wo 2016/073389 A1 [N N0F 0 0O OO0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2016/073389 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

12 May 2016 (12.05.2016) WIPOIPCT
International Patent Classification:
GO6F 9/54 (2006.01)
International Application Number:
PCT/US2015/058696

International Filing Date:
3 November 2015 (03.11.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/076,318 6 November 2014 (06.11.2014) US
14/660,291 17 March 2015 (17.03.2015) US

Applicant: MICROSOFT TECHNOLOGY LICENS-
ING, LLC [US/US]; Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US).

Inventors: NANO, Olivier; Microsoft Technology Licens-
ing, Llc, Attn: Patent Group Docketing (Bldg. 8/1000),
One Microsoft Way, Redmond, Washington 98052-6399
(US). SANTOS, Ivo Jose Garcia Dos; Microsott Techno-
logy Licensing, Llc, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). SIEMER, Dirk; Microsoft Technology
Licensing, Llc, Attn: Patent Group Docketing (Bldg.
8/1000), One Microsoft Way, Redmond, Washington
98052-6399 (US). BUSSARD, Laurent; Microsoft Tech-

(74

(8D

(84)

nology Licensing, Llc, Attn: Patent Group Docketing
(Bldg. 8/1000), One Microsoft Way, Redmond, Washing-
ton 98052-6399 (US). SZYPERSKI, Clemens A.; Mi-
crosoft Technology Licensing, Llc, Attn: Patent Group
Docketing (Bldg. 8/1000), One Microsoft Way, Redmond,
Washington 98052-6399 (US). KASPERSKI, Ziv, Mi-
crosoft Technology Licensing, Llc, Attn: Patent Group
Docketing (Bldg. 8/1000), One Microsoft Way, Redmond,
Washington 98052-6399 (US).

Agents: MINHAS, Sandip et al.; Microsoft Corporation,
Attn: Patent Group Docketing (Bldg. 8/1000), One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

[Continued on next page]

(54) Title: EVENT PROCESSING DEVELOPMENT ENVIRONMENT

110 ~
CLIENT COMPONENT

EDITCR
COMPONENT
BROWSER
COMPONENT

160

12

114

FIG. 1

120 ~N
CLOUD COMPUTING PLATFORM

130~

140 \/~{

SERVER COMPONENT

EVENT PROCESSING
COMPILER COMPONENT

SOURCE

150_{

(57) Abstract: Embodiments described herein are directed to methods, and systems for generating event processing language code in
a development environment using an event processing compiler. A query in event processing language is received in a development
environment. The query can be associated with sample data from input files or an input data source. An event processing compiler
compiles the query, where the compiler transforms the query from event processing language code to a development environment
script language code. In particular, the event processing language code transforms the code based on event processing attributes that
are intricately aligned in syntax and semantic between the event processing language and the development environment script lan-
guage. The query as a development environment script is executed using sample data. Executing the query generates output compris -
ing final results data, intermediate results data, and provides for display warnings when mismatches exist between the results data
and output specifications.

WO 2016/073389 A1 WAL 00T 00 AR

DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, as to the applicant's entitlement to claim the priority of
LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, the earlier application (Rule 4.17(iii))

SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,

GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published:

Declarations under Rule 4.17:

with international search report (Art. 21(3))

as to applicant'’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

EVENT PROCESSING DEVELOPMENT ENVIRONMENT

BACKGROUND
[0001] Event processing refers to tracking and analyzing streams of information to
derive a conclusion from them. Streams of information may be, in particular, about
events. Event processing also includes event processing that combines data from multiple
data sources to infer events or patterns that suggest more complicated circumstances. As
such, event processing can facilitate identifying meaningful events and respond to them as
quickly as possible.
SUMMARY

[0002] This summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the detailed description. This summary
is not intended to identify key features or essential features of the claimed subject matter,
nor is it intended to be used in isolation as an aid in determining the scope of the claimed
subject matter.

Embodiments described herein are directed to methods, systems, and
computer storage media for generating event processing language code in a development
environment using an event processing compiler. A query in event processing language
code is received in a development environment. The query can be associated with sample
data from input files or an input data source. An event processing compiler compiles the
query, where the compiler transforms the query from event processing language code to a
development environment script language code. In particular, the event processing
language code transforms the code based on event processing attributes that are intricately
aligned in syntax and semantic between the event processing language and the
development environment script. The query as a development environment script is
executed against the sample data. Executing the query can generate output comprising
final results data, intermediate results data, and provides for display warnings when a
mismatch exists between the results data and output specifications.

BRIEF DESCRIPTION OF THE DRAWINGS
[0003] The present invention is described in detail below with reference to the
attached drawing figures, wherein:
[0004] FIG. 1 is a block diagram of an exemplary operating environment in which

embodiments described herein may be employed;

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

[0005] FIG. 2 is a flow diagram showing an exemplary method for authoring event
processing language code in development environments using event processing language
compilers, in accordance with embodiments described herein;
[0006] FIG. 3 is a flow diagram showing an exemplary method for debugging
event processing language code in development environments using event processing
language compilers, in accordance with embodiments described herein;
[0007] FIG. 4 is a flow diagram showing an exemplary method for generating
event processing language code in development environments using event processing
language compilers, in accordance with embodiments described herein;
[0008] FIG. 5 is a flow chart showing an exemplary method for generating event
processing language code in development environments using event processing language
compilers, in accordance with embodiments described herein; and
[0009] FIG. 6 is a block diagram of an exemplary computing environment suitable
for use in implementing embodiments described herein.

DETAILED DESCRIPTION
[0010] The subject matter of embodiments of the invention is described with
specificity herein to meet statutory requirements. However, the description itself is not
intended to limit the scope of this patent. Rather, the inventors have contemplated that the
claimed subject matter might also be embodied in other ways, to include different steps or
combinations of steps similar to the ones described in this document, in conjunction with
other present or future technologies. Moreover, although the terms “step” and/or “block”
may be used herein to connote different elements of methods employed, the terms should
not be interpreted as implying any particular order among or between various steps herein
disclosed unless and except when the order of individual steps is explicitly described.
[0011] For purposes of this disclosure, the word “including” has the same broad

(1P

meaning as the word “comprising.” In addition, words such as “a” and “an,’

2

unless
otherwise indicated to the contrary, include the plural as well as the singular. Thus, for
example, the requirement of “a feature” is satisfied where one or more features are
present. Also, the term “or” includes the conjunctive, the disjunctive and both (a or b thus
includes either a or b, as well as a and b).

