

Office de la Propriété Intellectuelle du Canada

Un organisme d'Industrie Canada Canadian Intellectual Property Office

An agency of Industry Canada

CA 2054111 C 2002/04/30

(11)(21) 2 054 111

(12) BREVET CANADIEN CANADIAN PATENT

(13) **C**

(22) Date de dépôt/Filing Date: 1991/10/24

(41) Mise à la disp. pub./Open to Public Insp.: 1992/04/26

(45) Date de délivrance/Issue Date: 2002/04/30 (30) Priorité/Priority: 1990/10/25 (07/616,622) US

(51) Cl.Int.⁶/Int.Cl.⁶ C07K 7/08, C07K 4/12, C07K 5/072, C07K 7/06

(72) Inventeur/Inventor: Santoro, Samuel A., US

(73) **Propriétaire/Owner**: WASHINGTON UNIVERSITY, US

(74) Agent: MCFADDEN, FINCHAM

(54) Titre: PEPTIDES INHIBITEURS NOUVEAUX (54) Title: NOVEL INHIBITORY PEPTIDES

(57) Abrégé/Abstract:

Novel short peptides of up to about 20 amino acid residues are disclosed which have inhibitory activity against the $\alpha_2\beta_1$ -mediated Mg⁺⁺ -dependent adhesion of platelets and which contain the minimal sequence Asp Gly Glu Ala [SEQ ID NO:3].

07-24(723)A

NOVEL INHIBITORY PEPTIDES

Abstract of the Disclosure

5

Novel short peptides of up to about 20 amino acid residues are disclosed which have inhibitory activity against the $\alpha_2\beta_1$ -mediated Mg**-dependent adhesion of platelets and which contain the minimal sequence Asp Gly Glu Ala [SEQ ID NO:3].

NOVEL INHIBITORY PEPTIDES

Background of the Invention

5

The present invention relates to novel inhibitory peptides and, more particularly, to short peptides which inhibit $\alpha_2\beta_1$ -mediated Mg⁺⁺-dependent adhesion of platelets.

10

20

The $\alpha_2\beta_1$ integrin is electrophoretically and immunochemically identical to the platelet membrane glycoprotein Ia-IIa complex, the very late activation antigen 2 (VLA-2) on T cells, and the class II 15 extracellular matrix receptor (ECMRII) on fibroblastic cells (1-6). The heterodimeric receptor which is composed of 160 kDa and 130 kDa polypeptides was initially characterized as a mediator of Mg⁺⁺-dependent cell adhesion to collagen (2,3,5,7-9). Recent findings indicate that whereas on platelets and fibroblasts the $\alpha_2\beta_1$ integrin serves as a collagen-specific receptor, on other cells, such as endothelial cells or melanoma cell lines, the $\alpha_2\beta_1$ integrin may exhibit a broader specificity and function as both a collagen and laminin 25 receptor (10-13).

Several integrins, including the platelet IIb-IIIa complex $(\alpha_{11b}\beta_3)$, the vitronectin receptor $(\alpha_{\rm v}\beta_3)$ and the fibronectin receptor $(\alpha_5\beta_1)$, recognize an arg-gly-asp 30 (RGD) sequence within their adhesive protein ligands (14,15). The $\alpha_{L}\beta_{1}$ integrin serves as a fibronectin receptor on lymphoid cells, but recognizes a relatively short linear sequence of amino acids which does not contain the RGD sequence (16-18).

Although RGD sequences are present in collagen molecules, two lines of evidence suggest that RGD does not serve as a recognition sequence on collagen for the $\alpha_2\beta_1$ integrin. First, Mg**-dependent platelet adhesion to collagen mediated by the $\alpha_2\beta_1$ integrin is not inhibited by peptides containing RGD sequences (7). Second, it was recently demonstrated that the $\alpha_2\beta_1$ integrin binds to the $\alpha_1(I)$ -CB3 fragment of collagen which does not contain an RGD sequence (19).

10

Brief Description of the Invention

In accordance with the present invention, novel synthetic peptides are provided which inhibit $\alpha_2\beta_1$ 15 mediated Mg**-dependent adhesion to platelets. These novel peptides are short peptides of up to about 20 amino acid residues which contain the minimal tetrapeptide sequence Asp Gly Glu Ala (DGEA) [SEQ ID NO:3]. This tetrapeptide sequence corresponds to residues 435-438 of the α 1(I) chain of type I collagen sequence.

It was found that these novel peptides effectively inhibited $\alpha_2\beta_1$ -mediated Mg**-dependent adhesion of platelets, which use the $\alpha_2\beta_1$ integrin as a collagen specific receptor, but had no effect on $\alpha_5\beta_1$ -mediated platelet adhesion to fibronectin or $\alpha_6\beta_1$ -mediated platelet adhesion to laminin. In contrast, with T47D breast adenocarcinoma cells, which use $\alpha_2\beta_1$ as a collagen/laminin receptor, adhesion to both collagen and laminin was inhibited by DGEA-containing peptides. Criticality of the minimal DGEA sequence [SEQ ID NO:3] for inhibitory activity is evident from the observation that deletion of the alanine residue or substitution of alanine for either the glutamic or aspartic acid residues in DGEA-containing peptides resulted in marked loss of inhibitory activity.

The adhesion of platelets to collagen plays a major role in thrombosis and hemostasis. When a blood vessel wall is damaged, platelets rapidly adhere to the exposed subendothelial components, of which fibrillar collagen is the most thrombogenic macromolecule. Adherence of the platelets to fibrillar collagen results in a series of events which leads to platelet aggregation and the formation of a hemostatic plug. Accordingly, novel inhibitory peptides of the present invention are indicated as useful to medical science as it is concerned with platelet adhesion, platelet aggregation and other aspects of thrombosis and hemostasis.

The one-letter amino acid sequence of 671 residues of the α1(I) chain of type I rat collagen is available from the GenBank data bank under accession nos. A02854 and A02855. Its full reported sequence, minus the first 16 residues and converted to the three-letter abbreviations, is designated herein and in the accompanying Diskette as SEQ ID NO:1, and numbered from 1 to 655 in accordance with 37 CFR 1.821-825.

Detailed Description of the Invention

25 particularly pointing out and distinctly claiming the subject matter regarded as forming the present invention, it is believed that the invention will be better understood from the following preferred embodiments of the invention taken in connection with the accompanying drawings in which:

FIG. 1 shows the identification of a synthetic peptide derived from the rat $\alpha 1(I)$ -CB3 collagen peptide which inhibits the Mg⁺⁺-dependent adhesion of platelets to collagen. A) Top line represents the rat $\alpha 1(I)$ CB3 fragment. The second and third lines indicate the relative positions of synthetic peptides employed herein within the CB3 fragment and give the number of the amino

acid residues corresponding to their positions in the α1(I) collagen chain. The bottom line shows the single-letter code for the amino acid sequence of the peptide containing amino acids 430 to 442 of the rat α1(I) collagen chain. The arrow indicates the point within the 430-442 peptide that corresponds to the junction between the 403-436 and 437-466 peptides. B) The Mg⁺⁺-dependent adhesion of platelets to collagen is inhibited in a concentration dependent fashion by peptide 430-442 (O) while neither synthetic peptide 461-472 (Δ) nor 490-502 (C) affects platelet adhesion. Data represent means of triplicate assays.

FIG. 2 is a graphical representation which shows

the effects of KDGEA [SEQ ID NO:4] and structurally related peptides on the MG**-dependent adhesion of platelets to collagen. A) Both KDGEA (O) and DGEA (E) [SEQ ID NO:3] inhibit platelet adhesion to collagen while KDGE (C) [SEQ ID NO:7] does not. Control adhesion to bovine serum albumin (BSA) substrates or to collagen substrates in the presence of 2 mM EDTA was less than 0.15% in this test. B) Peptides in which either the aspartate (KAGEA, A) [SEQ ID NO:5] or the glu (KDGAA, A) [SEQ ID NO:6] of the sequence KDGEA (O) has been replaced with an ala do not inhibit Mg**-dependent adhesion of platelets to collagen. Data represent means of triplicate assays.

FIG. 3 is a bar chart which shows that the

30 synthetic peptide KDGEA [SEQ ID NO:4] inhibits the Mg**dependent adhesion of platelets to collagen but not to
fibronectin or laminin. Adhesion assays were carried
out in the presence of 2 mM Mg** (open bars), 2 mM Mg**
and 4 mM KDGEA (striped bars) or 2 mM EDTA (solid bars).

