1	AF055009	5.073214
FLJ10094	leucine-rich repeats and immunoglobulin-like domains 1	NM_017993	4.998863
LRIG1		AB050468	4.9963
SNED1	sushi, nidogen and EGF-like domains 1 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 1	N73970	4.993945
SERPINF1		NM_002615	4.969153
DAB2	disabled homolog 2, mitogen-responsive phosphoprotein (Drosophila)	NM_001343	4.913939
WASPIP	Wiskott-Aldrich syndrome protein interacting protein	AW058622	4.882974
FN1	fibronectin 1	AJ276395	4.869319
C10orf56	chromosome 10 open reading frame 56	AA131324	4.795629
DAPK1	death-associated protein kinase 1	NM_004938	4.726984
LOXL1	lysyl oxidase-like 1	NM_005576	4.720305
ID2	inhibitor of DNA binding 2, dominant negative helix-loop-helix protein	NM_002166	4.672064
PTGER2	prostaglandin E receptor 2 (subtype EP2), 53kDa	NM_000956	4.427892
COL8A1	collagen, type VIII, alpha 1	BE877796	4.38653
DDR2	discoidin domain receptor family, member 2	NM_006182	4.338932
SEPT6	septin 6	D50918	4.30699
HRASLS3	HRAS-like suppressor 3	BC001387	4.281926
PLEKHC1	pleckstrin homology domain containing, family C (with FERM domain) member 1	AW469573	4.272913
THY1	Thy-1 cell surface antigen	AA218868	4.253587
RPS6KA2	ribosomal protein S6 kinase, 90kDa, polypeptide 2	AI992251	4.225143
GALC	galactosylceramidase (Krabbe disease)	NM_000153	4.222742
	fibrillin 2 (congenital contractual arachnodactyly)		
FBN2		NM_001999	4.205916
FSTL1	follistatin-like 1	BC000055	4.175243
NRP1	neuropilin 1	BE620457	4.162874
TNS1	tensin 1	AL046979	4.131713
TAGLN	Transgelin	NM_003186	4.131083
CDKN2C	cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)	NM_001262	4.124788
MAGEH1	melanoma antigen family H, 1	NM_014061	4.094423
	latent transforming growth factor beta binding protein 2	NM_000428	4.000998
LTBP2		AL049381	3.997339
PBX1	pre-B-cell leukemia transcription factor 1	NM_016569	3.992244
TBX3	T-box 3 (ulnar mammary syndrome)		

The analyses also show that the genes in Table 2 and many subsets thereof are under-expressed upon treatment with paclitaxel, indicating that these genes identify cellular subpopulations that are sensitive to treatment with paclitaxel. As a consequence, measurement of the expression of the genes in Table 2 would serve to identify tumors that 5 would be responsive to paclitaxel treatment when applied as a single agent.

Those skilled in the art will recognize that determining the expression level of genes in Table 2 occurs *in vitro* in the removed primary tumor.

Also covered in this invention is any subset of the genes in Table 2 for which a statistical test (such as, for example, Gene Set Enrichment Analysis) demonstrates that the 10 genes in the subset are under-expressed in paclitaxel-treated populations at a level of significance (e.g. p-value) less than 0.1, more preferably less than 0.05, relative to an appropriate control population (e.g., DMSO treatment). In one embodiment it was contemplated that the subset of the genes from Table 2 comprises at least 2 genes, 6 genes, 10 genes, 15 genes, 20 genes or 30 genes (or any range intervening therebetween). For example, 15 the subset might include 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 genes. Those skilled in the art will recognize that any other appropriate statistical test(s) for gene enrichment or differential expression can also be used to identify the desired subset of genes from Table 2. For example, the summation of the log-transformed gene expression scores for the genes in a set could identify a metric that could be 20 used to compare differential gene expression between two profiles using a t-test, modified t-test, or non-parametric test such as Mann-Whitney.

Moreover, those skilled in the art will also recognize that any appropriate control population(s) can also be used to identify the desired subset of genes from Table 2. For example, the appropriate control population(s) can be any population of cells (*i.e.*, cancer 25 cells) that have not been treated with a given cancer therapy.

Alternatively, the subsets of the genes in Table 2 may be identified as any subset for which a statistical test (such as Gene Set Enrichment Analysis) demonstrates that the genes in the subset are over-expressed in salinomycin-treated populations at a level of significance (e.g. p-value) less than 0.1, more preferably less than 0.05, relative to an appropriate control 30 population (e.g., DMSO treatment). In one embodiment it was contemplated that the subset of the genes from Table 2 comprises at least 2 genes, 6 genes, 10 genes, 15 genes, 20 genes or 30 genes (or any range intervening therebetween). For example, the subset might include

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 genes. Those skilled in the art will recognize that any other appropriate statistical test(s) for gene enrichment or differential expression can also be used to identify can also be used to identify the desired subset of genes from Table 2. For example, the summation of the 5 log-transformed gene expression scores for the genes in a set could identify a metric that could be used to compare differential gene expression between two profiles using a t-test, modified t-test, or non-parametric test such as Mann-Whitney.

Likewise, those skilled in the art will also recognize that any appropriate control population(s) can also be used to identify the desired subset of genes from Table 2. For 10 example, the appropriate control population(s) can be any population of cells (*i.e.*, cancer cells) that have not been treated with a given cancer therapy.

The statistical test used could be Gene Set Enrichment Analysis (GSEA) (*see* Subramanian, Tamayo, et al., PNAS 102:15545-50 (2005) and Mootha, Lindgren et al., Nat. Genet 34:267-73 (2003), each of which is herein incorporated by reference in its entirety) as 15 used for the purposes of elucidation in this application, or it could be any other statistical test of enrichment or expression known in the art. By way of non-limiting example, the summation of the log-transformed gene expression scores for the genes in a set could identify a metric that could be used to compare differential gene expression between two profiles using a t-test, modified t-test, or non-parametric test such as Mann-Whitney.

20 The populations of cells being treated for the purposes of this evaluation could be cancer cells of any type or normal cellular populations.

Table 2. Genes identified that are over-expressed in cancer populations that have not undergone an EMT, relative to cancer populations that have undergone an EMT.