[0012] For purposes of a detailed discussion below, embodiments are described
with reference to a server-client architecture supported by a cloud computing platform,
and further by way of example, the development environment is a web browser

development environment with the event processing compiler located on the server.

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

However, the methods described herein can be performed in different types of operating
environments having alternate configurations of the functional components described
herein. As such, the embodiments described herein are merely exemplary, and it is
contemplated that the techniques may be extended to other implementation contexts.
[0013] A software development cycle generally refers to the process of planning,
creating, testing, and deploying of an information system. A software development cycle
can be used to develop event processing systems based on event processing language
code. Event processing refers to tracking and analyzing streams of information to derive a
conclusion from them. Streams of information may be, in particular, about events
occurring over time. Event processing also includes event processing that combines data
from multiple data sources to infer events or patterns that suggest more complicated
circumstances. As such, event processing can facilitate identifying meaningful events
(e.g., opportunities or threats) and respond to them as quickly as possible. Events may
generally include sales leads, orders or customer service call, new items, text messages,
social media posts, stock market feeds, traffic reports, weather reports, internet of things
data, or other kinds of data.

[0014] An event processing system can operate with one or more input streams
based on received event processing language queries. An event processing language query
can be coded in a SQL-like language (e.g., SQL dialect) with, by way of example,
SELECT, FROM, WHERE, GROUP BY, HAVING, and ORDER BY clauses. Streams
can replace tables as the source data with events replacing rows as the basic unit of data.
Since events are composed of data, the SQL concepts of correlation through joins, filtering
through sub-queries, and aggregation through grouping may be effectively leveraged.
[0015] Developing software systems, including event processing systems, can be
done using development environments. A development environment can refer to an
interface that provides comprehensive facilities to computer programmers for software
development. However, the specific attributes of event processing can make generating a
flexible and integrated development environment difficult. In particular, event processing
language code does not readily translate into development environment functionality,
especially when attempting to maintain the capacity for the code to be executed in a
production event processing systems.

[0016] By way of example, specific attributes of event processing that have to be
considered, which are not implicated in development environments of other languages, can

include an event being defined as a change of a state, when a measurement exceeds a

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

predefined threshold of time, temperature, or other value; or events may occur as a stream
of events that are analyzed to detect patterns within the event streams. In this regard,
certain considerations have to be made when providing a development environment for
event processing because of the distinguishing attributes of event processing systems from
other types of systems and corresponding coding languages.

[0017] Conventional methods for developing event processing code and systems
include running sample data in test environments, for example, on a cluster service via a
server that receives a test deployment having event processing language code for testing
event processing systems. As such, cach attempt to test changes to code may take several
minutes, in that, the code is compiled and then deployed to the cluster service. These steps
can, in the aggregate, lead to considerable amount of lost time.

[0018] In another conventional testing scenario, sclecting different processing
streams further necessitates deploying the code again into a test environment upon
compilation before results are generated. Another constraint can further include limits on
the capacity to understand internal occurrences during the generation of output results.
For example, a test deployment may generate output results but lack the functionality to
trace through the test deployment event processing language code and results data sets or a
way of querying in-between results data sets.

[0019] Accordingly, embodiments of the present invention provide simple and
efficient methods and systems for generating event processing language code in
development environments using event processing language compilers. At a high level, a
user or developer can use a development environment to generate (author) and test (debug)
event processing language code, where the event processing language code is compiled
into development environment scripting language code (“scripting language code™) to
facilitate providing event processing development environment assistance (“‘environment
assistance”) such as, coding automation, syntax and error highlighting, warnings,
intelligent code completion, and troubleshooting functionality in the development
environment. By way of example, the development environment can provide graphical
visualization of inputs, intermediate results, and output. Specifically, graphical
visualizations for a plot of temperature inputs can visually indicate to a user that a 10
second interval is needed, after crossing a threshold, to trigger an alarm because some
intermediate operator (e.g., a window) can add latency. As such, temporal aspects of
executing event processing queries can be visually indicated, which can be otherwise

difficult to illustrate in tabular representations. Other variations and combinations of

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

development environment assistance functionality are contemplated with embodiments
described herein.

[0020] In addition, event processing language code can be validated with a
corresponding scripting language code, such that, errors that can occur in a production
environment are detected in the development environment. The wvalidation further
confirms that when a query in event processing language code is executed on a production
system, the query yields the same results as in the development environment. In this
regard, embodiments described herein support a development environment based on:
authoring workflow, a debugging workflow, and a validation workflow.

[0021] The development environment authoring workflow, debugging workflow,
and validation workflow can be dependent on operations performed at an event processing
compiler. The event processing compiler transforms source code written in event
processing language into a scripting language code while accommodating the specific
attributes of event processing. Transforming the event processing language code to script
language code can be based on event processing attributes that are intricately aligned in
syntax and semantic between the event processing language and the development
environment script.

[0022] For example, event processing includes low and deterministic latencies
while handling high rates of streaming input data. Other exemplary event processing
attributes can include end-to-end analysis over events flowing from heterogencous
information sources to persistent knowledge repositories; integrated pattern detection over
real-time and historical events; and latency and throughput metrics. In this regard, the
event processing compiler encounters challenges that are quite different from those faced
by more-traditional compilers, which tend to focus on non-temporal and non-streaming
data.

[0023] As such, the event processing compiler functionality can be configured to
accommodate the event processing attributes in event processing language code
compilation. Thus, embodiments described herein include the transformation of queries
written in event processing language processed, using an event processing compiler, to a
scripting language to provide development and testing in a development environment and
to another target language for production environment. The clear semantics of the query
guarantees that both executions (debugging and production) produce the same output from

identical inputs.

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

[0024] In operation, by way of example, a user can author and edit a query in a
web browser development environment (“browser”) that provides environment assistance,
such as, syntax and error highlighting and intelligent code completion. The query can be
written in an event processing language code with the environment assistance provided for
event processing language coding via an editor program. The editor program can color
highlight errors, show error messages, and indicate entities to support intelligent code
completion. The query can be compiled using an event processing compiler and executed
against sample data presented as an input file or extracted directly form input data source.
[0025] The event processing compiler can specifically support validation of the
event processing language code in order to confirm that executing the event processing
language code on a production system can yield the same results as in the development
environment. The event processing compiler can communicate entity errors and
validation errors associated within event processing language code. The browser can
further display the output of the query which can include summary information, errors,
and final results data and intermediate results data for queries executed against the sample
data.