35 Data represent means of triplicate assays and the error
bars indicate one standard deviation above the mean.

FIG. 4 is a graphical representation which shows the divalent cation-dependent adhesion of T47D carcinoma cells to collagen and laminin. Adhesion to substrates composed of either collagen (A) or laminin (B) was inhibited in a concentration dependent manner by the peptide, KDGEA (O) [SEQ ID NO:4]. The peptides KDGE (D) [SEQ ID NO:7], KDGAA (•) [SEQ ID NO:6] and GGGGG (•) [SEQ ID NO:8] did not significantly reduce adhesion.

Adhesion assays on collagen were conducted in the presence of 2 mM Mg⁺⁺. Adhesion assays on laminin substrates were carried out in the presence of 2 mM Mg⁺⁺. 1 mM Mn⁺⁺ and 1 mM Ca⁺⁺. Control adhesion assays done in the presence of 2 mM EDTA resulted in less that 1% adhesion to collagen and less than 0.5% adhesion to

laminin.

The novel inhibitory peptides of this invention can be prepared by known solution and solid phase peptide synthesis methods.

In conventional solution phase peptide synthesis, the peptide chain can be prepared by a series of coupling reactions in which the constituent amino acids are added to the growing peptide chain in the desired sequence. The use of various N-protecting groups, e.g.,

the carbobenzyloxy group or the t-butyloxycarbonyl group (BOC), various coupling reagents, e.g., dicyclohexylcarbodiimide or carbonyldimidazole, various active esters, e.g., esters of N-hydroxyphthalimide or N-hydroxy-succinimide, and the various cleavage

reagents, e.g., trifluoroacetic acid (TFA), HCl in dioxane, boron tris-(trifluoracetate) and cyanogen bromide, and reaction in solution with isolation and purification of intermediates is well-know classical peptide methodology.

The preferred peptide synthesis method follows conventional Merrifield solid-phase procedures. See Merrifield, <u>J. Amer. Chem. Soc.</u> 85, 2149-54 (1963) and <u>Science</u> 150, 178-85 (1965). This procedure, though

using many of the same chemical reactions and blocking groups of classical peptide synthesis, provides a growing peptide chain anchored by its carboxy terminus to a solid support, usually cross-linked polystyrene, styrenedivinylbenzene copolymer or, preferably, pmethylbenzhydrylamine polymer for synthesizing peptide amides. This method conveniently simplifies the number of procedural manipulations since removal of the excess reagents at each step is effected simply by washing the polymer.

Further background information on the established solid phase synthesis procedure can be had by reference to the treatise by Stewart and Young, "Solid Phase Peptide Synthesis," W. H. Freeman & Co., San Francisco, 1969, and the review chapter by Merrifield in Advances in Enzymology 32, pp. 221-296, F. F. Nold, Ed., Interscience Publishers, New York, 1969; and Erickson and Merifield, The Proteins, Vol. 2, p. 255 et seq. (ed. Neurath and Hill), Academic Press, New York, 1976.

In order to illustrate the invention in further detail, the following specific laboratory examples were carried out. Although specific examples are thus illustrated herein, it will be appreciated that the invention is not limited to these specific examples.

25

20

10

EXAMPLES

MATERIALS AND METHODS

Adhesive Proteins - Type I collagen was purified from the skin of lathrytic rats as described by Bornstein and Piez (20). Human fibronectin was isolated from plasma by affinity chromatography on gelatin*Sepharose according to the method of Engvall and
Ruoslahti (21). Laminin was obtained commercially from Bethesda Research Laboratories (Gaithersburg, M.D.) andbovine type I collagen was from Sigma Chemical (St. Louis, MO).

*Trade-mark

Peptide Syntheses - Collagen peptides were made with an Applied Biosystems 430A peptide synthesizer on p-methylbenzhydrylamine resin using double coupling cycles to ensure complete coupling at each step. Coupling was effected with preformed symmetrical anhydrides of Boc-amino acids (Applied Biosystems) and peptides were cleaved from the solid support by a hydrogen flouride procedure. Briefly, cleavage was carried out in HF and p-cresol was used at a 9/1 ratio (v/v) at C°C for 60 min. Peptides of 13 residues or longer were purified by successive reverse-phase chromatography on a 45x300 mm Vydac C18 column, and on a 5 μm particle, 19x150 mm *microBonkpak C18 column using a gradient of 5-35% acetonitrile in 0.5% trifluroacetic acid. For shorter peptides, a 0 to 10% acetonitrile linear gradient in 0.05% trifluroacetic acid was applied to these same columns. The structures and purity of the synthetic peptides were verified by fast atom bombardment/mass spectroscopy and amino acid analysis.

Platelet Adhesion - Platelets were washed and labeled with ⁵¹CrO₄ as described in detail by Haverstick et al (22). Platelet adhesion to substrates composed of 0.5% BSA or 20 μg/ml of either type I collagen, laminin or fibronectin in polystyrene dishes was determined as previously described in detail (7). Alternately, adhesion assays were carried out in 96 well microtiter dishes (*Immulon II, Dynatech). In this case substrate coating- and adhesion assay volumes were adjusted to 100 μl and wash volumes were adjusted to 140 μl per well. Platelets were permitted to adhere for 60 min

*Trade-mark

at a concentration of 1.3- to 1.8 x 10^8 platelets/ml, then washed five times in adhesion assay buffer before being lysed with two 100 ml aliquots of 2% SDS which were subsequently pooled and counted.

Cell Culture – T47D, human ductal breast adenocarcinoma cells were obtained from the American Type Culture Collection, Rockville, MD (ATCC HTB 133) and grown in RPMI 1640 medium containing 10% fetal bovine serum and 0.2 IU insulin/ml. For use cell adhesion assays, T47D cells were labeled over night with 50 μ Ci/ml 51 CrO₄, washed three times with Ca⁺⁺- Mg⁺⁺-free Hank's balanced salt solution (BSS) and removed from their flasks by brief treatment with 0.02% versene solution (Gibco) at 37°C. The cells were then washed with BSS, pelleted at 600 x g and resuspended at 1.0 x 10^5 cells/ml in BSS containing 0.5% BSA (BSS-BSA). Aliquots were then supplemented either with 2 mM Mg⁺⁺, 1 mM Mn⁺⁺ and 1 mM Ca⁺⁺ or with 2 mM EDTA and used in adhesion assays as described above for plateletes.

Peptide Inhibition - After labeling and washing, cells were resuspended at 2.6- to $3.6 \times 10^5/\text{ml}$ for platelets or $2 \times 10^5/\text{ml}$ for T47D cells. Aliquots were added to equal volumes of buffer containing appropriate concentrations of the peptides and divalent cations and preincubated for 15 min before being added to the adhesive substrates. Adhesion was quantitated as described above.

Antibody Inhibition – The P1H5 and P1D6 monoclonal antibodies directed against the $\alpha_2\beta_1$ and $\alpha_5\beta_1$ integrins respectively were generously provided by William G. Carter, Fred Hutchinson Cancer Research Center, Seattle, WA. Cells were incubated with 10 μ g/ml of antibody at room temperature for 15 min prior to use in cell adhesion assays.

RESULTS

As previously reported (19), platelets adhere to the CB3 fragment of the $\alpha 1$ chain of rat type I collagen. In order to identify the specific amino acid sequence within the CB3 fragment which is recognized by the $\alpha_2\beta_1$ receptor complex, a series of five peptides were initially synthesized, each approximately 33 amino acids residues long, which together spanned the entire 148 amino acid sequence of the rat $\alpha 1(I)$ -CB3 collagen 10 fragment (Figure 1a). These peptides were tested, both for ability to serve as solid phase adhesive substrates for the Mg**-dependent adhesion of platelets and as fluid phase inhibitors of Mg**-dependent platelet adhesion to intact type I collagen. None of the peptides supported the platelet adhesion nor did any peptide specifically inhibit the adhesion of platelets to collagen substrates.

While peptides spanning amino acid residues 496-526 and 521-550 of the α1(I) collagen sequence shared an overlapping, common sequence of six amino acids, the junctions between the other four peptides overlapped by at most a single residue. Therefore, a second set of peptides were synthesized, 12- to 13- amino acid residues in length, which overlapped the junctions of the initial set of synthetic peptides and contained amino acid sequences corresponding to residues 430 to 442 (peptide 430), 461 to 472 (peptide 461) and 490 to 502 (peptide 490) of the rat α1(I) collagen chain (Figure 1a). These peptides were then tested for ability to inhibit Mg**-dependent platelet adhesion to collagen.

As shown in Figure 1b, only peptide 430, namely GPAGKDGEAGAQG [SEQ ID NO:2] was capable of inhibiting platelet adhesion to collagen in a concentration-dependent manner. Half-maximal inhibition

was achieved at 2.8 mM; inhibition was virtually complete at 5.4 mM. These concentrations are only slightly greater than concentrations of RGD peptides required to inhibit $\alpha_5\beta_1$ -mediated cell adhesion to fibronectin. Neither peptide 461 nor 490 had any detectable inhibitory activity on platelet adhesion to collagen at comparable concentrations.

