Title: SYNTHESIS OF CIS-DIOLS FROM ARYL SILANES

Abstract: The present invention is related to cis-diols and biological methods of producing cis-diols. The present invention further relates to processes for subsequently converting such silane cis-diols to the more stable acetoxime derivatives, as well as a process for converting silane cis-diols to the corresponding catechols and the compounds produced thereby. The present invention also provides chemical methods for the conversion of said silane cis-diols and acetoxime compounds to epoxy, saturated and otherwise modified derivatives. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that is will not be used to interpret or limit the scope or meaning of the claims.
SYNTHESIS OF cis-DIOLS FROM ARYL SILANES

The present invention relates to dioxygenation of aryl silanes and, more particularly, to processes for converting aryl silanes to a new class of chiral cis-diols by contact with a chemical or biological catalyst such as dioxygenase-producing bacteria in the presence of molecular oxygen (O₂) and the chiral cis-diols produced thereby. The present invention further relates to a process for subsequently converting such silane cis-diols to the more stable acetonide derivatives, as well as a process for converting silane cis-diols to the corresponding catechols by treatment with diol dehydrogenase enzyme and the compounds produced thereby. The present invention also provides chemical methods for the conversion of said silane cis-diols and acetonide compounds to epoxy, saturated and otherwise modified derivatives. The chiral intermediates produced by the process of the instant invention represent a novel class of compounds having potential value in the synthesis of fine chemicals, including pharmaceuticals. It is also contemplated that the chiral silicon materials of the present invention may find application in enantioselective separations and optical applications.

The enzymatic dioxygenation of substituted aromatics to cis-diols is known in the art as a means for synthesizing certain chiral molecules from achiral precursors. Several enzymes are known to affect this transformation, including toluene dioxygenase (EC 1.14.12.11), naphthalene dioxygenase (EC 1.14.12.12),
and other aromatic oxygenases, which act on or catalyze a wide range of substrates. The following diagram illustrates this catalytic reaction:

\[
\begin{align*}
&\text{R} \\
\text{Oxygenase} &\xrightarrow{\text{O}_2} &\text{OH} \\
&\text{R} \\
\text{OH}
\end{align*}
\]

Although the biotransformation of non silicon-containing substituted aromatics to cis-diols by enzymatic dioxygenation is known (e.g., Hudlicky T. et al., (1999) Enzymatic dihydroxylation of aromatics in enantioselective synthesis: expanding asymmetric methodology, *Aldrichimica Acta*, Vol. 32, No. 2, pp. 35-62), there is a need for processes that convert aryl silanes to chiral cis-diols or catechols and for such chiral cis-diols or catechols.

In accordance with one aspect of the present invention, a method for converting an aryl silane to a corresponding cis-diol is provided. The method comprises providing an aryl silane substrate, wherein the aryl silane has at least one aromatic component and at least one silicon atom, and contacting a dioxygenase enzyme with the aryl silane substrate such that said aryl silane substrate is converted to a corresponding cis-diol. The method may further comprise reacting the cis-diol with 2,2-dimethoxypropane to convert the cis-diol to an acetonide derivative. The method may further comprises contacting a dehydrogenase enzyme with the cis-diol to convert the cis-diol to a corresponding catechol.
In accordance with another aspect of the present invention, a compound comprising a cis-diol is provided. The cis-diol has the formula:

wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, an aryl, a linear or branched \(C_{1-18} \) alkyl, a linear or branched \(C_{2-18} \) alkenyl, a linear or branched \(C_{2-18} \) alkynyl, OR, SR, NR\(_{2-3}\), or O(CO)R; and \(R \) is hydrogen, linear or branched \(C_{1-18} \) alkyl, or Si\(R^1 R^2 R^3 \).

In accordance with yet another aspect of the present invention, a compound comprising a cis-diol is provided. The compound has the formula:

wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_{1-18} \) alkyl, a linear or branched \(C_{2-18} \) alkenyl, a linear or branched \(C_{2-18} \) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R; \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(C_{1-18} \) alkyl, linear or branched \(C_{2-18} \) alkenyl, linear or branched \(C_{2-18} \) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R, Si\(R^1 R^2 R^3 \), or a bridging group between two arene or substituted arene moieties; \(n \) is 0-5; \(R \) is hydrogen, linear or branched \(C_{1-18} \) alkyl, or Si\(R^1 R^2 R^3 \); and \(X \) is a divalent linear or branched \(C_{1-18} \) alkyl.
alkyl, C_2-C_{18} alkenyl, or C_2-C_{18} alkynyl spacer, except when X=C_2 alkynyl and
R^1=R^2=R^3 then R^1=R^2=R^3 cannot be -CH_3.

In accordance with a further aspect of the present invention, a compound
comprising a silane cis-diol is provided. The compound has the formula:

\[
\begin{align*}
\text{(R^4)_{n}} & \quad \text{SiR^1R^2R^3} \\
\quad & \quad \quad \quad \quad \quad \quad \text{OH} \\
\quad \quad \quad \quad \quad \quad \quad \quad \quad \text{OH}
\end{align*}
\]

wherein: R^1, R^2, and R^3 are each independently selected from hydrogen, a
halogen, aryl, a linear or branched C_{1-18} alkyl, a linear or branched C_{2-18}
alkenyl, a linear or branched C_{2-18} alkynyl, halomethyl, OR, SR, NR_{2-3}, or
O(CO)R; R^4 is selected from hydrogen, a halogen, linear or branched C_{1-18} alkyl,
linear or branched C_{2-18} alkenyl, linear or branched C_{2-18} alkynyl, halomethyl,
CF_3, CN, NO_2, SR, OR, NR_{2-3}, O(CO)R, SiR^1R^2R^3, or a bridging group between
two arene or substituted arene moieties; n is 0-5; and R is hydrogen, linear or
branched C_{1-18} alkyl, or SiR^1R^2R^3.

In accordance with the present invention, a compound comprising a silane
cis-diol is provided. The compound has the formula:

\[
\begin{align*}
\text{(R^4)_{n}} & \quad \text{SiR^1R^2R^3} \\
\quad & \quad \quad \quad \quad \quad \text{OH} \\
\quad \quad \quad \quad \quad \text{OH}
\end{align*}
\]
wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_{1-18} \) alkyl, a linear or branched \(C_{2-18} \) alkenyl, a linear or branched \(C_{2-18} \) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or \(O(\text{CO})R \); \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(C_{1-18} \) alkyl, linear or branched \(C_{2-18} \) alkenyl, linear or branched \(C_{2-18} \) alkynyl, halomethyl, \(\text{CF}_3, \text{CN}, \text{NO}_2, \text{SR}, \text{OR}, \text{NR}_{2-3}, \text{O(\text{CO})R}, \text{SiR}^1\text{R}^2\text{R}^3 \), or a bridging group between two arene or substituted arene moieties; \(n \) is 0-5; and \(R \) is hydrogen, linear or branched \(C_{1-18} \) alkyl, or \(\text{SiR}^1\text{R}^2\text{R}^3 \).

In accordance with a further aspect of the present invention, a compound comprising a silane cis-diol is provided. The compound has the formula:

![Chemical Structure](image)

wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_{1-18} \) alkyl, a linear or branched \(C_{2-18} \) alkenyl, a linear or branched \(C_{2-18} \) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or \(O(\text{CO})R \); \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(C_{1-18} \) alkyl, linear or branched \(C_{2-18} \) alkenyl, linear or branched \(C_{2-18} \) alkynyl, halomethyl, \(\text{CF}_3, \text{CN}, \text{NO}_2, \text{SR}, \text{OR}, \text{NR}_{2-3}, \text{O(\text{CO})R}, \text{SiR}^1\text{R}^2\text{R}^3 \), or a bridging group between two arene or substituted arene moieties; \(n \) is 0-5; \(R \) is hydrogen, linear or branched \(C_{1-18} \) alkyl, or \(\text{SiR}^1\text{R}^2\text{R}^3 \); and \(X \) is a divergent linear or branched \(C_{1-18} \) alkyl, \(C_{2-18} \) alkenyl, \(C_{2-18} \) alkynyl spacer, S, O or NR\(_{1-2}\).
In accordance with another aspect of the present invention, a compound comprising an acetonide is provided. The compound has the formula:

\[
\text{SiR}^1\text{R}^2\text{R}^3
\]

wherein: \(R^1\), \(R^2\), and \(R^3\) are each independently selected from hydrogen, a halogen, an aryl, a linear or branched C\(_{1-18}\) alkyl, a linear or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl, OR, SR, NR\(_{2-3}\), or O(CO)R, except when \(R^1=R^2=R^3\) then \(R^1=R^2=R^3\) cannot be -CH\(_3\); and \(R\) is hydrogen, linear or branched C\(_{1-18}\) alkyl, or SiR\(_1\)R\(_2\)R\(_3\).

In accordance with yet another aspect of the present invention, a compound comprising an acetonide is provided. The compound has the formula:

\[
\text{SiR}^1\text{R}^2\text{R}^3
\]

wherein: \(R^1\), \(R^2\), and \(R^3\) are each independently selected from hydrogen, a halogen, aryl, a linear or branched C\(_{1-18}\) alkyl, a linear or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R; \(R^4\) is selected from hydrogen, a halogen, linear or branched C\(_{1-18}\) alkyl, linear or branched C\(_{2-18}\) alkenyl, linear or branched C\(_{2-18}\) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R, SiR\(_1\)R\(_2\)R\(_3\), or a bridging group between two arene or substituted arene moieties; \(n\) is 0-5; \(R\) is hydrogen, linear or
branched C_{1-18} alkyl, or SiR^{1}R^{2}R^{3}; and X is a divalent linear or branched C_{1-18} alkyl, C_{2-18} alkenyl, or C_{2-18} alkynyl spacer, except when X=C_{2} alkynyl and R^{1}=R^{2}=R^{3} then R^{1}=R^{2}=R^{3} cannot be -CH_{3}.

In accordance with a further aspect of the present invention, a compound comprising an acetonide is provided. The compound has the formula:

![Chemical Structure](image)

wherein: R^{1}, R^{2}, and R^{3} are each independently selected from hydrogen, a halogen, aryl, a linear or branched C_{1-18} alkyl, a linear or branched C_{2-18} alkenyl, a linear or branched C_{2-18} alkynyl, halomethyl, OR, SR, NR_{2-3}, or O(CO)R; R^{4} is selected from hydrogen, a halogen, linear or branched C_{1-18} alkyl, linear or branched C_{2-18} alkenyl, linear or branched C_{2-18} alkynyl, halomethyl, CF_{3}, CN, NO_{2}, SR, OR, NR_{2-3}, O(CO)R, SiR^{1}R^{2}R^{3}, or a bridging group between two arene or substituted arene moieties; n is 0-5; and R is hydrogen, linear or branched C_{1-18} alkyl, or SiR^{1}R^{2}R^{3}.

In accordance with another aspect of the present invention, a compound comprising an acetonide is provided. The compound has the formula:
wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_{1-18} \) alkyl, a linear or branched \(C_{2-18} \) alkenyl, a linear or branched \(C_{2-18} \) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R; \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(C_{1-18} \) alkyl, linear or branched \(C_{2-18} \) alkenyl, linear or branched \(C_{2-18} \) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R, SiR\(_1^1\)R\(_2^1\)R\(_3^1\), or a bridging group between two arene or substituted arene moieties; \(n \) is 0-5; and R is hydrogen, linear or branched \(C_{1-18} \) alkyl, or SiR\(_1^1\)R\(_2^1\)R\(_3^1\).

In accordance with yet another aspect of the present invention, a compound comprising an acetonide is provided. The compound has the formula:

wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_{1-18} \) alkyl, a linear or branched \(C_{2-18} \) alkenyl, a linear or branched \(C_{2-18} \) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R; \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(C_{1-18} \) alkyl,
linear or branched C$_2$-C$_{18}$ alkenyl, linear or branched C$_2$-C$_{18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, SiR$_1^1$R$_2^2$R$_3^3$, or a bridging group between two arene or substituted arene moieties; n is 0-5; R is hydrogen, linear or branched C$_1$-C$_{18}$ alkyl, or SiR$_1^1$R$_2^2$R$_3^3$; and X is a divalent linear or branched C$_1$-C$_{18}$ alkyl, C$_2$-C$_{18}$ alkenyl, C$_2$-C$_{18}$ alkynyl spacer, S, O or NR$_1$-2.

In accordance with a further aspect of the present invention, a compound comprising a catechol is provided. The compound has the formula:

```
\[ \text{SiR}^1\text{R}^2\text{R}^3 \]
```

wherein: R^1, R^2, and R^3 are each independently selected from hydrogen, a halogen, an aryl, a linear or branched C$_1$-C$_{18}$ alkyl, a linear or branched C$_2$-C$_{18}$ alkenyl, a linear or branched C$_2$-C$_{18}$ alkynyl, OR, SR, NR$_{2-3}$, or O(CO)R; and R is hydrogen, linear or branched C$_1$-C$_{18}$ alkyl, or SiR$_1^1$R$_2^2$R$_3^3$.

In accordance with another aspect of the present invention, a compound comprising a catechol is provided. The compound has the formula:

```
\[ (\text{R}^4)\text{n} \]
```

wherein: R^1, R^2, and R^3 are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_1$-C$_{18}$ alkyl, a linear or branched C$_2$-C$_{18}$...
alkenyl, a linear or branched C₂⁻C₁₈ alkynyl, halomethyl, OR, SR, NR₂⁻₃, or O(CO)R; R⁴ is selected from hydrogen, a halogen, linear or branched C₁⁻C₁₈ alkyl, linear or branched C₂⁻C₁₈ alkenyl, linear or branched C₂⁻C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂⁻₃, O(CO)R, SiR¹R²R³, or a bridging group between two arene or substituted arene moieties; n is 0-5; R is hydrogen, linear or branched C₁⁻C₁₈ alkyl, or SiR¹R²R³; and X is a divalent linear or branched C₁⁻C₁₈ alkyl, C₂⁻C₁₈ alkenyl, or C₂⁻C₁₈ alkynyl spacer.

In accordance with a further aspect of the present invention, a compound comprising a catechol is provided. The compound has the formula:

![Chemical structure image]

wherein: R¹, R², and R³ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C₁⁻C₁₈ alkyl, a linear or branched C₂⁻C₁₈ alkenyl, a linear or branched C₂⁻C₁₈ alkynyl, halomethyl, OR, SR, NR₂⁻₃, or O(CO)R; R⁴ is selected from hydrogen, a halogen, linear or branched C₁⁻C₁₈ alkyl, linear or branched C₂⁻C₁₈ alkenyl, linear or branched C₂⁻C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂⁻₃, O(CO)R, SiR¹R²R³, or a bridging group between two arene or substituted arene moieties; n is 0-5; and R is hydrogen, linear or branched C₁⁻C₁₈ alkyl, or SiR¹R²R³.

In accordance with another aspect of the present invention, a compound comprising a catechol is provided. The compound has the formula:
wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_1-C_{18} \) alkyl, a linear or branched \(C_2-C_{18} \) alkenyl, a linear or branched \(C_2-C_{18} \) alkynyl, halomethyl, OR, SR, \(NR_2, \) or \(O(CO)R \); \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(C_1-C_{18} \) alkyl, linear or branched \(C_2-C_{18} \) alkenyl, linear or branched \(C_2-C_{18} \) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, \(NR_2, \) or \(O(CO)R, \) \(SiR^1R^2R^3, \) or a bridging group between two arene or substituted arene moieties; \(n \) is 0-5; and \(R \) is hydrogen, linear or branched \(C_1-C_{18} \) alkyl, or \(SiR^1R^2R^3. \)

In accordance with yet another aspect of the present invention, a compound comprising a catechol is provided. The compound has the formula:

wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_1-C_{18} \) alkyl, a linear or branched \(C_2-C_{18} \) alkenyl, a linear or branched \(C_2-C_{18} \) alkynyl, halomethyl, OR, SR, \(NR_2, \) or \(O(CO)R; \) \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(C_1-C_{18} \) alkyl, linear or branched \(C_2-C_{18} \) alkenyl, linear or branched \(C_2-C_{18} \) alkynyl, halomethyl, \(CF_3, \) CN, NO\(_2\), SR, OR, \(NR_2, \) or \(O(CO)R, \) \(SiR^1R^2R^3, \) or a bridging group between
two arene or substituted arene moieties; n is 0-5; R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³; and X is a divalent linear or branched C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, C₂-C₁₈ alkynyl spacer, S, O or NR₁-2.

In accordance with another aspect of the present invention, a compound is provided. The compound comprises:

![Chemical Structure Diagram]

wherein: R¹, R², and R³ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C₁-C₁₈ alkyl, a linear or branched C₂-C₁₈ alkenyl, a linear or branched C₂-C₁₈ alkynyl, halomethyl, OR, SR, NR₂-3, or O(CO)R; R⁴ is selected from hydrogen, a halogen, linear or branched C₁-C₁₈ alkyl, linear or branched C₂-C₁₈ alkenyl, linear or branched C₂-C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂-3, O(CO)R, SiR¹R²R³, or a bridging group between two arene or substituted arene moieties; n is 0-5; R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³; and X is nothing, a divalent linear or branched C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, and C₂-C₁₈ alkynyl spacer, except that when X=nothing then R¹, R², and R³ cannot be R¹=R²=CH₃ and R³=H or R¹=R²=R³=CH₃.
In accordance with another aspect of the present invention, a di-O-acyl is provided. The compound has the formula:

\[
\text{OR}^5 \quad \text{OR}^5
\]

\[
\text{SiR}^1 \text{R}^2 \text{R}^3
\]

wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(\text{C}_{1-18} \) alkyl, a linear or branched \(\text{C}_{2-18} \) alkenyl, a linear or branched \(\text{C}_{2-18} \) alkynyl, halomethyl, OR, SR, NR_{2-3}, or \(\text{O(CO)}R \); \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(\text{C}_{1-18} \) alkyl, linear or branched \(\text{C}_{2-18} \) alkenyl, linear or branched \(\text{C}_{2-18} \) alkynyl, halomethyl, \(\text{CF}_3, \text{CN}, \text{NO}_2, \text{SR}, \text{OR}, \text{NR}_{2-3}, \text{O(CO)}R, \text{SiR}^1 \text{R}^2 \text{R}^3 \), or a bridging group between two arene or substituted arene moieties; \(n \) is 0-5; \(R^5 \) is linear or branched \(\text{C}_{1-18} \) alkyl, halomethyl, linear or branched \(\text{C}_{2-18} \) alkenyl, or linear or branched \(\text{C}_{2-18} \) alkynyl; \(R \) is hydrogen, linear or branched \(\text{C}_{1-18} \) alkyl, or \(\text{SiR}^1 \text{R}^2 \text{R}^3 \); and \(X \) is nothing, a divalent linear or branched \(\text{C}_{1-18} \) alkyl, \(\text{C}_{2-18} \) alkenyl, and \(\text{C}_{2-18} \) alkynyl spacer.

In accordance with a further aspect of the present invention, a silyl ether is provided. The compound has the formula:
wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_{1-18} \) alkyl, a linear or branched \(C_{2-18} \) alkenyl, a linear or branched \(C_{2-18} \) alkynyl, halomethyl, \(OR, SR, NR_{2-3}, \) or \(O(CO)R; \) \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(C_{1-18} \) alkyl, linear or branched \(C_{2-18} \) alkenyl, linear or branched \(C_{2-18} \) alkynyl, halomethyl, \(CF_3, CN, NO_2, SR, OR, NR_{2-3}, O(CO)R, SiR^1R^2R^3, \) or a bridging group between two arene or substituted arene moieties; \(n \) is 0-5; \(R \) is hydrogen, linear or branched \(C_{1-18} \) alkyl, or \(SiR^1R^2R^3; \) and \(X \) is nothing, a divalent linear or branched \(C_{1-18} \) alkyl, \(C_{2-18} \) alkenyl, or \(C_{2-18} \) alkynyl spacer.

In accordance with another aspect of the present invention, a boronate ester is provided. The compound has the formula:

```
   SiR^1R^2R^3
   (R^4)\(n\)  \(\text{B} \rightarrow R^5\)
```

wherein: \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_{1-18} \) alkyl, a linear or branched \(C_{2-18} \) alkenyl, a linear or branched \(C_{2-18} \) alkynyl, halomethyl, \(OR, SR, NR_{2-3}, \) or \(O(CO)R; \) \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(C_{1-18} \) alkyl, linear or branched \(C_{2-18} \) alkenyl, linear or branched \(C_{2-18} \) alkynyl, halomethyl, \(CF_3, CN, NO_2, SR, OR, NR_{2-3}, O(CO)R, SiR^1R^2R^3, \) or a bridging group between two arene or substituted arene moieties; \(n \) is 0-5; \(R^5 \) is aryl, linear or branched \(C_{1-18} \) alkyl, linear or branched \(C_{2-18} \) alkenyl, or linear or branched \(C_{2-18} \) alkynyl;
R is hydrogen, linear or branched C_{1-18} alkyl, or SiR^1R^2R^3, and X is nothing, a
divalent linear or branched C_{1-18} alkyl, C_{2-18} alkenyl, and C_{2-18} alkynyl spacer.

In accordance with another aspect of the present invention, an epoxy is
provided. The compound has the formula:

```
5
```

wherein: R^1, R^2, and R^3 are each independently selected from hydrogen, a
halogen, aryl, a linear or branched C_{1-18} alkyl, a linear or branched C_{2-18}
alkenyl, a linear or branched C_{2-18} alkynyl, halomethyl, OR, SR, NR_{2-3}, or
O(CO)R; R^4 is selected from hydrogen, a halogen, linear or branched C_{1-18} alkyl,
linear or branched C_{2-18} alkenyl, linear or branched C_{2-18} alkynyl, halomethyl,
CF_3, CN, NO_2, SR, OR, NR_{2-3}, O(CO)R, SiR^1R^2R^3, or a bridging group between
two arene or substituted arene moieties; n is 0-5; R is hydrogen, linear or branched
C_{1-18} alkyl, or SiR^1R^2R^3; and X is nothing, a divalent linear or branched C_{1-18}
alkyl, C_{2-18} alkenyl, and C_{2-18} alkynyl spacer.

In accordance with a further aspect of the present invention, an epoxy is
provided. The compound has the formula:
wherein: R^1, R^2, and R^3 are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_1$-C$_{18}$ alkyl, a linear or branched C$_2$-C$_{18}$ alkenyl, a linear or branched C$_2$-C$_{18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R; R^4 is selected from hydrogen, a halogen, linear or branched C$_1$-C$_{18}$ alkyl, linear or branched C$_2$-C$_{18}$ alkenyl, linear or branched C$_2$-C$_{18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, Si$R^1R^2R^3$, or a bridging group between two arene or substituted arene moieties; n is 0-5; R is hydrogen, linear or branched C$_1$-C$_{18}$ alkyl, or Si$R^1R^2R^3$, and X is nothing, a divalent linear or branched C$_1$-C$_{18}$ alkyl, C$_2$-C$_{18}$ alkenyl, and C$_2$-C$_{18}$ alkynyl spacer, except when X=nothing then R^1, R^2, and R^3 cannot be R^1=R^2=R^3=CH$_3$.