[0026] Additionally, during debugging, a query might be generated with a
breakpoint to facilitate inspecting inputs and intermediate results. If a user has placed a
breakpoint in a query, executing the query can be stopped at the breakpoint to provide
intermediate results and the inputs up to the breakpoint. The intermediate results and
inputs can be accessible using an editor program. In addition, a custom query can be run
at any identified time, and additional queries can be run on input tables, intermediate
tables and intermediate results, for troubleshooting purposes. By way of example, when a
user runs a custom query on the input tables or intermediate results a second compile
operation can be performed on the query, and the new query is executed against the input
tables and intermediate results to generate results.

[0027] In embodiments, the user may change a source table value and continue the
query from an indicated breakpoint in the query, changes to a source table value can be
handled as though a new source is identified and the query, without compilation, is
executed on the new source. The user can also change an intermediate table value and
continue the query from the breakpoint, changes to an intermediate table value can be
handled as though the intermediate table is converted to a source table. As such,
computations of the intermediate table can be removed from an “in-memory” query and

compile the query getting a new query to be executed.

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

[0028] Further, input files can be stored and retrieved specifically as test cases.
Test cases can include the input files and corresponding results of the input files. In this
regard, a user can execute additional queries, such as optimized or amended queries, on
input files of the test cases and validate the new results against the results associated in the
test cases. In another embodiment described herein, the results data schema can be
validated against output specifications with errors generated when a match with the
specification does not exist.

[0029] Accordingly, in a first embodiment described herein, one or more computer
storage media having computer-executable instructions embodied thereon that, when
executed, by one or more processors, causes the one or more processors to perform a
method for generating event processing language code in development environments using
event processing language compilers, is provided. The method includes receiving a query
in a development environment. The query comprises event processing language code.
The method also includes compiling the query using an event processing compiler.
Compiling the query transforms the query from event processing language code to a
development environment script language code based at least in part on event processing
attributes. The method further includes executing the query as a development
environment script using sample data, where executing the query generates output
comprising results data based on the sample data.

[0030] In a second embodiment described herein, a computer-implemented method
for generating event processing language code in development environments using event
processing language compilers, is provided. The method includes receiving a query in a
browser development environment. The query comprises event processing language code.
The method also includes compiling the query using an event processing language
compiler. Compiling the event processing language transforms the query in the event
processing language code to a development environment script based on event processing
specific attributes. The method further includes determining that the query comprises a
breakpoint. The breakpoint is an intermediate point prior to executing the query wholly.
The method includes executing the development environment script up to a breakpoint in
the query. The development environment script generates intermediate tables and
intermediate results data based on sample data.

[0031] In a third embodiment described herein, a computer system for generating
event processing language code in development environments using event processing

language compilers, is provided. The system includes a client component configured for:

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

receiving a query in a development environment, where the query comprises event
processing language code; and executing the query as a development environment script
using sample data, where executing the query generates output comprising results data
based on the sample data. The system also includes an event processing compiler
component configured for: compiling the query using an event processing compiler, where
compiling the query transforms the query from event processing language code to a
development environment script language code based at least in part on event processing
attributes.

[0032] Turning now to FIG. 1, a block diagram depicting an event processing
development environment system 100 (“development environment system”) in an
operating environment suitable for use in implementing embodiments described herein is
provided. Generally, the development environment system 100 may be used for, among
other things, generating event processing language code. A user or developer can use the
development environment system 100 to author code and debug event processing language
code. The event processing language code is compiled into scripting language code; the
scripting language code facilitates providing development environment assistance in the
development environment for the event processing language code.

[0033] Among other components not shown, the development environment system
100 may generally include a client component 120 having an editor component 112, and a
browser component 114, a cloud computing platform 120 having a server component 130
comprising an event processing compiler component 140, a source 150 (e.g., data source)
all in communication with each other using a network 160. The network 160 may include,
without limitation, one or more local area networks (LANs) and/or wide area networks
(WANS). Such networking environments are commonplace in offices, enterprise-wide
computer networks, intranets and the Internet.

[0034] In some embodiments, one or more of the illustrated components and/or
modules may be implemented as stand-alone applications. In further embodiments, one or
more of the illustrated components and/or modules may be implemented via a computing
device, as an Internet-based service, and/or as a module within the client component 110
and the cloud computing platform 120. It will be understood by those of ordinary skill in
the art that the components and modules illustrated in FIG. 1 are exemplary in nature and
in number and should not be construed as limiting.

[0035] Any number of components and/or modules may be employed to achieve

the functionality described herein. For example, any number of client components, cloud

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

computing platforms and components thereof and networks may be employed in the
development environment system 100 within the scope of embodiments hereof. Each may
comprise a single device/interface or multiple devices/interfaces cooperating in the
development environment system 100. For instance, multiple devices and/or modules
arranged in a distributed environment may collectively provide the server component
described herein. The phrase “application” or “service” as used herein may broadly refer
to any software, or portions of software, that run on top of, or access storage locations
within, a computing device and/or multiple computing devices, such as multiple
computing devices in a data center.

[0036] It should be understood that this and other arrangements described herein
are set forth only as examples. Other arrangements and clements (e.g., machines,
interfaces, functions, orders, and/or groupings of functions) can be used in addition to, or
instead of, those shown, and some elements may be omitted all together. Further, many of
the elements described herein are functional entities that may be implemented as discrete
or distributed components or in conjunction with other components, and in any suitable
combination and location. Various functions described herein as being performed by one
or more entities may be carried out by hardware, firmware, and/or software. For instance,
various functions, including the functions described below with respect to the
development environment system 100, may be carried out by a processor executing
instructions stored in memory.

[0037] Turning now to the various components that may be included in the
development environment system 100, the client component 110 can be any type of
computing device 600 described below with reference to FIG. 6, for example. The client
component 110 implements the editor component 112 and the browser component 114.
[0038] The editor component 112 is responsible providing an interface for editing
event processing language code with functionality supported in embodiments described
herein. The editor component can implemented as a text editor program designed for
editing event processing language code of a user, such as a programmer. The editor can
include features that are specifically designed to support editing event processing language
code with development environment assistance, such as, coding automation and
troubleshooting functionality in the development environment. The editor can provide a
convenient way to enter event processing language code for processing at an event

processing compiler, according to embodiments described herein. The editor can be a

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

standalone application or it may also be built into a development environment, such as, an
integrated development environment or a web browser development environment.