Symbol	Description	GenBank	Mean Fold OverExpression In Non-EMT
SERPINB2	serpin peptidase inhibitor, clade B (ovalbumin), member 2	NM_002575	36.74103
TACSTD1	tumor-associated calcium signal transducer 1	NM_002354	35.91264
SPRR1A	small proline-rich protein 1A	AI923984	34.99944
SPRR1B	small proline-rich protein 1B (cornifin)	NM_003125	29.33599
IL1A	interleukin 1, alpha	M15329	28.86922
KLK10	kallikrein 10	BC002710	25.16523
FGFR3	fibroblast growth factor receptor 3 (achondroplasia, thanatophoric dwarfism)	NM_000142	24.74251
CDH1	cadherin 1, type 1, E-cadherin (epithelial)	NM_004360	23.74645
SLPI	secretory leukocyte peptidase inhibitor	NM_003064	21.4404
KRT6B	keratin 6B	AI831452	20.84833
FXYD3	FXYD domain containing ion transport regulator 3	BC005238	19.01308
PI3	peptidase inhibitor 3, skin-derived (SKALP)	L10343	18.10103
RAB25	RAB25, member RAS oncogene family	NM_020387	17.64907
SAA2	serum amyloid A2	M23699	17.20791
RBM35A	RNA binding motif protein 35A	NM_017697	15.20696
TMEM30B	transmembrane protein 30B	AV691491	14.98036
EVA1	epithelial V-like antigen 1	AF275945	14.69364
KLK7	kallikrein 7 (chymotryptic, stratum corneum)	NM_005046	14.42981
RBM35B	RNA binding motif protein 35A	NM_024939	13.49619
S100A14	S100 calcium binding protein A14	NM_020672	13.44819
SERPINB13	serpin peptidase inhibitor, clade B (ovalbumin), member 13	AJ001698	13.29747
UCHL1	ubiquitin carboxyl-terminal esterase L1 (ubiquitin thiolesterase)	NM_004181	13.27334
ALDH1A3	aldehyde dehydrogenase 1 family, member A3	NM_000693	13.10531
CKMT1B	creatine kinase, mitochondrial 1B	NM_020990	12.4713
ANXA3	annexin A3	M63310	12.4013
NMU	neuromedin U	NM_006681	12.15367
KRT15	keratin 15	NM_002275	12.09266
FST	Follistatin	NM_013409	11.85793
FGFBP1	fibroblast growth factor binding protein 1	NM_005130	11.49472
S100A7	S100 calcium binding protein A7 (psoriasin 1)	NM_002963	11.07673
TP73L	tumor protein p73-like	AF091627	10.93454
FLJ12684		NM_024534	10.70372
SCNN1A	sodium channel, nonvoltage-gated 1 alpha	NM_001038	10.3172
KLK5	kallikrein 5	AF243527	10.20992
S100A8	S100 calcium binding protein A8 (calgranulin A)	NM_002964	10.10418
CCND2	cyclin D2	AW026491	9.950438
MAP7	microtubule-associated protein 7	AW242297	9.942027

CXADR	coxsackie virus and adenovirus receptor	NM_001338	9.872805
KRT17	keratin 17	NM_000422	9.74958
CDH3	cadherin 3, type 1, P-cadherin (placental)	NM_001793	9.735938
TRIM29	tripartite motif-containing 29	NM_012101	9.373189
SPINT1	serine peptidase inhibitor, Kunitz type 1	NM_003710	9.353589
TGFA	transforming growth factor, alpha	NM_003236	9.30496
IL18	interleukin 18 (interferon-gamma-inducing factor)	NM_001562	9.218934
CA9	carbonic anhydrase IX	NM_001216	9.196596
KRT16	keratin 16 (focal non-epidermolytic palmoplantar keratoderma)	AF061812	9.177365
GJB3	gap junction protein, beta 3, 31kDa (connexin 31)	AF099730	9.030588
VSNL1	visinin-like 1	NM_003385	8.637896
IL1B	interleukin 1, beta	NM_000576	8.629518
CA2	carbonic anhydrase II	M36532	8.606222
CNTNAP2	contactin associated protein-like 2	AC005378	8.592036
ARHGAP8	Rho GTPase activating protein 8	Z83838	8.434017
KRT5	keratin 5 (epidermolysis bullosa simplex, Dowling-Meara/Kobner/Weber-Cockayne types)	NM_000424	8.14695
ARTN	Artemin	NM_003976	8.125857
CAMK2B	calcium/calmodulin-dependent protein kinase (CaM kinase) II beta	AF078803	8.125181
ZBED2	zinc finger, BED-type containing 2	NM_024508	8.046492
TPD52L1	tumor protein D52-like 1	NM_003287	7.949147
EPB41L4B	erythrocyte membrane protein band 4.1 like 4B	NM_019114	7.911
KLK8	kallikrein 8 (neuropsin/ovasin)	NM_007196	7.895551
C1orf116	chromosome 1 open reading frame 116	NM_024115	7.889643
LEPREL1	leprecan-like 1	NM_018192	7.85189
JAG2	jagged 2	Y14330	7.562273
DSC2	desmocollin 2	NM_004949	7.425664
CYP27B1	cytochrome P450, family 27, subfamily B, polypeptide 1	NM_000785	7.293746
HOOK1	hook homolog 1 (Drosophila)	NM_015888	7.275468
LGALS7	lectin, galactoside-binding, soluble, 7 (galectin 7)	NM_002307	7.241758
HBEGF	heparin-binding EGF-like growth factor	NM_001945	7.202511
CDS1	CDP-diacylglycerol synthase (phosphatidate cytidylyltransferase) 1	NM_001263	7.130583
RNF128	ring finger protein 128	NM_024539	7.12999
PRR5		NM_015366	7.124753
KRT6A	keratin 6A	J00269	7.042267
LAMA3	laminin, alpha 3	NM_000227	6.95736
AP1M2	adaptor-related protein complex 1, mu 2 subunit	NM_005498	6.911026
SLAC2-B		AB014524	6.847038
GRHL2	grainyhead-like 2 (Drosophila)	NM_024915	6.781949
ST14	suppression of tumorigenicity 14 (colon carcinoma, matriptase, epithin)	NM_021978	6.733796
DSC3	desmocollin 3	NM_001941	6.68478
CD24	CD24 antigen (small cell lung carcinoma cluster 4 antigen)	M58664	6.653991
LAMB3	laminin, beta 3	L25541	6.6375