In accordance with another aspect of the present invention, a partially or fully saturated compound is provided. The compound has the formula:
wherein: R¹, R², and R³ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C₁₋C₁₈ alkyl, a linear or branched C₂₋C₁₈ alkenyl, a linear or branched C₂₋C₁₈ alkynyl, halomethyl, OR, SR, NR₂₋₃, or O(CO)R; R⁴ is selected from hydrogen, a halogen, linear or branched C₁₋C₁₈ alkyl, linear or branched C₂₋C₁₈ alkenyl, linear or branched C₂₋C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂₋₃, O(CO)R, SiR¹R²R³, or a bridging group between two arene or substituted arene moieties; n is 0-5; R is hydrogen, linear or branched C₁₋C₁₈ alkyl, or SiR¹R²R³; and X is nothing, a divalent linear or branched C₁₋C₁₈ alkyl, C₂₋C₁₈ alkenyl, and C₂₋C₁₈ alkynyl spacer.

In accordance with yet another aspect of the present invention, a partially or fully saturated compound is provided. The compound has the formula:
wherein: R^1, R^2, and R^3 are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_{1-18}$ alkyl, a linear or branched C$_{2-18}$ alkenyl, a linear or branched C$_{2-18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R; R^4 is selected from hydrogen, a halogen, linear or branched C$_{1-18}$ alkyl, linear or branched C$_{2-18}$ alkenyl, linear or branched C$_{2-18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, SiR^1R$_2$R$_3$, or a bridging group between two arene or substituted arene moieties; n is 0-5; R is hydrogen, linear or branched C$_{1-18}$ alkyl, or SiR^1R$_2$R$_3$; and X is nothing, a divalent linear or branched C$_{1-18}$ alkyl, C$_{2-18}$ alkenyl, and C$_{2-18}$ alkynyl spacer.

In accordance with another aspect of the present invention, a silanol is provided. The compound has the formula:
wherein: R^1 and R^2 are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_{1-18}$ alkyl, a linear or branched C$_{2-18}$ alkenyl, a linear or branched C$_{2-18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R; R^4 is selected from hydrogen, a halogen, linear or branched C$_{1-18}$ alkyl, linear or branched C$_{2-18}$ alkenyl, linear or branched C$_{2-18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, Si$R^1R^2R^3$, or a bridging group between two arene or substituted arene moieties; n is 0-5; R is hydrogen, linear or branched C$_{1-18}$ alkyl, or Si$R^1R^2R^3$; and X is nothing, a divalent linear or branched C$_{1-18}$ alkyl, C$_{2-18}$ alkenyl, and C$_{2-18}$ alkynyl spacer.

In accordance with yet another aspect of the present invention, a silanol is provided. The compound has the formula:

\[
\text{SiR}^1\text{R}^2\text{OH}
\]

wherein: R^1 and R^2 are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_{1-18}$ alkyl, a linear or branched C$_{2-18}$ alkenyl, a linear or branched C$_{2-18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R; R^4 is selected from hydrogen, a halogen, linear or branched C$_{1-18}$ alkyl, linear or branched C$_{2-18}$ alkenyl, linear or branched C$_{2-18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, Si$R^1R^2R^3$, or a bridging group between two arene or substituted
arene moieties; n is 0-5; R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³; and X is nothing, a divalent linear or branched C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, and C₂-C₁₈ alkynyl spacer.

In accordance with a further aspect of the present invention, an alkoxy compound is provided. The compound comprises:

```
\[ \text{SiR}^1 \text{R}^2 \text{OR}^5 \]
```

wherein: R¹ and R² are each independently selected from hydrogen, a halogen, aryl, a linear or branched C₁-C₁₈ alkyl, a linear or branched C₂-C₁₈ alkenyl, a linear or branched C₂-C₁₈ alkynyl, halomethyl, OR, SR, NR₂₋₃, or O(CO)R; R⁴ is selected from hydrogen, a halogen, linear or branched C₁-C₁₈ alkyl, linear or branched C₂-C₁₈ alkenyl, linear or branched C₂-C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂₋₃, O(CO)R, SiR¹R²R³, or a bridging group between two arene or substituted arene moieties; R⁶ is an aryl, a linear or branched C₁-C₁₈ alkyl, a linear or branched C₂-C₁₈ alkenyl, a linear or branched C₂-C₁₈ alkynyl; n is 0-5; R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³; and X is nothing, a divalent linear or branched C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, and C₂-C₁₈ alkynyl spacer.

In accordance with another aspect of the present invention, an alkoxy compound is provided. The compound comprises:

```
\[ \text{SiR}^1 \text{R}^2 \text{OR}^5 \]
```
wherein: \(R^1\) and \(R^2\) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_1-C_{18}\) alkyl, a linear or branched \(C_2-C_{18}\) alkenyl, a linear or branched \(C_2-C_{18}\) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R; \(R^4\) is selected from hydrogen, a halogen, linear or branched \(C_1-C_{18}\) alkyl, linear or branched \(C_{18}\) alkenyl, linear or branched \(C_2-C_{18}\) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R, SiR\(_1^1\)R\(_2^2\)R\(_3^3\), or a bridging group between two arene or substituted arene moieties; \(R^5\) is an aryl, a linear or branched \(C_1-C_{18}\) alkyl, a linear or branched \(C_2-C_{18}\) alkenyl, a linear or branched \(C_2-C_{18}\) alkynyl; \(n\) is 0-5; \(R\) is hydrogen, linear or branched \(C_1-C_{18}\) alkyl, or SiR\(_1^1\)R\(_2^2\)R\(_3^3\), and \(X\) is nothing, a divalent linear or branched \(C_1-C_{18}\) alkyl, \(C_2-C_{18}\) alkenyl, and \(C_2-C_{18}\) alkynyl spacer.

For purposes of defining and describing embodiments of the present invention, the following terms will be understood as being accorded the definitions presented hereinafter.

As used herein, the term “independently” or the equivalents thereof is employed to described an instance were two or more groups may be the same or different from each other and the occurrence of one group does not impact or influence the occurrence of the other group.

The term “alkyl” refers to a monovalent alkane (hydrocarbon) derived radical containing from 1 to 18 carbon atoms unless otherwise defined. It may be straight or branched. Suitable straight or branched alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, 3-butyl, and \(t\)-butyl. Alkyl also includes a straight or branched alkyl group that contains or is interrupted by a cycloalkane portion.
The term “alkenyl” refers to a hydrocarbon radical straight or branched containing from 2 to 18 carbon atoms and at least one carbon to carbon double bond. Preferably one carbon to carbon double bond is present, and up to four non-aromatic (non-resonating) carbon-carbon double bonds may be present. Suitable alkenyl groups include ethenyl, propenyl, and butenyl.

The term “alkynyl” refers to a hydrocarbon radical straight or branched containing from 2 to 18 carbon atoms and at least one carbon to carbon triple bond. Up to three carbon-carbon triple bonds may be present. Suitable alkynyl groups include ethynyl, propynyl, and butynyl.

The term “alkoxy” refers to an alkyl group of indicated carbon atoms attached through an oxygen linkage.

The term “halogen” refers to fluorine, chlorine, bromine, iodine.

The term “halomethyl” refers to a carbon with one or more halogen substituent.

The term “aryl” refers to a substituted aromatic hydrocarbon ring. Suitable aryl groups include single-ring, fused, and biphenyl aromatics.

The term “bridging group” refers to a moiety joining an aromatic and a silicon-containing functionality.

The term “arene” refers to an aromatic compound

The term “spacer” refers to a group between an aromatic and a silicon-containing functionality.

The term ‘OD’ or optical density refers to the optical absorbance of a culture measured at 600nm.
The term 'TLC' refers to thin layer chromatography.

In accordance with an embodiment of the present invention, processes that are effective in converting aryl silane substrates to silane cis-diols are provided, and silane cis-diol compositions are provided. Such processes include contacting a substrate, e.g., a compound of Formulae I-I' as defined below, with a catalyst such as a dioxygenase enzyme, and obtaining the desired cis-diol. The cis-diol may be obtained by recovering the resulting compound of Formulae II-II' as defined below. The process may further include isolating and purifying the resulting compound. It is further contemplated that the resulting compound could be used as an intermediate substrate useful in the preparation of other derivatives or end-products.

The present invention provides a method for a biological production of cis-diols from a fermentable silicon substrate by a microorganism grown with a suitable carbon source. Examples of suitable carbon sources include, but are not limited to, glucose, fructose, sucrose or glycerol and mixtures thereof. The method comprises providing a dioxygenase enzyme, contacting the dioxygenase enzyme with an aryl silane substrate, and obtaining a cis-diol from the growth media. The dioxygenase enzyme may be provided in any suitable manner. For example, the enzyme may be present in whole cells or cell-free. The term "whole cells" refers to a intact microorganism that expressed the desired enzymatic catalyst. The microorganism can be a wild type microorganism that is known to express or produce the desired enzymatic catalyst, e.g., *P. putida*. The term cell free refers to an extract or solution of the desired enzyme catalyst. The enzyme
may be provided in a wild-type microorganism or it may be provided in a
genetically altered organism harboring a gene encoding a dioxygenase enzyme.

In addition to an appropriate aryl silane substrate, the fermentation media
generally contains suitable carbon sources (hexoses such as glucose, pentoses
such as fructose, etc.), minerals, salts, cofactors, buffers and other components,
known to those skilled in the art, suitable for the growth of the cultures and
promotion of the enzymatic pathway necessary for cis-diol production.

Generally, cells are grown at appropriate temperatures and in appropriate
media. Suitable growth media in the present invention are minimal mineral salts
media to facilitate the subsequent extraction of the products. Suitable pH ranges
for the fermentation are between pH 5.0 to pH 9.0 where pH 6.8 to pH 8.0 is
preferred as the initial condition.

In accordance with a further embodiment of the present invention, aryl
silanes are dioxygenated to their corresponding cis-diols. A corresponding cis-diol
refers to the conversion of an aryl silane substrate by the attachment of two
hydroxyl groups to adjacent carbons in a cis configuration with respect to one
another by the catalytic action of a dioxygenase upon the substrate. The
conversion of aryl silanes to the corresponding cis-diol derivatives results in the
loss of aromaticity of the ring that underwent dioxygenation. For purposes of
defining and describing the present invention, “aryl silane” shall be understood as
referring to a compound containing at least one aromatic ring and at least one
silicon atom. In one aspect the aromatic components include substituted single
ring, fused or biphenyl aromatics. Exemplary aromatic components include, but
are not limited to, phenyl, naphthyl or biphenyl derivatives having a silicon-containing group. Other exemplary aromatics include, but are not limited to, those containing additional fused heterocyclic or carbocyclic rings, e.g., silicon substituted indoles and/or indenes. The silicon atom can be contained in a silicon containing substituent, e.g. the silicon atom is either directly attached to the aromatic ring or attached through a spacer element. Such aryl silanes are available through well known synthetic methods (e.g., Murata, M. et al. (2002) Rhodium(I)-Catalyzed Silylation of Aryl Halides with Triethoxysilane: Practical Synthetic Route to Aryltriethoxysilanes. *Org. Letters*, Vol. 4, No. 11, pp 1843 – 1845). Further contemplated by the present invention is the subsequent conversion of silane cis-diols to the corresponding catechols. A corresponding catechol refers to the conversion of a cis-diol substrate by the dehydrogenation of the substrate by the catalytic action of a diol dehydrogenase upon the substrate wherein the aromaticity is restored and results in the formation of a catechol derivative. A summation of these catalytic reactions is illustrated below:

![Chemical Diagram]

The chemistry of silicon renders the intermediate silane cis-diols of the instant invention unique relative to the substituents described by the prior art, which comprise carbon, halogen, or heteroatom functionalities. For example, the
scientific literature records many examples of reactions that are particular to silicon and not the corresponding carbon analogs. These reactions include hydrosilylation of alkenes and ketones, the addition of electrophiles to vinyl and allyl silanes, and palladium catalyzed cross-coupling of vinyl silanes with aryl halides (Brook, M.A., Silicon in Organic, Organometallic and Polymer Chemistry (2000), Wiley). The silane cis-diols may be used: as chiral intermediates, for synthesizing polymers, as chiral separators, to form optically active materials, to act as carbohydrate analogs, and as intermediates in natural products synthesis.

In accordance with an embodiment of the present invention, a process is provided for conversion of a compound of the Formula (I):

\[
\text{SiR'}R''R^3
\]

Formula (I)

into a compound of the Formula (II):

\[
\text{SiR'}R''R^3 \quad \text{OH} \\
\quad \text{OH}
\]

Formula (II)

using a dioxygenase enzyme;

wherein:
R¹, R², and R³ are each independently selected from hydrogen, a halogen, an aryl, a linear or branched C₁₋C₁₈ alkyl, a linear or branched C₂₋C₁₈ alkenyl, a linear or branched C₂₋C₁₈ alkynyl, halomethyl, OR, SR, NR₂₋₃, or O(CO)R; and

R is hydrogen, linear or branched C₁₋C₁₈ alkyl, or SiR¹R²R³.

The present invention is not limited, however, to these particular substituents. It is therefore contemplated that the compounds of Formulas (I) and (II) can include any substituent containing at least one silicon atom and the silicon atom need not be directly bonded to the aromatic ring, which itself may be multiply substituted with a range of functionality, including additional silicon-containing groups. For example, the silicon may be included as part of a chain of between 1 and 18 carbons, including branched and unsaturated carbon chains with both double and triple bonding attached to an arene moiety substituted with a halogen or other group. Furthermore, the introduced hydroxyl groups need not be directly adjacent to the group containing silicon. For example, such hydroxyl groups could one or more carbons removed from the group containing silicon. The prior art records instances where the introduction of additional functionality such as an iodo (I) group to a monosubstituted arene alters the regioselectivity of dihydroxylation with respect to the initial functionality (see, for example, EP 717729B1 or US 5,763,689, both to Boyd et al.).

In one aspect of the present invention, R¹, R², and R³ are each independently selected from hydrogen, a linear or branched C₁₋C₅ alkyl, a linear or branched C₂₋C₅ alkenyl, a linear or branched C₂₋C₅ alkynyl, halomethyl, or OR;
and R is hydrogen, methyl, or ethyl. In another aspect of the present invention, R¹, R², and R³ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl.

Examples of suitable aryl silane substrates and the corresponding cis-diols are shown below in Scheme 1.
### Aryl silane substrate	cis-diol product
1a | (S,S)-3-(dimethylvinyl)silyl)cyclohexa-3,5-diene-1,2-diol
\[
\text{Dimethylphenylvinylsilane}
\]
1b | (1S,2S)-1-(dimethylsilyl)cyclohexa-3,5-diene-1,2-diol
\[
\text{Dimethylphenylsilane}
\]
1c | (1S,2S)-3-(trimethylsilyl)cyclohexa-3,5-diene-1,2-diol
\[
\text{Phenyltrimethylsilane}
\]
1d | (1S,2R)-3-(trimethylsilylmethyl)cyclohexa-3,5-diene-1,2-diol
\[
\text{Benzyltrimethylsilane}
\]
1e | (1S,2S)-1-[(S)-methylvinylsilyl)cyclohexa-3,5-diene-1,2-diol
\[
(R,S)$\text{-methylphenylvinylsilane}
\]
1f | (1S,2S)-3-[(chloromethyl)dimethylsilyl)cyclohexa-3,5-diene-1,2-diol
\[
\text{(Chloromethyl)dimethylphenylsilane}
\]

Scheme 1. Conversion of aryl silanes to cis-diol products

In accordance with another aspect of the present invention, a process is
provided for conversion of a compound of the Formula (I'):

\[
\text{SiR'}R^2R^3
\]

\[
(R^4)n\text{-} \quad \text{Formula (I')}
\]

into a compound of the Formula (II'):

\[
\text{SiR'}R^2R^3
\]

\[
(R^4)n\quad \text{OH}
\]

\[
\text{OH}
\]

\[
\text{Formula (II')}
\]

using a dioxygenase enzyme;

wherein:

- \(R^1, R^2, \) and \(R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \(C_1-C_{18} \) alkyl, a linear or branched \(C_2-C_{18} \) alkenyl, a linear or branched \(C_2-C_{18} \) alkynyl, halomethyl, OR, SR,

- \(R^4 \) is selected from hydrogen, a halogen, linear or branched \(C_1-C_{18} \) alkyl, linear or branched \(C_2-C_{18} \) alkenyl, linear or branched \(C_2-C_{18} \) alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂-₃, O(CO)R,
SiR¹R²R³, or a bridging group between two arene or substituted arene moieties;

n is 0-5;

R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³;

X is a divalent linear or branched C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, or C₂-C₁₈ alkynyl spacer.

However, when X = C₂ alkynyl and R¹=R²=R³ then R¹=R²=R³ cannot be -CH₃. The aspect of the present invention is also intended to apply where compounds of formulas (I') and (II') occur in the context of a polymer linked through one of more of the functionalities R and R¹-R⁴. For example, the arene units of a diblock copolymer consisting of polydimethylsiloxane (PDMS) and polyphenylmethylsiloxane (PPMS) could be wholly or partially converted to the corresponding cis-diols.

In one embodiment, R¹, R², and R³ are each independently selected from hydrogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, halomethyl, or OR; R⁴ is selected from hydrogen, halogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, CN, NO₂, OR or SiR¹R²R³; R is hydrogen, methyl, or ethyl; and X is either a divalent linear or branched C₁-C₅ alkyl, C₂-C₅ alkenyl, or C₂-C₅ alkynyl spacer. In yet another embodiment, R¹, R², and R³ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl and R⁴ is selected from hydrogen, halogen, a linear or branched C₁-C₃ alkyl, a linear or
branched C₂-C₃ alkenyl, a linear or branched C₂-C₃ alkynyl, CN, NO₂, OR or SiR¹R²R³.

In accordance with still another aspect of the present invention, a process is provided for conversion of a compound of the Formula (I''):

\[
\begin{align*}
(R^4)_n &- & \text{Formula (I'')} \\
\end{align*}
\]

into a compound of the Formula (II''):

\[
\begin{align*}
(R^4)_n &- & \text{Formula (II'')} \\
\end{align*}
\]

using a dioxygenase enzyme;

wherein:

\[
\begin{align*}
R^1, R^2, \text{ and } R^3 & \text{ are each independently selected from } \\
\text{hydrogen, a halogen, aryl, a linear or branched } C_{1-18} \text{ alkyl, a linear } \\
or branched } C_{2-18} \text{ alkenyl, a linear or branched } C_{2-18} \text{ alkynyl, } \\
\text{halomethyl, OR, SR, NR_{2-3}, or } O(CO)R; \\
R^4 & \text{ is selected from } \text{hydrogen, a halogen, linear or branched } \\
C_{1-18} \text{ alkyl, linear or branched } C_{2-18} \text{ alkenyl, linear or branched }
\end{align*}
\]
C₂-C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂₋₃, O(CO)R,
SiR¹R²R³, or a bridging group between two arene or substituted
arene moieties;

n is 0-5; and

R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³.

In one embodiment, R¹, R², and R³ are each independently selected from
hydrogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a
linear or branched C₂-C₅ alkynyl, halomethyl, or OR; R⁴ is selected from hydrogen,
halogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a
linear or branched C₂-C₅ alkynyl, CN, NO₂, OR or SiR¹R²R³, and R is hydrogen,
methyl, or ethyl. In yet another embodiment, R¹, R², and R³ are each
independently selected from hydrogen, methyl, chloromethyl, or vinyl and R⁴ is
selected from hydrogen, halogen, a linear or branched C₁-C₃ alkyl, a linear or
branched C₂-C₃ alkenyl, a linear or branched C₂-C₃ alkynyl, CN, NO₂, OR or

SiR¹R²R³.

In accordance with still another aspect of the present invention, a process
is provided for conversion of a compound of the Formula (I””):

\[
\begin{array}{c}
\text{Formula (I’”)} \\
\text{(R⁴)n SiR¹R²R³}
\end{array}
\]

into a compound of the Formula (II’”):
using a dioxygenase enzyme;

wherein:

\[R^1, R^2, \text{ and } R^3 \text{ are each independently selected from } \]

hydrogen, a halogen, aryl, a linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, a linear
or branched C\textsubscript{2}-C\textsubscript{18} alkenyl, a linear or branched C\textsubscript{2}-C\textsubscript{18} alkynyl,
halomethyl, OR, SR, NR\textsubscript{2-3}, or O(CO)R;

\[R^4 \text{ is selected from hydrogen, a halogen, linear or branched } \]

C\textsubscript{1}-C\textsubscript{18} alkyl, linear or branched C\textsubscript{2}-C\textsubscript{18} alkenyl, linear or branched
C\textsubscript{2}-C\textsubscript{18} alkynyl, halomethyl, CF\textsubscript{3}, CN, NO\textsubscript{2}, SR, OR, NR\textsubscript{2-3}, O(CO)R,
SiR1R2R3, or a bridging group between two arene or substituted
arene moieties;

\[n = 0-5; \text{ and } \]

\[R \text{ is hydrogen, linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, or SiR1R2R3. } \]

In one embodiment, \(R^1, R^2, \text{ and } R^3 \text{ are each independently selected from } \)
hydrogen, a linear or branched C\textsubscript{1}-C\textsubscript{5} alkyl, a linear or branched C\textsubscript{2}-C\textsubscript{5} alkenyl, a
linear or branched C\textsubscript{2}-C\textsubscript{5} alkynyl, halomethyl, or OR; \(R^4 \text{ is selected from hydrogen, } \)
halogen, a linear or branched C\textsubscript{1}-C\textsubscript{5} alkyl, a linear or branched C\textsubscript{2}-C\textsubscript{5} alkenyl, a
linear or branched C$_2$-C$_5$ alkynyl, CN, NO$_2$, OR or SiR$_1$R$_2$R$_3$, and R is hydrogen, methyl, or ethyl. In yet another embodiment, R1, R2, and R3 are each independently selected from hydrogen, methyl, chloromethyl, or vinyl and R4 is selected from hydrogen, halogen, a linear or branched C$_1$-C$_3$ alkyl, a linear or branched C$_2$-C$_3$ alkenyl, a linear or branched C$_2$-C$_3$ alkynyl, CN, NO$_2$, OR or SiR$_1$R$_2$R$_3$.