[0039] The client component 110 can further support a browser component 114
that is responsible for providing a communication interface for the development
environment system 100. The browser component 114 can refer to a software application
for retrieving, presenting and traversing resources using the World Wide Web. The
browser component can also be referred to as a web browser development environment.
The browser may be implemented in the client component 110, such that, messages are
communicated, based on event processing language code in the editor component 112, to
an event processing compiler, to support development of event processing systems.

[0040] The browser component 114 can be configured for requesting via the client
component 110 event processing development environment specifications (“environment
specifications”). Environment specifications comprise explicit set of requirement to be
satisfied when executing the event processing query. Examples of environment
specifications include language specifications, input specifications, and output
specifications. Language specification generally refers to artifacts defining elements of
the language. In particular, explicit definitions of syntax and semantics of the language.
Syntax and semantics can be specified in a formal grammar. As discussed in more detail
below, the syntax and semantics are associated with event processing attributes and are
intricately aligned between the event processing language code and the scripting code for
validation of the code in the development environment and production environment. New
language specification elements can be added as the language develops, as such, the
browser component 114 can receive the most up to date language specifications that are
further compatible with environment assistance functionality.

[0041] Input specifications can define the nature or input requirements of an input
data (e.g., input file or data source). In embodiments, the input specification can
specifically indicate whether an input is a data stream or reference data, such that, event
processing accommodates the specific type of input. Output specification also similarly
defines the nature or output requirements of output data. In embodiments, output
requirements can specifically indicate the schema of database storage or expected output
schema for results data. Other variations and combinations of language specifications,
input specifications, and output specifications are contemplated with embodiments of the

present invention.

10

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

[0042] The cloud computing platform 120 is configured to support a server
component 130 having an event processing compiler component 140 in a distributed
system. The cloud computing platform 120 may span wide geographic locations,
including countries and continents. The service or application components (e.g., tenant
infrastructure or tenancy) of the cloud computing platform may include nodes (e.g.,
computing devices, processing units, or blades in a server rack) that are allocated to run
one or more portions of a tenant’s services and applications. When more than one
application is being supported by the nodes, the nodes may be partitioned into virtual
machines or physical machines. The virtual machines or physical machines run each
application concurrently in individualized computing environments.

[0043] The computing environments support the resources and/or operating
systems specific to each application. Further, each application may be divided into
functional portions, such that, each functional portion is able to run on a separate virtual
machine or physical machine. The cloud computing platform can rely on shared resources
between the different components to maximize effectiveness of operations.

[0044] The cloud computing platform can support servers (e.g., server component
130) that implement a service or application offered by a provider of the cloud computing
platform 120. In this regard, the cloud computing platform 120 may be configured to
support event processing development environments implemented using in the cloud
computing platform. Other types of operating environments are contemplated with
embodiments described herein.

[0045] With continued reference to FIG. 1, the server component 130 includes an
event processing compiler component 140. The server component 130 is responsible for
receiving requests and facilitating the communication of data associated with particular
requests. The server component 130 may manage requested data (e.g., environment
specifications) and the server component 130 can also retrieve requested data from another
location (e.g., sample data from input source). The server component 130 can further
provide storage for data (e.g., test cases). A user can request that a test case be stored,
such that, the test case can be retrieved for executing additional queries to compare results
data. In embodiments, the test cases can be stored with corresponding input files and test
results so that new test results based on new queries (e.g., optimized or amended queries)
can be compared to the old test results. It is contemplated that the old test results may not
be stored but actually generated based on re-executing the original query against the input

files. Test cases can run in the background during processing of new queries such that the

11

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

user receives hints that the test cases are passing or failing with changes to the queries. In
embodiments, given that queries evolve over time, a determination whether a test case
passed or failed can be done using a fuzzy matching mechanism which may produce
warning results. For example, warnings can be based on columns being added or
removed; however, the columns that existed in both the previous query and the new query
should have the same results.

[0046] The server component 130 can communicate with an external storage,
source 150, to retrieve data (e.g., sample data). The source 150 can be indicated in the
event processing language as a location of data that can be aggregated to generate sample
data. In embodiments, data from the source can be sclectively identified based on a
predefined criteria or algorithm to capture data to compose the sample data. The source
150 can be a data stream or reference data, or any type of data used in event processing
systems. It is contemplated that a determination can be made at the client component 110
whether sample data for a query is based on input files provided by a user or data from
source 150.

[0047] The event processing compiler component 140 is generally responsible for
transforming event processing language code to a scripting language format, while
accommodating the attributes of event processing. In an authoring workflow, the event
processing compiler component 140 can receive a query in event processing language
code and transform the query to a development script language code. The transformation
process can include syntax and semantic validation between event processing language
code and scripting language code based on attributes of event processing. For example,
event processing can include data streams of temporal data. The data streams having the
temporal data are factors during a validation workflow when the compiler transforms the
query in event processing language code.

[0048] As such, the syntax and semantic are validated, such that, not only are
syntax clements (e.g., keywords, object names, delimiters) and semantic elements (e.g.,
entities, data object, host variables, data types) are validated, but also syntax elements and
semantic elements are particularly validated in the context of event processing attributes in
an event processing system. Any validation errors identified have to further be correctly
transformed between the languages upon executing the query to display via the browser to
fix errors in the browser development environment. Moreover, validation further confirms
that the query as tested in the development environment would execute the same way and

yield the same results in a production environment.

12

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

[0049] In a debugging workflow, a compilation of a query in event processing
language code also occurs as described above, and results data can be generated for the
query. A debugging workflow can further generate intermediate results data comprising
intermediate tables. By way of example, for debugging purposes, a change may be made
to a value in the intermediate table and then a subsequent query executed on the table. In
this case, the event processing compiler compiles the query corresponding to the
intermediate table with the changed value and executes the query against that data. It is
important to note that the above described operations occur seamlessly while a user codes
and debugs in a development environment via a browser.

[0050] Turning now to FIG. 2, a schematic that illustrates an exemplary authoring
workflow for generating event processing language code in a development environment
using an event processing compiler is provided. The schematic includes a client
component 210 having an editor and browser and a server component 220 having an event
processing compiler, all in accordance with embodiments described herein. The server
component 220 can support a service application which implements an event processing
development environment via the cloud computing platform (not shown).

