SELF-DEFENSE APPARATUS AND METHOD

Inventor: Victor Garaycochea, Boca Raton, FL (US)

Appl. No.: 13/464,259

Filed: May 4, 2012

ABSTRACT

A wearable non-lethal, self-defense apparatus can include a main body portion, such as a bracelet, watch, sweat band or ring, configured to be worn by a user. The apparatus can include a control circuit and an activation circuit. The apparatus can also include an indicator adapted to receive an armed signal from the control circuit and transmit an indication that the self-defense apparatus is armed to a receiver in communication with the device. The apparatus can also include a high voltage generation circuit adapted to generate a high voltage in response to a voltage control signal received from the control circuit. Upon activation, the apparatus arms and is capable of discharging and delivering high voltage to an assailant via a plurality of electrodes. The apparatus can also include an integrated circuit (e.g., a GPS module) to determine location and a communications circuit to transmit the location upon arming and/or discharge.
FIG. 1
FIG. 2
FIG. 3
SELF-DEFENSE APPARATUS AND METHOD

[0001] Embodiments relate generally to self-defense devices and, more particularly, to a wearable, non-lethal self-defense apparatus and method of controlling the same.

[0002] Conventional non-lethal self-defense devices (e.g., electronic stun guns) may be cumbersome to carry. Further, a conventional stun gun may require multiple steps (or actions) in order to draw, activate and use the stun gun against an assailant.

[0003] Embodiments were conceived in light of the above mentioned limitations, among other things.

[0004] One embodiment includes a wearable self-defense apparatus having a main body portion configured to be worn by a user, a control circuit disposed within the main body portion, and an activation circuit coupled to the control circuit, the activation circuit adapted to provide an activation signal to the control circuit. The apparatus can also include an indicator adapted to receive an armed signal from the control circuit and provide an indication that the self-defense apparatus is armed, the armed signal indicating that the self-defense apparatus has been activated and is armed.

[0005] The apparatus can further include a high voltage generation section coupled to the control circuit, the high voltage generation section adapted to generate a high voltage in response to a voltage control signal received from the control circuit. The apparatus can also include a plurality of electrodes coupled to the high voltage generation unit and adapted to transmit high voltage. The control circuit can be adapted to arm the self-defense apparatus by generating the voltage control signal and the armed signal when the activation signal is received.

[0006] Another embodiment includes a method of controlling a self-defense device. The method can include receiving an activation signal at a control circuit disposed in a wearable self-defense device, the activation signal being provided by an activation circuit. The method can also include transitioning to an armed state in response to receiving the activation signal. The transitioning can include signaling a high voltage generator circuit to generate a high voltage, and providing an indication that the self-defense device is armed. The method can further include discharging the high voltage through a plurality of electrodes when the electrodes contact a surface.

[0007] In an alternative embodiment, the present disclosure comprises a method of sending an emergency signal to a cellular device in the event the device is discharged, wherein said cellular device further comprises an emergency signal transmitter application that will relay a digital message to an emergency dispatcher providing the time and location of the alleged attack.

DESCRIPTION OF RELEVANT ART

[0008] U.S. Pat. No. 7,012,797 issued Mar. 14, 2006 to Christopher P. Delida, titled “Versatile Stun Glove,” describes a device comprised of at least two electrodes placed in the palm region, and/or to the back of the hand and/or on the fingers of the disclosure, but does not include any means for transferring a message to a communications circuit, or for a location module. Furthermore, the Delida ’797 patent shows a design that pertains to a glove and not to clothing accessories (e.g., wristwatch, wristband, sweatband, anklet, etc.) as does the present disclosure.