The sequence of peptide 430 is shown in the bottom line of Figure 1A with an arrow indicating the junction 10 between the longer peptides 403-436 and 437-466. Two striking features of this sequence are the relative lack of proline or hydroxyproline residues which contribute to the stability of the triple helical structure of 15 collagen and the presence of the very hydrophilic sequence KDGE [SEQ ID NO:7] which was divided between the G and E residues in the 33-mer peptides. The lack of proline and hydroxyproline residues which constitute approximately 23 percent of the amino acids within type I collagen would tend to destabilize the triple helix. 20 Puckering of the helix at this site would facilitate recognition of a linear sequence of amino acids by the $\alpha_2\beta_1$ integrin. The active sequence contained a mixture of amino- and carboxy- side chains reminiscent of those 25 present in the RGD sequence which is known to mediate the binding of some of the other integrin receptors to their substrates (13, 14).

tetrapeptides with sequences of KDGE [SEQ ID NO:7] and DGEA [SEQ ID NO:3], as well as the pentapeptide KDGEA [SEQ ID NO:4] were synthesized. Both KDGEA and DGEA inhibited platelet adhesion to collagen at concentrations comparable to the parent peptide 430.

35 DGEA was consistently slightly more effective than KDGEA (Figure 2a). The peptide KDGE, which lacked the carboxy terminal alanine residue, on the other hand, was devoid of inhibitory activity and at higher concentrations

tended to enhance platelet adhesion to collagen. These results indicate that while the alanine residue is needed for recognition by the $\alpha_2\beta_1$ integrin complex, the lysine residue is not.

5

To assess the importance of the aspartate and glutamate residues in the DGEA [SEQ ID NO:3] recognition sequence, peptides with the sequences KAGEA [SEQ ID NO:5] and KDGAA [SEQ ID NO:6] were synthesized and tested for ability to inhibit Mg**-dependent adhesion of platelets to collagen substrates. As shown in Figure 2b, replacement of either of the acidic residues with alanine resulted in peptides lacking the ability to inhibit specifically $\alpha_2\beta_1$ -mediated platelet adhesion to collagen. Thus, the DGEA sequence appears to represent the minimal recognition sequence for the $\alpha_2\beta_1$ integrin on collagen.

It is unlikely that the DGEA [SEQ ID NO:3] sequence inhibits platelet-collagen adhesion by chelating Mg++ 20 ions. The inhibitory activity of KDGEA [SEQ ID NO:4] when tested in 1 mM Mg⁺⁺ was 80 percent of the activity observed in 6 mM Mg⁺⁺. To further examine the inhibitory specificity of the KDGEA [SEQ ID NO:4] peptide, the peptide was tested for ability to inhibit platelet adhesion not only to collagen, but also to fibronectin, and laminin substrates. As shown in Figure 3, 4 mM KDGEA inhibited Mg*+-dependent platelet adhesion to collagen by 80 percent. In contrast, the adhesion of 30 platelets to fibronectin, mediated by the $\alpha_5\beta_1$ integrin (23), and the adhesion to laminin, mediated by the $\alpha_6 \beta_1$ integrin (24), were not diminished in the presence of identical concentrations of KDGEA.

It has been shown that the $\alpha_2\beta_1$ integrin complex on platelets, fibroblasts, and HT-1080 cells mediates adhesion to collagen but not to laminin (2,3,5,7-9). Recent evidence indicates that on other cell types, such

as endothelial cells, keratinocytes, melanoma cell lines and other epithelial cell lines, the $\alpha_2\beta_1$ integrin exhibits a broader ligand specificity and serves as both a collagen and a laminin receptor (10-12). Monoclonal antibodies, such as P1H5 directed against the $\alpha_2\beta_1$ integrin inhibit not only adhesion to collagen, but also adhesion to laminin of these latter cell types (5,9,12).

The human breast adenocarcinoma cell line T47D, expresses high levels of the $\alpha_2\beta_1$ integrin as revealed by flow cytometric analysis. As judged by the ability of the P1H5 antibody to markedly inhibit the adhesion of T47D cells to both collagen and laminin substrates (Table I), the $\alpha_2\beta_1$ integrin on T47D cells functions as a collagen/laminin receptor. The P1D6 monoclonal antibody directed against the $\alpha_5\beta_1$ integrin had no inhibitory effect on T47D adhesion to collagen or laminin (Table I).

T47D cells were then used to examine the effects of KDGEA [SEQ ID NO:4] on cells which used $\alpha_2\beta_1$ as a collagen/laminin receptor. As shown in Figure 4, KDGEA inhibited adhesion of T47D cells to both collagen and laminin substrates in a concentration dependent manner. Half-maximal inhibition on both substrates was observed at 2- 2.5 mM KDGEA. The structurally related peptides KDGE [SEQ ID NO:7] and KDGAA [SEQ ID NO:6], as well as the control peptide pentaglycine showed no inhibitory activity at comparable concentrations. The specificity of the modest inhibition observed in the presence of high concentrations of these peptides could not be ascertained.

The minimal DGEA [SEQ ID NO:3] recognition sequence derived from the α1(I) - CB3 fragment and corresponding to residues 435-438 of the α1(I) chain of rat collagen is conserved in the α1(I) chains of other species, as well as in some, but not all, collagen chains of other types. Acceptable amino acid substitutions which might represent alternative recognition sequences in other collagenous and noncollagenous proteins remain to be elucidated.

Interestingly, the DGEA [SEQ ID NO:3] sequence is also present at residues 54-57 of the $\alpha 1(I)$ chain and at a conserved position in other chains. This location 15 would place the second DGEA sequence within the $\alpha(I)$ -CB4 fragment of type I collagen which did not support platelet adhesion in an earlier study (19). Several reasons for this apparent discrepancy may exist. The larger CB3 fragment may have bound more efficiently to 20 the plastic surfaces than the smaller CB4 fragment. The CB3 fragment was applied to the dishes as a pure peptide, whereas the CB4 peptide was in a fraction which also contained the CB5 and CB6 fragments which could compete for binding to the plastic surface. Finally, 25 the DGEA sequence at residues 54-57 is preceded by another aspartate residue in contrast to the DGEA sequence at residues 435-438 which is preceded by a lysine. The role of flanking sequences in ligand recognition by the $\alpha_2\beta_1$ integrin is not known.

30

The aforesaid data clearly indicate that DGEA-containing peptides can inhibit cell adhesion to laminin mediated by the $\alpha_2\beta_1$ integrin but not adhesion mediated by the $\alpha_6\beta_1$ integrin. Thus, the ligand recognition sites for these to laminin binding integrins are likely to differ. The DGEA sequence had not yet been identified within any laminin chains sequenced to date. The $\alpha_2\beta_1$ integrin may recognize an alternative structurally

07-24(723)A

related sequence within laminin or may recognize a distinct unrelated sequence. The latter possibility is not without precedent. The platelet IIb-IIIa complex can bind both RGD peptides and an unrelated sequence from the carboxyterminus of the fibrinogen γ chain (25,26). The peptides compete for binding to the integrin receptor and the γ chain peptide also inhibits binding of adhesive proteins containing only the RGD recognition sequence to the receptor (27,28).

10

Additional studies reveal that BSA derivatized with DGEA-containing peptides support Mg**-dependent cell adhesion which is partially inhibitable by the P1H5 monoclonal antibody directed against the $\alpha_2\beta_1$ integrin. This finding supports the role of DGEA [SEQ ID NO:3] as an $\alpha_2\beta_1$ recognition sequence.

TABLE I

T47D Cells use the $\alpha_2\beta_1$ Integrin as a Collagen/Laminin Receptor.

Cells were preincubated with antibody ($10\mu g/ml$) for 15 min prior to the determination of adhesion to collagen or laminin substrates.

Substrate	<u>Antibody</u>	Integrin	Adhesion						
		Specificity	% of Cells	% of Control					
Callagas	Nana		102.12	1 ^^					
Collagen	None P1H5	$\alpha_2\beta_1$	19.3±1.2 6.3±1.5	100 32					
	P1D6	α ₅ β ₁	22.2±5.3	115					
Laminin	None		21.7±3.3	100					
	P1H5	$\alpha_2 \beta_1$	6.3±3.7	29					
	P1D6	α_5^{β}	25.8±2.1	118					

Amino acids are shown herein either by standard one letter or three letter abbreviations as follows:

Abbrevia	ated Designation	Amino Acid
A	Ala	Alanine
C	Cys	Cysteine
D	Asp	Aspartic acid
E	Glu	Glutamic acid
F	Phe	Phenylalanine
G	Gly	Glycine
H	His	Histidine
I	Ile	Isoleucine
K	Lys	Lysine
L	Leu	Leucine
M	Met	Methionine
N	Asn	Asparagine
P	Pro	Proline
Q	Gln	Glutamine
R	Arg	Arginine
S	Ser	Serine
${f T}$	Thr	Threonine
V	Val	Valine
W	Trp	Tryptophan
Y	Tyr	Tyrosine

Various other examples will be apparent to the person skilled in the art after reading the present disclosure without departing from the spirit and scope of the invention. It is intended that all such other examples be included within the scope of the appended claims.