[0051] At 212, a user or developer can open the editor on the client component.
The editor is designed for editing event processing language code with development
environment assistance as described herein. In embodiments, the editor is implemented
using a browser. It is contemplated that the editor can also be implemented as an
integrated development environment or any other interface development environment.
[0052] At 214, the browser via the client component 210 can request from the
server component 220 environment specifications. Event processing development
environment specifications can include language specifications, input specifications, and
output specifications as described above. At 214, the client component 210 can also
request test cases. Test cases can be specifically associated with input files of the user,
where the test cases were saved and can now be retrieved to facilitate authoring and
debugging. In particular, when the schema of input(s) is known, the editing experience
(syntax and error highlighting and intelligent code completion) becomes more precise. At
216, the language specification, input specification, output specification, and test cases can
be communicated to the client component 210 for use at the browser and editor.

[0053] At 218, event processing development environment assistance
(“environment assistance”) is provided via the browser for editing the event processing

language code. For example, existing event processing language code and or event

13

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

processing language code actively being entered by a user can be evaluated to provide
environment assistance. Environment assistance can include warnings, syntax and error
highlighting and color coding, and intelligent code completion. Query execution on test
cases, and indications of passes and fails can also be communicated as environment
assistance features via the development environment.

[0054] At 220, a request to compile the event processing language code is
communicated to the event processing compiler at the server component 220. The request
can include communicating the event processing language code over to the server
component 220. At 222, the event processing compiler transforms the event processing
language code into a scripting language code while accommodating the attributes of event
processing. Syntax and semantic elements are particularly validated in the context of
event processing attributes in an event processing system. Any validation errors identified
have to further be correctly transformed between the languages upon compiling the query
to display via the browser to fix errors in the browser development environment.
Moreover validation further confirms that the query as tested in the development
environment would execute the same way or yield the same results in a production
environment where no transformation of the event processing language code occurs.

[0055] At 224, any validation errors are communicated to the client component,
where the browser displays the validation errors. In particular, validation errors can
further include entity errors associated with the compiled query. At 226, the user can,
using the editor, address any validation errors. In addition, environment assistance can be
made available through the browser and editor, for example, syntax and error highlighting
and intelligent code completion when addressing the errors.

[0056] Turning now to FIG. 3, a schematic that illustrates an exemplary debugging
workflow for generating event processing language code in development environments
using event processing compilers is provided. The schematic includes a client component
310 having an editor and browser, a server component 320 having an event processing
compiler, and a source component 330, all in accordance with embodiments described
herein. The server component 220 can support a service application which implements an
event processing development environment via the cloud computing platform (not shown).
[0057] At 332, a determination can be made whether the sample data are provided
using input files or an input data source (e.g. source 320). The determination can be made
based on a user indication of a selected option of the location of the sample data. Other

methods of determining whether input files or an input data source is utilized for retrieving

14

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

the sample data are contemplated with embodiments described herein. When the option is
to retrieve sample data from the source 330, operations (334 to 342), as discussed below,
can be performed to obtain the sample data from the source 330.

[0058] At 334, when an input data source is indicated, a request for sample data
can be communicated to the server component 320. It is contemplated at 336 that the
server component can implement a smart selection algorithm or operation to selectively
choose particular events from the source 330 to generate the sample data. The server
component 320 can then request 338 the sample data from the source 330 and can
communicate 340 the sample data from the source 330. The source 330 can be an internal
or external data source which may specifically be a data stream or reference data. At 342,
the server component 320 can communicate the sample data to the client component 310.
[0059] At 344, in cases where the sample data is retrieved from input files, after
332, the event processing language code query is communicated. Also, after sample data
is retrieved from source 330, then upon receiving the sample data, the query is
communicated at 344. Moreover, whether the sample data are input files or an input data
source, the input is controlled such that debugging can include reproducing executions in a
debugging workflow to compare the evolution of outputs when slightly changing the
query (or the inputs). At 346, the query is compiled; the query in event processing
language code is transformed to the query development language script. The
transformation process can include syntax and semantic validation between event
processing language code and scripting language based on attributes of event processing in
an event processing system. At 348, the query in script language code is communicated to
the client component 310, such that, the browser executes the query.

[0060] At 350, the browser can execute the query to generate intermediate results
and final results data as output. The browser can also display the final output. At this
point, a determination can further be made whether the results data, intermediate or final,
meet the output specification associated with the query. The browser can communicate a
warning when a match does not exist between the results data and the output specification.
[0061] With continued reference to FIG. 3, the debugging workflow can further
include changing a value in the sample data tables (source table) or changing a value in the
intermediate table created for the corresponding intermediate results. It is contemplated
that a query can include a breakpoint. The query executes up to the breakpoint and then
stops to allow for troubleshooting using source tables and intermediate tables. As such,

when a breakpoint exists, at 350 the browser can execute the query to generate

15

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

intermediate results up to the breakpoint. It is however contemplated that a query with a
breakpoint can be executed in its entirety as a computing process, but exposed to the user
up to the breakpoint when a breakpoint exists in the query. The browser can display the
source table and intermediate results for all sources with statements up to the breakpoint
location.

[0062] As such, when a breakpoint exists, an indication 352 of a change in a
source table can be received at the client component 310. When the change indication is
received, the query in the script language code can be executed based on the source table
with the changed value. It is contemplated that additional queries may be generated and
executed from the portion where the breakpoint ended. Executing the query generates
intermediate results and a final results output and the browser can display the final output
with warning if a mismatch exists between the results and the output specification.

[0063] An indication 354 of a change in an intermediate table can be received, in
addition or alternately. In this case, the intermediate table with the changed value
constructively becomes a source table. As such, the query is communicated 356 to the
server component 320 event processing compiler to compile the query with the
intermediate table as the source table. In other words, the transformation of the
intermediate table to a source table results in recompiling the query. The query upon
compilation 358 based on methods described herein, can be communicated 360 back to the
client component 310. The client component 310 via the browser can execute 362 the
query to generate intermediate results and a final results output and the browser can
display the final output with warning if a mismatch exists between the results and the
output specification.