In accordance with still another aspect of the present invention, a process is provided for conversion of a compound of the Formula (I''''):

\[
\text{Formula (I''''')} \]

into a compound of the Formula (II'''''):

\[
\text{Formula (II''''')} \]

using a dioxygenase enzyme; wherein:

R1, R2, and R3 are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_1$-C$_{18}$ alkyl, a linear
or branched C_{2}-C_{18} alkenyl, a linear or branched C_{2}-C_{18} alkynyl, halomethyl, OR, SR, NR_{2-3}, or O(CO)R;

R^{4} is selected from hydrogen, a halogen, linear or branched C_{1}-C_{18} alkyl, linear or branched C_{2}-C_{18} alkenyl, linear or branched C_{2}-C_{18} alkynyl, halomethyl, CF_{3}, CN, NO_{2}, SR, OR, NR_{2-3}, O(CO)R, SiR^{1}R^{2}R^{3}, or a bridging group between two arene or substituted arene moieties;

n is 0-5;

R is hydrogen, linear or branched C_{1}-C_{18} alkyl, or SiR^{1}R^{2}R^{3}, and

X is a divalent linear or branched C_{1}-C_{18} alkyl, C_{2}-C_{18} alkenyl, C_{2}-C_{18} alkynyl spacer, S, O or NR_{1-2}.

The two hydroxyl group substituents are attached to adjacent carbons and are in a cis-configuration with respect to one another.

In one embodiment, R^{1}, R^{2}, and R^{3} are each independently selected from hydrogen, a linear or branched C_{1}-C_{5} alkyl, a linear or branched C_{2}-C_{5} alkenyl, a linear or branched C_{2}-C_{5} alkynyl, halomethyl, or OR; R^{4} is selected from hydrogen, halogen, a linear or branched C_{1}-C_{5} alkyl, a linear or branched C_{2}-C_{5} alkenyl, a linear or branched C_{2}-C_{5} alkynyl, CN, NO_{2}, OR or SiR^{1}R^{2}R^{3}; R is hydrogen, methyl, or ethyl; and X is either a divalent linear or branched C_{1}-C_{5} alkyl, C_{2}-C_{5} alkenyl, or C_{2}-C_{5} alkynyl spacer. In yet another embodiment, R^{1}, R^{2}, and R^{3} are each independently selected from hydrogen, methyl, chloromethyl, or vinyl and R^{4} is selected from hydrogen, halogen, a linear or branched C_{1}-C_{3} alkyl, a linear or
branched C₂-C₃ alkenyl, a linear or branched C₂-C₃ alkynyl, CN, NO₂, OR or SiR₁R₂R₃.

It will be understood by those having skill in the art that the compounds of Formula (II)-(II'') comprise a novel class of chiral cis-diols containing silicon. It will be further understood that the present invention encompasses the compounds of Formula (II) - (II'''). The cis-diols may be present in an enantiomeric excess of between about 10 to about 100 percent. Alternatively, the cis-diols may be present in an enantiomeric excess of between about 70 to about 100 percent, or greater than about 95 percent, or greater than about 98 percent. It will be further understood that the methods of the present invention may comprise providing a plurality of aryl silane substrates. The plurality of aryl silane substrates comprise the same aryl silane, or the plurality of aryl silane substrates comprise different aryl silanes.

The dioxygenase enzyme can be any aromatic dioxygenase enzyme, recombinant or otherwise; for example toluene dioxygenase (EC 1.14.12.11), naphthalene dioxygenase (EC 1.14.12.12), biphenyl dioxygenase (EC 1.14.12.18). It is contemplated that the dioxygenase enzyme that contacts the substrate can be in any form that effectively transforms a compound of Formula (I)-(I'') into a compound of Formula (II)-(II'''), respectively. For example, the aromatic dioxygenase enzyme can be in the form of a cell-free extract, a synthetic form, disintegrated cells, or whole cells. For example, the dioxygenase enzyme is present in whole cells in various strains of E. coli, which express the toluene dioxygenase enzyme from P. putida. The construction of host cells expressing
toluene dioxygenase JM109 (SEQ ID No. 1), e.g., containing a plasmid that expresses toluene dioxygenase is described in Zylstra, G.J. and Gibson, D.T., *Toluene degradation by Pseudomonas putida F1, Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli*, J. Biol. Chem. 264: 14940-14946 (1989), which is incorporated by reference herein. The nucleotide sequence of *P. putida* toluene dioxygenase and cis-toluene dihydrodiol dehydrogenase (todC1C2BAD) is given below (SEQ ID No. 1) and has an accession number of J04996.

```
ggatcctttc gcgcgttcgcc tgtctctggc ctgtgcgtac gcagttcgcg cacggttcg
1
61
cgcgtcggct tgtatgggct gcgtggtcgc gagctcgtgcg ctcacgggtg gactggacctgc
121
tagttgagt tgtggcgtgc cctggccgga cctcggcaag gctcgtgagct acctgcctga
181
cgacgcggagt ctcgtcttgg acaggctgg gcgaacggtgc lacaaggcga gcacccgagcc
241
cgcgttcctg gacggtcttc cttcaggtct cctgcttgg cggcggtcgc cgggtgatgc
301
gctgcgcagtt ttgctgctgc acaatcggga catcgcgggct taacgtgtcgc
361
cgccagcgat ccggtgattc cccctggaac tctgttcgct cctgaacgggc tgcgaaccgc
421
cctccagtttt atctgtctgg gcaggtggtc ccatgggttg cagatcggag aacgcggggg
481
cggcggtcgc ggcgggagcg cggatcgctac gactggcctaa aagctccggc ctcgtttgcttgcctttg
541
tgaagcgact ccgggtgatc cgttctgcttg acggtgcggc cattcgc gacggttctg
601
tgttcacact gcagatcagc cggcgccttt ccttgcttgc tcggcagggcg cggaggtcttg
661
ttgacttatgg gcagagtgtt gcctgatgaa cgggtgatct cttgttgggat gcagcttggc
721
tggctttggc ggatggtgttc ggtgagccag gattacatca cgacctacg cggggtcggc
781
ttcctggctt ggcttcgctt gttccgtagc gaaagactgc gacggtggtg tgctgctgcttg
841
```
901 ccagtgcgc gcacggccttg ccgccggttt gcccggaaac gcgaagcggtt
cagtgcacgc taccaagggg gggctactcg caccgccg gc cacttcttgca aatctgtc a tgtgcctta
1021 cgaggccgaa ctcttcgcgt gacctgaacaa gaagagcttg agccccgtgga agggccccgg
1081 agaaacctac aagggcctgta tttgcgcacaa ctgggtaagac acacgcagcacc
1141 ggatctggacag gaggccgag tcacatgtac ccacatgctc gacgccaccc ggccgggac
1201 cgagccgatcc cggccggtgc agaagttattc ctttgccttg acatgcggat tggccgacaga
1261 gcagtttgac agcgacatgt accatgccg gacgacctcg catcgtcttg gcacctctggc
1321 aggcctgcca gaagaccccc ttaatggccga cctgtgctcc gcacagcttc gcaagcagatag
1381 cggctgctca tgtgggccgag atggagttcc ctctctactgc gcgcacccca actctgatgct
1441 tgccatctcg ggccgcaagg tccacagcta ctggacgcaa ggccccgggt cggaaacggcc
1501 ggccgaagct ctgggtaggg cggagccgag ctggaaactc atggtgactgc acatgcagcggt
1561 ctcccccagct tgttccttc ccacagtat caatacgact gcagacagtg cccgcgcgagc
1621 gcacagagag gtcgagttac gggcgatctt ggttgctctg aclagtctgc ctcagcagat
1681 caaggaagag ttcggcgcgcc agacgcgtcg cacctctctgc ggcgtggccc ggctgagca
1741 ggagcagcggg gagaactggg tggagatcca gcacatcctg cgagccacac ggccgcggag
1801 cggcccttttc aagcgcagag tggagcgatgg cagaagcagtc gacaacgacc ccggtttaccc
1861 cggccggtatg acgaaccccc ftcacagcgt cggagctgcc cccgggctct atgcccatttg
1921 gctgcggatc atgcatacct cccgactgcga cgccgctagag gcgaacagctt gatcagcagag
1981 accaccttgcc ccaagcaggtg gcccgcggcca gaggccggcat tgcattcga cccaggttggg
2041 aclgcggtcca ctttctcctat tgaatatctc gaagagacgaa ccaatggag tccagcggac
2101 cgagccgacgc ttcttctcgc caagccgagca ccgtagccgc ccaacgtgca gcagcgaagatc
2161 gcagagttct gactggggcc gcacagccgt ctcacagctc gcgcctgagtc ggcagttgfc
2221 gcgcgtgtgctcg ccagagagat tcaactactc atgccacattgc acacacgccgg gcacatgcgg
2281 gacgcccccc ttgaatactc aggcgtccgca gagtacgcgc acactgatga cgacgccaacg
2341 atgatatgagg gacgcttgcc caagatacacg tcggacctga gctggttccga gccaccggca
2401 tcgcgggacc ggcatctgtg gagcaagcttg atgatctgcg gcgcaagggg gagaaggggag
2461 taccgaatct caagccggct cattgtgtac gcgaatctgc tggagccgca gcgtcagc
2521 ttgccgcttg agcgtctgcga tacgttgcgc cgtaaacaagcg ggcagggcgg ggttcgagacg
2581 gcatactcgg gccatctgtg gacaccgagc accatctgg gcaataacact cagtttcttc
2641 ttctaggtga tgtctagcgt gggccatca tattgggga ggggacgccg caccggggtg
2701 agatgcaaggc tctacgaaacg ggcggccgaac ctgtgatggt ctgcaacgctc gatggccagt
2761 ttctgcccgt gcacgataac gcagcgccgaa ggacgctggcg gtgtggggtg gttacccctg
2821 acggtttatg tgtctgaagtc aagcttgttc tctggcaaggt ctgtggttgg ccacggggaagg
2881 tggaaagccgg gccgtgtgcact gaaactatca aagttatccc aatcaaggtgca aagggcgatg
2941 aagtgcagct cagctctcag aaccggggagt tgaagtgtagt gctaccccatg tggccagatcgt
3001 cgcaaatggc gttggggtct ctacgcaggg gcaggcccta cgtgcggagg gcgtcagagg
3061 gagaattcgg ctgattgggg acgaacccgca ctctccctat gacgccaccat cctgttccaa
3121 ggccggttctc gacggcgagcc ttgacgggcc gccctactcg gcggagggcg attggtaacgg
3181 cgagggccgca atcgcatacg tcagccggcc gccagctact gcctgtgalgt tagcagacaag
3241 gacgatcagtg tctggtagtg gcaccacggt ctgtgctggcg gcacagcctca tcgcgacgggg
3301 cagtcgaggg cgagcagtttg cgtcgccggcg cagcaacact ccgggcgtcgc taacgctgtcg
3361 cacctacgtg gagctgcaagc tattggctgt tccggaagcg ggtcgctgat
3421 tgtggggtgcc gattgattcg gctgcgaggtg cgcgcagcagc ggcgcgaagc tcggctgtgc
3481 ggtcacagctc ctggggcagc gtgatgaacct gcgggttgcga gacttggggc gcggatcgg
3541 tggcttggttc gcggccctgca tgacagaaact tgggttgtcg gctgagtggg gaacgggggtt
3601 cgtagggttt tctggggtgg gccagctcga acaagttcatg gcagcgcagt gggcgcagacct
3661 cgtagccgat aggcgcactca ttgctgctgg ccgaggagccc gcggatcaac tgccggtcga
3721 agccggcttg gcattgtgacc gcggccgtcag tgggggtctg cgcggcggcgc gcggcgttc
3781 aggggttctc gcggcgggag atgtggccag tggccgcttg cgcggcggcc gcggcgttc
3841 gctggaaacc tataalgaacgc ggcacgcggca agccggccgc gttgtggtgg ccaltcgtgg
5
3901 gaaagaacgta tggccacgcc aactgcccgt gttcatggag ggcattgcgttg ggcgcgtcgt
3961 gcagatggcgg gcggatactcg aagagcgcttg gagattctgc tgggccgaggca tgcggggtgag
4021 tggccggtccc ctgtgtctcc gcggcagaga gcggggtgcag tggcgggtcga
4081 tgtgaaccctgt gacctcggcc tgcgaacccc attggtagaa gcggcgcggg caatcagagcc
4141 agcagggctg gcagatcttt caacaagatg tgcgcgtatgg gttcggtcga atgagggaga
10
4201 cctaacctga gactgtgaagcg caagagttgggc tttggtgacag gcggtggtggcg agggactgggc
4261 agagctgttg tggatgctta tgcggcggaga ggtgcgtgtg tcgcgggtgct ggataaatcc
4321 gcggccggcc tggagagcgcct caggaaacac ccalgggaggg cggggaggggg
4381 galgttgctgt gacgaacgcag ccaactgttgag ggtgtggtggc gctggtgtcga agcgttcggc
4441 aagcgtgact gctgtggtga caatgcctggtc gttggyggact acctgaccaactcgttgtgat
15
4501 attcccgacac cactcatact gcaggcattcg cgggaagatgt tgcagggtcaac tgtcaagggc
4561 tacatctcgg ccggcagggc tcggctacct gcggctatttc agagcagggg cagccgcgata
4621 ttcaactgtg cgaatgcccgt ttttcaccgc gcgggtgtggc gttgtctgtg tacaagtggc
4681 aaacatcgcgc tgaatggggatt gacgaagagc ctcgcggcagc aatggggggc gcgttatgcgc
4741 gtcgaagggca tgcaccggccg tggccatggtt gggagccgact tcggcgggtcga gaagagcctt
20
4801 gatttacag acaagagcat ttcagcacttt ccattaagagc cactgtcgtgaa atcgggtctt
4861 cggacggggg gcgcccggc acc cggcggggag taccgcggagaa taagcggcgcc ctatgtctct ctcgcggacgc
4921 cgggagcccg cgggctttgc gagcgtgtagc gttgtgaact tcagatgcggcg calgggggtg
4981 cgggctttgt tcggagccag cctaggctggc cagcctcgaca agcactcggc tgta
Additionally, the deduced amino acid sequences of *P. putida* toluene dioxygenase (iron-sulfur protein, ferredoxin, reductase) are given below:

Iron-sulfur protein large subunit (lodC1) (SEQ ID No. 2)