REFERENCES

- Pischel, K.D., Bluestein, H.G., and Woods, V.L., Jr. (1988) J. Clin. <u>Invest. 81</u>, 505-513
- 2. Santoro, S.A., Rajpara, S.M., Staatz, W.D., and Woods, V.L., Jr. (1988)

 Biochem. Biophys. Res. Commun. 153, 217-223
- Kunicki, T.J., Nugent, D.J., Staats, S.J., Orchelowski, R.P., Wayner, E.
 A., and Carter, W.G. (1988) J. <u>Biol</u>. <u>Chem.</u> <u>262</u>, 4516-4519
- 4. Takada, Y., Wayner, E.A., Carter, W.G., and Hemler, M.D. (1988) J. Cell Biochem. 37, 385-393
- 5. Staatz, M.D., Rajpara, S.M., Wayner, E.A., Carter, W.G., and Santoro, S.A. (1989) J. Cell Biol. 108, 1917-1924
- 6. Hynes, R.O. (1987) Cell 48, 549-554
- 7. Santoro, S.A. (1986) Cell 46, 913-920
- 8. Coller, B.S., Beer, J.H., Scudder, L.E., and Steinberg, M.G. (1989) <u>Blood</u>
 74, 182-192
- 9. Wayner, E.A., and Carter, W.G. (1987) J. Cell Biol. 105, 1873-1884
- 10. Elices, M.J., and Helmer, M.E. (1989) <u>Proc. Nat. ACAD. Sci. (U.S.A.)</u> 89, 9906-9910
- 11. Languino, L.R., Gehlsen, K.R., Wayner, E.A., Carter, W.G., Engvall, E., and Ruoslahti, E. (1989) 109, 2455-2462
- 12. Carter, W.G., Wayner, E.A., Bouchard, T.S., and Kaur, P. (1990) J. Cell Biol. 110, 1287-1404
- 13. Kirchofer, D., Languino, L.R., Rusolahti, E., and Pierschbacher, M.D. (1990) J. <u>Biol</u>. <u>Chem. 265</u>, 615-618
- 14. Pytela, R. Pierschbacher, M.D., Ginsberg, M.G., Plow, E.F., and Ruoslahti, E. (1986) Science 231, 1559-1562
- 15. Ruoslahti, E., and Pierschbacher, M.D. (1987) Science 238, 491-497

- 16. Mould, A.P., Wheldon, L.A., Komoriya, A., Wayner, E.A., Yamada, K.M., and Humphries, M.J. (1989) J. Blol. Chem. 265, 4020-4024
- 17. Wayner, E.A., Garcia-Pardo, A., Humphries, M.J., McDonald, J.A., and Carter, W.G. (1989) J. Cell Biol. 109, 1321-1220
- 18. Guan, J.-L., and Hynes, R.O. (1990) Cell 60, 53-61
- Staatz, W.D., Walsh, J.J., Pexton, T. and, Santoro, S.A. (1990) J. <u>Blol</u>.
 <u>Chem.</u> <u>265</u>, 4778-4781
- 20. Bornstein, P., and Piez, K.A. (1966) <u>Biochemistry</u> 5, 3460-3473
- 21. Engvall, E., and Ruoslahti, E. (1977) <u>Int</u>. J. <u>Cancer</u> 20, 1-15
- 22. Haverstick, D.M., Cowan, J.F., Yamada, K.M., and Santoro, S.A. (1985)

 <u>Blood 66</u>, 946-952
- 23. Wayner, E.A., Carter, W.G., Piotrowicz, R.S., and Kunicki, T.J. (1988) <u>J</u>.

 <u>Cell Biol 107</u>, 1881-1891
- 24. Sonnenberg, A., Modderman, P.H., and Hogervorst, F. (1988) <u>Nature</u> <u>336</u>, 487-489
- 25. Pytela, R., Pierschbacher, M.D., Ginsberg, M.H., Plow, E.F., and Ruoslahti, E. (1986) <u>Science</u> 231, 1559-1562
- 26. Kloczewiak, M., Timmons, S., Lukas, T.J., and Hawiger, J. (1984)

 Biochemistry 23, 1767-1774
- 27. Santoro, S.A., and Lawing, W.J. (1987) Cell 48, 867-873
- 28. Plow, E.F., Srouji, A.H., Meyer, D., Morguerie, G., and Ginsberg, M.H. (1984) J. Biol. Chem. 259, 5388-5391

SEQUENCE LISTING

5	(1) GENE	RAL INFORMATION:
	(i)	APPLICANT: Santoro, Samuel A.
	(ii)	TITLE OF INVENTION: Novel Inhibitory Peptides
10	(iii)	NUMBER OF SEQUENCES: 8
	(iv)	CORRESPONDENCE ADDRESS:
		(A) ADDRESSEE: Scott J. Meyer
		(B) STREET: 800 North Lindbergh Blvd.
15		(C) CITY: St. Louis
		(D) STATE: MO
		(E) COUNTRY: USA
		(F) ZIP: 63167
20	(v)	COMPUTER READABLE FORM:
		(A) MEDIUM TYPE: Floppy disk
		(B) COMPUTER: IBM PC compatible
		(C) OPERATING SYSTEM: PC-DOS/MS-DOS
25		(D) SOFTWARE: PatentIn Release #1.24
	(vi)	CURRENT APPLICATION DATA:
		(A) APPLICATION NUMBER:
		(B) FILING DATE:
30		(C) CLASSIFICATION:
	(viii)	ATTORNEY/AGENT INFORMATION:
		(A) NAME: Meyer, Scott J.
		(B) REGISTRATION NUMBER: 25,275
35		(C) REFERENCE/DOCKET NUMBER: 07-24(723)A
	(ix)	TELECOMMUNICATION INFORMATION:
		(A) TELEPHONE: 314-694-3117

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 655 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

10

5

- (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 403..550
 - (D) OTHER INFORMATION:
- 15 (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 430..442
 - (D) OTHER INFORMATION:
 - (ix) FEATURE:

20

- (A) NAME/KEY: Peptide
- (B) LOCATION: 461..472
- (D) OTHER INFORMATION:
- (ix) FEATURE:
 - (A) NAME/KEY: Peptide

25

- (B) LOCATION: 490..502
- (D) OTHER INFORMATION:
- (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 403..436

- (D) OTHER INFORMATION:
- (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 437..466
 - (D) OTHER INFORMATION:
- 35 (ix) FEATURE:
 - (A) NAME/KEY: Peptide
 - (B) LOCATION: 467..496
 - (D) OTHER INFORMATION:

	(ix)	FEA	TURE	:												
		(A) NA	ME/K	EY:	Pept	ide									
		(B) LO	CATI	ON:	496.	.526									
		(D) OT	HER	INFO	RMAT	ION:									
5	(ix)	FEA	TURE	:												
		(A) NA	ME/K	EY:	Pept	ide									
		(B) LO	CATI	ON:	521.	.550									
		(D) OT	HER	INFO	RMAT	ION:									
10																
•	(xi)	SEQ	UENC	E DE	SCRI	PTIO	N: S	EQ I	D NO	:1:						
	Gly	Pro	Met	Gly	Pro	Ser	Gly	Pro	Arg	Gly	Leu	Pro	Gly	Pro	Pro	Gly
15	1				5					10					15	
	Ala	Pro	Gly	Pro	Gln	Gly	Phe	Gln	Gly	Pro	Pro	Gly	Glu	Pro	Gly	Glu
20				20					25					30		
	Pro	Gly	Ala	Ser	Gly	Pro	Met	Gly	Pro	Arg	Gly	Pro	Pro	Gly	Pro	Pro
25			35					40					45			
	Gly	ГÄа	Asn	Gly	Asp	qeA	Gly	Glu	Ala	Gly	ГЛа	Pro	Gly	Arg	Pro	Gly
30		50					55					60				
	Gln	Arg	Gly	Pro	Pro	Gly	Pro	Gln	Gly	Ala	Arg	Gly	Leu	Pro	Gly	Thr
35	65					70					75					80