[0064] In embodiments, it is contemplated that a request 364 can be received to
save a test case. The test case can include the input files and corresponding results. The
new queries can be executed based on the test case to compare the results of the new
queries with the results of the test case results. It is contemplated that the test case results
can be stored or re-generated during a comparison phase. In operation, the request can be
communicated 366 to the server component 320 where the server component saves 368
the test case. An acknowledgment of saving the test case can be communicated 370 from
the server component 320 to the client component 310.

[0065] Turning now to FIG. 4, a flow diagram that illustrates an exemplary
method 400 for generating event processing language code in a development environment

using an event processing language compiler. At block 410, query is received. The query

16

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

includes event processing language code. The query can be received in a browser
development environment that retrieves environment specifications (e.g., language
specifications, input specifications, and output specifications) for support the development
environment. The development environment can also support an editor program having a
plurality of development assistance functionality comprising warnings, syntax and error
highlighting, and intelligent code completion.

[0066] At block 420, the query is compiled using an event processing compiler.
The event processing complier transforms the query from event processing language code
to development environment script language code, based at least in part on event
processing attributes. Specifically, compiling the query can include validating the event
processing language code with the corresponding development environment script
language code. The validation confirms that executing the query in the event processing
code in a production environment yields the same results as in the development
environment. Validation can be based on event processing attributes that are intricately
aligned in syntax and semantic between the event processing language and the
development script language.

[0067] At block 430, the query as development environment script is executed
using sample data. Executing the query generates output comprising results data based on
the sample data. It is contemplated that the sample data can be retrieved from input files
or an input source. A determination of whether the sample data is from input files or an
input source can be based on an indication from user. Also, the query may be executed
upon fixing syntax and semantic errors indicated via the browser display.

[0068] Turning now to FIG. 5, a flow diagram that illustrates an exemplary
method 500 for generating event processing language code in a development environment
using an event processing language compiler. At block 510, a query is received. The
query includes event processing language code. At block 520, the query is compiled using
an event processing compiler. The event processing complier transforms the query from
event processing language code to development environment script language code, based
at least in part on event processing attributes.

[0069] At block 530, a determination is made that the query includes a breakpoint.
The breakpoint can be an intermediate point prior to executing the query wholly. The
break point facilitates inspecting intermediate input and intermediate results for a
corresponding query. At block 540, the query as development environment script is

executed up to the breakpoint using sample data. Executing the query generates

17

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

intermediate tables and intermediate results data up to the breakpoint in the query. It is
contemplated that an indication can be received to change a value in a source table or an
intermediate table. When a value is changed in the source table or the intermediate table
an additional query can be executed on the table to generate additional results data.

[0070] Having briefly described an overview of embodiments of the present
invention, an exemplary operating environment in which embodiments of the present
invention may be implemented is described below in order to provide a general context for
various aspects of the present invention. Referring initially to FIG. 6 in particular, an
exemplary operating environment for implementing embodiments of the present invention
is shown and designated generally as computing device 600. Computing device 600 is but
one example of a suitable computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of the invention. Neither should the
computing device 600 be interpreted as having any dependency or requirement relating to
any one or combination of components illustrated.

[0071] The invention may be described in the general context of computer code or
machine-useable instructions, including computer-executable instructions such as program
modules, being executed by a computer or other machine, such as a personal data assistant
or other handheld device. Generally, program modules including routines, programs,
objects, components, data structures, etc. refer to code that perform particular tasks or
implement particular abstract data types. The invention may be practiced in a variety of
system configurations, including hand-held devices, consumer electronics, general-
purpose computers, more specialty computing devices, etc. The invention may also be
practiced in distributed computing environments where tasks are performed by remote-
processing devices that are linked through a communications network.

[0072] With reference to FIG. 6, computing device 600 includes a bus 610 that
directly or indirectly couples the following devices: memory 612, one or more processors
614, one or more presentation components 616, input/output ports 618, input/output
components 620, and an illustrative power supply 622. Bus 610 represents what may be
one or more busses (such as an address bus, data bus, or combination thereof). Although
the various blocks of FIG. 6 are shown with lines for the sake of clarity, in reality,
delineating various components is not so clear, and metaphorically, the lines would more
accurately be grey and fuzzy. For example, one may consider a presentation component
such as a display device to be an I/O component. Also, processors have memory. We

recognize that such is the nature of the art, and reiterate that the diagram of FIG. 6 is

18

10

15

20

25

30

WO 2016/073389 PCT/US2015/058696

merely illustrative of an exemplary computing device that can be used in connection with
one or more embodiments of the present invention. Distinction is not made between such

EE 1Y

categories as “workstation,” “server,” “laptop,” “hand-held device,” etc., as all are
contemplated within the scope of FIG. 1 and reference to “computing device.”

[0073] Computing device 600 typically includes a variety of computer-readable
media. Computer-readable media can be any available media that can be accessed by
computing device 600 and includes both volatile and nonvolatile media, removable and
non-removable media. By way of example, and not limitation, computer-readable media
may comprise computer storage media and communication media.

[0074] Computer storage media include volatile and nonvolatile, removable and
non-removable media implemented in any method or technology for storage of
information such as computer-readable instructions, data structures, program modules or
other data. Computer storage media includes, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk
storage or other magnetic storage devices, or any other medium which can be used to store
the desired information and which can be accessed by computing device 100. Computer
storage media excludes signals per se.

[0075] Communication media typically embodies computer-readable instructions,
data structures, program modules or other data in a modulated data signal such as a carrier
wave or other transport mechanism and includes any information delivery media. The
term “modulated data signal” means a signal that has one or more of its characteristics set
or changed in such a manner as to encode information in the signal. By way of example,
and not limitation, communication media includes wired media such as a wired network or
direct-wired connection, and wircless media such as acoustic, RF, infrared and other
wireless media. Combinations of any of the above should also be included within the
scope of computer-readable media.

[0076] Memory 612 includes computer storage media in the form of volatile
and/or nonvolatile memory. The memory may be removable, non-removable, or a
combination thereof. Exemplary hardware devices include solid-state memory, hard
drives, optical-disc drives, etc. Computing device 600 includes one or more processors
that read data from various entities such as memory 612 or I/O components 620.

Presentation component(s) 616 present data indications to a user or other device.

19

10

15

WO 2016/073389 PCT/US2015/058696

Exemplary presentation components include a display device, speaker, printing
component, vibrating component, etc.