Start:620 Stop:197

```
5 translation=

"MNQTDTSPIRLRSSWNTSEIEALFDEHAGRIDPRIYTDELYQL
ERLVFARSWLLGHETQIRKPGDYITTYMGEDPVVVRQKDASI
AVFLNQCRHRGRMCRAADAGNAKFTCSYHGWAYDTAGNLYVN
VPYEAESFACLNKKEWSPLKAVETYKGLIFANWDENAVDLDTYLN
GEAKFYMHDMLDRTEAGTEAIPGVQKWVIPCNWKFIAEQFCSDM
YHAGTTTSHLSGLAGLCEPDEMADLAPPTVGKQYRASWGGHSGF
YVDPNLMLAIAGPKVTVYSTEWPASEKAAERLSVERGSKLMVE
HMTVFPTCSFLPGINTVRTWHPRGPNEVEVWAFTVADAPDDIKE
EFRNTLRTSFAGGVPFEQQDDGENWIEQHLRGHKARSRFNAEMS
MDQTVNDPVPYGRISNINVYSEEAARGLYAHWLRMMTSPDWDAKATR"

Iron-sulfur protein small subunit (lodC2) (SEQ ID No. 3)

Start:2083 Stop:2646

translation=

"MIDSANRADVFLRKPAPVAELQHEVEQFYYWEAKLNLNDFFEE
WFALLAEDIHYPIMPRTTRIMRDSSRLEYSRSREYAHFDDDAMKUGRLR
ITSDVWSWSENPSRTRHLSNVNMIVGAEAEGYEISSAFIVYRNRQLRNLQD
IFAGERRDTRRLRNTSEAGFEIVNRTILIQDSTILANNLSSF"
Ferredoxin (todB) (SEQ ID No. 4)

Start:2655 Stop:2978

translation=
"MTWTYILRQGDLPGERMQYEGGPEPVMCNVDGEFFAVQDTCT
HGDWALSDGYLDGIVECTLHFGKFCVRTGKVKALPACKPIKVFIKVE
GDEVHVLDNGELK"

Reductase (todA) (SEQ ID NO. 5)

Start:2978 Stop:4210

translation=
"MATHVAIIGNGVTATQAQLRAEGFEGGRSLIGDEPHILYDRPSLSDK
AVLDGSLRPILAEADWYGEARIDMLTGPEVTAQLVTRTISSLDDGTT
LSADAIVIATGSRARTMALPGSQLPGVVTLRITYGDVQVLRDSWTSAT
RLLIVGGLIGCEVTARKLGLSVTILEAGDELLVRVLGRRGAWLRLGLLT
ELGVQVELTGVVGSFEGGQLEQVMAASDGRSFVADSALICVGAEPAD
QLRARQAGLCGRGVIVDHCGLAKGVFAVGDVSWPRLAGGRSRL
ETYMNAPRQAAAAYAAILGKNSAPQLPVSWEIAGHRMQMDGIEG
PGDFVSRGMPSGAAHLFRLQERRIQAVVAVDAPRDFAALTAVLR
AAIEPARLADLSNSMRDFVRANEGLTL"

Cis-toluene dihydrodiol dehydrogenase (todD, gtg start codon) (SEQ ID

No. 6)

Start:4207 Stop:5034

translation=
"MRLEGCEVALVTGGGAGLGRAIVDRYVAEGARVAVLDSKSAAGLEA

The following dioxygenase-containing organisms can be contacted with the substrates, used to oxidize aryl silanes via enzymatic dioxygenation to their corresponding cis-diols (Whited, G.M. et al. (1994) Oxidation of 2-Methoxynaphthalene by Toluene, Naphthalene and Biphenyl Dioxygenases: Structure and Absolute Stereochemistry of Metabolites. Bioorganic & Medicinal Chemistry, Vol. 2, No. 7, pp. 727-734):
<table>
<thead>
<tr>
<th>Strain</th>
<th>Phenotype</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>E. coli</em> JM109(pDTG601)</td>
<td>JM109 containing the structural genes for toluene dioxygenase (todC1C2BA) from <em>Pseudomonas putida</em> F1 in pKK223-3; dioxygenase is inducible by isopropyl-β-D-thiogalactoside (IPTG); ampicillin and carbenicillin resistant (Amp).</td>
</tr>
<tr>
<td><em>E. coli</em> JM109(pDTG602)</td>
<td>JM109 containing the structural genes for toluene dioxygenase and (+)-cis-(1S, 2R)-dihydroxy-3-methylcyclohexa-3, 5-diene dehydrogenase (todC1C2BAD) from <em>Pseudomonas putida</em> F1 in pKK223-3; dioxygenase is inducible by isopropyl-β-D-thiogalactoside (IPTG); ampicillin and carbenicillin resistant (Amp).</td>
</tr>
<tr>
<td><em>Ralstonia eutropha</em> A5</td>
<td>Wild strain containing polychlorinated biphenyl (PCB) catabolic genes</td>
</tr>
<tr>
<td><em>Sphingomonas yanoikuyae</em> B8/36</td>
<td>Mutant strain containing PCB/biphenyl catabolic genes in which dihydrodiol dehydrogenase (<em>bphB</em>) has been inactivated</td>
</tr>
<tr>
<td><em>E. coli</em> C534(ProR/Sac)</td>
<td>C534 containing the structural genes for naphthalene dioxygenase from PpG7 (<em>nahAaAbAcAd</em>) in pAC1; dioxygenase is expressed constitutively (Lambda P₇ promoter); Amp.</td>
</tr>
</tbody>
</table>

The process of this aspect of the present invention can be viewed as a biological production process wherein the compounds of Formulas (I)-(I""") (a group of aryl silanes) are converted into compounds of Formulas (II)-(II""""), respectively, (a novel class of silane cis-diols) using a dioxygenase enzyme. It should be recognized that the absolute stereochemistry of the cis-diol products can vary according to the dioxygenase used (*Aldrichimica Acta*, Vol. 32, No. 2, pp. 35-62). The process may be carried out in a liquid medium, more specifically, a buffered aqueous medium. Suitable buffers can be inorganic or organic and are typically those that control the pH of the medium in the range of between about 6
and about 8. For example, the buffer may be an inorganic, alkali metal phosphate buffer such as a 100 mM phosphate buffer. The pH of the process may be maintained at a pH of about 6.8 by intermittent feeding of an inorganic base, which may be an alkali metal hydroxide such as dilute aqueous sodium or potassium hydroxide.

A co-substrate that provides for NADH recycle may optionally be added to the liquid medium. Typically, this co-substrate is a sugar or other carbon source (e.g. glycerol), which provides an economical energy source for the enzyme-producing microorganisms. Other optional co-substrates include α-ketoacids and their alkali metal salts (e.g., pyruvic acid and sodium pyruvate) and alcohols (e.g., ethanol and isopropanol).

The process involves oxidation of the compounds of Formulas (I)-(I’’’’) and the source of oxygen may be molecular oxygen (O₂). Therefore, during the process oxygen may be continuously introduced through the liquid medium. For example, the oxygen may be in the form of air. The process may be performed at a temperature from about 25°C to about 50°C or between about 30°C and about 40°C. It will be understood that the cells of the present invention should be fed under conditions that allow the cells to sufficiently metabolize the food source and to optimize the production of the cis-diols.

When the process has proceeded for a suitable period it may be terminated by any appropriate means, for example by centrifugation or filtration and/or by cooling the broth to a temperature of less than about 5°C. The supernatant or product of Formulas (II)-(II’’’’) may be isolated by any convenient means, for
example by solvent extraction, typically using a halocarbon solvent (e.g., CH₂Cl₂), an aromatic solvent (e.g., toluene) or an ester (e.g., ethyl acetate) following saturation with sodium chloride. The organic extract can then be dried over sodium sulfate, filtered and dried under vacuum.

In accordance with the present invention, the cis-diol-containing media can then be purified or further isolated to provide the cis-diol composition of the present invention. The inventors contemplate "isolated" as being greater than 90% [pure]. Suitable methods of purification include, but are not limited to biphasic extraction (e.g., aqueous/organic phase extraction), recrystallization from solvents and solvent mixtures known to those of skill in the art, ion exchange such as through a column containing DOWEX® resin, elution chromatography and combinations thereof. Methods of elution chromatography include, but are not limited to preparative thin-layer chromatography, conventional silica gel chromatography, and high performance liquid chromatography. Purification of the cis-diol-containing compositions by any of the above mentioned means may optionally separate the residue into various fractions, each of which may function alone or in combination with any other fraction or fractions as the cis-diols of the present invention.

According to the next aspect of the present invention there is provided a process for the chemical conversion of the cis-diols into more stable acetonide derivatives. In accordance with one embodiment of the present invention, a compound of Formula (II) is converted into the more stable acetonide derivatives of the compound of Formula (III):
in which \( R^1, R^2, \) and \( R^3 \) are as hereinbefore defined, by reaction of the compound of Formula (II) with 2,2-dimethoxypropane or equivalent reagents (e.g. 2-methoxypropene). However, when \( R^1=R^2=R^3 \) then \( R^1=R^2=R^3 \) cannot be -CH\(_3\).

The compounds of Formula (II) may be supplied in a solution of 2,2-dimethoxypropane, which may also contain trace amounts of Amberlite 118-H\(^+\) acid resin. The reaction generally takes place over a period of several hours. The reaction mixture may then be filtered, followed by evaporation of the solvent. The crude acetonides produced by the instant process of the present invention can be purified by any appropriate method.

The instant conversion reaction of silane cis-diols (the compound of Formula (II)) to the acetonide derivatives (the compound of Formula (III)) is illustrated in the diagram below.
Confirmation of the identity of the acetonide derivative compounds may be obtained by analysis of $^1$H and $^{13}$C NMR spectra. The present invention includes the compounds produced by this transformation.

Examples of suitable cis-diol substrates and the corresponding acetonide derivatives are shown below in Scheme 2.
Scheme 2. Acetonide derivatives of cis-diols
In accordance with one embodiment of the present invention, a compound of Formula (II') is converted into the more stable acetonide derivatives of the compound of Formula (III'):

![Formula (III')] (R^1, R^2, R^3, R^4, X, and n are as hereinbefore defined, by reaction of the compound of Formula (II') with 2,2-dimethoxypropane or equivalent reagents (e.g. 2-methoxypropene). However, when X = Calkynyl and R^1=R^2=R^3 then R^1=R^2=R^3 cannot be -CH_3.

In accordance with one embodiment of the present invention, a compound of Formula (II'') is converted into the more stable acetonide derivatives of the compound of Formula (III''):

![Formula (III'')] (R^1, R^2, R^3, R^4, and n are as hereinbefore defined, by reaction of the compound of Formula (II'') with 2,2-dimethoxypropane or equivalent reagents (e.g. 2-methoxypropene).
In accordance with one embodiment of the present invention, a compound of Formula (II'') is converted into the more stable acetonide derivatives of the compound of Formula (III''): 

![Formula (III'')] 

in which \( R^1, R^2, R^3, R^4, \) and \( n \) are as hereinbefore defined, by reaction of the compound of Formula (II'') with 2,2-dimethoxypropane or equivalent reagents (e.g. 2-methoxypropene).

In accordance with one embodiment of the present invention, a compound of Formula (II'') is converted into the more stable acetonide derivatives of the compound of Formula (III''):

![Formula (III'')] 

in which \( R^1, R^2, R^3, R^4, X, \) and \( n \) are as hereinbefore defined, by reaction of the compound of Formula (II'') with 2,2-dimethoxypropane or equivalent reagents (e.g. 2-methoxypropene).
In accordance with the present invention, further contemplated is the conversion of aryl silanes to catechols through the cis-diols. In accordance with one embodiment of the present invention an aryl silane of Formula (I) is converted to a catechol of Formula (IV) through the cis-diols compounds of Formula (II). The process results in the biocatalytic synthesis of a compound of Formula (IV):

\[
\text{SI} \quad \text{RI} \quad \text{R}^2 \quad \text{R}^3
\]

\[
\begin{array}{c}
\text{OH} \\
\text{OH}
\end{array}
\]

Formula (IV)

in which \( R^1, R^2, \) and \( R^3 \) are as hereinbefore defined, by reaction of the compound of Formula (II) with a diol dehydrogenase enzyme. It is contemplated that a strain of \( E. \text{coli} \) possessing both the toluene dioxygenase gene as well as a diol dehydrogenase gene can be used to convert aryl silanes (the compounds of Formula (I)) to the corresponding catechols (the compounds of Formula (IV)). Suitable diol dehydrogenases may be found in E.C. 1.3.1.19. For example the plasmid TDTG602 which may have the gene \( \text{todC12BAD} \) may be used in accordance with the present invention. Suitable diol dehydrogenases are found in Zylstra,G.J. and Gibson,D.T., *Toluene degradation by Pseudomonas putida F1, Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli, J. Biol. Chem. 264*: 14940-14946 (1989), which is incorporated by reference herein.
Examples of suitable cis-diol substrates and the corresponding catechols are shown below in Scheme 3.

<table>
<thead>
<tr>
<th>cis-diol substrate</th>
<th>Catechol derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td><img src="2a" alt="Image" /></td>
<td><img src="4a" alt="Image" /></td>
</tr>
<tr>
<td><img src="2b" alt="Image" /></td>
<td><img src="4b" alt="Image" /></td>
</tr>
</tbody>
</table>

**Scheme 3.** Conversion of silane cis-diols to silane catechols

In accordance with one embodiment of the present invention an aryl silane of formula (I') is converted to a catechol of formula (IV') through the cis-diols compounds of Formula (II'). The process results in the biocatalytic synthesis of a compound of Formula (IV'):

![Image](Formula IV')

in which $R^1$, $R^2$, $R^3$, $R^4$, $X$, and $n$ are as hereinbefore defined, by reaction of the compound of Formula (II') with a diol dehydrogenase enzyme.
In accordance with one embodiment of the present invention an aryl silane of formula (I") is converted to a catechol of formula (IV") through the cis-diols compounds of Formula (II"). The process results in the biocatalytic synthesis of a compound of Formula (IV"):

![Formula (IV")]

in which R¹, R², R³, R⁴ and n are as hereinbefore defined, by reaction of the compound of Formula (II") with a diol dehydrogenase enzyme.

In accordance with one embodiment of the present invention an aryl silane of formula (I'") is converted to a catechol of formula (IV'") through the cis-diols compounds of Formula (II'”). The process results in the biocatalytic synthesis of a compound of Formula (IV'”):

![Formula (IV'")]

in which R¹, R², R³, R⁴ and n are as hereinbefore defined, by reaction of the compound of Formula (II'”) with a diol dehydrogenase enzyme.

In accordance with one embodiment of the present invention an aryl silane of Formula (I'’") is converted to a catechol of Formula (IV'’") through the cis-diols
compounds of Formula (II"''"'). The process results in the biocatalytic synthesis of a compound of Formula (IV"'''"):

\[
\text{Formula (IV"'''\text{'})}
\]

in which \(R^1, R^2, R^3, R^4, X\) and \(n\) are as hereinbefore defined, by reaction of the compound of Formula (II') with a diol dehydrogenase enzyme.

In accordance with the present invention, the transformation of additional aryl silanes to cis-diols, including bis-aryl silanes such as 2-(diphenylmethylsilyl)ethanol and the compounds produced thereby, is further contemplated. The oxidation of a single aryl ring will result in materials possessing chirality around the silicon atom, as well as two new stereogenic carbon centers.

In accordance with the present invention, further contemplated are additional chemical transformations of the cis-diols and acetonides of the present invention. In accordance with one aspect of the present invention, the cis-diol acetonides may be used to form cycloadducts by allowing the concentrated cis-diol acetonide to stand at room temperature. For example, Scheme 4 illustrates the formation of cycloadducts.
Scheme 4. Cycloadducts of silane cis-diol acetonides

It will be understood that the cis-diol acetonides of Formulas (III)-(III‴) may be used to form cycloadducts in accordance with the present invention.

In accordance with another aspect of the present invention the derivatization or reaction of the hydroxyl groups of the cis-diol is contemplated.

Suitable methods for the derivatization and protection are detailed in T.W. Greene and P.G.M. Wits, Protective Groups in Organic Synthesis, 3rd ed. (1999), Wiley,
New York and is incorporated by reference herein. For example, as discussed above, the hydroxyl groups of the cis-diols may be derivatized to form the acetonides of Formulas (III-III”). Additionally, the hydroxyl groups of the cis-diols may be derivatized using any alkylidene group in a manner similar to the formation of the acetonides. The alkylidene may be any suitable alkylidene. For example, the alkylidene may be benzyldene or ethyldene.

In another example, at least one of the hydroxyl groups of the cis-diol may be removed. For example, the cis-diols may be reacted to give phenols of the formula

![Formula (Va)](image)

or

![Formula (Vb)](image)

wherein:

$R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_1$-C$_{18}$ alkyl, a linear or branched C$_2$-C$_{18}$ alkenyl, a linear or branched C$_2$-C$_{18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R;
R^4 is selected from hydrogen, a halogen, linear or branched C_{1-18} alkyl, linear or branched C_{2-18} alkenyl, linear or branched C_{2-18} alkynyl, halomethyl, CF_3, CN, NO_2, SR, OR, NR_{2-3}, O(CO)R, SiR^1R^2R^3, or a bridging group between two arene or substituted arene moieties;

n is 0-5;

R is hydrogen, linear or branched C_{1-18} alkyl, or SiR^1R^2R^3;

X is nothing, a divalent linear or branched C_{1-18} alkyl, C_{2-18} alkenyl, and C_{2-18} alkynyl spacer.

However, when X=nothing then R^1, R^2, and R^3 cannot be R^1=R^2=CH_3 and R^3=H or R^1=R^2=R^3=CH_3.

For example, the derivatives may be of the formula

![Chemical structure](image)

which may be made by reacting the appropriate cis-diol with H^+ in water.

In a further example, the hydroxyl groups of the cis-diols may be derivatized to form a di-O-acyl derivative. The acyl may be any suitable acyl functionality. For example, the acyl may be a linear or branched C_{1-18} alkyl, a linear or branched C_{2-18} alkenyl, or a linear or branched C_{2-18} alkynyl. For example, the di-O-acyl derivative may be a derivative of the formula:
wherein:

$R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_{1-18}$ alkyl, a linear or branched C$_{2-18}$ alkenyl, a linear or branched C$_{2-18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R;

$R^4$ is selected from hydrogen, a halogen, linear or branched C$_{1-18}$ alkyl, linear or branched C$_{2-18}$ alkenyl, linear or branched C$_{2-18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, SiR$_1$R$_2$R$_3$, or a bridging group between two arene or substituted arene moieties;

$n$ is 0-5;

$R^5$ is linear or branched C$_{1-18}$ alkyl, halomethyl, linear or branched C$_{2-18}$ alkenyl, or linear or branched C$_{2-18}$ alkynyl;

$R$ is hydrogen, linear or branched C$_{1-18}$ alkyl, or SiR$_1$R$_2$R$_3$;

and

$X$ is nothing, a divalent linear or branched C$_{1-18}$ alkyl, C$_{2-18}$ alkenyl, and C$_{2-18}$ alkynyl spacer.

For example, the di-O-acyl may be
which may be made by reacting dimethylsilyl cyclohexadiene cis-diol (2b) with pyridine and acetic anhydride and then extracting the reaction mixture with ethyl acetate.

In yet another example, the hydroxyl groups of the cis-diol could be derivatized to form a silyl ether. For example, the silyl ether may be a derivative of the formula:

![Chemical Structure](attachment:image.png)

**Formula (VII)**

wherein:

- $R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_1$-C$_{18}$ alkyl, a linear or branched C$_2$-C$_{18}$ alkenyl, a linear or branched C$_2$-C$_{18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R;
  - $R^4$ is selected from hydrogen, a halogen, linear or branched C$_1$-C$_{18}$ alkyl, linear or branched C$_2$-C$_{18}$ alkenyl, linear or branched C$_2$-C$_{18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, SiR$_1^1$R$_2^2$R$_3^3$, or a bridging group between two arene or substituted arene moieties;
n is 0-5;

R is hydrogen, linear or branched C1-C18 alkyl, or SiR1R2R3;

and

X is nothing, a divalent linear or branched C1-C18 alkyl, C2-C18 alkenyl, or C2-C18 alkynyl spacer.

For example, the silyl ether may be

\[
\begin{align*}
\text{SiMe}_2\text{H} \\
\text{OSiMe}_2\text{tBu} \\
\text{OSiMe}_2\text{tBu}
\end{align*}
\]

which may be made by reacting dimethylsilyl cyclohexadiene cis-diol (2b) with t-BuMe2SiCl, dimethylformamide, and imidazole.

In a further example, the hydroxy groups of the cis-diols may be derivatized by forming a boronate ester. For example, the boronate ester may be an ester of the formula

\[
\begin{align*}
\text{SiR}_1\text{R}_2\text{R}_3 \\
\text{(R}_4\text{)n} \\
\text{O} \\
\text{B}\text{R}_5
\end{align*}
\]

wherein:

\[\text{R}_1, \text{R}_2, \text{and R}_3 \text{ are each independently selected from}
\]

hydrogen, a halogen, aryl, a linear or branched C1-C18 alkyl, a linear or branched C2-C18 alkenyl, a linear or branched C2-C18 alkynyl, halomethyl, OR, SR, NR2-R, or O(CO)R;
R^4 is selected from hydrogen, a halogen, linear or branched C₁-C₁₈ alkyl, linear or branched C₂-C₁₈ alkenyl, linear or branched C₂-C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂₋₃, O(CO)R, SiR¹R²R³, or a bridging group between two arene or substituted arene moieties;

n is 0-5;

R⁵ is aryl, linear or branched C₁-C₁₈ alkyl, linear or branched C₂-C₁₈ alkenyl, or linear or branched C₂-C₁₈ alkynyl;

R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³;

and

X is nothing, a divalent linear or branched C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, and C₂-C₁₈ alkynyl spacer.

For example, the boronate ester may be

\[
\begin{align*}
\text{SiMe}_2\text{H} & \quad \text{O} \\
\text{B} & \quad \text{Ph} \\
\text{O} & \quad \text{O}
\end{align*}
\]

which may be made by reacting dimethylsilyl cyclohexadiene cis-diol (2b) with phenylboronic acid (PhB(OH)₂).

In accordance with another aspect of the present invention the oxidation of the double bonds of the cis-diols and acetonides of the present invention to the corresponding epoxy derivatives is contemplated. For example, the cis-diol may have the double bond oxidized to form epoxy derivatives of the formulas:
wherein:

- $R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_{1-18}$ alkyl, a linear or branched C$_{2-18}$ alkenyl, a linear or branched C$_{2-18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R;

- $R^4$ is selected from hydrogen, a halogen, linear or branched C$_{1-18}$ alkyl, linear or branched C$_{2-18}$ alkenyl, linear or branched C$_{2-18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, SiR$_1$R$_2$R$_3$, or a bridging group between two arene or substituted arene moieties;

- $n$ is 0-5;