														.	- · · ·	43 j M
	Ala	Gly	Leu	Pro	Gly	Met	Lys	Gly	His	Arg	Gly	Phe	Ser	Gly	Leu	Asp
					85					90					95	
5																
	Gly	Ala	Lys	Gly	Asn	Thr	Gly	Pro	Ala	Gly	Pro	Lys	Gly	Glu	Pro	Gly
				100					105					110		
10																
	Ser	Pro	Gly	Glu	Asn	Gly	Ala	Pro	Gly	Gln	Met	Gly	Pro	Arg	Gly	Leu
			115					120					125			
15																
	Pro	Gly	Glu	Arg	Gly	Arg	Pro	Gly	Pro	Pro	Gly	Ser	Ala	Gly	Ala	Arg
		130					135					140				
20																
	Gly	Asp	Asp	Gly	Ala	Val	Gly	Ala	Ala	Gly	Pro	Pro	Gly	Pro	Thr	Gly
	145					150					155					160
25																
	Pro	Thr	Gly	Pro	Pro	Gly	Phe	Pro	Gly	Ala	Ala	Gly	Ala	Lys	Gly	Glu
					165					170					175	
30																
	Ala	Gly	Pro	Gln	Gly	Ala	Arg	Gly	Ser	Glu	Gly	Pro	Gln	Gly	Val	Arg
				180					185					190		
35																
	Gly	Glu	Pro	Gly	Pro	Pro	Gly	Pro	Ala	Gly	Ala	Ala	Gly	Pro	Ala	Gly

-24-

07-24(723)A

Asn Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys Gly Ala Asn Gly Ala Pro Gly Ile Ala Gly Ala Pro Gly Phe Pro Gly Ala Arg Gly Pro Ser Gly Pro Gln Gly Pro Ser Gly Ala Pro Gly Pro Lys Gly Asn Ser Gly Glu Pro Gly Ala Pro Gly Asn Lys Gly Asp Thr Gly Ala Lys Gly Glu

	Pro	Gly	Pro	Ala	Gly	Val	Gln	Gly	Pro	Pro	Gly	Pro	Ala	Gly	Glu	Glu
5			275					280					285			
	Gly	Lys	Arg	Gly	Ala	Arg	Gly	Glu	Pro	Gly	Pro	Ser	Gly	Leu	Pro	Gly
10		290					295					300				
	Pro	Pro	Gly	Glu	Arg	Gly	Gly	Pro	Gly	Ser	Arg	Gly	Phe	Pro	Gly	Ala
15	305					310					315					320
	Asp	Gly	Val	Ala	Gly	Pro	Lys	Gly	Pro	Ala	Gly	Glu	Arg	Gly	Ser	Pro
20					325					330					335	
	Gly	Pro	Ala	Gly	Pro	ГЛЗ	Gly	Ser	Pro	Gly	Glu	Ala	Gly	Arg	Pro	Gly
25				340					345					350		•
	Glu	Ala	Gly	Leu	Pro	Gly	Ala	ГÀа	Gly	Leu	Thr	Gly	Ser	Pro	Gly	Ser
30			355					360					365			
	Pro	Gly	Pro	Asp	Gly	Lys	Thr	Gly	Pro	Pro	Gly	Pro	Ala	Gly	Glx	Asx
35		370					375					380				

	Gly	Arg	Pro	Gly	Pro	Ala	Gly	Pro	Pro	Gly	Ala	Arg	Gly	Gln	Ala	Gly
5	385					390					395					400
	Val	Met	Gly	Phe	Pro	Gly	Pro	Lys	Gly	Thr	Ala	Gly	Glu	Pro	Gly	Lys
10					405					410					415	
	Ala	Gly	Glu	Arg	Gly	Val	Pro	Gly	Pro	Pro	Gly	Ala	Val	Gly	Pro	Ala
15				420					425		_			430		
	Gly	Lys	Asp	Gly	Glu	Ala	Gly	Ala	Gln	Gly	Ala	Pro	Gly	Pro	Ala	Gly
20			435					440					445			

	Pro	Ala	Gly	Glu	Arg	Gly	Glu	Gln	Gly	Pro	Ala	Gly	Ser	Pro	Gly	Phe
5		450					455					460				
	Gln	Gly	Leu	Pro	Gly	Pro	Ala	Gly	Pro	Pro	Gly	Glu	Ala	Gly	Lys	Pro
10	465					470					475					480
	Gly	Glx	Glx	Gly	Val	Pro	Gly	Asp	Leu	Gly	Ala	Pro	Gly	Pro	Ser	Gly
15					485					490					495	
	Ala	Arg	Gly	Glu	Arg	Gly	Phe	Pro	Gly	Glu	Arg	Gly	Val	Gln	Gly	Pro
20				500					505					510		
	Pro	Gly	Pro	Ala	Gly	Pro	Arg	Gly	Asn	Asn	Gly	Ala	Pro	Gly	Asx	xeA
25			515					520					525			
	Gly	Ala	Lys	Gly	Aap	Thr	Gly	Ala	Pro	Gly	Ala	Pro	Gly	Ser	Gln	Gly
30		530					535					540				
	Ala	Pro	Gly	Leu	Glx	Gly	Met	Ser	Gly	Leu	Glx	Gly	Pro	Pro	Gly	Pro
35	545					550					555					560

	Pro	Gly	Ser	Pro	Gly	Glx	Glx	Gly	Pro	Ser	Gly	Ala	Ser	Gly	Pro	Ala
5					565					570					575	
	Gly	Pro	Arg	Gly	Pro	Pro	Gly	Ser	Ala	Gly	Ser	Pro	Gly	ГЛЗ	Asx	Gly
10				580					585					590		
	Leu	Asx	Gly	Leu	Pro	Gly	Pro	Ile	Gly	Pro	Pro	Gly	Pro	Arg	Gly	Arg
15			595					600					605			
	Thr	Gly	Asx	Ala	Gly	Pro	Ser	Gly	Pro	Pro	Gly	Pro	Pro	Gly	Pro	Pro
		610					615					620				

Gly Pro Pro Gly Pro Pro Ser Gly Gly Tyr Asp Leu Ser Phe Phe Pro

625

630

635

640

5

Glx Pro Pro Glx Glx Glx Lys Ser Glx Asx Gly Gly Arg Tyr Tyr
645 650 655

- 10 (2) INFORMATION FOR SEQ ID NO:2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 13 amino acids
 - (B) TYPE: amino acid
- 15
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

20

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Gly Pro Ala Gly Lys Asp Gly Glu Ala Gly Ala Gln Gly
1 5

25

- (2) INFORMATION FOR SEQ ID NO:3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids

30

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Asp Gly Glu Ala

5 1

- (2) INFORMATION FOR SEQ ID NO:4:
- (i) SEQUENCE CHARACTERISTICS:

10 (A) LENGTH: 5 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
- Lys Asp Gly Glu Ala
 - (2) INFORMATION FOR SEQ ID NO:5:
- 25 (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 5 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
- 30 (ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Lys Ala Gly Glu Ala

- (2) INFORMATION FOR SEQ ID NO:6:
- 10 (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

20

Lys Asp Gly Ala Ala 1

(2) INFORMATION FOR SEQ ID NO:7:

25

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear

30

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Lys Asp Gly Glu

5

- (2) INFORMATION FOR SEQ ID NO:8:
- (i) SEQUENCE CHARACTERISTICS:

10 (A) LENGTH: 5 amino acids

- (B) TYPE: amino acid
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide

15

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Gly Gly Gly Gly

•

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

- 1. A peptide selected from the group consisting of GPAGKDGEAGAQG and fragments thereof containing the minimal sequence Asp Gly Glu Ala.
- 2. The peptide of claim 1 having the tetrapeptide sequence Asp Gly Glu Ala [SEQ ID NO:3].
- 3. The peptide of claim 1 having the pentapeptide sequence KDGEA [SEQ ID NO:4].
- 4. The peptide of claim 1 having the sequence GPAGKDGEGAQG [SEQ ID NO:2].