[0009] U.S. Pat. No. 7,221,552 issued on May 22, 2007 to David C. Brown, titled “Wearable Shield and Self-Defense Device,” describes a personal defense device that includes a gauntlet-style glove to be worn on the hand and arm of a person and is attached to a shield and electric shock device so as to provide protection thereof. The electric shock device disclosed in Brown ’552 is configured to deliver a less-lethal electrical shock and/or sparks to startle, disarm, and repel an aggressor. The present disclosure allows a user to conceal the presence of a self-defense device to a potential assailant and is not limited to a glove as the Brown ’552 proposes. Furthermore, the Brown ’552 disclosure does not enable an attack to be recognized by a third party via a communications circuit as does the present disclosure and therefore is not substantially similar nor would be an obvious variant thereof.

[0010] U.S. Pat. No. 7,206,183 issued Apr. 17, 2007 to William J. Silkes et al, titled “Enhanced Non-Lethal Electric Weapon,” describes a multi-component device which is capable of delivering a non-lethal, high-voltage electric shock which can incapacitate a person or animal that is worn as an ordinary article of apparel by a person for use as a defensive or offensive weapon that is not distinguishable or identifiable as a weapon. Although the device disclosed in Silkes et al ’183 is similar to the present disclosure, the Silkes et al ’183 disclosure requires a user to wear a separate control unit that is attached to a belt or placed in a pocket which is connected to the clothing item by a separate multi-conductor electrical wiring harness. The present disclosure is a non-obvious variant thereof in that the present disclosure does not require a user to equip themselves with such separate control unit. The present disclosure is comprised of an activation circuit and a control circuit that is located within the main body of the disclosure leaving no additional accessories to be worn in order to achieve the ultimate purpose and/or intended function of the device.

[0011] U.S. Pat. No. 6,963,480 issued on Nov. 8, 2005 to James Byron Eccles, titled “Retractable, Non-Lethal High Voltages Stun Sword,” describes a high voltage stun device, unique in a sword-like configuration of a fully retractable, yet non-injurious, “blade,” and its ability to deliver a pulse along the length of the “blade” as well as at the tip to a target at a distance far beyond arm’s length. The Eccles ’480 disclosure novelty is surrounded around the ability for a user to fight off a potential assailant from a superior distance of the user. Although the Eccles ’480 disclosure comprises a high voltage stun device similar to the present disclosure, the former does not comprise of clothing accessories as to disguise the presence of such shock delivering device nor does it comprise an integral component that can facilitate the location of the user undergoing an attack from an assailant. As a result, the present disclosure shall be considered a non-obvious variant thereof due to the substantially different characteristics embodied in the appearance and overall functioning aspects.

[0012] U.S. Pat. No. 6,791,816 issued on Sep. 14, 2004 to Kenneth J. Stethem, titled “Personal Defense Device,” is a continuation application to U.S. Pat. No. 6,643,114, which describes a device similar to a police baton comprised of an electrical stun current and electrodes with a structure adopted for use as an impact weapon as well, and further comprises a flashlight or signal light therewith. Although the Stethem ’816 disclosure comprises an electrical stun current and electrodes structures similar to the present disclosure, the former does not facilitate a user to have access to such device in the form of clothing accessory. The former is used in the form of a baton for police or riot controllers and as a result
fails to provide a user to have in the form a watch, wristband, sweatband, anklet, etc., therefore the present disclosure is not an obvious variant thereof.

U.S. Pat. No. 6,643,114 issued on Apr. 18, 2000 to Calvin E. Owens, titled “Personal Protection Wrist Shield,” describes a wrist shield with a raised striking edge for defending against and discouraging personal physical attacks and other aggressive acts. The Owens ‘905 disclosure is targeted to be used by law enforcement in an altercation with an assailant (i.e., assailant reaches for user gun in a holster, which then the user may strike the assailant’s persons) as a means for deterring and/or precluding further physical force and/or alteration administered by the assailant. The present disclosure, unlike the Owens 905 disclosure, comprises a self-defense electric-shock mechanism that is triggered to temporary incapacitate a potential assailant in an altercation via a plurality of electrodes located on device. A person having ordinary skill in the relative art would appreciate and recognize that the components and characteristics of the present disclosure remain unique, novel and are a non-obvious variant thereof and there remains a need for the present disclosure.