- $R$ is hydrogen, linear or branched C$_{1-18}$ alkyl, or SiR$_1$R$_2$R$_3$;

and
X is nothing, a divalent linear or branched C₁⁻C₁₈ alkyl, C₂⁻C₁₈ alkenyl, and C₂⁻C₁₈ alkynyl spacer.

For example, the epoxy derivatives may be

\[
\begin{align*}
\text{SiMe₂OH} & \\
\text{OH} & \\
\text{OH} & \\
\text{SiMe₂OH} & \\
\text{OH} & \\
\text{OH} & 
\end{align*}
\]

or

which may be made by reacting dimethylsilyl cyclohexadiene cis-diol (2b) with m-chloroperbenzoic acid (m-CPBA).

For example, the acetonides of the present invention may have the double bond oxidized to form epoxy derivatives of the formulas:

\[
\text{Formula (IXc)}
\]

\[
\text{Formula (IXd)}
\]
wherein:

\[ R^1, R^2, \text{ and } R^3 \text{ are each independently selected from} \]
hydrogen, a halogen, aryl, a linear or branched C\(_{1-18}\) alkyl, a linear
or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl,
\[ \text{halomethyl, OR, SR, NR}_{2-3}, \text{ or O(CO)R;} \]
\[ R^4 \text{ is selected from hydrogen, a halogen, linear or branched} \]
C\(_{1-18}\) alkyl, linear or branched C\(_{2-18}\) alkenyl, linear or branched
C\(_{2-18}\) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R,
SiR\(^1\)R\(^2\)R\(^3\), or a bridging group between two arene or substituted
arene moieties;
\[ n \text{ is } 0-5; \]
\[ R \text{ is hydrogen, linear or branched C\(_{1-18}\) alkyl, or SiR\(^1\)R\(^2\)R\(^3\);} \]
and
\[ X \text{ is nothing, a divalent linear or branched C\(_{1-18}\) alkyl, C\(_{2-18}\)} \]
alkenyl, and C\(_{2-18}\) alkynyl spacer.

However, when \(X=\text{nothing}\) then \(R^1, R^2, \text{ and } R^3\) cannot be \(R^1=R^2=R^3=\text{CH}_3\).

For example, the epoxy derivatives may be

![Epoxy Derivative](image)

or
wherein R = H and OH.

which may be made by reacting dimethylsilyl cyclohexadiene cis-diol acetonide (3b) with m-CPBA.

In accordance with another aspect of the present invention the reduction of one or both of the double bonds of the cis-diols and acetonides of the present invention to the corresponding partially or fully saturated materials are contemplated. For example, the cis-diol may have at least one of the double bonds reduced to form partially or fully saturated material of the formulas:

\[
\text{Formula (Xa)}
\]

\[
\text{Formula (Xb)}
\]
wherein:

$R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_{1-18}$ alkyl, a linear or branched C$_{2-18}$ alkenyl, a linear or branched C$_{2-18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R;

$R^4$ is selected from hydrogen, a halogen, linear or branched C$_{1-18}$ alkyl, linear or branched C$_{2-18}$ alkenyl, linear or branched C$_{2-18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, Si$R^1R^2R^3$, or a bridging group between two arene or substituted arene moieties;

$n$ is 0-5;

$R$ is hydrogen, linear or branched C$_{1-18}$ alkyl, or Si$R^1R^2R^3$; and

$X$ is nothing, a divalent linear or branched C$_{1-18}$ alkyl, C$_{2-18}$ alkenyl, and C$_{2-18}$ alkynyl spacer.

For example, the partially or fully saturated derivatives may be
which may be made by exposing dimethylsilyl cyclohexadiene cis-diol (2b) to hydrogen gas or through the diimide procedure using potassium azodicarbonamide in acetic acid. (Pasto., D. J. "Reduction with Diimide" Organic. Reactions, 1991, 40, 91.)

For example, the acetonide may have at least one the double bonds reduced to form partially or fully saturated material of the formulas:

\[
\text{SiR}^1\text{R}^2\text{R}^3
\]

\[
\text{OCH}_3
\]

\[
\text{OCH}_3
\]

\[
(R^4)n
\]

\[
\text{Formula (Xd)}
\]

or

\[
\text{SiR}^1\text{R}^2\text{R}^3
\]

\[
\text{OCH}_3
\]

\[
\text{OCH}_3
\]

\[
(R^4)n
\]

\[
\text{Formula (Xe)}
\]

or

\[
\text{SiR}^1\text{R}^2\text{R}^3
\]

\[
\text{OCH}_3
\]

\[
\text{OCH}_3
\]

\[
(R^4)n
\]

\[
\text{Formula (Xf)}
\]

wherein:

\[ R^1, R^2, \text{ and } R^3 \text{ are each independently selected from hydrogen, a halogen, aryl, a linear or branched } C_1-C_{15} \text{ alkyl, a linear } \]

\[ \text{linear} \]

\[ \text{linear} \]
or branched C₂-C₁₈ alkenyl, a linear or branched C₂-C₁₈ alkynyl,
halomethyl, OR, SR, NR₂-₃, or O(CO)R;

R⁴ is selected from hydrogen, a halogen, linear or branched
C₁-C₁₈ alkyl, linear or branched C₂-C₁₈ alkenyl, linear or branched
C₂-C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂-₃, O(CO)R,
SiR¹R²R³, or a bridging group between two arenne or substituted
arenne moieties;

n is 0-5;

R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³;

and

X is nothing, a divalent linear or branched C₁-C₁₈ alkyl, C₂-C₁₈
alkenyl, and C₂-C₁₈ alkynyl spacer.

For example, the derivative may be

which may be made by exposing dimethylsilyl cyclohexadiene cis-diol acetonide (4b) to hydrogen gas or diimide.

In accordance with another aspect of the present invention, cis-diols and
acetonides having a hydrosilane function may be derivatized by reacting the
hydrosilane function. For example, the cis-diol or acetonide may have formulas
R¹ and R² are each independently selected from hydrogen, a halogen, aryl, a linear or branched C₁₋C₁₈ alkyl, a linear or branched C₂₋C₁₈ alkenyl, a linear or branched C₂₋C₁₈ alkynyl, halomethyl, OR, SR, NR₂₋₃, or O(CO)R;
R⁴ is selected from hydrogen, a halogen, linear or branched C₁₋C₁₈ alkyl, linear or branched C₂₋C₁₈ alkenyl, linear or branched C₂₋C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂₋₃, O(CO)R, SiR¹R²R³, or a bridging group between two arene or substituted arene moieties;
n is 0-5;
R is hydrogen, linear or branched C₁₋C₁₈ alkyl, or SiR¹R²R³;
and
X is nothing, a divalent linear or branched C₁₋C₁₈ alkyl, C₂₋C₁₈ alkenyl, and C₂₋C₁₈ alkynyl spacer.
For example, the cis-diol or acetonide having a hydrosilane function may be hydrolyzed to a corresponding silanol. For example, the cis-diol of Formula (Xla) may be hydrolyzed to a silanol of the formula

\[
\text{Formula (Xlla)}
\]

wherein \( R^1, R^2, R^4, X, \) and \( n \) are as defined above with respect to Formula (Xla).

The acetonide of Formula (Xlb) may be hydrolyzed to a silanol of the formula

\[
\text{Formula (Xlb)}
\]

wherein \( R^1, R^2, R^4, X, \) and \( n \) are as defined above with respect to Formula (Xlb).

For example, the silanol may be

\[
\text{SiMe}_2\text{OH}
\]

which may be made by reacting dimethylsilyl cyclohexadiene cis-diol (2b) with NaOH, ACN/H\(_2\)O. The silanol may be further condensed to form
In a further example, the silanol may be

\[
\text{SiMe}_2\text{OH}
\]

which may be made by reacting dimethylsilyl cyclohexadiene cis-diol acetonide

(4b) with ACN and H\textsubscript{2}O at a pH of greater than about 9. The silanol may be further condensed to form
In another example, the cis-diol or acetonide having a hydrosilane function may be subject to alcoholysis to form an alkoxy derivative. For example, the cis-diol of Formula (XIIa) or the acetonide of Formula (XIIb) may be subject to alcoholysis to form a alkoxy derivatives of the formulas

\[
\text{SiR}^1\text{R}^2\text{OR}^5 \quad \text{or} \quad \text{SiR}^1\text{R}^2\text{OR}^6
\]

wherein R\(^1\), R\(^2\), R\(^4\), X, and n are as defined above with respect to Formulae (XIIa, XIIb), and R\(^5\) is an aryl, a linear or branched C\(_{1-18}\) alkyl, a linear or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl. For example, the alkoxy derivative may be

\[
\text{SiMe}_{2}\text{OEt}
\]

which may be made by reacting dimethyldichlorocyclohexadiene cis-diol acetonide with ethyl alcohol and sodium metal. In a further example, the alkoxy derivative may be
which may be made by reacting dimethylsilyl cyclohexadiene cis-diol acetonide with isopropyl alcohol and Pt(IV).

In a further example, the cis-diol or acetonide bearing either hydrosilane or vinylsilane functionality are subjected to hydrosilylation reactions resulting in the formation of a silicon-carbon bond.

Scheme 5 shown below illustrates a number of the reactions of dimethylsilyl cyclohexadiene cis-diol (2b) as discussed above.
Scheme 5. Derivatives of dimethyldimethyl cyclohexadiene cis-diol

Scheme 6 shown below illustrates a number of the reactions of dimethyldimethyl cyclohexadiene cis-diol acetonide (3b) discussed above.
Scheme 6. Derivatives of dimethylsilyl cyclohexadiene cis-diol acetonide
In order that the invention may be more readily understood, reference is made to the following examples, which are intended to be illustrative of the invention, but are not intended to be limiting in scope.

**Example 1**

Conversion of the six aryl silanes illustrated in Scheme 1 to the corresponding cis-diols was done using *E. coli* strain JM109 (pDTG601) expressing the *P. putida* F1 toluene dioxygenase genes (*todC1C2BA*) (SEQ ID No. 1). Cells were grown in minimal salts broth (MSB) in either a shake flask or 14 L fermentor and harvested upon attaining OD 70 (Hudlicky, T. *et al.* (1999) *Organic Syntheses, Vol. 76, 77*). The cell mass was resuspended in 100 mM phosphate buffer having a pH of 7.4 and containing 5 g/L glucose to OD 35. Aryl silane substrates (1-20 g/L) were added and the mixtures were incubated at 37°C at 225 rpm for 6 hours. The pH of the mixture was adjusted back up to pH 7.4 after an initial 2 hour incubation.

The whole broth was then centrifuged to remove the cells and the supernatant separated and extracted with ethyl acetate following saturation with sodium chloride. The organic extract was dried over sodium sulfate, filtered and concentrated under vacuum. The remaining material was subjected to 300 MHz NMR and GC/MS analysis to determine the extent of conversion to the cis-diol products. The products are illustrated above in Scheme 1.

The products were analyzed. Dimethylphenylvinylsilane cis-diol (2a) [(1S, 2S)-3-(dimethylvinylsilyl)cyclohexa-3,5-diene-1,2-diol] $^1$H NMR (300 MHz, d$_6$-
DMSO) δ 6.21, dd, J = 24.5, 14.4 Hz, H3'; 6.11, dt, J = 1.6, 6.3 Hz H4; 5.96, dd, J = 14.4, 4.1 Hz, H2'; 5.90, ddd, H5; 5.80, ddd, H6; 5.71, dd, J = 24.5, 4.1 Hz, H1'; 4.02, m, H2; 3.96, m, H1; 0.18, s, 6H, SiMe. GC/MS: 178 [M-18]+.

Dimethylphenylsilane cis-diol (2b) [([1S, 2S]-3-(dimethylsilyl)cyclohexa-3,5-diene-1,2-diol] 1H NMR (300 MHz, d6-DMSO) δ 6.27, dt, J = 1.5, 6.3 Hz H4; 5.98, dd, J = 14.4, 4.1 Hz, H5; 5.95, ddd, H6; 4.20, dd, J = 10.5, 2.2 Hz, H1; 4.17, sept, J = 6.0 Hz, SiH; 4.07, bdd, J = 10.5, 6.0 Hz, H2; 0.21, d, 6H, SiMe. GC/MS: 152 [M-18]+.

Phenyltrimethylsilane cis-diol (2c) [([1S, 2S]-3-(trimethylsilyl)cyclohexa-3,5-diene-1,2-diol] 1H NMR (300 MHz, d6-DMSO) δ 6.21, dt, J = 5.0, 1.0 Hz H4; 5.97, ddd, J = 9.5, 6.3, 1.4 Hz, H5; 5.88, dddd, H6; 4.06, m, 2H, H1, 2; 0.05, d, 6H, SiMe. GC/MS: 166 [M-18]+.

Benzyltrimethylsilane cis-diol (2d) [([1S, 2S]-3-(trimethylsilylmethyl)cyclohexa-3,5-diene-1,2-diol] 1H NMR (300 MHz, d6-DMSO) δ 5.87, ddd, J = 9.5, 5.3, 2.1 Hz, H5; 5.61, bdd, J = 3.1 Hz, H6; 5.55, bdd, H4; 4.21, m, H1; 3.78, d, J = 6.0 Hz, H2; 1.78, 1.68, 2d, J = 13.6 Hz, SiCH2; 0.04, s, 9H, SiMe. GC/MS: 180 [M-18]+.

Methylphenylvinylsilane cis-diol (2e) [([1S, 2S]-3-(methylvinylsilyl)cyclohexa-3,5-diene-1,2-diol] 1H NMR (300 MHz, d6-DMSO) δ 6.27, m, (R,S)-H4; 6.21, 6.20, 2dd, J = 20.1, 14.6 Hz, (R,S)-H3'; 6.08, 6.06, 2dd, J = 14.6, 4.7 Hz; 6.03, m, 2H, (R,S)-H5,6; 5.85, 5.84, 2dd, J = 20.1, 4.5 Hz, (R,S)-H1'; 4.35, m, 2H, (R,S)-H2, SiH; 4.15, m, (R,S)-H1; 0.32, 0.31, 2d, J = 3.6 Hz, SiMe. GC/MS: 164 [M-18]+.

(Chloromethyl)dimethylphenylsilane cis-diol (2f) GC/MS: 166 [M-18]+.
Example 2

The bioconversion of cis-diols was performed in a shake flask. Cells for transformation in shake flask were grown either in separate shake flask culture or in a 14L fermentor (see Example 3). For the shake flask, 0.5 L MSB media with ampicillin (100 μg/mL) in a 2.8 L baffled Fernbach flask was inoculated with 1 mL of a fresh seed culture of JM109 (pDTG601) or JM109 (pDTG602) placed in a orbital shaker/incubator (250 rpm, 37°C). After 4-6 hours the cells were induced with IPTG (10mg/L) and incubated an additional 6-8 hours until OD₆₀₀=1.0. For the 14L fermentor method, cells were harvested at OD₆₀₀=30-60. Cells were collected by centrifugation and resuspended in transformation buffer (200mM phosphate buffer pH 7.0, 0.4% glucose) to OD₆₀₀=10. Tranformations were done in a baffled Erlenmeyer flask equipped with a vapor bulb (Hudlicky, T. et al. Organic Syntheses, Vol. 76, 77), with the substrates (0.8-8 mg/mL) being added directly to the broth or to the vapor bulb and contacted with the cells for 3-4 hours (300 rpm, 37°C). The products were extracted from the whole broth with dichloromethane. The organic extract was dried over sodium sulfate, filtered and concentrated to give the cis-diol products as oils.

Example 3

A scaled-up conversion of dimethylphenylvinilsilane to the corresponding cis-diol in a 14L fermentor was performed. Dimethylphenylvinilsilane (1a) (25 g, 0.15 mol) was contacted with cells of an E.coli. strain expressing the dioxygenase JM109(pDTG601) that had been grown in a 14 L stirred fermentor at pH 7.0 and
37°C to an OD of over 20. The silane was introduced into the fermentor at a rate such as to not adversely alter the viability of the bacterial cells, typically at or below 1 mL/min. The extent of conversion was followed by $^1$H NMR and GC/MS analysis of samples drawn from the fermentor until no dimethylphenylvinylsilane was detected. At that point the broth was collected and the cells removed by centrifugation. The supernatant was passed through a 10K cutoff size exclusion filter and extracted three times with ethyl acetate (1 L). The combined organic extracts were dried over sodium sulfate, filtered and the solvent removed under reduced pressure to give the corresponding cis-diol (2a) as a dark oil (12 g, 40 %).

In a similar manner to that described above dimethylphenylsilane (1b) (50 g, 0.37 mol) was converted to the cis-diol (2b) as a tan oil that slowly crystallized in the refrigerator (36 g, 64 %).

In a similar manner to that described above benzyltrimethylsilane (1d) (25 g, 0.15 mol) was converted to the cis-diol (2d) (8 g, 22 %).

The enantiomeric excess (%ee) and absolute configuration of purified diols cis-(1S,2S)-3-(dimethylvinylsilyl)cyclohexa-3,5-diene-1,2-diol (2a) and cis-(1S,2S)-3-(dimethylsilyl)cyclohexa-3,5-diene-1,2-diol (2b) is greater than 98% ee as determined by the $^1$H NMR method of Resnick et al. (Resnick, S. M.; Torok, D. S.; Gibson, D. T. J. Am. Chem. Soc. 1995, 60, 3546-3549).

Example 4

The cis-diols (2a-e) were converted to acetonide derivatives (3a-e) as shown in Scheme 2. The cis-diols were converted to the more stable acetonide
derivatives by treatment of a solution of the diol in 2,2-dimethoxypropane with a trace of Amberlite 118-H⁺ acid resin over several hours. Filtration of the reaction mixture was followed by evaporation of the solvent. The crude acetonides were purified on a silica gel column by elution with ethyl acetate/hexane (1:9). Analysis of the ¹H and ¹³C NMR spectra confirmed the identity of the compounds.

![Chemical structure diagram]

**Dimethylphenylvinylsilane cis-diol acetonide (3a) [cis-4-(dimethylvinylsilyl)-2,2-dimethyl-3a,7a-dihydro-1,3-benzodioxazole]** ¹H NMR (300 MHz, CDCl₃) δ 6.21, dd, J = 19.8, 14.7 Hz, H3'; 6.21, dt, J = 5.3, 0.9 Hz, H5; 6.01, dd, J = 14.7, 4.1 Hz, H2'; 5.99, ddd, J = 9.3, 5.3, 1.0 Hz, H6; 5.87, ddd, J = 9.3, 3.6, 1.0 Hz, H7; 5.74, dd, J = 19.8, 4.4 Hz, H1'; 4.74, dd, J = 9.0, 0.9 Hz, H3a; 4.59, ddd, J = 9.0, 3.6, 1.0 Hz, H7a; 1.35, 1.31, 2s, 6H; 0.18, 2s, 6H, SiMe.

**Dimethylphenylsilane cis-diol acetonide (3b) [cis-4-(dimethylsilyl)-2,2-dimethyl-3a,7a-dihydro-1,3-benzodioxazole]** ¹H NMR (300 MHz, CDCl₃) δ 6.23, bd, J = 5.6 Hz, H5; 6.01, dd, J = 9.8, 5.6 Hz, H6; 5.94, dd, J = 9.8, 1.2 Hz, H7; 4.72, bd, J = 9.0 Hz, H3a; 4.54, dd, J = 9.0, 4.0 Hz, H7a; 4.12, sept, J = 4.0 Hz, SiH; 1.37, 1.35, 2s, 6H; 0.21, 2d, 6H, SiMe.

**Phenyltrimethylsilane cis-diol acetonide (3c) [cis-4-(trimethylsilyl)-2,2-dimethyl-3a,7a-dihydro-1,3-benzodioxazole]** ¹H NMR (300 MHz, CDCl₃) δ 6.20, dt,
J = 5.6, 0.9 Hz, H5; 6.01, ddd, J = 9.9, 5.4, 0.9 Hz, H6; 5.86, ddd, J = 9.9, 3.8, 1.0 Hz, H7; 4.74, dd, J = 9.0, 0.8 Hz, H3a; 4.59, ddd, J = 9.0, 3.6, 0.8 Hz, H7a; 1.31, 1.36, 2d, 6H; 0.13, s, 9H, SiMe.

Methylphenylvinylsilane cis-diol acetonide (4d) [cis-4-[(R,S)-methylvinylsilyl]-2,2-dimethyl-3a,7a-dihydro-1,3-benzodioxazole] $^1$H NMR (300 MHz, CDCl$_3$) δ 6.28, 6.25, 2bd, (R,S)-H5; 6.20, 6.19, 2ddd, J = 19.1, 14.3, 1.7 Hz, (R,S)-H3'; 6.07, 6.05, 2dd, J = 14.3, 4.3 Hz, (R,S)-H2'; 6.02, bdd, 9.6, 4.8 Hz, (R,S)-H6; 5.95, bddd, J = 9.6, 3.9, 1.3 Hz, (R,S)-H7; 5.86, 5.85, 2ddd, J = 19.6, 4.3, 3.6 Hz, (R,S)-H1'; 4.72, bdt, J = 8.4, 1.1 Hz, (R,S)-H7a; 4.53, 4.52, 2dd, J = 8.4, 2.1 Hz, (R,S)-H7a; 4.30, bdq, J = 3.6 Hz, SiH; 1.38, 1.36, 2bs, 6H; 0.31, 2d, J = 3.7 Hz, SiMe.

**Example 5**

The conversion of cis-diols to catechol derivatives was performed.

Conversion of cis-diols to the corresponding catechols was effected using *E. coli* strain JM109 (pDTG602) expressing the (+)-cis-(1S,2R)-dihydroxy-3-methylcyclohexa-3,5-diene dehydrogenase gene (todd) from *Pseudomonas putida* F1. Transformations were conducted in a shake flask as described in Example 2. Dimethylphenylvinylsilane cis-diol (2a) or dimethylphenylsilane cis-diol (2b) was added directly to the re-suspended cells (1-2 mg diol/mL transformation broth) and incubated for 3-4 hours. The whole broth was extracted with ethyl acetate for analysis of the products. TLC: extracts of both transformations (silica gel, chloroform:acetone, 4:1) showed two UV-active bands at $R_f$0.4 and 0.6, the
latter turning dark brown immediately after treatment with Gibbs reagent (0.1% 2, 6-dichloroquinone chlorimide in ethanol). GC/MS: 1-dimethylvinylsilyl-2, 3-benzene diol (4a): m/z (rel. intensity) 194 (M⁺, 4%), 166 (100%); 1-dimethylsilyl-2,3-benzene diol (4b): m/z (rel. intensity) 168 (M⁺, 42%), 153 (96%), 75 (100%).

Example 6

Cycloadducts (5a,b) of silane cis-diol acetonides as shown in Scheme 4 were produced. The dimethylphenylvinylsilyl cis-diol acetonide (3a) was found to form a novel product when left to stand at room temperature in concentrated form over the course of a week or more. Purification of the material by column chromatography on silica gel gave the cycloadduct (5a) as a colorless oil. ¹H NMR (300 MHz, CDCl₃) δ 6.30, 6.18, 2dd, J = 20, 14.4 Hz, 2H; 5.86-6.10, m, 5H; 7.72, 5.65, 2dd, J = 20, 3.8 Hz, 2H; 4.18-4.28, m, 3H; 4.01, dd, J = 5.2, 3.4 Hz, 1H; 2.90, m, H4; 2.38, bdd, J = 8.7, 3.2 Hz, H4'; 2.05, bd, H5'; 1.32, 1.30, 1.23, 1.21, 4s, 12H; 0.24, 0.22, 0.16, 0.15, 4s, 12H, SiMe.

In the same manner as described above dimethylsilyl cis-diol acetonide (3b) was converted into the cycloadduct (5b). The material was purified as previously described to give a colorless oil. ¹H NMR (300 MHz, CDCl₃); δ 6.10, dd, J = 4.0, 1.4 Hz, H4'; 6.04, bt, J = 8 Hz, H5; 5.83, d, J = 8 Hz, H4; 4.10-4.30, m,
4H, H1,2, 1',2'; 4.09, septuplet, 2H, J = 3.8 Hz, SiH; 2.86, m, H6; 2.36, dd, J = 9.0, 3.8 Hz, H5'; 2.18, bd, J = 9.0 Hz, H6'; 1.25, 1.22, 1.21, 12H; 0.22, 0.21, 0.17, 3d, 12H, SiMe. GC/MS;

Example 7

Epoxy derivatives of the dimethylsilyl cis-diol acetonide (3b) as shown in Scheme 6 were produced. A solution of the acetonide (3b) (90 mg, 0.43 mmol) in dichloromethane (4 mL) was contacted with 2 mol equivalents of m-chloroperbenzoic acid (m-CPBA) at −10°C. After disappearance of the starting material (TLC), the reaction was extracted with saturated NaHCO₃ and the organic extract concentrated to give an oil. Purification on silica gel (hexane to hexane/EtOAc 2:1) gave a first a pair of epoxy hydrosilanes (6a, 7a, 2:1)(20 mg, 20%) followed by a pair of epoxy siliols (6b, 7b, 2:1)(41 mg, 39%). The 1,6-epoxy regioisomers were the major products. ¹H NMR (300 MHz) 6a: δ 6.05, ddd,
J = 10.3, 6.2, 1.7 Hz, H5; 5.76, dm, J = 10.3 Hz; H6; 4.70, bd, J = 6.0 Hz, H2;
4.36, dt, J = 7.2, 2.4 Hz, H1; 4.01, sept, J = 3.9 Hz, SiH; 3.16, dt, J = 6.6, 1.2 Hz,
H4; 1.36, 2s, 6H; 0.2, 2s, 6H, SiMe. 6b: δ 6.05, ddd, J = 10.3, 6.2, 1.7 Hz, H5;
5.77, dm, J = 10.3 Hz; H6; 4.76, bd, J = 7.0 Hz, H2; 4.37, dt, J = 7.2, 2.4 Hz, H1;
3.25, dt, J = 6.6, 1.2 Hz, H4; 2.4-2.8, b, 1H, SiOH; 1.36, 2s, 6H; 0.28, 0.22, 2s,
6H, SiMe. 7a: δ 6.31, dd, J = 5.4, 1.7 Hz, H4; 4.73, dd, J = 7.2, 2.4 Hz, H2; 4.54,
dd, J = 7.2, 1.8 Hz, H1; 4.11, sept, J = 3.9 Hz, SiH; 3.55, dd, J = 5.4, 1.9 Hz, H6;
3.29, td, J = 5.4, 1.2 Hz, H5; 1.38, s, 6H; 0.2, 2s, 6H, SiMe. 7b: δ 6.31, dd, J = 5.4,
1.7 Hz, H4; 4.76, d, J = 7.0 Hz, H2; 4.63, dd, J = 7.0, 1.9 Hz, H1; 3.54, dd, J = 5.4,
1.9 Hz, H6; 3.29, td, J = 5.4, 1.2 Hz, H5; 2.4-2.8, b, 1H, SiOH; 1.39, 2s, 6H; 0.22,
0.21, 2s, 6H, SiMe.

6a R = H; 6b R = OH 7a R = H, 7b R = OH

Example 8

The dimethylsilyl cis-diol acetonide (3b) was reacted with sodium ethoxide.

Freshly cut sodium (113 mg, 4.9 mmol) was added to anhydrous ethanol (freshly
distilled from Mg) under an inert atmosphere. After all reaction had ceased, the
solution was cooled in an ice/salt bath and the acetonide (3b) (155 mg, 0.74
mmol) was added. TLC soon after addition showed no starting material and a major product (R<sub>t</sub> .57, silica gel, hexanes:MTBE, 2:1, visualization: KMnO<sub>4</sub>). The reaction was quenched with acetic acid (5.1 mmol), allowed to come to ambient temperature, diluted with dichloromethane, filtered and evaporated. <sup>1</sup>H-NMR showed a compound identified as the ethoxysilane (8) as shown below. <sup>1</sup>H NMR (300 MHz) δ 6.18, d, 1H; 5.9, m, 1H; 5.7, m, 1H; 4.7, d, 1H; 4.55, d, 1H; 1.6, m; 0.02, d, 6H. 

Example 9