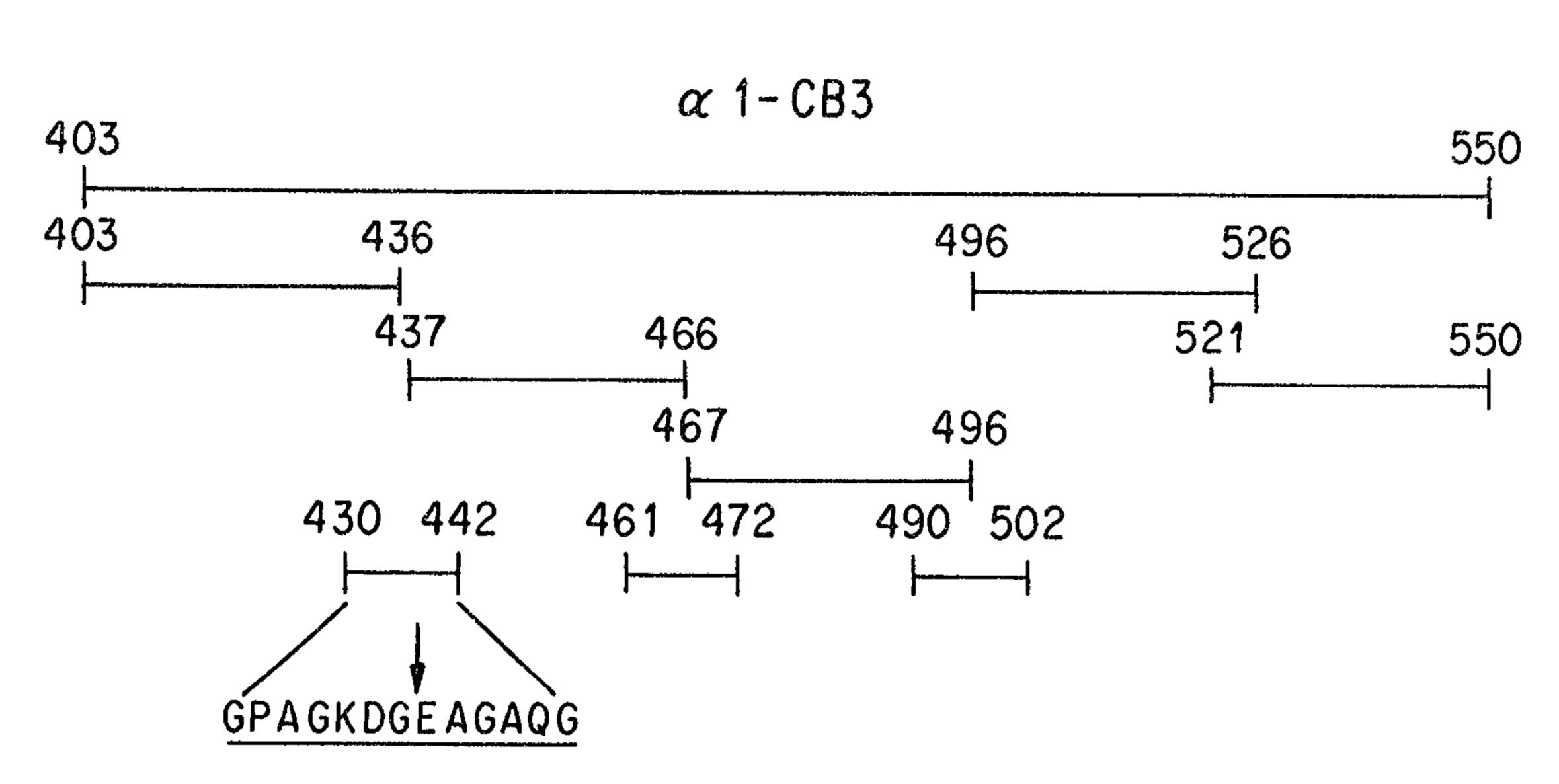
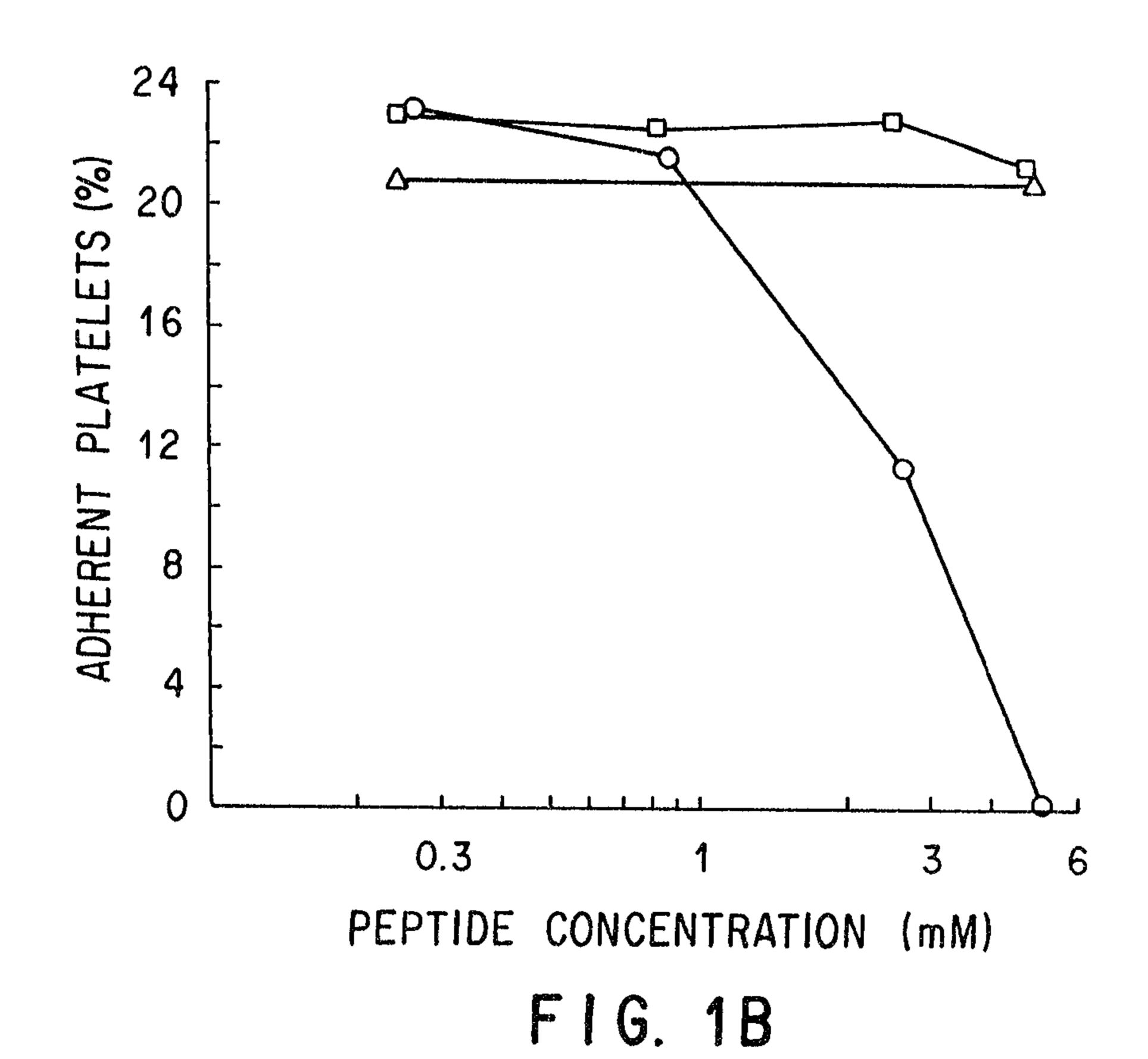