U.S. Pat. No. 6,439,432 issued on Aug. 14, 2001 to Joseph Anthony Resnick, titled “Close-Contact Counter-Measure Garment and Method,” describes a garment equipped with an emitter (e.g., electrical weapon, position marker), where said emitter can be fired by the wearer of the garment or fired remotely by a second person, an observer, or a third person, a monitor, or an observer. Furthermore, the Resnick ‘781 disclosure comprises discharging nozzles embedded within a garment (e.g., vest) connected to an electronic switching means for triggering the release of said emitters. The present disclosure is substantially different from the Resnick ‘781 disclosure in that there is no need for an alternative means for triggering the self-defense device. In the present disclosure, a pressure sensory component synchronizes with electric probes and delivers the electric shock to the potential assailant an altercation. The present disclosure is a more convenient, lightweight, and indistinguishable material that provides a user enhanced protection in the case of an altercation without any fear of potential misfires.

U.S. Pat. No. 5,896,872 issued on Nov. 16, 1999 to Eugene M. Chaput, titled “Multi-Component Electric Stun-ning Umbrella,” describes an electric stunning umbrella which can be carried as a personal accessory without attracting attention, which can be used as a conventional umbrella

Nov. 7, 2013

END OF DOCUMENT
with the umbrella sleeve is removed, and can be used for self-defense when the umbrella sleeve is secured. When the umbrella sleeve is positioned on the umbrella, electric probes extending from the sleeve produce an electric shock to an assailant when the probe means are physically engaged with the assailant. The umbrella is used in a similar fashion a battalion that a police officer would use in an altercation. When the user strikes the assailant with the umbrella and the probes make contact with said assailant, an electrical shock will be discharged from the umbrella to the assailant as a means for temporary incapacitating them. Although the Chapt '872 disclosure self-defense means is similar to the present disclosure, the present disclosure is in the form of an appeal accessory (e.g., wristwatch, wristband, sweatband, anklet, etc.). The user of the present disclosure need not swing said device like a battalion, which is a necessary function of the Chapt '872 disclosure, in order to effectively engage to self-defense device. Furthermore, the probes in the present disclosure remain in a repositioned position until the pressure sensory device engages said probes upon contact with an assailant, unlike the probes in the Chapt '872 disclosure, which can remain exposed at all times. Additionally, unlike the Chapt '872 disclosure, the present disclosure provides a means for identifying the location in which the attack to place and therefore can help assistant authorities in locating the potential assailants. Therefore, one with ordinary skill in the art would readily appreciate the uniqueness and novelty of the present disclosure and would declare the present disclosure a non-obvious variant thereof.

U.S. Pat. No. 5,467,247 issued on Nov. 14, 1995 to Richard N. de Ananda et al., titled “Electronic Stun Apparatus,” discloses an electrical stunning apparatus that is adapted to be held in the hand of a human and to be placed on an activatable position by that human user. Additionally, the electrical stunning apparatus is small in size and resembles a small, hand-holdable flashlight. When the protective cap is removed and the stunning apparatus is placed into contact with the body of a human aggressor, the probes will protrude from the repositioned position and transmit an electrical shock to said aggressor. In the present disclosure, a pressure sensory component will activate the repositioned probes to a protruding position, which will then in turn provide the electrical shock to the assailant. There is no need to remove a cap from the present disclosure in order to effectuate the electrical shock mechanism. Furthermore, the present disclosure is disguised in the form of an apparel accessory (e.g., wristwatch, wristband, sweatband, anklet, etc.) and is securely fastened to the user, therefore precluding any attacks by an assailant to remove the safety-device or detect the presence of such device.

BRIEF DESCRIPTION OF THE DRAWINGS

[0022] FIG. 1 is a side view diagram of an exemplary wrist watch form of a wearable self-defense apparatus in accordance with at least one embodiment.