TSPAN1	tetraspanin 1	AF133425	6.619673
SYK	spleen tyrosine kinase	NM_003177	6.585623
SNX10	sorting nexin 10	NM_013322	6.540949
		NM_024064	6.518229
CTSL2	cathepsin L2	AF070448	6.516422
SLC2A9	solute carrier family 2 (facilitated glucose transporter), member 9	NM_020041	6.458325
TMEM40	transmembrane protein 40	NM_018306	6.408648
COL17A1	collagen, type XVII, alpha 1	NM_000494	6.405184
C10orf10	chromosome 10 open reading frame 10	AL136653	6.37754
ST6GALNAC2	ST6 (alpha-N-acetyl-neuraminy-2,3-beta-galactosyl-1,3)-N-acetylgalactosaminide alpha-2,6-sialyltransferase 2	NM_006456	6.224336
ANXA8	annexin A8	NM_001630	6.199621
ABLIM1	actin binding LIM protein 1	NM_006720	6.19859
RLN2	relaxin 2	NM_005059	6.139665
VGLL1	vestigial like 1 (Drosophila)	BE542323	6.116473
NRG1	neuregulin 1	NM_013959	5.854395
MMP9	matrix metallopeptidase 9 (gelatinase B, 92kDa gelatinase, 92kDa type IV collagenase)	NM_004994	5.737173
DSG3	desmoglein 3 (pemphigus vulgaris antigen)	NM_001944	5.731926
GJB5	gap junction protein, beta 5 (connexin 31.1)	NM_005268	5.684999
NDRG1	N-myc downstream regulated gene 1	NM_006096	5.681532
MAPK13	mitogen-activated protein kinase 13	BC000433	5.587721
DST	Dystonin	NM_001723	5.560135
CORO1A	coronin, actin binding protein, 1A	U34690	5.510182
IRF6	interferon regulatory factor 6	AU144284	5.499117
KIBRA		AK001727	5.491803
SPINT2	serine peptidase inhibitor, Kunitz type, 2	AF027205	5.466358
ALOX15B	arachidonate 15-lipoxygenase, second type	NM_001141	5.461662
SERPINB1	serpin peptidase inhibitor, clade B (ovalbumin), member 1	NM_030666	5.348966
CLCA2	chloride channel, calcium activated, family member 2	AF043977	5.30091
MYO5C	myosin VC	NM_018728	5.269624
CSTA	cystatin A (stefin A)	NM_005213	5.215624
ITGB4	integrin, beta 4	NM_000213	5.180603
MBP	myelin basic protein	AW070431	5.108643
AQP3	aquaporin 3	N74607	5.084832
SLC7A5	solute carrier family 7 (cationic amino acid transporter, y+ system), member 5	AB018009	5.084409
GPR87	G protein-coupled receptor 87	NM_023915	5.073566
MALL	mal, T-cell differentiation protein-like	BC003179	4.957731
MST1R	macrophage stimulating 1 receptor (c-met-related tyrosine kinase)	NM_002447	4.955876
SOX15	SRY (sex determining region Y)-box 15	NM_006942	4.948873
LAMC2	laminin, gamma 2	NM_005562	4.941675
CST6	cystatin E/M	NM_001323	4.931341
MFAP5	microfibrillar associated protein 5	AW665892	4.871412
KRT18	keratin 18	NM_000224	4.799686

JUP	junction plakoglobin	NM_021991	4.719454
DSP	Desmoplakin	NM_004415	4.716772
MTSS1	metastasis suppressor 1	NM_014751	4.715399
	fibroblast growth factor receptor 2 (bacteria-expressed kinase, keratinocyte growth factor receptor, craniofacial dysostosis 1, Crouzon syndrome, Pfeiffer syndrome, Jackson-Weiss syndrome)		
FGFR2		NM_022969	4.67323
PKP3	plakophilin 3	AF053719	4.646421
STAC	SH3 and cysteine rich domain	NM_003149	4.643331
RAB38	RAB38, member RAS oncogene family	NM_022337	4.544243
SFRP1	secreted frizzled-related protein 1	NM_003012	4.465928
RHOD	ras homolog gene family, member D	BC001338	4.45418
TPD52	tumor protein D52	BG389015	4.453563
F11R	F11 receptor	AF154005	4.39018
	tumor necrosis factor receptor superfamily, member 6b, decoy BCL2-interacting killer (apoptosis- inducing)		
TNFRSF6B		NM_003823	4.342302
BIK		NM_001197	4.323681
XDH	xanthine dehydrogenase	U06117	4.309678
PLA2G4A	phospholipase A2, group IVA (cytosolic, calcium-dependent)	M68874	4.308364
PTHLH	parathyroid hormone-like hormone	J03580	4.294946
NEF3	neurofilament 3 (150kDa medium)	NM_005382	4.274928
SORL1	sortilin-related receptor, L(DLR class) A		
	repeats-containing	AV728268	4.257894
SLC6A8	solute carrier family 6 (neurotransmitter transporter, creatine), member 8	NM_005629	4.205508
PRRG4	proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane)	NM_024081	4.187822
CLDN1	claudin 1	NM_021101	4.185384
KIAA0888		AB020695	4.162009
GPR56	G protein-coupled receptor 56	AL554008	4.153478
SNCA	synuclein, alpha (non A4 component of amyloid precursor)	BG260394	4.149795
FLRT3	fibronectin leucine rich transmembrane protein 3	NM_013281	4.130167
IL1RN	interleukin 1 receptor antagonist	U65590	4.12988
DDR1	discoidin domain receptor family, member 1	L11315	4.125646
LYN	v-yes-1 Yamaguchi sarcoma viral related oncogene homolog	M79321	4.107271
FLJ20130		NM_017681	4.09499
STAP2		BC000795	4.089544
KCNK1	potassium channel, subfamily K, member 1	NM_002245	4.084162
TSPAN13	tetraspanin 13	NM_014399	4.079691
LISCH7		NM_015925	4.025813
PERP	PERP, TP53 apoptosis effector	NM_022121	4.024473

Next, identical analyses as those described above were performed in the context of treatment with a different anti-cancer agent—salinomycin—that was previously identified as

specifically killing invasive cancer stem cells. The opposite expression change (relative to paclitaxel) was observed upon treatment with salinomycin. The analyses, shown in Figures 4 and 5, indicate that the genes expressed in Table 1 and any subsets thereof are under-expressed upon treatment with salinomycin, indicating that these genes identify cellular

5 subpopulations that are sensitive to treatment with a CSS agent such as salinomycin. As a consequence, measurement of the expression of the genes in Table 1 (or any appropriate subsets thereof identified according to the methods disclosed herein) would serve to identify tumors that would be responsive to a CSS agent (*e.g.*, salinomycin treatment) when applied as a single agent.