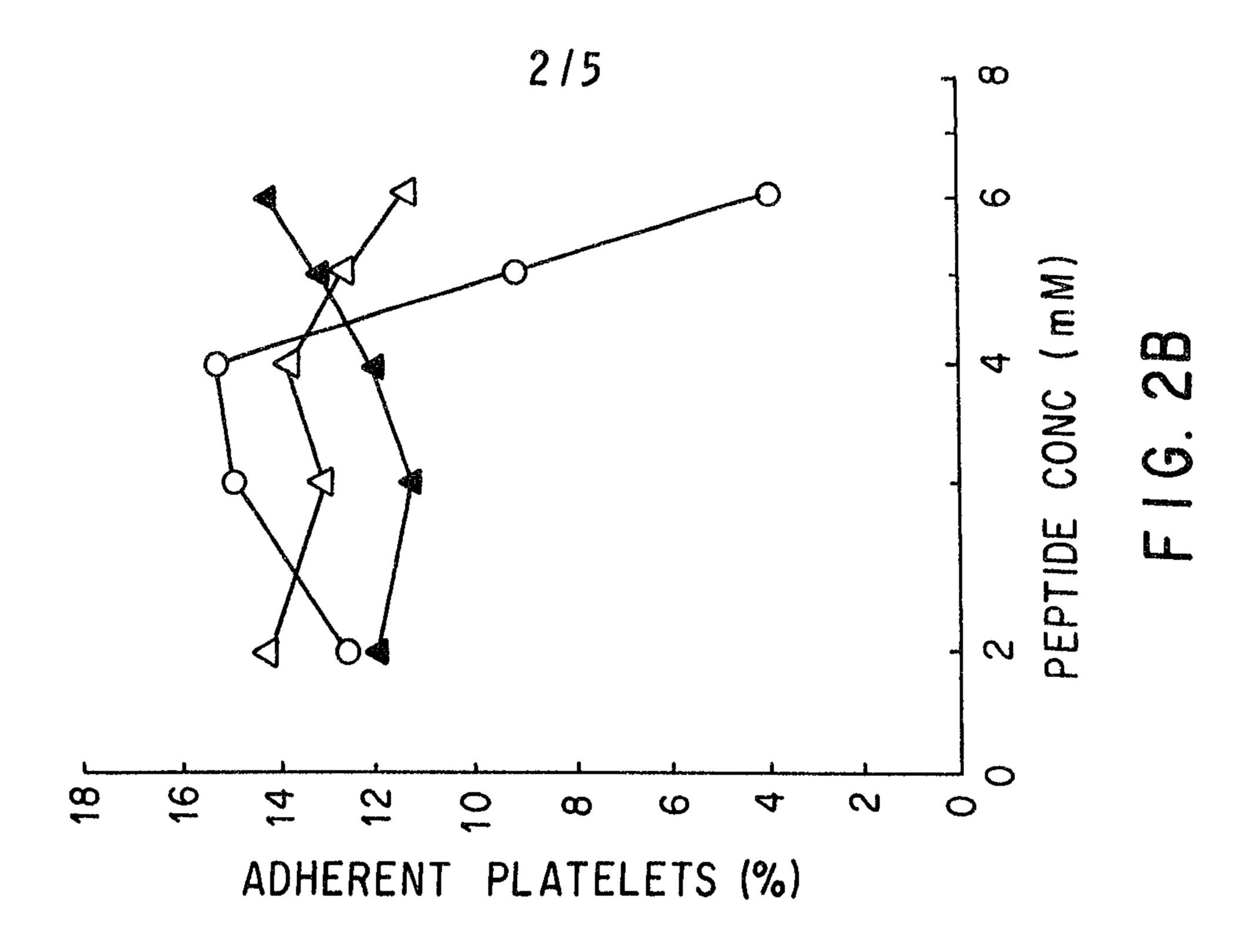
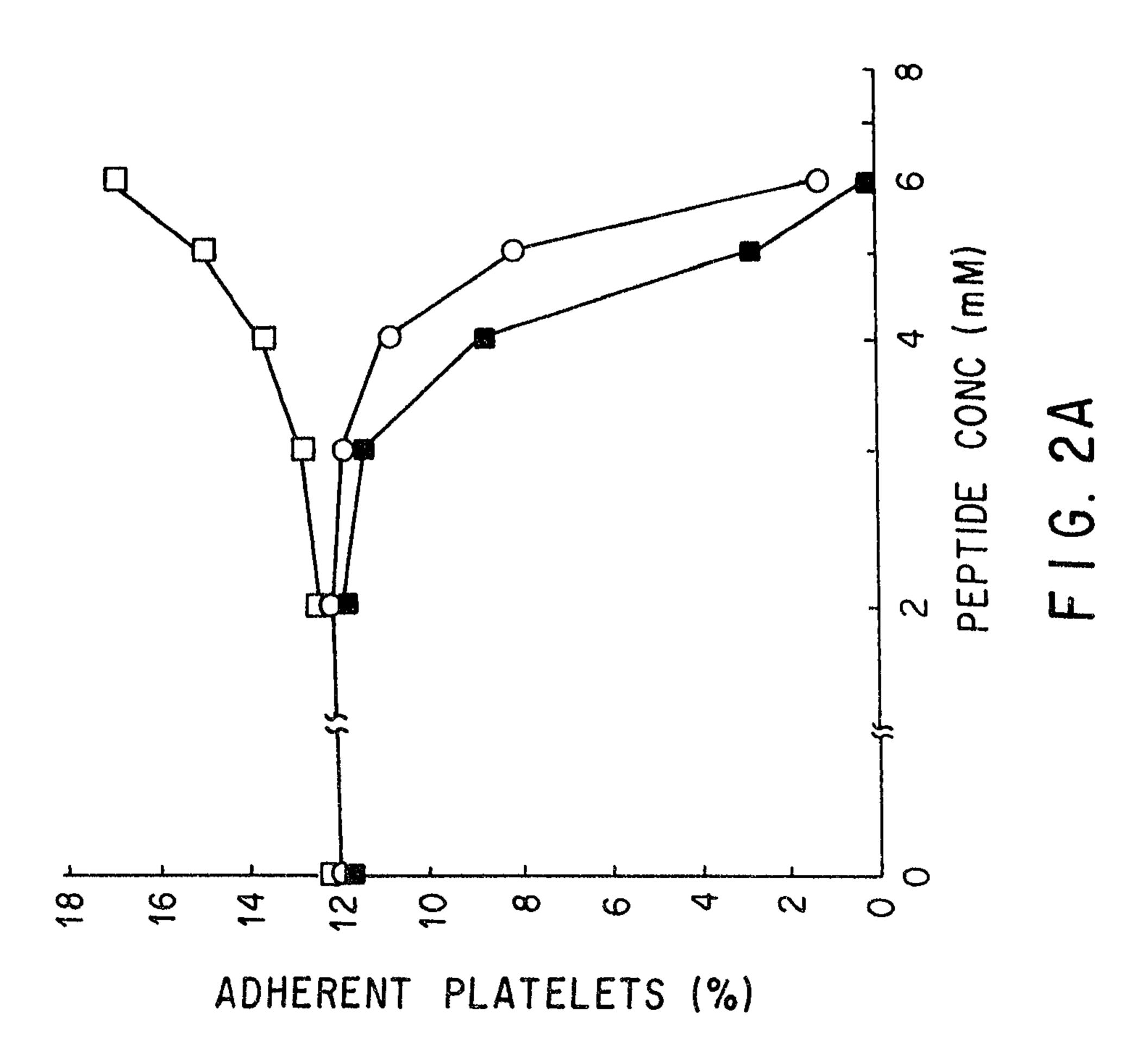