[0023] FIG. 2 is a top view diagram of the exemplary wrist watch wearable self-defense apparatus of FIG. 1.

[0024] FIG. 3 is a side view diagram of an exemplary bracelet form of a wearable self-defense apparatus in accordance with at least one embodiment.

[0025] FIG. 4 is a top view diagram of the exemplary bracelet wearable self-defense apparatus of FIG. 3.

[0026] FIG. 5 is a side view diagram of an exemplary sweat band/wrist band form of a wearable self-defense apparatus in accordance with at least one embodiment.

[0027] FIG. 6 is a top view diagram of the exemplary sweat band/wrist band wearable self-defense apparatus of FIG. 5.

[0028] FIG. 7 is a diagram of an exemplary circuit for a wearable self-defense apparatus in accordance with at least one embodiment.

DETAILED DESCRIPTION

[0029] In general, an embodiment can include a wearable self-defense device that is configured to deliver a high voltage shock capable of stunning an assailant. The device can be worn on the wrist (e.g., in the form of a wrist watch, bracelet or sweat band), ankle (e.g., in the form of an anklet), or neck (e.g., as a pendant or a finger ring). The wearable self-defense device, in any of the above-mentioned forms, includes a stun-gun like circuit along with other circuits such as a control circuit, activation circuit and indicator circuit, all enclosed within a wearable form. An embodiment may also be waterproof or water resistant so as to help protect the circuit (e.g., so it doesn’t short out internally) and/or the wearer (e.g., so the device does not short out in contact with the wearer) in the event the wearer and/or the device were to become wet from rain, showering, bathing, swimming or the like.

[0030] FIG. 1 shows a side view diagram of an exemplary wrist watch form of a wearable self-defense apparatus (or device). In particular, the wrist watch self-defense apparatus includes a pair of electrodes 1, a watch face 2, wiring 3, watch band 4, circuitry 5, battery 6 and charging port 7.

[0031] The circuitry 5 can include a control circuit, an activation circuit, a high voltage generator circuit and an indicator circuit, among other things. The circuitry 5 can include the circuitry described below in greater detail in conjunction with FIG. 7. The watch band 4 constitutes a body portion of the device, in which the circuitry is disposed.

[0032] FIG. 2 is a top view diagram of the exemplary wrist watch wearable self-defense apparatus of FIG. 1 showing the watch face 2 and electrodes 1. The electrodes 1 can protrude, be flush mounted, or can spring out when activated. The device may be triggered by pressing the electrodes 1 against a surface (e.g., skin of an assailant). The triggering may be based on pressure or detection of a conductive surface in contact with the electrodes.

[0033] The power to generate and discharge a high voltage shock to an assailant is supplied by the battery 6. The battery 6 can include an alkaline battery, lead acid battery, a lithium polymer battery, a nickel cadmium battery, a capacitor or the like. The battery 6 can be a rechargeable battery and can be recharged by connecting the charging port 7 to a voltage source (e.g., a wall or car electrical outlet).

[0034] FIG. 3 is a side view diagram of an exemplary bracelet form of a wearable self-defense apparatus in accordance with at least one embodiment. In particular, the bracelet includes electrodes 1, wiring 3, circuitry 5, a battery 6, a charging port 7 and an activation module 10.

[0035] The activation module 10 can include one or more buttons and/or switches, an accelerometer (e.g., a mechanical accelerometer, a MEMS accelerometer, or the like), a voice recognition/activation module, or the like. The activation module 10 can also include a safety switch to provide a safety feature to help prevent unintended arming of the device. The activation module having an accelerometer can activate the
device in response to the detection of a predetermined pattern and/or level of force (e.g., one or more taps can be used to activate the device, the taps can be detected a normal force level or detected at a higher force level).