10 The analyses also show that the genes expressed in Table 2 and any subset thereof are over-expressed upon treatment with salinomycin (relative to control), indicating that these genes identify cellular subpopulations that are resistant to treatment with a CSS agent such as salinomycin. As a consequence, measurement of the expression of the genes in Table 2 (or any appropriate subsets thereof identified according to the methods disclosed herein) would 15 serve to identify tumors that would fail to be responsive to a CSS agent (*e.g.*, salinomycin treatment) when applied as a single agent.

It follows that measurement of the expression of the genes in Tables 1 and/or 2 as well as various subsets thereof for which a statistical test demonstrates that the genes in the subset are differentially expressed in response to treatment with a cancer treatment (*e.g.*,

20 salinomycin treatment or paclitaxel treatment) at a level of significance (*e.g.*, p value) less than 0.1, relative to an appropriate control population (*e.g.*, DMSO treatment) can be used to identify cancer cell populations that are or are not responsive to any given therapy or treatment. Distinct subpopulations of cells are identified using the expression levels of the genes in Tables 1 and/or 2 (or any appropriate subsets thereof) and these distinct 25 subpopulations could respond distinctively to any particular therapeutic or treatment regimen, thereby allowing these genes to serve as biomarkers dictating therapy choice following primary tumor removal.

30 All documents and patents or patent applications referred to herein are fully incorporated by reference.

References:

1. Piyush Gupta, Tamer T. Onder, Sendurai Mani, Mai-jing Liao, Eric S. Lander, Robert A. Weinberg. A Method for the Discovery of Agents Targeting and Exhibiting Specific Toxicity for Cancer Stem Cells. *Patent pending.* (WHI07-20; MIT 12947WB; WO/2009/126310).
- 5
2. Piyush B. Gupta, Tamer T. Onder, Guozhi Jiang, Tai Kao, Charlotte Kuperwasser, Robert A. Weinberg, Eric S. Lander. "Identification of selective inhibitors of cancer stem cells by high-throughput screening." *Cell.* (2009) Aug; 138(4):645-659.
- 10
3. Thomson S, Petti F, Sujka-Kwok I, Epstein D, Haley JD. Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy. *Clin Exp Metastasis.* 2008;25(8):843-54. Epub 2008 Aug 12. PubMed PMID: 18696232.
- 15
4. Barr S, Thomson S, Buck E, Russo S, Petti F, Sujka-Kwok I, Eyzaguirre A, Rosenfeld-Franklin M, Gibson NW, Miglarese M, Epstein D, Iwata KK, Haley JD. Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions. *Clin Exp Metastasis.* 2008;25(6):685-93. Epub 2008 Jan 31. Review. PubMed PMID: 18236164; PubMed Central PMCID: PMC2471394.
- 20
5. Buck E, Eyzaguirre A, Barr S, Thompson S, Sennello R, Young D, Iwata KK, Gibson NW, Cagnoni P, Haley JD. Loss of homotypic cell adhesion by epithelial-mesenchymal transition or mutation limits sensitivity to epidermal growth factor receptor inhibition. *Mol Cancer Ther.* 2007 Feb;6(2):532-41. PubMed PMID: 17308052.
- 25
6. Woodward WA, Debeb BG, Xu W, Buchholz TA. Overcoming radiation resistance in inflammatory breast cancer. *Cancer.* 2010 Jun 1;116(11 Suppl):2840-5. PubMed PMID:20503417.
- 30
7. Bao, S., Wu, Q., McLendon, R.E., Hao, Y., Shi, Q., Hjelmeland, A.B., Dewhirst, M.W., Bigner, D.D., and Rich, J.N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. *Nature* 444, 756-760.
8. Barr, S., Thomson, S., Buck, E., Russo, S., Petti, F., Sujka-Kwok, I., Eyzaguirre, A., Rosenfeld-Franklin, M., Gibson, N.W., Miglarese, M., *et al.* (2008). Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions. *Clinical & experimental metastasis* 25, 685-693.
- 40
9. Buck, E., Eyzaguirre, A., Rosenfeld-Franklin, M., Thomson, S., Mulvihill, M., Barr, S., Brown, E., O'Connor, M., Yao, Y., Pachter, J., *et al.* (2008). Feedback mechanisms promote cooperativity for small molecule inhibitors of epidermal and insulin-like growth factor receptors. *Cancer research* 68, 8322-8332.
- 45
10. Creighton, C.J., Li, X., Landis, M., Dixon, J.M., Neumeister, V.M., Sjolund, A., Rimm, D.L., Wong, H., Rodriguez, A., Herschkowitz, J.I., *et al.* (2009). Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. *Proceedings of the National Academy of Sciences of the United States of America* 106, 13820-13825.

11. Horwitz, K.B., and Sartorius, C.A. (2008). Progestins in hormone replacement therapies reactivate cancer stem cells in women with preexisting breast cancers: a hypothesis. *The Journal of clinical endocrinology and metabolism* *93*, 3295-3298.

5 12. Mani, S.A., Guo, W., Liao, M.J., Eaton, E.N., Ayyanan, A., Zhou, A.Y., Brooks, M., Reinhard, F., Zhang, C.C., Shipitsin, M., *et al.* (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. *Cell* *133*, 704-715.

10 13. Morel, A.P., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., and Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. *PLoS ONE* *3*, e2888.