[0077] 1/0 ports 618 allow computing device 600 to be logically coupled to other
devices including I/O components 120, some of which may be built in. Illustrative
components include a microphone, joystick, game pad, satellite dish, scanner, printer,
wireless device, etc.

[0078] Embodiments presented herein have been described in relation to particular
embodiments which are intended in all respects to be illustrative rather than restrictive.
Alternative embodiments will become apparent to those of ordinary skill in the art to
which the present invention pertains without departing from its scope.

[0079] From the foregoing, it will be seen that this invention in one well adapted to
attain all the ends and objects hereinabove set forth together with other advantages which
are obvious and which are inherent to the structure.

[0080] It will be understood that certain features and sub-combinations are of
utility and may be employed without reference to other features or sub-combinations.

This is contemplated by and is within the scope of the claims.

20

WO 2016/073389 PCT/US2015/058696

CLAIMS

1. One or more computer storage media having computer-executable
instructions embodied thereon that, when executed, by one or more processors, causes the
one or more processors to perform a method for generating event processing language
code in development environments using event processing language compilers, the method
comprising:

receiving a query in a development environment, wherein the query

comprises event processing language code;

compiling the query using an event processing compiler, wherein

compiling the query transforms the query from event processing language code to
a development environment script language code based at least in part on event
processing attributes; and

executing the query as a development environment script using sample

data, wherein executing the query generates output comprising results data based
on the sample data.

2. The media of claim 1, wherein the development environment is a
browser development environment having environment specification comprising language
specifications, input specifications, and output specification, wherein the development
environment supports an editor having a plurality of development environment assistance
functionality comprising warnings, syntax and error highlighting, and intelligent code
completion.

3. The media of claim 1, wherein compiling the query using the event
processing compiler further comprises:

validating the event processing language code with the corresponding

development environment script language code such that executing the query in the
event processing code in a production environment yields the same results as in the
development environment.

4. The media of claim 1, wherein the event processing attributes are
intricately aligned in syntax and semantic between the event processing language and the
development script language, wherein an event processing attribute includes a data stream
of events having temporal properties.

5. The media of claim 4, wherein compiling the query using the event

processing compiler further comprises:

21

WO 2016/073389 PCT/US2015/058696

identifying syntax errors in the transformation between the event

processing language and the development script language;

identifying semantic errors in the transformation between the event

processing language and the development script language; and

providing for display the syntax errors and semantic errors as validation

errors, wherein the wvalidation errors are displayed in development

environment, wherein the same syntax errors and semantic errors are
yielded when the query is compiled in a production environment.

6. The media of claim 5, further comprising receiving edits to the
query in event processing language code, wherein the edits are received based on the
validation errors displayed in the development environment.

7. A computer-implemented method for generating event processing
language code in development environments using event processing language compilers,
the method comprising;:

receiving a query in a browser development environment, wherein the

query comprises event processing language code;

compiling the query using an event processing language compiler, wherein

compiling the event processing language transforms the query in the event
processing language code to a development environment script based on event
processing specific attributes;

determining that the query comprises a breakpoint, wherein the breakpoint

1S an intermediate point prior to executing the query wholly, wherein the
breakpoint facilitates inspecting intermediate input and intermediate results for a
corresponding query; and

executing the development environment script up to a breakpoint in the

query, wherein the development environment script generates at least intermediate
tables and intermediate results data based on sample data.

8. The method of claim 7, further comprising:

receiving an indication to change a value in a source table;

retrieving the query to execute the query on the source table from the

breakpoint; and

without compiling, executing the development environment script from the

breakpoint in the query, wherein the development environment script generates

final results data.

22

WO 2016/073389 PCT/US2015/058696

9. The method of claim 7, further comprising:

receiving an indication to change a value in an intermediate table;

retrieving the query to execute the query on the intermediate table from the

breakpoint;

transforming the intermediate table into a source table for the query;

compiling the query, based on the intermediate table as the source table,

using an event processing language compiler, wherein compiling the event
processing language transforms the query in the event processing language code to
a development environment script language based on event processing specific
attributes; and

executing the development environment script up from the breakpoint in

the query, wherein the development environment script generates final results data
based on the intermediate table as the source table.

10. The method of claim 7, further comprising:

receiving an indication to save a selected test case; and

saving the selected test case with corresponding input files and result data.

11. The method of claim 7, further comprising:

receiving an indication to retrieve a selected test case; and

retrieving the selected test with the corresponding input files and result

data.

12. A computer system for generating event processing language code
in development environments using event processing language compilers, the system
comprising

a client component configured for:

receiving a query in a development environment, wherein the query

comprises event processing language code; and

executing the query as a development environment script using sample

data, wherein executing the query generates output comprising results data based
on the sample data.

an event processing compiler component configured for:

compiling the query using an event processing compiler, wherein

compiling the query transforms the query from event processing language code to
a development environment script language code based at least in part on event

processing attributes.

23

WO 2016/073389 PCT/US2015/058696

13. The system of claim 12, wherein the client component is further
configured for:
determining that the query comprises a breakpoint, wherein the breakpoint
is an intermediate point prior to executing the query wholly; and
executing the development environment script up to a breakpoint in the
query, wherein the development environment script generates intermediate tables
and intermediate results data based on sample data.
14. The system of claim 12, wherein the event processing compiler
component is further configured for:
compiling the query, based on an intermediate table of the intermediate
tables, using an event processing language compiler, wherein compiling the event
processing language transforms the query in the event processing language code to
a development environment script language based on event processing attributes;
and
communicating the query such that the query is executed as the
development environment script from the breakpoint, wherein the development
environment script generates final results data.
15. The system of claim 14, wherein the client component is further
configured for:
providing a development environment which is a browser development
environment having environment specification comprising language specifications, input
specifications, and output specification, wherein the development environment supports an
editor having a plurality of development environment assistance functionality comprising
warnings, syntax and error highlighting, and intelligent code completion; and
validating the event processing language code with the corresponding
development environment script language code such that executing the query in the event
processing code in a production environment yields the same results as in the development

environment.