0036] FIG. 4 is a top view diagram of the exemplary bracelet wearable self-defense apparatus of FIG. 3 showing the electrodes 1, a bracelet main body portion 8 (e.g., a decorative or ornamental band or chain) and the activation module 10.

0037] FIG. 5 is a side view diagram of an exemplary sweat band/wrist band form of a wearable self-defense apparatus in accordance with at least one embodiment. In particular, the sweat/wrist band includes electrodes 1, wiring 3, circuitry 5, a battery 6, a charging port 7 and an activation module 10.

0038] FIG. 6 is a top view diagram of the exemplary sweat band/wrist band wearable self-defense apparatus of FIG. 5 and showing the electrodes 1, a sweat/wrist main body portion 9 (e.g., a decorative or ornamental band that can be worn around the wrist or ankle) and the activation module 10.

0039] FIG. 7 is a diagram of an exemplary circuit 700 for a wearable self-defense apparatus in accordance with at least one embodiment. The circuit 700 includes a controller (or control circuit) 702 and an activation module 704. The activation module 704 can include one or more of an accelerometer 706, one or more buttons and/or switches 708, a voice activation module 710, a stress detection module 712 and/or another activation module 714.

0040] The circuit 700 also includes a high voltage generator 716 and one or more electrodes 718. The high voltage generator 716 generates the high voltage delivered to an assailant via the electrodes 718.

0041] The circuit 700 also includes an indicator 720 that includes one or more of a visual indicator 722, an audio indicator 724 and a tactile indicator 726. The visual indicator 722 can include a light source such as a light-emitting diode (LED) or an incandescent lamp. The audio indicator 724 can include a speaker or a piezoelectric component. The tactile indicator 726 can include a vibrator such as that used in a wireless phone.

0042] The circuit 700 also has an optional communications circuit 728 that includes one or more of a WiFi (or wireless data network) module 736, a Bluetooth module 732 and a cellular radio module 734. The circuit 700 also has an optional location module 736. The location module 736 can include a GPS receiver or other new known or later developed location determination circuit.

0043] The circuit 700 also includes a battery 738 and associated charging circuit 740 (for use with a rechargeable battery).

0044] In operation, the controller 702 receives an activation signal from the activation circuit 704 and, in response, sends a voltage control signal to the high voltage generator 716 and an indicator signal to the indicator circuit 720. The high voltage generator 716 develops a high voltage charge that can be discharged through the electrodes 718 to stun an assailant. In addition to providing an indication when armed, the indicator can also be used to provide an indication that the device is powered on in order to deter attackers.

0045] Thus, a wearable self-defense device according to the present disclosure can provide a convenient, readily accessible self-defense device that can be disguised as a normal accessory (e.g., watch, bracelet or the like). Alternatively, a wearable self-defense device in accordance with the present disclosure could be made to be readily identifiable (e.g., through size, shape, color or the like) as a self-defense device to discourage any would-be assailants.

0046] When the circuit 700 has detected that the high voltage has been discharged through the electrodes, the location of the device can be obtained from the location module 736. Also, the controller can communicate information indicating that the device was discharged and/or the location of the device to an external system via the communications module 728. Furthermore, a cellular phone device application may be downloaded onto a smart phone cellular device 734 as a means for transmitting an emergency signal or initiate the dialing of an emergency number (e.g., 911). Upon discharge of electric shock to potential assailant, controller 702 can transmit a wireless signal to cellular device 734, a subsidiary of communications circuit 728, and will initiate the emergency phone signal transmission via downloaded cellular device application. Said phone application will provide emergency dispatcher with the user’s exact location upon discharge of said electrical shock and will simultaneously notify law enforcement of the report received. In some embodiments, the application is capable of locking the cell phone device during the completion of the transmission of the signal, i.e. emergency call.

0047] The battery 738 supplies voltage to the controller and other circuits and modules in the circuit 700. If the battery 738 is a rechargeable battery, it can be recharged by the charging circuit 740.