15 14. Thomson, S., Buck, E., Petti, F., Griffin, G., Brown, E., Ramnarine, N., Iwata, K.K., Gibson, N., and Haley, J.D. (2005). Epithelial to mesenchymal transition is a determinant of sensitivity of non-small-cell lung carcinoma cell lines and xenografts to epidermal growth factor receptor inhibition. *Cancer research* *65*, 9455-9462.

20 15. Yang, A.D., Fan, F., Camp, E.R., van Buren, G., Liu, W., Somcio, R., Gray, M.J., Cheng, H., Hoff, P.M., and Ellis, L.M. (2006). Chronic oxaliplatin resistance induces epithelial-to-mesenchymal transition in colorectal cancer cell lines. *Clin Cancer Res* *12*, 4147-4153.

25 16. Yang, J., Mani, S.A., Donaher, J.L., Ramaswamy, S., Itzykson, R.A., Come, C., Savagner, P., Gitelman, I., Richardson, A., and Weinberg, R.A. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. *Cell* *117*, 927-939.

30 17. Yauch, R.L., Januario, T., Eberhard, D.A., Cavet, G., Zhu, W., Fu, L., Pham, T.Q., Soriano, R., Stinson, J., Seshagiri, S., *et al.* (2005). Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. *Clin Cancer Res* *11*, 8686-8698.

35 18. Taube, J.H., Herschkowitz, J.I., Komurov, K., Zhou, A.Y., Gupta, S., Yang, J., Hartwell, K., Onder, T.T., Gupta, P.B., Evans, K.W., Hollier, B.G., Ram, P.T., Lander, E.S., Rosen, J.M., Weinberg, R.A., Mani, S.A. (2010). A Core EMT Interactome Gene Expression Signature is Associated with Claudin-Low and Metaplastic Breast Cancer Subtypes. *Proc. Natl Acad. Sci* *107*, 15449-15454.

40

OTHER EMBODIMENTS

45 While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims:

5 1. A method of predicting the likelihood that a patient's epithelial cancer will respond to a standard-of-care therapy, following surgical removal of the primary tumor, comprising determining the expression level in cancer of genes in Tables 1 or 2, wherein the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be resistant to the standard-of-care therapy and overexpression of genes in Table 2 indicates an increased likelihood that the tumor will be sensitive to the standard-of-care therapy.

10

2. The method of claim 1, wherein the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be resistant to standard-of-care therapy.

15 3. The method of claim 2 wherein the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be resistant to paclitaxel.

20

4. The method of claim 1, wherein the standard-of-care therapy is a kinase-targeted therapy, such as EGFR-inhibition.

5. The method of claim 1, wherein the standard-of-care therapy is a radiation.

25 6. The method of claim 1, wherein the standard-of-care therapy is a hormonal therapy.

7. The method of claim 1, wherein the therapy is a combination of therapies indicated in claims 3-6.

30

8. The method of any one of claims 1-7, wherein the expression level of the genes assayed constitutes any subset of the genes in Table 1 or Table 2.

9. The method of claim 8, wherein the subset of genes is one for which a statistical test demonstrates that the genes in the subset are differentially expressed in populations treated

with a cancer therapy at a level of significance less than 0.1, relative to an appropriate control population.

10. The method of claim 9, wherein the cancer therapy is selected from the group
5 consisting of salinomycin treatment and paclitaxel treatment.

11. The method of any one of claims 8-10, wherein the subset of genes comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the genes in Table 1 or Table 2.

10

12. The method of claim 1, wherein the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells resistant to standard-of-care therapies.

15

13. The method of claim 1, wherein the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer stem cells or to therapeutic agents that target invasive, metastatic, or invasive and metastatic cancer cells.

20

14. The method of claim 1, wherein the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells that have undergone an epithelial-to-mesenchymal transition.

25

15. The method of claim 1, wherein the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be sensitive to salinomycin.

16. A method of predicting the likelihood that a patient's epithelial cancer will respond to standard-of-care therapy, following surgical removal of the primary tumor, comprising determining the expression level in cancer of genes in Table 2.

30

17. The method of claim 16, wherein the reduced expression of genes in Table 2 indicates an increased likelihood that the tumor will be resistant to standard-of-care therapy.

18. The method of claim 16, wherein the standard-of-care therapy is a kinase-targeted therapy, such as EGFR-inhibition.

19. The method of claim 16, wherein the standard-of-care therapy is a radiation therapy.

5

20. The method of claim 16, wherein the standard-of-care therapy is a hormonal therapy.

21. The method of claim 16, wherein the standard-of-care therapy is paclitaxel.

10 22. The method of claim 16, wherein the standard-of-care therapy is a combination of therapies indicated in claims 17-21.

23. The method of any one of claims 16-22, wherein the expression level of the genes assayed constitutes any subset of the genes in Table 2.

15

24. The method of claim 23, wherein the subset of genes is one for which a statistical test demonstrates that the genes in the subset are differentially expressed in populations treated with a cancer therapy at a level of significance less than 0.1, relative to an appropriate control population.

20

25. The method of claim 24, wherein the cancer therapy is selected from the group consisting of salinomycin treatment and paclitaxel treatment.

25

26. The method of any one of claims 23-25, wherein the subset of genes comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the genes in Table 2.

30

27. The method of claim 16, wherein the reduced expression of genes in Table 2 indicates an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells resistant to standard-of-care therapies.

28. The method of claim 16, wherein the reduced expression of genes in Table 2 indicates an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to

cancer stem cells or to therapeutic agents that target invasive, metastatic, or invasive and metastatic cancer cells.

29. The method of claim 16, wherein the reduced expression of genes in Table 2 indicates
5 an increased likelihood that the tumor will be sensitive to therapeutic agents that are toxic to cancer cells that have undergone an epithelial-to-mesenchymal transition.

30. The method of claim 16, wherein the reduced expression of genes in Table 2 indicates
an increased likelihood that the tumor will be sensitive to salinomycin

10 31. A method of identifying therapeutic agents that target cancer stem cells or epithelial cancers that have undergone an epithelial to mesenchymal transition comprising screening candidate agents to identify those that increase the levels of expression of the genes in Table 2, wherein an increase in the expression of genes in Table 2 indicates that the candidate agent
15 targets cancer stem cells or epithelial cancers that have undergone an epithelial to mesenchymal transition.