24

PCT/US2015/058696

WO 2016/073389

1/6

[Ol

304N0OS L 061
INANOJINOD ¥3TIdW0D | | 1 ()
ONISSI00Ud LNIAT <
INANOJWNOD ¥3AY3S |t ogy
WHO41Y1d ONILNGINOD ANO1O

KON_\

091

ININOAWOD ||
HISMOYE

ININOdWOD | |
yolla3

1ININOJNOD LN3ITO

/o__\

00l

PCT/US2015/058696

WO 2016/073389

2/6

3d00

¢ Ol

SdOHY3 NOILYAITVA 3LVOINNINOD

Qo2

JOVNONYT ONILAIHOS OLNI k
JOVNONVYT ONISSIO0Hd LNIAT {44

FIdINOD
zez \(Q

3d00 FOVNONY
ONISSIO0™d LNIAT JHL FTIdINOD OL 1S3ND3IY

$3SV0O 1531 ‘NOILYDIdID3dS LNdLNO ‘NOILYOI4103dS
304YN0S LNdNI ‘NOILYDI4103dS FDVNONYT ILYOINNWINOD

0zZ \ JONVLSISSY LNJFWNOAHIANT LNINJOT13AZIA
ONISSTD0dd LNIAT FAINOHd

Qs

124 K

$3SVO 1S31 ‘NOILYDIdIDIdS LNdLNO ‘NOILYOI4103dS
304YNO0S LNdNI ‘NOILYOI4103dS FDVNONYT LSINOIY

14%4 \

LN3NOJWOD LN3ITD
(OlL-zz nowouaanado

HITIJINOD ONISSTD0Ud LNIAT

-~ 0¢¢

LNINOJINOD d3AYES

HIASMOHE/H011a3

-~ 0l¢

1LNINOJINOD LN3ITO

PCT/US2015/058696

WO 2016/073389

3/6

¢ Ol

asvo 1s3aLaavs 89€~(P

_ 3SVO 1S3l A3IAVS 40 MOV FLVOINNNINOD
1

0.8

-

3SVYO 1S31 IAVS OL 1S3NVIY ILVYOINNNINOD

>
3SVO 1831 IAVS OL

»9¢ 1S3N03Y IAIFO3Y

99¢ -
I 29 AY3ND 3LNO3AX3
Ad3NO -
2009 300D IOVNONYT LdIYOS THL ILYDIINNINOD
-
N ONLLANOS OLN! 8se~JC9]_ 0%~ uano 3000
S IdNOS <2 2YNONYT ONISS3O0Hd LNIAT m_Zo_z:@_\,_oo 3NTYA
9G¢e Colree 3719VL 3LVIQINYILNI
_ OL IONVHO 3AITOIY
COl—zse INTVA 3719VL 309N0S
; OL IONVHO IAIZOTY
AH3INO Q\émm AY3ND ILNO3AXT
300D IOVNONYT LdIYOS THL ILYDIINNINOD o]
3009 ove

LNINOdJWOD 43INGES

JOVNONYTONILINOS OLNI
39VNONV ONISS3004d INaAg |97 AY3IND 300D
IdNOD | FOYNONYT ONISSIO0Nd INIAT FLYOINNWOD
V.Lva 31dINvS 3LvoINnwmoo Y7E -
V1Va ITdAVS ILYDINNWNOD zie >
>
ove
< V.LVA TTdAVS 1SINOTY
gee 30WNOS V.1Va 1NdNI HO
NOILOT TS LYVINS WHO4H3d 9EE~ICH| viva I1dnvs 204 1S3NOTY ILYOINAWNOD | ST1I4 LNdNI VIA d3dIAONd
[« 34V V.LVA T1dNYS
peg Y3HLIHM ININYILIA
Ql-zec
Jounos L oee ¥3TJNOD ONISSIFOOYd INIAT || 0ze MESMONE/MOLIAT oLe

LININOdWOD LN3ITO

WO 2016/073389 PCT/US2015/058696

4/6

r/410
RECEIVE AN EVENT PROCESSING LANGUAGE
CODE QUERY IN A DEVELOPMENT
ENVIRONMENT

$ I/'” 4 2 0

400 COMPILE THE QUERY USING AN EVENT
e PROCESSING COMPILER THAT TRANSFORMS
THE QUERY TO A DEVELOPMENT
ENVIRONMENT SCRIPT LANGUAGE BASED AT
LEAST IN PART ON EVENT PROCESSING
ATTRIBUTES

é r 430

EXECUTE THE QUERY AS A DEVELOPMENT
ENVIRONMENT SCRIPT USING SAMPLE DATA

FIG. 4

WO 2016/073389 PCT/US2015/058696

5/6

510

{

RECEIVE AN EVENT PROCESSING LANGUAGE
CODE QUERY IN A DEVELOPMENT
ENVIRONMENT

$ e 5 2 0

200 COMPILE THE QUERY USING AN EVENT
e PROCESSING COMPILER THAT TRANSFORMS
THE QUERY TO A DEVELOPMENT
ENVIRONMENT SCRIPT LANGUAGE BASED AT
LEAST IN PART ON EVENT PROCESSING
ATTRIBUTES

é 530

DETERMINE THAT THE QUERY COMPRISES A
BREAKPOINT

$ I/' 540

EXECUTE THE DEVELOPMENT SCRIPT THAT
GENERATES INTERMEDIATE TABLES AND
INTERMEDIATE RESULTS DATA UP TO THE

BREAKPOINT IN THE QUERY, BASED ON
SAMPLE DATA

FIG. 5

WO 2016/073389 PCT/US2015/058696

6/6
MEMORY
612 _/
I/O PORT(S)
_b18
PROCESSOR(S)
61 4_/
/O COMPONENTS
\/620
PRESENTATION
COMPONENT(S)
61 6_/
POWER SUPPLY
\/622
600'/‘
610
U

FIG. 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2015/058696

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/54
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

column 2, Tine 30 - line 60

paragraphs [0033], [0034]

ALEXANDRE [US] ET AL)
11 August 2011 (2011-08-11)
paragraphs [0014], [0046]

X US 6 625 804 B1 (RINGSETH PAUL F [US] ET 1-15
AL) 23 September 2003 (2003-09-23)

A US 2014/095503 Al (BRANSON MICHAEL J [US] 1-15
ET AL) 3 April 2014 (2014-04-03)

A US 2011/196891 Al (DE CASTRO ALVES 1-15

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

17 December 2015

Date of mailing of the international search report

23/12/2015

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Oestergaard, Morgan

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2015/058696
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 6625804 Bl 23-09-2003 NONE
US 2014095503 Al 03-04-2014 US 2014095503 Al 03-04-2014
US 2014095506 Al 03-04-2014

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - wo-search-report
	Page 34 - wo-search-report