0048] Any of the embodiments discussed above can include a test mode and/or a training mode, in addition to the normal operating mode. When in the test mode, the device can perform a self-test to ensure that the circuitry is operating properly and can provide an indication to the user that the self-test has passed or failed. When in the training mode, the device can permit the user to practice activating the device without the device actually charging and generating high voltage. This can permit a user to become proficient in activating the device without the risk of the device being armed. The test mode and/or training mode can be activated by a control input from the user (e.g., by pressing a button, a switch, or combination of buttons and/or switches). Also, the input device used to activate test and/or training mode may be hidden and protected to prevent the device from accidentally being switched into the test or training mode during an actual confrontation.

0049] It will be appreciated that the control circuits, modules, processes, systems, and sections described above can be implemented in hardware, hardware programmed by software, software instructions stored on a nontransitory computer readable medium or a combination of the above. A wearable non-lethal self-defense system, for example, can include a processor configured to execute a sequence of programmed instructions stored on a nontransitory computer readable medium. For example, the processor can include, but not be limited to, a processor, microprocessor, microcontroller device, or can be comprised of control logic including integrated circuits such as, for example, an Application Specific Integrated Circuit (ASIC). The instructions can be compiled from source code instructions provided in accordance with a programming language such as Java, C, C++, C# .net, assembly language or the like. The instructions can also comprise code and data objects provided in accordance with, for example, the Visual Basic™ language, or another structured or object-oriented programming language. The sequence of programmed instructions, or programmable logic device con-
figuration software, and data associated therewith can be stored in a nontransitory computer-readable medium (e.g., a flash memory of a microcontroller) such as a computer memory or storage device which may be any suitable memory apparatus, such as, but not limited to ROM, PROM, EEPROM, RAM, flash memory, disk drive and the like. Furthermore, self-dense apparatus control modules, processes systems, and sections can be implemented as a single processor or as a distributed processor.

The modules, processors or systems described above can be implemented as a programmed general purpose computer, an electronic device programmed with microcode, a hard-wired analog logic circuit, software stored on a computer-readable medium or signal, an optical computing device, a networked system of electronic and/or optical devices, a special purpose computing device, an integrated circuit device, a semiconductor chip, and a software module or object stored on a computer-readable medium or signal, for example.

Embodiments of the method and system (or their sub-components or modules), may be implemented on a general-purpose computer, a special-purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element, an ASIC or other integrated circuit, a digital signal processor, a hardwired electronic or logic circuit such as a discrete element circuit, a programmed logic circuit such as a PLD, PLA, FPGA, PAL, or the like. In general, any processor capable of implementing the functions or steps described herein can be used to implement embodiments of the method, system, apparatus or computer program product (software program stored on a nontransitory computer readable medium).

Furthermore, embodiments of the disclosed apparatus and method may be readily implemented, fully or partially, in software using, for example, object or object-oriented software development environments that provide portable source code that can be used on a variety of computer platforms. Alternatively, embodiments of the disclosed method, system, and computer program product can be implemented partially or fully in hardware using, for example, standard logic circuits or a VLSI design. Other hardware or software can be used to implement embodiments depending on the speed and/or efficiency requirements of the systems, and/or particular software or hardware system, microprocessor, or microcomputer being utilized. Embodiments of the apparatus and method, system, and computer program product can be implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the function description provided herein and with a general basic knowledge of the electronic and software engineering arts.

Moreover, embodiments of the disclosed apparatus, method, system, and computer program product can be implemented in software executed on a programmed general purpose computer, a special purpose computer, a microprocessor, a microcontroller or the like.

It is, therefore, apparent that there is provided, in accordance with the various embodiments disclosed herein, a wearable non-lethal self-defense apparatus and control method for the same.

While this specification contains many specific implementation details, there should not be construed as limitations on the scope of any inventions or of what may be claimed, but rather as descriptions of features specific to particular embodiments of the present invention.