32. The method of claim 31, wherein any subset of genes in Table 2 is evaluated for its expression levels.

20 33. The method of claim 32, wherein the subset of genes is one for which a statistical test demonstrates that the genes in the subset are differentially expressed in populations treated with a cancer therapy at a level of significance less than 0.1, relative to an appropriate control population.

25 34. The method of claim 33, wherein the cancer therapy is selected from the group consisting of salinomycin treatment and paclitaxel treatment.

35. The method of any one of claims 32-34, wherein the subset of genes comprises 2, 3,
30 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the genes in Table 2.

36. A method of identifying therapeutic agents that target cancer stem cells or epithelial cancers that have undergone an epithelial to mesenchymal transition comprising screening candidate agents to identify those that decrease the levels of expression of the genes in Table 1, wherein a decrease in the expression of genes in Table 1 indicates that the candidate agent

5 targets cancer stem cells or epithelial cancers that have undergone an epithelial to mesenchymal transition

37. The method of claim 36, wherein any subset of genes in Table 1 is evaluated for its expression levels.

10 38. The method of claim 37, wherein the subset of genes whose expression is evaluated is one for which a statistical test demonstrates that the genes in the subset are differentially expressed in populations treated with a cancer therapy at a level of significance less than 0.1, relative to an appropriate control population.

15 39. The method of claim 38, wherein the cancer therapy is selected from the group consisting of salinomycin treatment and paclitaxel treatment.

40. The method of any one of claims 37-39, wherein the subset of genes comprises 2, 3, 20 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 of the genes in Table 1.

41. A method of predicting the likelihood that a patient's epithelial cancer will respond to therapy, following surgical removal of the primary tumor, comprising determining the expression level in cancer of genes in Table 1, wherein the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be sensitive to therapy with salinomycin or other CSS agents.

42. A method of predicting the likelihood that a patient's epithelial cancer will respond to therapy, following surgical removal of the primary tumor, comprising determining the expression level in cancer of genes in Table 1, wherein the overexpression of genes in Table 1 indicates an increased likelihood that the tumor will be resistant to standard-of-care therapy.

43. The method of claim 42 wherein the standard-of-care therapy is paclitaxel.

44. The method of claim 41 or 42, wherein any subset of genes in Table 1 is evaluated for its expression levels.

5 45. The method of claim 44, wherein the subset of the genes whose expression is evaluated is one for which a statistical test demonstrates that the genes in the subset are differentially expressed in populations treated with a cancer therapy at a level of significance less than 0.1, relative to an appropriate control population.

10 46. The method of claim 45, wherein the cancer therapy is selected from the group consisting of salinomycin treatment and paclitaxel treatment.

47. The method of any one of claims 42-44, wherein the subset of genes comprises 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 15 30 of the genes in Table 1.

48. The method of any one of claims 1-30 or 41-47, further comprising summarizing the data obtained by the determination of said gene expression levels.

20 49. The method of claim 48, wherein said summarizing includes prediction of the likelihood of long term survival of said patient without recurrence of the cancer following surgical removal of the primary tumor.

50. The method of claim 48, wherein said summarizing includes recommendation for a 25 treatment modality of said patient.

51. A kit comprising in one or more containers, at least one detectably labeled reagent that specifically recognizes one or more of the genes in Table 1 or Table 2.

30 52. The kit of claim 51, wherein the level of expression of the one or more genes in Table 1 or Table 2 in cancer is determined.

53. The kit of claim 51, wherein the kit is used to generate a biomarker profile of an epithelial cancer.

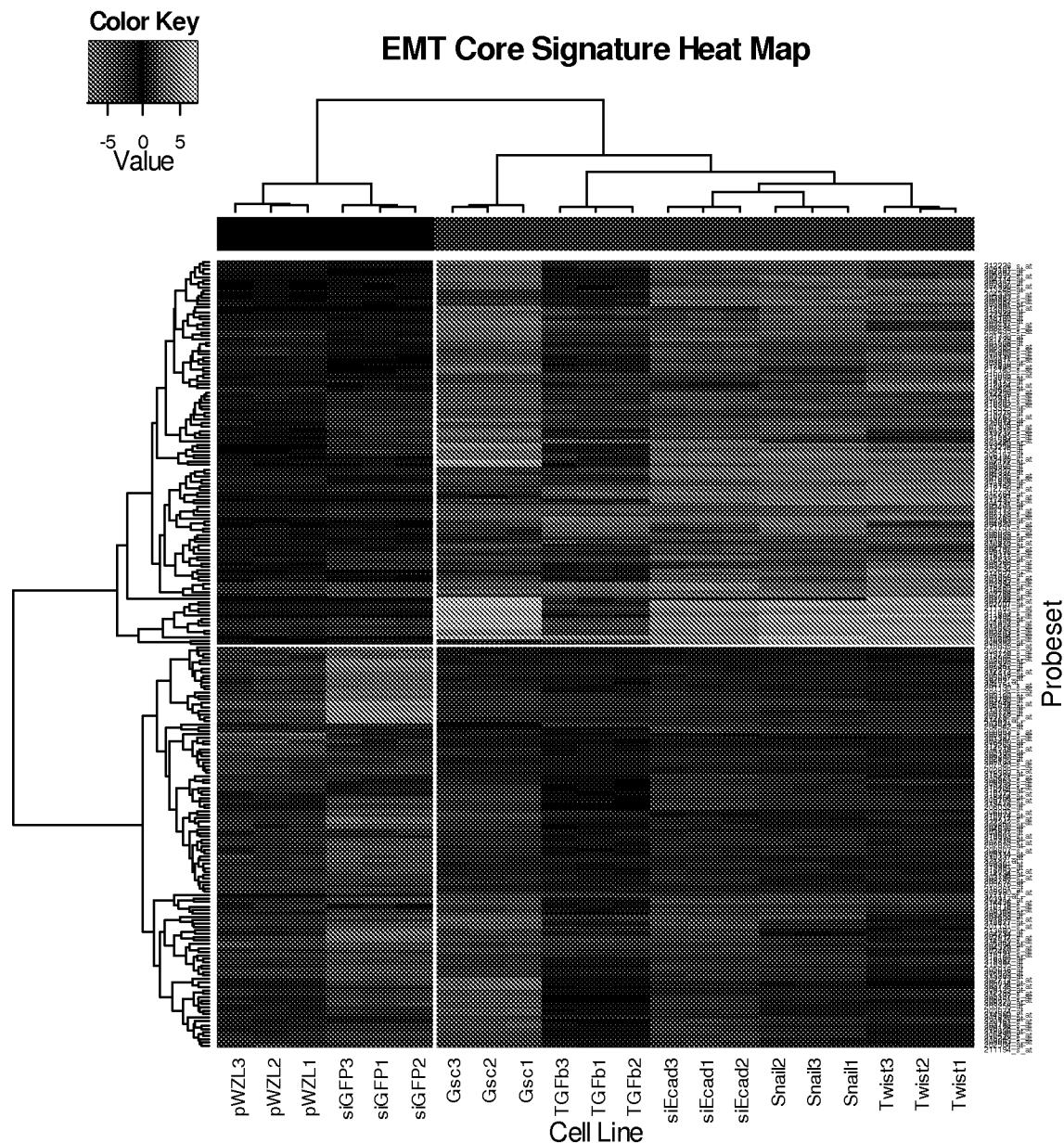
54. The kit of claim 51, wherein the kit further comprises at least one pharmaceutical excipient, diluents, adjuvant, or any combination thereof.