FIG. 1A

McFadden, Fincham, Marcus & Anissimoff

McFadden, Fincham, Marcus & Anissimoff

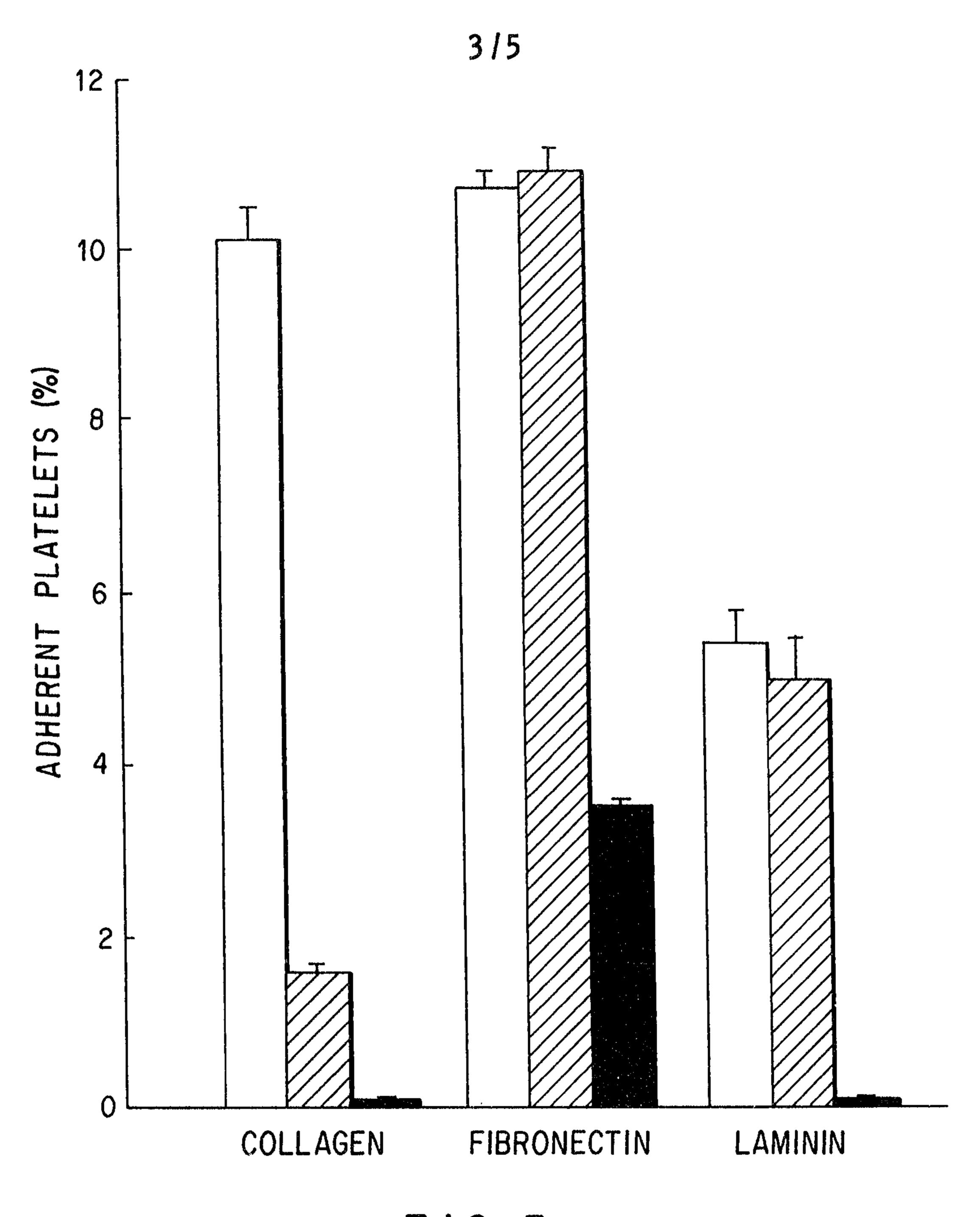
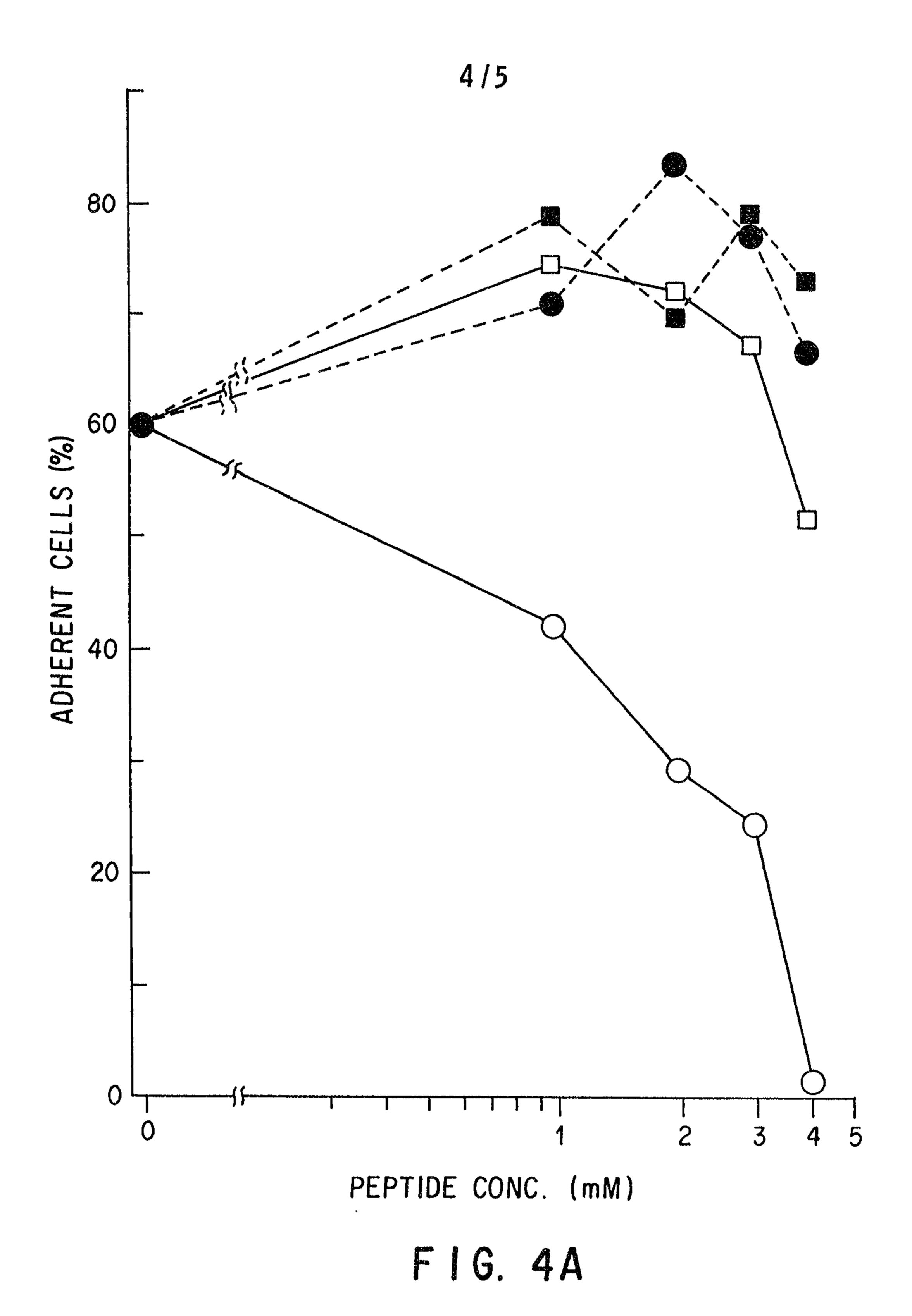
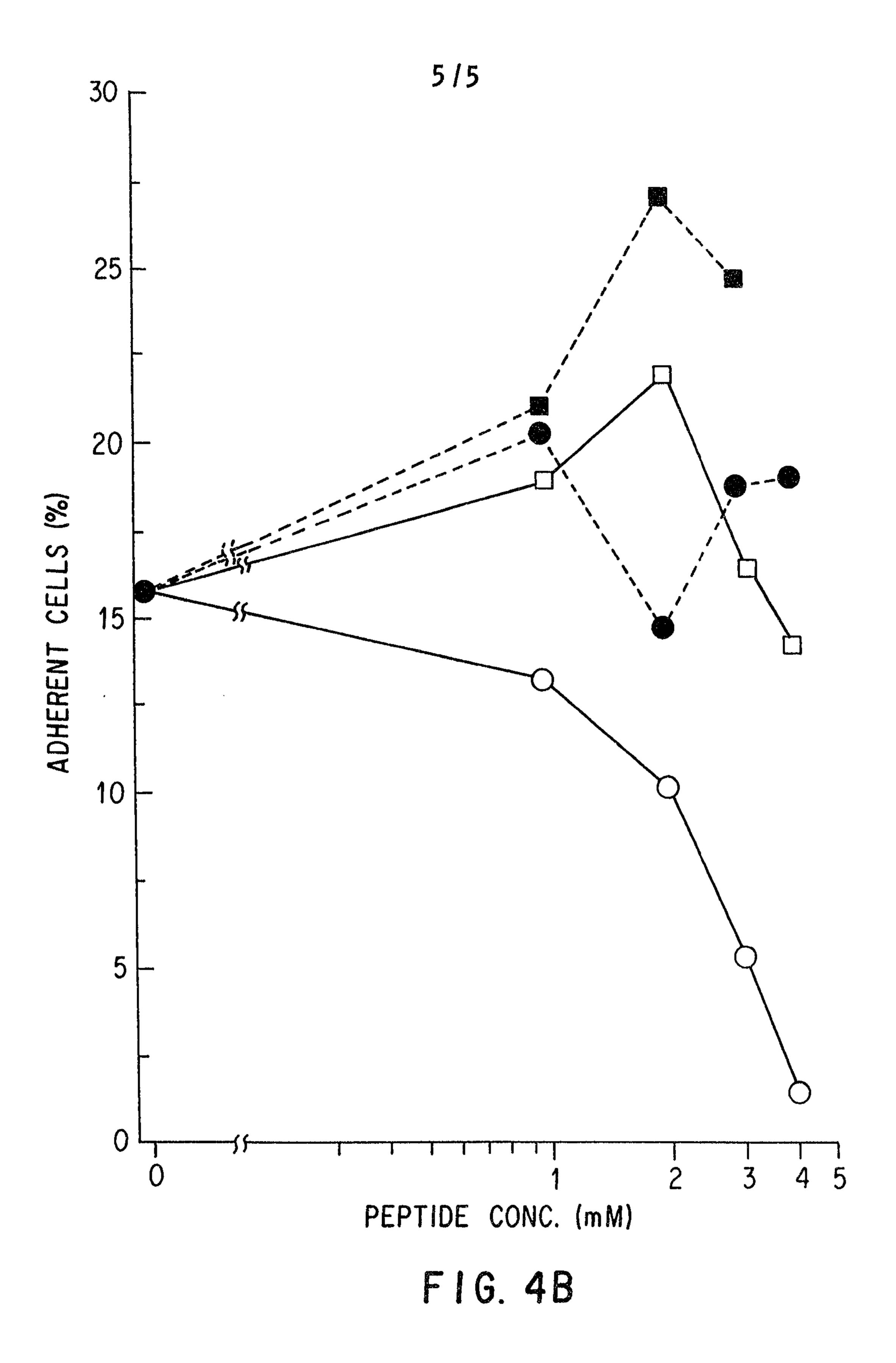




FIG. 3

McFadden, Fincham, Marcus & Anissimoff

McFadden, Fincham, Marcus & Anissimoff