Certain features that are described in this specification in the context of separate embodiments can also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment can also be implemented in combination in multiple embodiments separately or in any suitable sub-combination. Moreover, although features may be described above as acting in certain combinations and even initially claimed as such, one or more features from a claimed combination can in some cases be excised from the combination, and the claimed combination may be directed to a subcombination or variation of a subcombination.

Similarly, while operations are depicted in the drawings in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel may be advantageous. Moreover, the separation of various system components in the embodiments described above should not be understood as requiring such separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together in a single software product or packaged into multiple software products.

Thus, particular embodiments of the subject matter have been described. Other embodiments are within the scope of the following claims. In some cases, the actions recited in the claims can be performed in a different order and still achieve desirable results. In addition, the processes depicted in the accompanying figures do not necessarily require the particular order show, or sequential order, to achieve desirable results. In certain implementations, multitasking and parallel processing may be advantageous. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the claimed invention.

What is claimed is:

1. A wearable self-defense apparatus comprising:
 a main body portion configured to be worn by a user;
 a control circuit disposed within the main body portion;
 an activation circuit coupled to the control circuit, the activation circuit adapted to provide an activation signal to the control circuit;
 an indicator adapted to receive an armed signal from the control circuit and provide an indication that the self-defense apparatus is armed, the armed signal indicating that the self-defense apparatus has been activated and is armed;
 a high voltage generation section coupled to the control circuit, the high voltage generation section adapted to generate a high voltage in response to a voltage control signal received from the control circuit; and
 a plurality of electrodes coupled to the high voltage generation unit and adapted to transmit high voltage, wherein the control circuit is adapted to arm the self-defense apparatus by generating the voltage control signal and the armed signal when the activation signal is received.

2. The apparatus of claim 1, wherein the main body portion is one of a bracelet, a sweat band, a watch and a ring.
3. The apparatus of claim 1, wherein the activation circuit is one of a switch, a button, an accelerometer, a voice input module and a stress sensor.

4. The apparatus of claim 1, wherein the indicator is one of a visual indicator, an audio indicator and a tactile indicator.

5. The apparatus of claim 1, further comprising a location circuit adapted to determine a location of the self-defense apparatus and provide location information to the control circuit.

6. The apparatus of claim 5, wherein the location circuit includes a global positioning system receiver.

7. The apparatus of claim 5, further comprising a communication circuit coupled to the control circuit and adapted to transmit information.

8. The apparatus of claim 7, wherein the communication circuit is a Bluetooth circuit.

9. The apparatus of claim 7, wherein the communication circuit is a cellular phone network transceiver.

10. The apparatus of claim 7, wherein the communication circuit is a wireless network transceiver.

11. The apparatus of claim 1, further comprising a battery coupled to the control circuit.

12. The apparatus of claim 11, wherein the battery is a rechargeable battery and the apparatus further includes a charging circuit configured to be connected to a power source and to recharge the rechargeable battery.

13. A method of controlling a self-defense device, the method comprising:

 - receiving an activation signal at a control circuit disposed in a wearable self-defense device, the activation signal being provided by an activation circuit;
 - transitioning to an armed state in response to receiving the activation signal, the transitioning including:
 - signaling a high voltage generator circuit to generate a high voltage, and
 - providing an indication that the self-defense device is armed; and
 - discharging the high voltage through a plurality of electrodes when the electrodes contact a surface.

14. The method of claim 13, wherein the activation circuit includes an accelerometer.

15. The method of claim 13, wherein the activation circuit includes one or more buttons.

16. The method of claim 13, wherein the activation circuit includes a voice recognition module.

17. The method of claim 13, further comprising determining a location of the self-defense apparatus in response to the discharging.

18. The method of claim 17, further comprising transmitting the location via a communication circuit.

19. The method of claim 13, wherein the providing an indication includes providing a visual indication.

20. The method of claim 13, wherein the providing an indication includes providing an audio indication.

* * * * *