5 55. The method of any one of claims 1-30 or 41-47, wherein the RNA expression levels are indirectly evaluated by determining protein expression levels of the corresponding gene products.

10 56. The method of claim 55, wherein the RNA expression levels are indirectly evaluated by determining chromatin states of the corresponding genes.

57. The method of claim 55 wherein said RNA is isolated from a fixed, wax-embedded breast cancer tissue specimen of said patient.

15 58. The method of claims 55, wherein said RNA is fragmented RNA.


59. The method of claim 55, wherein said RNA is isolated from a fine needle biopsy sample.

20 60. The method of any one of claims 1-30 or 41-47, wherein the cancer is an epithelial cancer.

61. The method of any one of claims 1-30 or 41-47, wherein the cancer is a lung, breast, prostate, gastric, colon, pancreatic, brain, or melanoma cancer.

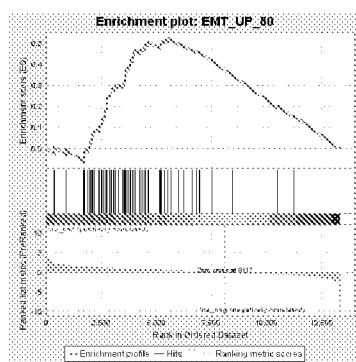
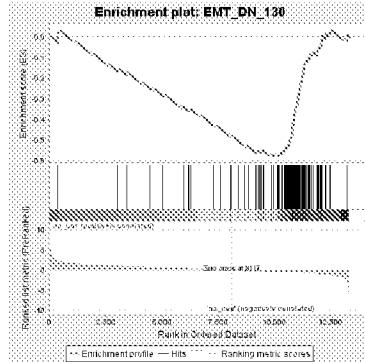
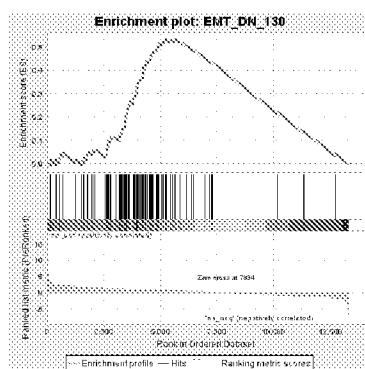

25

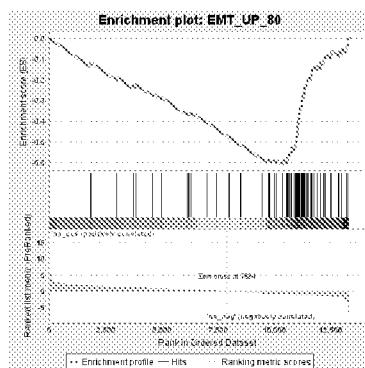
Figure 1. Heatmap summary of gene expression data from cells cultured in triplicate expressing one of five EMT-inducing factors (Goosecoid, TGFb, Snail, Twist or shRNA against E-cadherin) or expressing two control vectors (pWZL, shRNA against GFP). The legend depicts relative gene expression on a Log scale (base 2).


Figure 2. Gene-set enrichment analysis using subsets of genes in Table 1. Shown is the enrichment level of subsets of EMT-associated genes in HMLER cancer cells treated with paclitaxel. The gene sets are named EMT_UP_NUM, where NUM is the number of genes in the subset. The plots show the enrichment score as a function of rank and indicate that each of the EMT_UP gene sets is enriched in its expression in cells following paclitaxel treatment.

NAME	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX
EMT_UP_80	76	0.522935	1.92939	0	0.003285	0.005	5515
EMT_UP_104	99	0.500472	1.924711	0	0.001926	0.006	5526
EMT_UP_90	85	0.50503	1.889975	0	0.00151	0.007	5515
EMT_UP_70	67	0.518918	1.88781	0	0.001303	0.008	5515
EMT_UP_50	48	0.536939	1.850847	0.001209	0.001576	0.012	4661
EMT_UP_60	58	0.505654	1.795157	0.003525	0.003264	0.03	5515
EMT_UP_40	38	0.535084	1.754489	0	0.005231	0.055	4661
EMT_UP_30	28	0.559642	1.708648	0.006536	0.007566	0.09	4484
EMT_UP_20	19	0.577143	1.6284	0.018919	0.018645	0.226	4248
EMT_UP_8	8	0.603088	1.352689	0.123529	0.157792	0.919	3989
EMT_UP_10	10	0.562524	1.348234	0.12908	0.146922	0.922	5684
EMT_UP_9	9	0.560786	1.331708	0.141104	0.14896	0.94	5684
EMT_UP_7	7	0.586305	1.268887	0.171254	0.199854	0.979	3989
EMT_UP_6	6	0.562695	1.164574	0.274809	0.310673	0.999	3989
EMT_UP_5	5	0.554087	1.091047	0.380328	0.395506	1	3676
EMT_UP_4	4	0.574753	1.03593	0.461912	0.454432	1	3676
EMT_UP_3	3	0.573359	0.960775	0.558574	0.538671	1	5684


Figure 3. Gene-set enrichment analysis with subsets of genes in Table 2. Shown is the enrichment level of subsets of non-EMT-associated genes in HMLER cancer cells treated with paclitaxel. The gene sets are named EMT_DN_NUM, where NUM is the number of genes in the subset. The plots show the enrichment score as a function of rank and indicate that each of the EMT_DN gene sets is enriched in its expression in cells that are treated with DMSO control relative to cells treated with paclitaxel.