The dimethylsilyl cis-diol acetonide (3b) was reacted with isopropanol. A solution of the cis-diol acetonide (3b) (100 mg, 0.48 mmol) in isopropanol (3 mL) was treated with chloroplatinic acid (H<sub>2</sub>PtCl<sub>6</sub>, 0.005 mol%) at 50°C over 24 h. TLC indicated the disappearance of the starting material and the formation of a new product. The reaction mixture was concentrated and purified on silica gel (ethyl acetate/hexane, 1:10) to give the isopropropoxysilane (9) as a colorless oil. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>) δ 6.32, bd, J = 5.4 Hz, H5; 6.00, ddd, J = 9.6, 5.4, 1.2 Hz, H6; 5.90, ddd, J = 9.8, 3.6, 1.2 Hz, H7; 4.70, dd, J = 8.8, 1.0 Hz, H3a; 4.59, ddd, J = 8.8, 3.8, 1.2 Hz, H7a; 4.03, sept, J = 6.2 Hz, Me<sub>2</sub>CH; 1.37, 1.36, 2s, 6H; 1.14, 1.15, 2d, J = 6.2 Hz, Me<sub>2</sub>CH; 0.26, 0.24, 2s, 6H, SiMe.
Example 10

The hydrogenation of the dimethylsilyl cis-diol acetonide (3b) was performed. The acetonide (3b) (130 mg, 0.7 mmol) was dissolved in MTBE in a test tube. 5% rhodium on alumina (30 mg) was added and the mixture was hydrogenated on a Parr-shaker at 65 psi under hydrogen gas (H₂) for 24hrs. The mixture was filtered through celite and dried under reduced pressure. Solvent exchange using 3 dissolution/dry-down cycles with deuterochloroform successfully purged the product of MTBE. Analysis by ¹H-NMR showed mostly the completely saturated analogue. Decoupling experiments demonstrated that the hydrosilane functionality was intact. GC/MS showed that the major component was the hexahydroaromatic: m/z 199 (-CH₅), and 156 (-C₃H₆O). The products shown below were present.
Example 11

The conversion of a cis-diol acetonide to the silanol (11) was performed. A solution of the acetonide (3b) (90 mg, 0.43 mmol) in DCM/ACN (4 mL, 1:1) was contacted with a 1N NaOH solution (4 mL) with stirring over 2 h. TLC indicated the consumption of the starting material and the appearance of two new compounds. The reaction mixture was diluted with DCM (10 mL) and the organic layer isolated and washed with water and saturated brine solution. The organic extract was then dried over sodium sulfate, filtered and concentrated to give a mixture of the silanol (11a) and the disiloxane (11b) as an oil (65mg, 4:1). $^1$H NMR (300 MHz, CDCl$_3$) 11a: 6.23, dt, 1H; 6.04, dd, 1H; 5.95, ddd, 1H; 4.83, dd, 1H; 4.56, dd, 1H; 2.50, bs, 1H; 1.36, s, 6H; 0.26, 0.25, 2s, 6H. 11b: 6.26, dm, 1H; 5.97, m, 1H; 5.88, ddd, 1H; 4.71, dd, 1H; 4.56, m, 1H; 1.35, 2s, 6H; 0.22, s, 6H.
Example 12

The hydrosilylation of cis-diol acetonides may be performed. The cis-diol acetonides of this invention bearing either hydrosilane or vinylsilane functionality may be subjected to hydrosilylation reactions resulting in the formation of a silicon-carbon bond. For example the acetonide (3b) is contacted with an olefin and Wilkinson’s catalyst [(Ph₃P)₃RhCl] in an appropriate solvent to yield a silane containing an additional silicon-carbon bond.

Example 13

The reduction of the dimethylsilyl cyclohexadiene cis-diol 2b with diimide was performed. The diol (2b) was treated with diimide (N₂H₂) generated using freshly prepared potassium azodicarbonamide in acetic acid. Many products were observed on TLC. Column chromatography on silica gel using ether in hexanes yielded a small amount of crystalline material that was impure by ¹H-NMR analysis. However, it appears that the major component was the 1,2,3,4-tetrahydrocyclohex-5-ene-1,2-cis-diol (12). The silicon hydride appears to have been hydrolyzed, presumably to either the silanol or the disiloxane as shown below. ¹H NMR (300 MHz): δ 5.83-5.91, d of p, 1H; 5.5-5.56, d of m, 1H; 4.17, bs, 1H; 4.06, bs, 1H; 3.92, sext., 1H.
Example 14

The hydrogenation of the dimethylsilyl cyclohexadiene cis-diol (2b) was performed. The diol (180 mg, 1 mmol) was hydrogenated over 5% rhodium on alumina (35 mg). After 24 hours, the mixture was filtered through celite and dried in vacuo. The $^1$H NMR spectrum showed what appeared to be the 1,2,5,6-tetrahydrocyclohex-3-ene (13a): 6.16 ppm, d of t. Some fully saturated material (13b) must also be present judging from the signal at 1.12 ppm, d of d, representing the methine hydrogen next to the silicon. Again, although more that 2 methyl signals are apparent, all are split, indicating that the hydrosilane groups are intact. The products are shown below.

Example 15

The acetylation of the dimethylsilyl cyclohexadiene cis-diol was performed. The dimethylsilyl cis-diol (2b) (370 mg, 2.1 mmol) was treated with pyridine (3 mL)
and acetic anhydride (2 mL) at ice bath temperature for 30 minutes, and then for a further 2 hours a room temperature. The reaction mixture was diluted with water (50 mL) and extracted with ethyl acetate (2 x 20 mL). The organic extract was washed sequentially with saturated sodium bicarbonate solution and brine and dried over sodium sulfate. The extract was then filtered and concentrated with the aid of toluene to remove traces of pyridine and acetic acid. The residue was purified on a silica gel column (EtOAc/hexane, 1:9 to 2:3) to give the diacetate (14) as an oil as shown below. \(^1\)H NMR (300 MHz, \(\text{d}_2\)-DMSO): \(\delta 6.42, \text{dt, J} = 5.0, 1.5 \text{ Hz, H4}; 6.22, \text{ddd, J} = 9.2, 5.0, 1.2 \text{ Hz, H5}; 6.01, \text{ddd, J} = 9.2, 5.0, 1.2 \text{ Hz, H6}; 5.56, \text{dd, J} = 5.8, 2.3 \text{ Hz, H2}; 5.36, \text{ddd, J} = 5.8, 5.0, 1.2 \text{ Hz, H1}; 4.36, \text{sept, J} = 3.8 \text{ Hz, SiH}; 2.01, 1.96, 2s, 6H, Ac; 0.29, d, 6H, SiMe.

Example 16

The dimethylsilyl cyclohexadiene cis-diol was converted to the silanol (15).

A solution of the dimethylsilyl cis-diol (2b) (500 mg, 2.9 mmol) in a mixture of acetonitrile/water (5 mL, 4:1) was treated with 1N sodium hydroxide (300 \(\mu\)L) at room temperature. A gas was immediately seen to form and TLC indicated the formation of a new lower Rf compound. Reverse phase chromatography on C18
silica gave the silanol (15) as a tan colored oil as shown below. $^1$H NMR (300 MHz, d$_6$-DMSO) $\delta$ 6.18, m, H4; 5.90, m, H5; 5.86, m, H6; 4.05, m, H2; 3.95, m, H1; 0.18, s, 6H, SiMe.

Example 17
The silane cis-diols of this invention were converted to the meta- and/or ortho-phenols through contacting the cis-diols with acid in water or water/solvent mixtures. The phenolic products were readily detected on TLC with Gibb’s reagent.

Example 18
The hydrosilylation of hydro- and vinyl silane cis-diols may be performed. The cis-diols of this invention bearing either hydrosilane or vinylsilane functionality may be subjected to hydrosilylation reactions resulting in the formation of a silicon-carbon bond. For example the acetonide (2b) is contacted with an olefin and Wilkinson’s catalyst [(Ph$_3$P)$_3$RhCl] in an appropriate solvent to yield a silane containing an additional silicon-carbon bond.
It will be obvious to those skilled in the art that various changes may be made without departing from the scope of the invention, which is not to be considered limited to what is described in the specification.
CLAIMS

1. A method for converting an aryl silane to a corresponding cis-diol, comprising:
   providing an aryl silane substrate, wherein said aryl silane has at least one aromatic component and at least one silicon atom; and
   contacting a dioxygenase enzyme with said aryl silane substrate such that said aryl silane substrate is converted to a corresponding cis-diol.

2. The method as claimed in claim 1 wherein said dioxygenase enzyme is present in whole cells.

3. The method as claimed in claim 1 wherein said dioxygenase enzyme is cell-free.

4. The method as claimed in claim 1 wherein said dioxygenase enzyme comprises a synthetic form.

5. The method as claimed in claim 1 wherein said dioxygenase enzyme comprises toluene dioxygenase.

6. The method as claimed in claim 1 wherein said dioxygenase enzyme is expressed by an E. coli host cell expressing a JM109(pDTG601) plasmid.
7. The method as claimed in claim 1 wherein said dioxygenase enzyme comprises naphthalene dioxygenase.

8. The method as claimed in claim 1 wherein said dioxygenase enzyme comprises biphenyl dioxygenase.

9. The method as claimed in claim 1 wherein said dioxygenase enzyme is contacted with said aryl silane substrate in a liquid medium.

10. The method as claimed in claim 1 wherein said method further comprises providing a plurality of aryl silane substrates.

11. The method as claimed in claim 10 wherein said plurality of aryl silane substrates comprise the same aryl silane.

12. The method as claimed in claim 10 wherein said plurality of aryl silane substrates comprise different aryl silanes.

13. The method as claimed in claim 1 further comprising reacting said cis-diol with 2,2-dimethoxypropane to convert said cis-diol to an acetonide derivative.
14. The method as claimed in claim 13 further comprising maintaining said acetonide derivative at room temperature for a sufficient time such that a cycloadduct forms from said acetonide derivative.

15. The method as claimed in claim 1 further comprising contacting a diol dehydrogenase enzyme with said cis-diol to convert said cis-diol to a corresponding catechol.

16. The method as claimed in claim 15 wherein said dioxygenase enzyme and said diol dehydrogenase enzyme are present in whole cells.

17. The method as claimed in claim 15 wherein said dioxygenase enzyme and said diol dehydrogenase enzyme are present in a single strain of cells.

18. The method as claimed in claim 1 wherein said aryl silane substrate has the formula:

\[
\text{SiR}^1\text{R}^2\text{R}^3
\]

and said cis-diol has the formula:
wherein:

R¹, R², and R³ are each independently selected from hydrogen, a halogen, an aryl, a linear or branched C₁-C₁₈ alkyl, a linear or branched C₂-C₁₈ alkenyl, a linear or branched C₂-C₁₈ alkynyl, OR, SR, NR₂-₃, or O(CO)R; and

R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³.

19. The method as claimed in claim 18 wherein:

R¹, R², and R³ are each independently selected from hydrogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, halomethyl, or OR; and

R is hydrogen, methyl, or ethyl.

20. The method as claimed in claim 18 wherein R¹, R², and R³ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl.

21. The method as claimed in claim 18 wherein said cis-diol comprises:
22. The method as claimed in claim 18 wherein said cis-diol comprises

\[
\text{SiMe}_2\text{H} \\
\text{OH} \\
\text{OH}_2
\]

5  23. The method as claimed in claim 18 wherein said cis-diol comprises

\[
\text{SiMe}_3 \\
\text{OH} \\
\text{OH}_2
\]

24. The method as claimed in claim 18 wherein said cis-diol comprises

\[
\text{SiH}^\text{Me} \\
\text{OH} \\
\text{OH}_2
\]

10 25. The method as claimed in claim 18 further comprising reacting said cis-diol with 2,2-dimethoxypropane to convert said cis-diol to an acetonide derivative having the formula:

\[
\text{SiR}^1\text{R}^2\text{R}^3 \\
\text{CH}_3 \\
\text{CH}_3
\]
26. The method as claimed in claim 25 wherein said acetonide comprises:

![Chemical structure](image_url)

5 27. The method as claimed in claim 25 wherein said acetonide comprises

![Chemical structure](image_url)

28. The method as claimed in claim 25 wherein said acetonide comprises:

![Chemical structure](image_url)

10 29. The method as claimed in claim 25 wherein said acetonide comprises:

![Chemical structure](image_url)
30. The method as claimed in claim 18 further comprising contacting a diol dehydrogenase enzyme with said cis-diol to convert said cis-diol to a corresponding catechol having the formula:

\[
\text{\includegraphics{catechol.png}}
\]

5

31. The method as claimed in claim 30 wherein said catechol comprises:

\[
\text{\includegraphics{catechol_2.png}}
\]

32. The method as claimed in claim 30 wherein said catechol comprises:

\[
\text{\includegraphics{catechol_3.png}}
\]

33. The method as claimed in claim 1 wherein said aryl silane substrate has the formula:

\[
\text{\includegraphics{aryl_silane.png}}
\]
and said cis-diol has the formula:

\[
\text{R}^1, \text{R}^2, \text{and} \text{R}^3 \text{ are each independently selected from}
\]

- hydrogen, a halogen, aryl, a linear or branched C\textsubscript{1-18} alkyl, a linear or branched C\textsubscript{2-18} alkenyl, a linear or branched C\textsubscript{2-18} alkynyl,
- halomethyl, OR, SR,
- NR\textsubscript{2-3}, or O(CO)R;

\text{R}^4 \text{ is selected from hydrogen, a halogen, linear or branched C\textsubscript{1-18} alkyl, linear or branched C\textsubscript{2-18} alkenyl, linear or branched C\textsubscript{2-18} alkynyl, halomethyl, CF\textsubscript{3}, CN, NO\textsubscript{2}, SR, OR, NR\textsubscript{2-3}, O(CO)R, SiR\textsuperscript{1}R\textsuperscript{2}R\textsuperscript{3}, or a bridging group between two arene or substituted arene moieties;}

\text{n is 0-5;}

\text{R is hydrogen, linear or branched C\textsubscript{1-18} alkyl, or SiR\textsuperscript{1}R\textsuperscript{2}R\textsuperscript{3};}

\text{X is a divalent linear or branched C\textsubscript{1-18} alkyl, C\textsubscript{2-18} alkenyl, or C\textsubscript{2-18} alkynyl spacer.}
34. The method as claimed in claim 33 wherein:

   R¹, R², and R³ are each independently selected from hydrogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, halomethyl, or OR;

   R⁴ is selected from hydrogen, halogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, CN, NO₂, OR or SiR¹R²R³;

   R is hydrogen, methyl, or ethyl; and

   X is either a divalent linear or branched C₁-C₅ alkyl, C₂-C₅ alkenyl, or C₂-C₅ alkynyl spacer.

35. The method as claimed in claim 33 wherein:

   R¹, R², and R³ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl;

   R⁴ is selected from hydrogen, halogen, a linear or branched C₁-C₃ alkyl, a linear or branched C₂-C₃ alkenyl, a linear or branched C₂-C₃ alkynyl, CN, NO₂, OR or SiR¹R²R³.

36. The method as claimed in claim 33 further comprising reacting said cis-diol with 2,2-dimethoxypropane to convert said cis-diol to an acetonide derivative having the formula:
37. The method as claimed in claim 33 further comprising contacting a diol dehydrogenase enzyme with said cis-diol to convert said cis-diol to a corresponding catechol having the formula:

38. The method as claimed in claim 1 wherein said aryl silane substrate has the formula:

and said cis-diol has the formula:
wherein:

\[ R^1, R^2, \text{ and } R^3 \text{ are each independently selected from} \]

hydrogen, a halogen, aryl, a linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, a linear or branched C\textsubscript{2}-C\textsubscript{18} alkenyl, a linear or branched C\textsubscript{2}-C\textsubscript{18} alkynyl, halomethyl, OR, SR, NR\textsubscript{2-3}, or O(CO)R;

\[ R^4 \text{ is selected from hydrogen, a halogen, linear or branched C}\textsubscript{1}-C\textsubscript{18} alkyl, linear or branched C\textsubscript{2}-C\textsubscript{18} alkenyl, linear or branched C\textsubscript{2}-C\textsubscript{18} alkynyl, halomethyl, CF\textsubscript{3}, CN, NO\textsubscript{2}, SR, OR, NR\textsubscript{2-3}, O(CO)R, SiR\textsubscript{1}R\textsubscript{2}R\textsubscript{3}, or a bridging group between two arene or substituted arene moieties; \]

\[ n \text{ is 0-5; and} \]

\[ R \text{ is hydrogen, linear or branched C}\textsubscript{1}-C\textsubscript{18} alkyl, or SiR\textsubscript{1}R\textsubscript{2}R\textsubscript{3}. \]

39. The method as claimed in claim 38 wherein:

\[ R^1, R^2, \text{ and } R^3 \text{ are each independently selected from hydrogen, a linear or branched C}\textsubscript{1}-C\textsubscript{3} alkyl, a linear or branched C\textsubscript{2}-C\textsubscript{5} alkenyl, a linear or branched C\textsubscript{2}-C\textsubscript{5} alkynyl, halomethyl, or OR; \]

\[ R^4 \text{ is selected from hydrogen, halogen, a linear or branched C}\textsubscript{1}-C\textsubscript{5} alkyl, a linear or branched C\textsubscript{2}-C\textsubscript{5} alkenyl, a linear or branched C\textsubscript{2}-C\textsubscript{5} alkynyl, CN, NO\textsubscript{2}, OR or SiR\textsubscript{1}R\textsubscript{2}R\textsubscript{3}; \text{ and} \]

\[ R \text{ is hydrogen, methyl, or ethyl.} \]
40. The method as claimed in claim 38 wherein:

\[ R^1, R^2, \text{ and } R^3 \text{ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl; and} \]

\[ R^4 \text{ is selected from hydrogen, halogen, a linear or branched } C_1-C_3 \text{ alkyl, a linear or branched } C_2-C_3 \text{ alkenyl, a linear or branched } C_2-C_3 \text{ alkynyl, CN, NO}_2, \text{ OR or } SiR^1R^2R^3. \]

41. The method as claimed in claim 38 further comprising reacting said cis-diol with 2,2-dimethoxypropane to convert said cis-diol to an acetonide derivative having the formula:

![Chemical Structure](image)

42. The method as claimed in claim 38 further comprising contacting a diol dehydrogenase enzyme with said cis-diol to convert said cis-diol to a corresponding catechol having the formula:

![Chemical Structure](image)
43. The method as claimed in claim 1 wherein said aryl silane substrate has the formula:

\[ \text{(R}^4\text{n SiR}^1\text{R}^2\text{R}^3 \text{)} \]

and said cis-diol has the formula:

\[ \text{(R}^4\text{n SiR}^1\text{R}^2\text{R}^3 \text{)} \text{HO OH} \]

wherein:

- R\(^1\), R\(^2\), and R\(^3\) are each independently selected from:
  - hydrogen, a halogen, aryl, a linear or branched C\(_{1-18}\) alkyl, a linear or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl,
  - halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R;
- R\(^4\) is selected from hydrogen, a halogen, linear or branched C\(_{1-18}\) alkyl, linear or branched C\(_{2-18}\) alkenyl, linear or branched C\(_{2-18}\) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R,
  - SiR\(^1\)R\(^2\)R\(^3\), or a bridging group between two arene or substituted arene moieties;
- n is 0-5; and
- R is hydrogen, linear or branched C\(_{1-18}\) alkyl, or SiR\(^1\)R\(^2\)R\(^3\).
44. The method as claimed in claim 43 wherein:

R¹, R², and R³ are each independently selected from hydrogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, halomethyl, or OR;

R⁴ is selected from hydrogen, halogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, CN, NO₂, OR or SiR¹R²R³; and

R is hydrogen, methyl, or ethyl.

45. The method as claimed in claim 43 wherein:

R¹, R², and R³ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl; and

R⁴ is selected from hydrogen, halogen, a linear or branched C₁-C₃ alkyl, a linear or branched C₂-C₃ alkenyl, a linear or branched C₂-C₃ alkynyl, CN, NO₂, OR or SiR¹R²R³.

46. The method as claimed in claim 43 further comprising reacting said cis-diol with 2,2-dimethoxypropane to convert such that said cis-diol to an acetonide derivative having the formula:
47. The method as claimed in claim 43 further comprising contacting a diol dehydrogenase enzyme with said cis-diol to convert said cis-diol to a corresponding catechol having the formula:

48. The method as claimed in claim 1 wherein said aryl silane substrate has the formula:

and said cis-diol has the formula:
wherein:

R\(^1\), R\(^2\), and R\(^3\) are each independently selected from
hydrogen, a halogen, aryl, a linear or branched C\(_{1-18}\) alkyl, a linear
or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl,
halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R;

R\(^4\) is selected from hydrogen, a halogen, linear or branched
C\(_{1-18}\) alkyl, linear or branched C\(_{2-18}\) alkenyl, linear or branched
C\(_{2-18}\) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R,
SiR\(^1\)R\(^2\)R\(^3\), or a bridging group between two arene or substituted
arene moieties;

n is 0-5;

R is hydrogen, linear or branched C\(_{1-18}\) alkyl, or SiR\(^1\)R\(^2\)R\(^3\);

and

X is a divalent linear or branched C\(_{1-18}\) alkyl, C\(_{2-18}\) alkenyl,
C\(_{2-18}\) alkynyl spacer, S, O or NR\(_{1-2}\).

49. The method as claimed in claim 48 wherein:

R\(^1\), R\(^2\), and R\(^3\) are each independently selected from hydrogen, a linear or
branched C\(_{1-5}\) alkyl, a linear or branched C\(_{2-5}\) alkenyl, a linear or branched C\(_{2-5}\)
C\(_5\) alkynyl, halomethyl, or OR;
$R^4$ is selected from hydrogen, halogen, a linear or branched C$_1$-C$_5$ alkyl, a linear or branched C$_2$-C$_5$ alkenyl, a linear or branched C$_2$-C$_5$ alkynyl, CN, NO$_2$, OR or Si$R^1R^2R^3$;

$R$ is hydrogen, methyl, or ethyl; and

$X$ is either a divalent linear or branched C$_1$-C$_5$ alkyl, C$_2$-C$_5$ alkenyl, or C$_2$-C$_5$ alkynyl spacer.

50. The method as claimed in claim 48 wherein:

$R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl; and

$R^4$ is selected from hydrogen, halogen, a linear or branched C$_1$-C$_3$ alkyl, a linear or branched C$_2$-C$_3$ alkenyl, a linear or branched C$_2$-C$_3$ alkynyl, CN, NO$_2$, OR or Si$R^1R^2R^3$.

51. The method as claimed in claim 48 further comprising reacting said cis-diol with 2,2-dimethoxypropane to convert said cis-diol to an acetonide derivative having the formula:
52. The method as claimed in claim 48 further comprising contacting a diol dehydrogenase enzyme with said cis-diol to convert said cis-diol to a corresponding catechol having the formula:

![Chemical Structure]

53. A compound comprising a cis-diol having the formula:

![Chemical Structure]

wherein:

- $R^1, R^2,$ and $R^3$ are each independently selected from hydrogen, a halogen, an aryl, a linear or branched C$_1$-C$_{18}$ alkyl, a linear or branched C$_2$-C$_{18}$ alkenyl, a linear or branched C$_2$-C$_{18}$ alkynyl, OR, SR, NR$_2$, or O(CO)R; and
- $R$ is hydrogen, linear or branched C$_1$-C$_{18}$ alkyl, or SiR$^1$R$^2$R$^3$.

54. The compound as claimed in claim 53 wherein:

- $R^1, R^2,$ and $R^3$ are each independently selected from hydrogen, a linear or branched C$_1$-C$_5$ alkyl, a linear or branched C$_2$-C$_5$ alkenyl, a linear or branched C$_2$-C$_5$ alkynyl, halomethyl, or OR; and
R is hydrogen, methyl, or ethyl.

55. The compound as claimed in claim 53 wherein $R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl.

56. The compound as claimed in claim 53 wherein said cis-diol comprises:

```
\begin{align*}
\text{SiMe}_2 \quad \text{OH} \\
\text{OH} \\
\text{OH}
\end{align*}
```

57. The compound as claimed in claim 53 wherein said cis-diol comprises

```
\begin{align*}
\text{SiMe}_2 \text{H} \\
\text{OH} \\
\text{OH} \\
\text{OH}
\end{align*}
```

58. The compound as claimed in claim 53 wherein said cis-diol comprises

```
\begin{align*}
\text{SiMe}_3 \\
\text{OH} \\
\text{OH} \\
\text{OH}
\end{align*}
```
59. The compound as claimed in claim 53 wherein said cis-diol comprises

![Chemical Structure](image1)

60. The compound as claimed in claim 53 wherein said cis-diol comprises

![Chemical Structure](image2)

5

61. The compound as claimed in claim 53 wherein said cis-diol comprises

![Chemical Structure](image3)

62. A compound comprising a cis-diol having the formula:

![Chemical Structure](image4)

wherein:
R\(^1\), R\(^2\), and R\(^3\) are each independently selected from hydrogen, a halogen, aryl, a linear or branched C\(_{1-18}\) alkyl, a linear or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R;

R\(^4\) is selected from hydrogen, a halogen, linear or branched C\(_{1-18}\) alkyl, linear or branched C\(_{2-18}\) alkenyl, linear or branched C\(_{2-18}\) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R, SiR\(^1\)R\(^2\)R\(^3\), or a bridging group between two arene or substituted arene moieties;

n is 0-5;

R is hydrogen, linear or branched C\(_{1-18}\) alkyl, or SiR\(^1\)R\(^2\)R\(^3\);

X is a divalent linear or branched C\(_{1-18}\) alkyl, C\(_{2-18}\) alkenyl, or C\(_{2-18}\) alkynyl spacer, except when X=C\(_2\) alkynyl and R\(^1\)=R\(^2\)=R\(^3\) then R\(^1\)=R\(^2\)=R\(^3\) cannot be -CH\(_3\).

63. The compound as claimed in claim 62 wherein:

R\(^1\), R\(^2\), and R\(^3\) are each independently selected from hydrogen, a linear or branched C\(_{1-5}\) alkyl, a linear or branched C\(_{2-5}\) alkenyl, a linear or branched C\(_{2-5}\) alkynyl, halomethyl, OR;

R\(^4\) is selected from hydrogen, halogen, a linear or branched C\(_{1-5}\) alkyl, a linear or branched C\(_{2-5}\) alkenyl, a linear or branched C\(_{2-5}\) alkynyl, CN, NO\(_2\), OR or SiR\(^1\)R\(^2\)R\(^3\);
R is hydrogen, methyl, or ethyl; and

X is either a divalent linear or branched C_{1-5} alkyl, C_{2-5} alkenyl, or C_{2-5} alkynyl spacer.

64. The compound as claimed in claim 62 wherein:

R^1, R^2, and R^3 are each independently selected from hydrogen, methyl, chloromethyl, or vinyl;

R^4 is selected from hydrogen, halogen, a linear or branched C_{1-3} alkyl, a linear or branched C_{2-3} alkenyl, a linear or branched C_{2-3} alkynyl, CN, NO_2, OR or SiR^1R^2R^3.

65. A compound comprising a silane cis-diol having the formula:

![Chemical Structure](attachment:image.png)

wherein:

R^1, R^2, and R^3 are each independently selected from hydrogen, a halogen, aryl, a linear or branched C_{1-18} alkyl, a linear or branched C_{2-18} alkenyl, a linear or branched C_{2-18} alkynyl, halomethyl, OR, SR, NR_2, or O(CO)R;

R^4 is selected from hydrogen, a halogen, linear or branched C_{1-18} alkyl, linear or branched C_{2-18} alkenyl, linear or branched C_{2-18} alkynyl, or...
C₂⁻C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂₋₃, O(CO)R,
SiR¹R²R³, or a bridging group between two arene or substituted
arene moieties;

n is 0-5; and

5 R is hydrogen, linear or branched C₁⁻C₁₈ alkyl, or SiR¹R²R³.

66. The compound as claimed in claim 65 wherein:

R¹, R², and R³ are each independently selected from hydrogen, a linear or
branched C₁⁻C₅ alkyl, a linear or branched C₂⁻C₅ alkenyl, a linear or branched C₂⁻

10 C₅ alkynyl, halomethyl, or OR;

R⁴ is selected from hydrogen, halogen, a linear or branched C₁⁻C₅ alkyl, a
linear or branched C₂⁻C₅ alkenyl, a linear or branched C₂⁻C₅ alkynyl, CN, NO₂, OR
or SiR¹R²R³; and

15 R is hydrogen, methyl, or ethyl.

67. The compound as claimed in claim 65 wherein:

R¹, R², and R³ are each independently selected from hydrogen, methyl,
chloromethyl, or vinyl; and

20 R⁴ is selected from hydrogen, halogen, a linear or branched C₁⁻C₅ alkyl, a
linear or branched C₂⁻C₃ alkenyl, a linear or branched C₂⁻C₃ alkynyl, CN, NO₂, OR
or SiR¹R²R³.
68. A compound comprising a silane cis-diol having the formula:

![Chemical Structure]

wherein:

- $R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, a halogen, aryl, a linear or branched $C_{1-18}$ alkyl, a linear or branched $C_{2-18}$ alkenyl, a linear or branched $C_{2-18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R;
- $R^4$ is selected from hydrogen, a halogen, linear or branched $C_{1-18}$ alkyl, linear or branched $C_{2-18}$ alkenyl, linear or branched $C_{2-18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, SiR$^1$R$^2$R$^3$, or a bridging group between two arene or substituted arene moieties;
- $n$ is 0-5; and
- $R$ is hydrogen, linear or branched $C_{1-18}$ alkyl, or SiR$^1$R$^2$R$^3$.

69. The compound as claimed in claim 68 wherein:

- $R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, a linear or branched $C_{1-5}$ alkyl, a linear or branched $C_{2-5}$ alkenyl, a linear or branched $C_{2-5}$ alkynyl, halomethyl, or OR;
R^4 is selected from hydrogen, halogen, a linear or branched C_1-C_6 alkyl, a linear or branched C_2-C_5 alkenyl, a linear or branched C_2-C_5 alkynyl, CN, NO_2, OR or SiR^1R^2R^3; and

R is hydrogen, methyl, or ethyl.

70. The compound as claimed in claim 68 wherein:

R^1, R^2, and R^3 are each independently selected from hydrogen, methyl, chloromethyl, or vinyl; and

R^4 is selected from hydrogen, halogen, a linear or branched C_1-C_3 alkyl, a linear or branched C_2-C_3 alkenyl, a linear or branched C_2-C_3 alkynyl, CN, NO_2, OR or SiR^1R^2R^3.

71. A compound comprising a silane cis-diol having the formula:

\[
\text{SiR}^1\text{R}^2\text{R}^3
\]

\[
\text{(OH)}_2
\]

\[
\text{(CH}_2\text{)}_n
\]

\[
\text{(R}^4\text{)}_n\]

wherein:

R^1, R^2, and R^3 are each independently selected from hydrogen, a halogen, aryl, a linear or branched C_1-C_{18} alkyl, a linear or branched C_2-C_{18} alkenyl, a linear or branched C_2-C_{18} alkynyl, halomethyl, OR, SR, NR_{2-3}, or O(CO)R;

R^4 is selected from hydrogen, a halogen, linear or branched C_1-C_{18} alkyl, linear or branched C_2-C_{18} alkenyl, linear or branched
C_{2-18} alkynyl, halomethyl, CF_{3}, CN, NO_{2}, SR, OR, NR_{2-3}, O(CO)R,
SiR^{1}R^{2}R^{3}, or a bridging group between two arene or substituted
arene moieties;

n is 0-5;

R is hydrogen, linear or branched C_{1-18} alkyl, or SiR^{1}R^{2}R^{3};

and

X is a divalent linear or branched C_{1-18} alkyl, C_{2-18} alkenyl,
C_{2-18} alkynyl spacer, S, O or NR_{1-2}.

72. The compound as claimed in claim 71 wherein:

R^{1}, R^{2}, and R^{3} are each independently selected from hydrogen, a linear or
branched C_{1-5} alkyl, a linear or branched C_{2-5} alkenyl, a linear or branched C_{2-}
C_{5} alkynyl, halomethyl, or OR;

R^{4} is selected from hydrogen, halogen, a linear or branched C_{1-5} alkyl, a
linear or branched C_{2-5} alkenyl, a linear or branched C_{2-5} alkynyl, CN, NO_{2}, OR
or SiR^{1}R^{2}R^{3};

R is hydrogen, methyl, or ethyl; and

X is either a divalent linear or branched C_{1-5} alkyl, C_{2-5} alkenyl, or C_{2-5}
alkynyl spacer.

73. The compound as claimed in claim 71 wherein:

R^{1}, R^{2}, and R^{3} are each independently selected from hydrogen, methyl,
chloromethyl, or vinyl; and
R\(^4\) is selected from hydrogen, halogen, a linear or branched C\(_1\)-C\(_3\) alkyl, a linear or branched C\(_2\)-C\(_3\) alkenyl, a linear or branched C\(_2\)-C\(_3\) alkynyl, CN, NO\(_2\), OR or SiR\(^1\)R\(^2\)R\(^3\).

74. A compound comprising an acetonide having the formula:

![Acetonide structure](image)

wherein:

R\(^1\), R\(^2\), and R\(^3\) are each independently selected from hydrogen, a halogen, an aryl, a linear or branched C\(_1\)-C\(_{18}\) alkyl, a linear or branched C\(_2\)-C\(_{18}\) alkenyl, a linear or branched C\(_2\)-C\(_{18}\) alkynyl, OR, SR, NR\(_2\)-, or O(CO)R, except when R\(^1\)=R\(^2\)=R\(^3\) then R\(^1\)=R\(^2\)=R\(^3\) cannot be -CH\(_3\); and

R is hydrogen, linear or branched C\(_1\)-C\(_{18}\) alkyl, or SiR\(^1\)R\(^2\)R\(^3\).

75. The compound as claimed in claim 74 wherein:

R\(^1\), R\(^2\), and R\(^3\) are each independently selected from hydrogen, a linear or branched C\(_1\)-C\(_6\) alkyl, a linear or branched C\(_2\)-C\(_6\) alkenyl, a linear or branched C\(_2\)-C\(_6\) alkynyl, halomethyl, or OR; and

R is hydrogen, methyl, or ethyl.
76. The compound as claimed in claim 74 wherein $R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl.

77. The compound as claimed in claim 74 wherein said acetonide comprises:

78. The compound as claimed in claim 74 wherein said acetonide comprises:

79. The compound as claimed in claim 74 wherein said acetonide comprises:

80. The compound as claimed in claim 74 wherein said acetonide comprises:
81. A compound comprising an acetonide having the formula:

\[
\begin{array}{c}
\text{Si}R^1R^2R^3 \\
\text{(R^4)n} \\
\text{CH}_3 \\
\text{CH}_3
\end{array}
\]

wherein:

- \( R^1, R^2, \) and \( R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \( C_{1-18} \) alkyl, a linear or branched \( C_{2-18} \) alkenyl, a linear or branched \( C_{2-18} \) alkynyl, halomethyl, OR, SR, NR_2-3, or \( O(CO)R; \)

- \( R^4 \) is selected from hydrogen, a halogen, linear or branched \( C_{1-18} \) alkyl, linear or branched \( C_{2-18} \) alkenyl, linear or branched \( C_{2-18} \) alkynyl, halomethyl, \( CF_3, CN, NO_2, \) SR, OR, NR_2-3, \( O(CO)R, \) \( \text{Si}R^1R^2R^3, \) or a bridging group between two arene or substituted arene moieties;

- \( n \) is 0-5;

- \( R \) is hydrogen, linear or branched \( C_{1-18} \) alkyl, or \( \text{Si}R^1R^2R^3; \)

- \( X \) is a divalent linear or branched \( C_{1-18} \) alkyl, \( C_{2-18} \) alkenyl, or \( C_{2-18} \) alkynyl spacer, except when \( X=C_2 \) alkynyl and \( R^1=R^2=R^3 \) then \( R^1=R^2=R^3 \) cannot be \(-\text{CH}_3\).
82. The compound as claimed in claim 81 wherein:

R¹, R², and R³ are each independently selected from hydrogen, a linear or branched C₁₋₅ alkyl, a linear or branched C₂₋₅ alkenyl, a linear or branched C₂₋₅ alkynyl, C₅ alkynyl, halomethyl, or OR;

R⁴ is selected from hydrogen, halogen, a linear or branched C₁₋₅ alkyl, a linear or branched C₂₋₅ alkenyl, a linear or branched C₂₋₅ alkynyl, CN, NO₂, OR or SiR¹R²R³;

R is hydrogen, methyl, or ethyl; and

X is either a divalent linear or branched C₁₋₅ alkyl, C₂₋₅ alkenyl, or C₂₋₅ alkynyl spacer.

83. The compound as claimed in claim 81 wherein:

R¹, R², and R³ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl;

R⁴ is selected from hydrogen, halogen, a linear or branched C₁₋₃ alkyl, a linear or branched C₂₋₃ alkenyl, a linear or branched C₂₋₃ alkynyl, CN, NO₂, OR or SiR¹R²R³.
84. A compound comprising an acetonide having the formula:

\[
\begin{align*}
(R^4)n & \quad \text{Si}R^1R^2R^3 \\
\text{O} & \quad \text{H}_2\text{C} \\
\text{O} & \quad \text{CH}_3 \\
\end{align*}
\]

wherein:

- \( R^1, R^2, \) and \( R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \( C_1-C_{18} \) alkyl, a linear or branched \( C_2-C_{18} \) alkenyl, a linear or branched \( C_2-C_{18} \) alkynyl, halomethyl, OR, SR, NR_{2-3}, or O(CO)R;

- \( R^4 \) is selected from hydrogen, a halogen, linear or branched \( C_1-C_{18} \) alkyl, linear or branched \( C_2-C_{18} \) alkenyl, linear or branched \( C_2-C_{18} \) alkynyl, halomethyl, CF_{3}, CN, NO_{2}, SR, OR, NR_{2-3}, O(CO)R, SiR^1R^2R^3, \) or a bridging group between two arene or substituted arene moieties;

- \( n \) is 0-5; and

- \( R \) is hydrogen, linear or branched \( C_1-C_{18} \) alkyl, or SiR^1R^2R^3.

85. The compound as claimed in claim 84 wherein:

- \( R^1, R^2, \) and \( R^3 \) are each independently selected from hydrogen, a linear or branched \( C_1-C_{6} \) alkyl, a linear or branched \( C_2-C_{5} \) alkenyl, a linear or branched \( C_2-C_{5} \) alkynyl, halomethyl, or OR;
R^4 is selected from hydrogen, halogen, a linear or branched C_{1-5} alkyl, a linear or branched C_{2-5} alkenyl, a linear or branched C_{2-5} alkynyl, CN, NO_2, OR or SiR^3; and

R is hydrogen, methyl, or ethyl.

86. The compound as claimed in claim 84 wherein:

R^1, R^2, and R^3 are each independently selected from hydrogen, methyl, chloromethyl, or vinyl; and

R^4 is selected from hydrogen, halogen, a linear or branched C_{1-3} alkyl, a linear or branched C_{2-3} alkenyl, a linear or branched C_{2-3} alkynyl, CN, NO_2, OR or SiR^4.

87. A compound comprising an acetone having the formula:

![Chemical Structure]

wherein:

R^1, R^2, and R^3 are each independently selected from hydrogen, a halogen, aryl, a linear or branched C_{1-18} alkyl, a linear or branched C_{2-18} alkenyl, a linear or branched C_{2-18} alkynyl, halomethyl, OR, SR, NR_3, or O(CO)R;
R^4 is selected from hydrogen, a halogen, linear or branched C_1-C_{18} alkyl, linear or branched C_2-C_{18} alkenyl, linear or branched C_{2-18} alkynyl, halomethyl, CF_3, CN, NO_2, SR, OR, NR_{2-3}, O(CO)R, SiR^1R^2R^3, or a bridging group between two arene or substituted arene moieties;

n is 0-5; and

R is hydrogen, linear or branched C_{1-18} alkyl, or SiR^1R^2R^3.

88. The compound as claimed in claim 87 wherein:

R^1, R^2, and R^3 are each independently selected from hydrogen, a linear or branched C_{1-8} alkyl, a linear or branched C_{2-18} alkenyl, a linear or branched C_{2-18} alkynyl, halomethyl, or OR;

R^4 is selected from hydrogen, halogen, a linear or branched C_{1-8} alkyl, a linear or branched C_{2-18} alkenyl, a linear or branched C_{2-18} alkynyl, CN, NO_2, OR or SiR^1R^2R^3; and

R is hydrogen, methyl, or ethyl.

89. The compound as claimed in claim 87 wherein:

R^1, R^2, and R^3 are each independently selected from hydrogen, methyl, chloromethyl, or vinyl; and

R^4 is selected from hydrogen, halogen, a linear or branched C_{1-3} alkyl, a linear or branched C_{2-3} alkenyl, a linear or branched C_{2-3} alkynyl, CN, NO_2, OR or SiR^1R^2R^3.
90. A compound comprising an acetonide having the formula:

wherein:

R₁, R², and R³ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C₁₋C₁₈ alkyl, a linear or branched C₂₋C₁₈ alkenyl, a linear or branched C₂₋C₁₈ alkynyl, halomethyl, OR, SR, NR₂₋₃, or O(CO)R;

R⁴ is selected from hydrogen, a halogen, linear or branched C₁₋C₁₈ alkyl, linear or branched C₂₋C₁₈ alkenyl, linear or branched C₂₋C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, OR, NR₂₋₃, O(CO)R, SiR¹R²R³, or a bridging group between two arene or substituted arene moieties;

n is 0-5;

R is hydrogen, linear or branched C₁₋C₁₈ alkyl, or SiR¹R²R³;

and

X is a divalent linear or branched C₁₋C₁₈ alkyl, C₂₋C₁₈ alkenyl, C₂₋C₁₈ alkynyl spacer, S, O or NR₁₋₂.
91. The compound as claimed in claim 90 wherein:

R¹, R², and R³ are each independently selected from hydrogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, halomethyl, or OR;

R⁴ is selected from hydrogen, halogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, CN, NO₂, OR or SiR¹R²R³;

R is hydrogen, methyl, or ethyl; and

X is either a divalent linear or branched C₁-C₅ alkyl, C₂-C₅ alkenyl, or C₂-C₅ alkynyl spacer.

92. The compound as claimed in claim 90 wherein:

R¹, R², and R³ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl; and

R⁴ is selected from hydrogen, halogen, a linear or branched C₁-C₃ alkyl, a linear or branched C₂-C₃ alkenyl, a linear or branched C₂-C₃ alkynyl, CN, NO₂, OR or SiR¹R²R³.

93. A compound comprising a catechol having the formula:

```
 O
 / |
/ |
 OH
```

wherein:
R¹, R², and R³ are each independently selected from hydrogen, a halogen, an aryl, a linear or branched C₁-C₁₈ alkyl, a linear or branched C₂⁻C₁₈ alkenyl, a linear or branched C₂⁻C₁₈ alkynyl, OR, SR, NR₂⁻₃, or O(CO)R; and

5 R is hydrogen, linear or branched C₁⁻C₁₈ alkyl, or SiR¹R²R³.

94. The compound as claimed in claim 93 wherein:

R¹, R², and R³ are each independently selected from hydrogen, a linear or branched C₁⁻C₅ alkyl, a linear or branched C₂⁻C₅ alkenyl, a linear or branched C₂⁻C₅ alkynyl, halomethyl, or OR; and

10 R is hydrogen, methyl, or ethyl.

95. The compound as claimed in claim 93 wherein R¹, R², and R³ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl.

15 96. The compound as claimed in claim 93 wherein said catechol comprises:
97. The compound as claimed in claim 93 wherein said catechol comprises:

\[
\text{SiMe}_2\text{H} \\
\text{OH} \\
\text{OH}
\]

98. A compound comprising a catechol having the formula:

\[
\text{SiR}^1\text{R}^2\text{R}^3 \\
\text{(R}^4\text{)n} \\
\text{OH} \\
\text{OH}
\]

wherein:

- $R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_{1-18}$ alkyl, a linear or branched C$_{2-18}$ alkenyl, a linear or branched C$_{2-18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R;

- $R^4$ is selected from hydrogen, a halogen, linear or branched C$_{1-18}$ alkyl, linear or branched C$_{2-18}$ alkenyl, linear or branched C$_{2-18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, SiR$_1^1$R$_2^2$R$_3^3$, or a bridging group between two arene or substituted arene moieties;

- n is 0-5;

- R is hydrogen, linear or branched C$_{1-18}$ alkyl, or SiR$_1^1$R$_2^2$R$_3^3$. 
X is a divalent linear or branched C₁₋C₁₈ alkyl, C₂₋C₁₈ alkenyl,
or C₂₋C₁₈ alkylnyl spacer.

99. The compound as claimed in claim 98 wherein:

R¹, R², and R³ are each independently selected from hydrogen, a linear or branched C₁₋C₅ alkyl, a linear or branched C₂₋C₅ alkenyl, a linear or branched C₂₋C₅ alkylnyl, halomethyl, or OR;

R⁴ is selected from hydrogen, halogen, a linear or branched C₁₋C₅ alkyl, a linear or branched C₂₋C₅ alkenyl, a linear or branched C₂₋C₅ alkylnyl, CN, NO₂, OR or SiR¹R²R³;

R is hydrogen, methyl, or ethyl; and

X is either a divalent linear or branched C₁₋C₅ alkyl, C₂₋C₅ alkenyl, or C₂₋C₅ alkylnyl spacer.

100. The compound as claimed in claim 98 wherein:

R¹, R², and R³ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl;

R⁴ is selected from hydrogen, halogen, a linear or branched C₁₋C₃ alkyl, a linear or branched C₂₋C₃ alkenyl, a linear or branched C₂₋C₃ alkylnyl, CN, NO₂, OR or SiR¹R²R³.
101. A compound comprising a catechol having the formula:

\[
\begin{align*}
(R^4)_{n} & \text{SiR}^1\text{R}^2\text{R}^3 \\
& \text{OH} \\
& \text{OH}
\end{align*}
\]

wherein:

- \( R^1, R^2, \) and \( R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched C<sub>1</sub>-C<sub>18</sub> alkyl, a linear or branched C<sub>2</sub>-C<sub>18</sub> alkenyl, a linear or branched C<sub>2</sub>-C<sub>18</sub> alkynyl, halomethyl, OR, SR, NR<sub>2-3</sub>, or O(CO)R;
- \( R^4 \) is selected from hydrogen, a halogen, linear or branched C<sub>1</sub>-C<sub>18</sub> alkyl, linear or branched C<sub>2</sub>-C<sub>18</sub> alkenyl, linear or branched C<sub>2</sub>-C<sub>18</sub> alkynyl, halomethyl, CF<sub>3</sub>, CN, NO<sub>2</sub>, SR, OR, NR<sub>2-3</sub>, O(CO)R, SiR<sup>1</sup>R<sup>2</sup>R<sup>3</sup>, or a bridging group between two arene or substituted arene moieties;
- \( n \) is 0-5; and
- \( R \) is hydrogen, linear or branched C<sub>1</sub>-C<sub>18</sub> alkyl, or SiR<sup>1</sup>R<sup>2</sup>R<sup>3</sup>.

102. The compound as claimed in claim 101 wherein:

- \( R^1, R^2, \) and \( R^3 \) are each independently selected from hydrogen, a linear or branched C<sub>1</sub>-C<sub>5</sub> alkyl, a linear or branched C<sub>2</sub>-C<sub>5</sub> alkenyl, a linear or branched C<sub>2</sub>-C<sub>5</sub> alkynyl, halomethyl, or OR;
R\(^4\) is selected from hydrogen, halogen, a linear or branched C\(_{1-5}\) alkyl, a linear or branched C\(_{2-5}\) alkenyl, a linear or branched C\(_{2-5}\) alkynyl, CN, NO\(_2\), OR or SiR\(^1\)R\(^2\)R\(^3\); and

R is hydrogen, methyl, or ethyl.

103. The compound as claimed in claim 101 wherein:

R\(^1\), R\(^2\), and R\(^3\) are each independently selected from hydrogen, methyl, chloromethyl, or vinyl; and

R\(^4\) is selected from hydrogen, halogen, a linear or branched C\(_{1-3}\) alkyl, a linear or branched C\(_{2-3}\) alkenyl, a linear or branched C\(_{2-3}\) alkynyl, CN, NO\(_2\), OR or SiR\(^1\)R\(^2\)R\(^3\).

104. A compound comprising a catechol having the formula:

\[
\begin{align*}
\text{(R}^4\text{n)} & \quad \text{SiR}^1\text{R}^2\text{R}^3 \\
& \quad \text{HO} \\
& \quad \text{OH}
\end{align*}
\]

wherein:

R\(^1\), R\(^2\), and R\(^3\) are each independently selected from hydrogen, a halogen, aryl, a linear or branched C\(_{1-18}\) alkyl, a linear or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R;
R⁴ is selected from hydrogen, a halogen, linear or branched C₁-C₁₈ alkyl, linear or branched C₂-C₁₈ alkenyl, linear or branched C₂-C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂-3, O(CO)R, SiR¹R²R³, or a bridging group between two arene or substituted arene moieties;

n is 0-5; and

R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³.

105. The compound as claimed in claim 104 wherein:

R¹, R², and R³ are each independently selected from hydrogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, halomethyl, or OR;

R⁴ is selected from hydrogen, halogen, a linear or branched C₁-C₅ alkyl, a linear or branched C₂-C₅ alkenyl, a linear or branched C₂-C₅ alkynyl, CN, NO₂, or OR or SiR¹R²R³; and

R is hydrogen, methyl, or ethyl.

106. The compound as claimed in claim 104 wherein:

R¹, R², and R³ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl; and

R⁴ is selected from hydrogen, halogen, a linear or branched C₁-C₃ alkyl, a linear or branched C₂-C₃ alkenyl, a linear or branched C₂-C₃ alkynyl, CN, NO₂, OR or SiR¹R²R³.
107. A compound comprising a catechol having the formula:

\[
\begin{array}{c}
\text{SiR}^1 \text{R}^2 \text{R}^3 \\
\text{(R}^4\text{n)} \\
\text{X(CH}_2\text{n)} \\
\text{(OH)}_2
\end{array}
\]

wherein:

- \( \text{R}^1, \text{R}^2, \text{and } \text{R}^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched \( \text{C}_1-\text{C}_{18} \) alkyl, a linear or branched \( \text{C}_2-\text{C}_{18} \) alkenyl, a linear or branched \( \text{C}_2-\text{C}_{18} \) alkynyl, halomethyl, OR, SR, NR_{2-3}, or O(CO)R;
- \( \text{R}^4 \) is selected from hydrogen, a halogen, linear or branched \( \text{C}_1-\text{C}_{18} \) alkyl, linear or branched \( \text{C}_2-\text{C}_{18} \) alkenyl, linear or branched \( \text{C}_2-\text{C}_{18} \) alkynyl, halomethyl, CF_{3}, CN, NO_{2}, SR, OR, NR_{2-3}, O(CO)R, SiR^{1}R^{2}R^{3}, \) or a bridging group between two arene or substituted arene moieties;
- \( n \) is 0-5;
- \( R \) is hydrogen, linear or branched \( \text{C}_1-\text{C}_{18} \) alkyl, or SiR^{1}R^{2}R^{3};

and

- \( X \) is a divalent linear or branched \( \text{C}_1-\text{C}_{18} \) alkyl, \( \text{C}_2-\text{C}_{18} \) alkenyl, \( \text{C}_2-\text{C}_{18} \) alkynyl spacer, S, O or NR_{1-2}. 

108. The compound as claimed in claim 107 wherein:

\[ R^1, R^2, \text{and } R^3 \text{ are each independently selected from hydrogen, a linear or branched } C_{1-5} \text{ alkyl, a linear or branched } C_{2-6} \text{ alkenyl, a linear or branched } C_{2-5} \text{ alkynyl, halomethyl, or OR;} \]

\[ R^4 \text{ is selected from hydrogen, halogen, a linear or branched } C_{1-5} \text{ alkyl, a linear or branched } C_{2-5} \text{ alkenyl, a linear or branched } C_{2-5} \text{ alkynyl, CN, NO}_2, \text{ OR or SiR}^1R^2R^3; \]

\[ R \text{ is hydrogen, methyl, or ethyl; and } \]

\[ X \text{ is either a divalent linear or branched } C_{1-5} \text{ alkyl, } C_{2-5} \text{ alkenyl, or } C_{2-5} \text{ alkynyl spacer.} \]

109. The compound as claimed in claim 107 wherein:

\[ R^1, R^2, \text{and } R^3 \text{ are each independently selected from hydrogen, methyl, chloromethyl, or vinyl; and } \]

\[ R^4 \text{ is selected from hydrogen, halogen, a linear or branched } C_{1-3} \text{ alkyl, a linear or branched } C_{2-3} \text{ alkenyl, a linear or branched } C_{2-3} \text{ alkynyl, CN, NO}_2, \text{ OR or SiR}^1R^2R^3. \]
110. A compound comprising:

\[ \text{SiR}^1 \text{R}^2 \text{R}^3 \]

\[ \text{(R}^4) \text{n} \]

or

\[ \text{SiR}^1 \text{R}^2 \text{R}^3 \]

\[ \text{(R}^4) \text{n} \]

wherein:

\[ \text{R}^1, \text{R}^2, \text{and R}^3 \text{ are each independently selected from} \]

hydrogen, a halogen, aryl, a linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, a linear or branched C\textsubscript{2}-C\textsubscript{18} alkynyl, halomethyl, OR, SR, NR\textsubscript{2-3}, or O(CO)R;

\[ \text{R}^4 \text{ is selected from hydrogen, a halogen, linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, linear or branched C\textsubscript{2}-C\textsubscript{18} alkynyl, linear or branched C\textsubscript{2}-C\textsubscript{18} alkynyl, halomethyl, CF}_3, \text{CN, NO}_2, \text{SR, OR, NR}_2, \text{O(CO)R, SiR}^1 \text{R}^2 \text{R}^3, \text{or a bridging group between two arene or substituted arene moieties;} \]

\[ n \text{ is 0-5;} \]

\[ \text{R is hydrogen, linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, or SiR}^1 \text{R}^2 \text{R}^3; \]
X is nothing, a divalent linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, C\textsubscript{2}-C\textsubscript{18} alkenyl, and C\textsubscript{2}-C\textsubscript{18} alkynyl spacer, except that when X=nothing then R\textsuperscript{1}, R\textsuperscript{2}, and R\textsuperscript{3} cannot be R\textsuperscript{1}=R\textsuperscript{2}=CH\textsubscript{3} and R\textsuperscript{3}=H or R\textsuperscript{1}=R\textsuperscript{2}=R\textsuperscript{3}=CH\textsubscript{3}.

111. The compound as claimed in claim 110 wherein said compound comprises:

\begin{center}
\includegraphics[width=0.2\textwidth]{image.png}
\end{center}

112. A di-O-acyl comprising a compound having the formula:

\begin{center}
\includegraphics[width=0.5\textwidth]{image.png}
\end{center}

wherein:

- R\textsuperscript{1}, R\textsuperscript{2}, and R\textsuperscript{3} are each independently selected from hydrogen, a halogen, aryl, a linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, a linear or branched C\textsubscript{2}-C\textsubscript{18} alkenyl, a linear or branched C\textsubscript{2}-C\textsubscript{18} alkynyl, halomethyl, OR, SR, NR\textsubscript{2,3}, or O(CO)R;

- R\textsuperscript{4} is selected from hydrogen, a halogen, linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, linear or branched C\textsubscript{2}-C\textsubscript{18} alkenyl, linear or branched C\textsubscript{2}-C\textsubscript{18} alkynyl, halomethyl, CF\textsubscript{3}, CN, NO\textsubscript{2}, SR, OR, NR\textsubscript{2,3}, O(CO)R,
SiR₁R₂R₃, or a bridging group between two arene or substituted arene moieties;
n is 0-5;
R₅ is linear or branched C₁-C₁₈ alkyl, halomethyl, linear or branched C₂-C₁₈ alkenyl, or linear or branched C₂-C₁₈ alkynyl;
R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR₁R₂R₃;
and
X is nothing, a divalent linear or branched C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, and C₂-C₁₈ alkynyl spacer.

113. The compound as claimed in claim 112 wherein said di-O-acyl comprises:

![Chemical Structure](image)

114. A silyl ether comprising a compound having the formula:

![Chemical Structure](image)

wherein:

R₁, R₂, and R₃ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C₁-C₁₈ alkyl, a linear
or branched C\textsubscript{2}-C\textsubscript{18} alkenyl, a linear or branched C\textsubscript{2}-C\textsubscript{18} alkynyl, halomethyl, OR, SR, NR\textsubscript{2-3}, or O(CO)R;

\( R^4 \) is selected from hydrogen, a halogen, linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, linear or branched C\textsubscript{2}-C\textsubscript{18} alkenyl, linear or branched C\textsubscript{2}-C\textsubscript{18} alkynyl, halomethyl, CF\textsubscript{3}, CN, NO\textsubscript{2}, SR, OR, NR\textsubscript{2-3}, O(CO)R, SiR\textsuperscript{1}R\textsuperscript{2}R\textsuperscript{3}, or a bridging group between two arene or substituted arene moieties;

\( n \) is 0-5;

\( R \) is hydrogen, linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, or SiR\textsuperscript{1}R\textsuperscript{2}R\textsuperscript{3};

and

\( X \) is nothing, a divalent linear or branched C\textsubscript{1}-C\textsubscript{18} alkyl, C\textsubscript{2}-C\textsubscript{18} alkenyl, or C\textsubscript{2}-C\textsubscript{18} alkynyl spacer.

115. The compound as claimed in claim 114 wherein said compound comprises

![Structure](image)

116. A boronate ester comprising a compound having the formula:

![Structure](image)
wherein:

R¹, R², and R³ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C₁-C₁₈ alkyl, a linear or branched C₂-C₁₈ alkenyl, a linear or branched C₂-C₁₈ alkynyl, halomethyl, OR, SR, NR₂-₃, or O(CO)R;

R⁴ is selected from hydrogen, a halogen, linear or branched C₁-C₁₈ alkyl, linear or branched C₂-C₁₈ alkenyl, linear or branched C₂-C₁₈ alkynyl, halomethyl, CF₃, CN, NO₂, SR, OR, NR₂-₃, O(CO)R, SiR¹R²R³, or a bridging group between two arene or substituted arene moieties;

n is 0-5;

R⁵ is aryl, linear or branched C₁-C₁₈ alkyl, linear or branched C₂-C₁₈ alkenyl, or linear or branched C₂-C₁₈ alkynyl;

R is hydrogen, linear or branched C₁-C₁₈ alkyl, or SiR¹R²R³;

and

X is nothing, a divalent linear or branched C₁-C₁₈ alkyl, C₂-C₁₈ alkenyl, and C₂-C₁₈ alkynyl spacer.

117. The compound as claimed in claim 116 wherein said compound comprises

![Chemical Structure](image-url)
118. An epoxy comprising a compound having the formula:

\[
\begin{align*}
\text{SiR}^1\text{R}^2\text{R}^3 \\
(R^4)_n \\
\text{OH} \\
\text{O} \\
\text{OH} \\
\text{SiR}^1\text{R}^2\text{R}^3
\end{align*}
\]

or

\[
\begin{align*}
\text{O} \\
(R^4)_n \\
\text{OH} \\
\text{OH} \\
\text{SiR}^1\text{R}^2\text{R}^3
\end{align*}
\]

wherein:

\[
\begin{align*}
\text{R}^1, \text{R}^2, \text{and R}^3 \text{ are each independently selected from} \\
\text{hydrogen, a halogen, aryl, a linear or branched C}_1\text{-C}_{18} \text{ alkyl, a linear} \\
\text{or branched C}_{2-18} \text{ alkenyl, a linear or branched C}_{2-18} \text{ alkynyl,} \\
\text{halomethyl, OR, SR, NR}_{2-3}, \text{ or O(CO)R;}
\end{align*}
\]

\[
\begin{align*}
\text{R}^4 \text{ is selected from hydrogen, a halogen, linear or branched} \\
\text{C}_{1-18} \text{ alkyl, linear or branched C}_{2-18} \text{ alkenyl, linear or branched} \\
\text{C}_{2-18} \text{ alkynyl, halomethyl, CF}_3, \text{ CN, NO}_2, \text{ SR, OR, NR}_{2-3}, \text{ O(CO)R,} \\
\text{SiR}^1\text{R}^2\text{R}^3, \text{ or a bridging group between two arene or substituted} \\
\text{arene moieties;}
\end{align*}
\]

\[
\begin{align*}
n \text{ is 0-5;}
\end{align*}
\]

\[
\begin{align*}
\text{R} \text{ is hydrogen, linear or branched C}_{1-18} \text{ alkyl, or SiR}^1\text{R}^2\text{R}^3;
\end{align*}
\]

and
X is nothing, a divalent linear or branched C_{1-18} alkyl, C_{2-18} alkenyl, and C_{2-18} alkynyl spacer.

119. The compound as claimed in claim 118 wherein said compound comprises

![Chemical Structure](image)

120. The compound as claimed in claim 118 wherein said compound comprises

![Chemical Structure](image)

121. An epoxy comprising a compound having the formula:

![Chemical Structure](image)

or

![Chemical Structure](image)
wherein:

\( R^1, R^2, \text{ and } R^3 \) are each independently selected from hydrogen, a halogen, aryl, a linear or branched C\(_{1-18}\) alkyl, a linear or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R;

\( R^4 \) is selected from hydrogen, a halogen, linear or branched C\(_{1-18}\) alkyl, linear or branched C\(_{2-18}\) alkenyl, linear or branched C\(_{2-18}\) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R, SiR\(_1^1\)R\(_2^2\)R\(_3^3\), or a bridging group between two arene or substituted arene moieties;

\( n \) is 0-5;

\( R \) is hydrogen, linear or branched C\(_{1-18}\) alkyl, or SiR\(_1^1\)R\(_2^2\)R\(_3^3\);

and

\( X \) is nothing, a divalent linear or branched C\(_{1-18}\) alkyl, C\(_{2-18}\) alkenyl, and C\(_{2-18}\) alkynyl spacer, except when \( X=\)nothing then \( R^1, R^2, \text{ and } R^3 \) cannot be \( R^1=R^2=R^3=\text{CH}_3 \).

122. The compound as claimed in claim 121 wherein said compound comprises

```
\[
\text{\includegraphics[width=0.5\textwidth]{compound.png}}
\]
```

wherein \( R= \) H or OH.
123. The compound as claimed in claim 121 wherein said compound comprises

wherein \( R = \text{H or OH} \).

124. A partially or fully saturated compound comprising a compound having the formula:

wherein:
R\(^1\), R\(^2\), and R\(^3\) are each independently selected from hydrogen, a halogen, aryl, a linear or branched C\(_{1-18}\) alkyl, a linear or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R;

R\(^4\) is selected from hydrogen, a halogen, linear or branched C\(_{1-18}\) alkyl, linear or branched C\(_{2-18}\) alkenyl, linear or branched C\(_{2-18}\) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R, SiR\(^1\)R\(^2\)R\(^3\), or a bridging group between two arene or substituted arene moieties;

n is 0-5;

R is hydrogen, linear or branched C\(_{1-18}\) alkyl, or SiR\(^1\)R\(^2\)R\(^3\);

and

X is nothing, a divalent linear or branched C\(_{1-18}\) alkyl, C\(_{2-18}\) alkenyl, and C\(_{2-18}\) alkynyl spacer.

125. The compound as claimed in claim 124 wherein said compound comprises
126. The compound as claimed in claim 124 wherein said compound comprises

SiMe₂H

\[
\begin{array}{c}
\text{OH} \\
\text{OH} \\
\end{array}
\]

127. The compound as claimed in claim 124 wherein said compound comprises

SiMe₂H

\[
\begin{array}{c}
\text{OH} \\
\text{OH} \\
\end{array}
\]

128. A partially or fully saturated compound comprising a compound having the formula:

SiR₁R₂R₃

\[
\begin{array}{c}
\text{O} \\
\text{CH₃} \\
\text{O} \\
\text{CH₃} \\
\end{array}
\]

\( (R^4)n \)

or

SiR₁R₂R₃

\[
\begin{array}{c}
\text{O} \\
\text{CH₃} \\
\text{O} \\
\text{CH₃} \\
\end{array}
\]

\( (R^4)n \)

or
wherein:

$R^1$, $R^2$, and $R^3$ are each independently selected from hydrogen, a halogen, aryl, a linear or branched $C_1$-$C_{18}$ alkyl, a linear or branched $C_2$-$C_{18}$ alkenyl, a linear or branched $C_2$-$C_{18}$ alkynyl, halomethyl, OR, SR, NR$_{2-3}$, or O(CO)R;

$R^4$ is selected from hydrogen, a halogen, linear or branched $C_1$-$C_{18}$ alkyl, linear or branched $C_2$-$C_{18}$ alkenyl, linear or branched $C_2$-$C_{18}$ alkynyl, halomethyl, CF$_3$, CN, NO$_2$, SR, OR, NR$_{2-3}$, O(CO)R, Si$R^1$R$^2$R$^3$, or a bridging group between two arene or substituted arene moieties;

$n$ is 0-5;

$R$ is hydrogen, linear or branched $C_1$-$C_{18}$ alkyl, or Si$R^1$R$^2$R$^3$;

and

$X$ is nothing, a divalent linear or branched $C_1$-$C_{18}$ alkyl, $C_2$-$C_{18}$ alkenyl, and $C_2$-$C_{18}$ alkynyl spacer.
129. The compound as claimed in claim 128 wherein said compound comprises

![Chemical Structure](image)

130. The compound as claimed in claim 128 wherein said compound comprises:

![Chemical Structure](image)

131. The compound as claimed in claim 128 wherein said compound comprises

![Chemical Structure](image)

132. A silanol comprising a compound having the formula:

![Chemical Structure](image)

wherein:

\[ R^1 \text{ and } R^2 \text{ are each independently selected from hydrogen, a halogen, aryl, a linear or branched } C_{1-18} \text{ alkyl, a linear or branched } \]

...
C_{2-C_{18}} alkenyl, a linear or branched C_{2-C_{18}} alkynyl, halomethyl, OR, SR, NR_{2-3}, or O(CO)R;

R^4 is selected from hydrogen, a halogen, linear or branched C_{1-C_{18}} alkyl, linear or branched C_{2-C_{18}} alkenyl, linear or branched C_{2-C_{18}} alkynyl, halomethyl, CF_3, CN, NO_2, SR, OR, NR_{2-3}, O(CO)R, SiR^1R^2R^3, or a bridging group between two arene or substituted arene moieties;

n is 0-5;

R is hydrogen, linear or branched C_{1-C_{18}} alkyl, or SiR^1R^2R^3;

and

X is nothing, a divalent linear or branched C_{1-C_{18}} alkyl, C_{2-C_{18}} alkenyl, and C_{2-C_{18}} alkynyl spacer.

133. The compound as claimed in claim 132 wherein said compound comprises

![Diagram]

134. A silanol comprising a compound having the formula:

![Diagram]

wherein:
R\(^1\) and R\(^2\) are each independently selected from hydrogen, a halogen, aryl, a linear or branched C\(_{1-18}\) alkyl, a linear or branched C\(_{2-18}\) alkenyl, a linear or branched C\(_{2-18}\) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R;

R\(^4\) is selected from hydrogen, a halogen, linear or branched C\(_{1-18}\) alkyl, linear or branched C\(_{2-18}\) alkenyl, linear or branched C\(_{2-18}\) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R, SiR\(^1\)R\(^2\)R\(^3\), or a bridging group between two arene or substituted arene moieties;

n is 0-5;

R is hydrogen, linear or branched C\(_{1-18}\) alkyl, or SiR\(^1\)R\(^2\)R\(^3\);

and

X is nothing, a divalent linear or branched C\(_{1-18}\) alkyl, C\(_{2-18}\) alkenyl, and C\(_{2-18}\) alkynyl spacer.

135. The compound as claimed in claim 134 wherein said compound comprises
136. An alkoxy compound comprising:

wherein:

- $R^1$ and $R^2$ are each independently selected from hydrogen, a halogen, aryl, a linear or branched C$_{1}$-C$_{18}$ alkyl, a linear or branched C$_{2}$-C$_{18}$ alkenyl, a linear or branched C$_{2}$-C$_{18}$ alkynyl, halomethyl, OR, SR, NR$_{2}$-3, or O(CO)R;

- $R^4$ is selected from hydrogen, a halogen, linear or branched C$_{1}$-C$_{18}$ alkyl, linear or branched C$_{2}$-C$_{18}$ alkenyl, linear or branched C$_{2}$-C$_{18}$ alkynyl, halomethyl, CF$_{3}$, CN, NO$_{2}$, SR, OR, NR$_{2}$-3, O(CO)R, SiR$_{1}$R$_{2}$R$_{3}$, or a bridging group between two arene or substituted arene moieties;

- $R^5$ is an aryl, a linear or branched C$_{1}$-C$_{18}$ alkyl, a linear or branched C$_{2}$-C$_{18}$ alkenyl, a linear or branched C$_{2}$-C$_{18}$ alkynyl;

- $n$ is 0-5;

- $R$ is hydrogen, linear or branched C$_{1}$-C$_{18}$ alkyl, or SiR$_{1}$R$_{2}$R$_{3}$;

and

- $X$ is nothing, a divalent linear or branched C$_{1}$-C$_{18}$ alkyl, C$_{2}$-C$_{18}$ alkenyl, and C$_{2}$-C$_{18}$ alkynyl spacer.
137. An alkoxy compound comprising:

\[
\text{SiR}^1\text{R}^2\text{OR}^5
\]

\[
\begin{array}{c}
\text{O} \\
\text{CH}^3 \\
\text{CH}^3 \\
\end{array}
\]

\[(R^4)n\]

wherein:

- R\(^1\) and R\(^2\) are each independently selected from hydrogen, a halogen, aryl, a linear or branched C\(_1\)-C\(_{18}\) alkyl, a linear or branched C\(_2\)-C\(_{18}\) alkenyl, a linear or branched C\(_2\)-C\(_{18}\) alkynyl, halomethyl, OR, SR, NR\(_{2-3}\), or O(CO)R;

- R\(^4\) is selected from hydrogen, a halogen, linear or branched C\(_1\)-C\(_{18}\) alkyl, linear or branched C\(_2\)-C\(_{18}\) alkenyl, linear or branched C\(_2\)-C\(_{18}\) alkynyl, halomethyl, CF\(_3\), CN, NO\(_2\), SR, OR, NR\(_{2-3}\), O(CO)R, SiR\(^1\)R\(^2\)R\(^3\), or a bridging group between two arene or substituted arene moieties;

- R\(^5\) is an aryl, a linear or branched C\(_1\)-C\(_{18}\) alkyl, a linear or branched C\(_2\)-C\(_{18}\) alkenyl, a linear or branched C\(_2\)-C\(_{18}\) alkynyl;

- n is 0-5;

- R is hydrogen, linear or branched C\(_1\)-C\(_{18}\) alkyl, or SiR\(^1\)R\(^2\)R\(^3\);

and

- X is nothing, a divalent linear or branched C\(_1\)-C\(_{18}\) alkyl, C\(_2\)-C\(_{18}\) alkenyl, and C\(_2\)-C\(_{18}\) alkynyl spacer.
138. The compound as claimed in claim 137 wherein said compound comprises

![Chemical Structure](image1)

139. The compound as claimed in claim 137 wherein said compound comprises

![Chemical Structure](image2)