NAME	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK	
							AT	MAX
EMT_DN_130	121	-0.58215207	-3.1610973	0	0	0	3185	
EMT_DN_154	142	-0.5713643	-3.0826223	0	0	0	3185	
EMT_DN_80	74	-0.6460526	-3.0486538	0	0	0	3359	
EMT_DN_70	66	-0.6338315	-3.0462253	0	0	0	3359	
EMT_DN_60	56	-0.64297324	-2.9778385	0	0	0	3185	
EMT_DN_110	101	-0.5870714	-2.9682236	0	0	0	3185	
EMT_DN_30	28	-0.7453484	-2.9486847	0	0	0	3004	
EMT_DN_50	48	-0.641937	-2.8132331	0	0	0	3185	
EMT_DN_40	38	-0.65613294	-2.6983163	0	0	0	3185	
EMT_DN_20	19	-0.7756728	-2.689126	0	0	0	3004	
EMT_DN_10	10	-0.776726	-2.1694849	0	0	0	2983	
EMT_DN_9	9	-0.7766677	-2.1080527	0	0	0	2983	
EMT_DN_8	8	-0.7766093	-2.0339713	0	4.18E-04	0.003	2983	
EMT_DN_7	7	-0.776551	-1.892023	0.005865	0.003893	0.028	2983	
EMT_DN_6	6	-0.77649266	-1.7983042	0.010929	0.007785	0.06	2983	
EMT_DN_5	5	-0.77643436	-1.7319595	0.014815	0.014119	0.11	2983	
EMT_DN_4	4	-0.77637607	-1.5863879	0.043597	0.036878	0.261	2983	
EMT_DN_3	3	-0.7763177	-1.431583	0.098985	0.084635	0.512	2983	


Figure 4. Gene-set enrichment analysis with subsets of genes in Table 2. Shown is the enrichment level of subsets of non-EMT-associated genes in HMLER cancer cells treated with salinomycin. The gene sets are named EMT_DN_NUM, where NUM is the number of genes in the subset. The plots show the enrichment score as a function of rank and indicate that each of the EMT_DN gene sets is enriched in its expression in cells following salinomycin treatment relative to control treatment.

NAME	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX
EMT_DN_130	121	0.532034	2.295672	0	0	0	5667
EMT_DN_154	142	0.524982	2.2923	0	0	0	5266
EMT_DN_110	101	0.52669	2.188407	0	0	0	5266
EMT_DN_80	74	0.53614	2.150287	0	0	0	5266
EMT_DN_70	66	0.529114	2.10832	0	0	0	5242
EMT_DN_40	38	0.587151	2.065463	0	0	0	5140
EMT_DN_60	56	0.540175	2.062206	0	0	0	5140
EMT_DN_50	48	0.538897	2.01651	0	1.80E-04	0.002	5140
EMT_DN_30	28	0.575065	1.904777	0.002581	9.91E-04	0.012	5140
EMT_DN_20	19	0.605203	1.860056	0.001374	0.001589	0.022	5140
EMT_DN_10	10	0.614529	1.605491	0.035139	0.02395	0.321	5140
EMT_DN_9	9	0.614483	1.507118	0.056213	0.049624	0.585	5140
EMT_DN_8	8	0.617667	1.446143	0.074695	0.071368	0.743	5097
EMT_DN_7	7	0.617621	1.407314	0.1	0.088101	0.827	5097
EMT_DN_6	6	0.634397	1.390016	0.104688	0.091826	0.87	4873
EMT_DN_5	5	0.63435	1.299756	0.1616	0.1471	0.971	4873
EMT_DN_4	4	0.634302	1.201039	0.237856	0.232046	1	4873
EMT_DN_3	3	0.634254	1.105754	0.348797	0.332651	1	4873

Figure 5. Gene-set enrichment analysis with subsets of genes in Table 1. Shown is the enrichment level of subsets of EMT-associated genes in HMLER cancer cells treated with salinomycin. The gene sets are named EMT_UP_NUM, where NUM is the number of genes in the subset. The plots show the enrichment score as a function of rank and indicate that each of the EMT_UP gene sets is enriched in its expression in cells that are treated with DMSO control relative to cells treated with salinomycin.

NAME	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX
EMT_UP_80	76	-0.61142987	-3.2842364	0	0	0	2970
EMT_UP_70	67	-0.60713154	-3.231242	0	0	0	2970
EMT_UP_104	98	-0.55136406	-3.165407	0	0	0	2970
EMT_UP_50	48	-0.63770086	-3.1535225	0	0	0	2970
EMT_UP_90	84	-0.57759446	-3.0912955	0	0	0	2970
EMT_UP_60	58	-0.6067295	-3.0187309	0	0	0	2766
EMT_UP_30	28	-0.69328326	-2.8989406	0	0	0	3259
EMT_UP_40	38	-0.6340092	-2.7743602	0	0	0	2970
EMT_UP_20	19	-0.7117219	-2.635718	0	0	0	2970
EMT_UP_10	10	-0.7777026	-2.3185403	0	3.40E-04	0.001	2970
EMT_UP_9	9	-0.7776443	-2.2119238	0	4.64E-04	0.002	2970
EMT_UP_8	8	-0.7956133	-2.1742134	0	5.67E-04	0.003	2730
EMT_UP_7	7	-0.79555357	-2.0738318	0	9.15E-04	0.006	2730
EMT_UP_5	5	-0.8250225	-1.9207735	0	0.004363	0.032	2336
EMT_UP_6	6	-0.7954938	-1.9106125	0	0.004328	0.034	2730
EMT_UP_4	4	-0.8249606	-1.7625535	0.010101	0.012579	0.099	2336
EMT_UP_3	3	-0.8248986	-1.5545902	0.055156	0.046163	0.327	2336

