Systems for making a toy more comfortable are provided. In one embodiment, a system is provided, including a toy including a body and a hand, wherein the toy’s temperature is adjustable; an infrared tracking device used to wirelessly detect an amount of heat radiating from a remote object including a human being, wherein the tracking device is included in the toy; a laser-based distance measuring device included in the toy; a temperature tracking device in the toy used to measure a room temperature; a first heater included in the body of the toy; a second heater included in the hand of the toy; a first cooler included in the body of the toy; and a second cooler included in the hand of the toy.
Fig. 1

100 Human Being

110 Fluffy Toy

120 infrared radiation
SYSTEMS FOR MAKING A TOY MORE COMFORTABLE

FIELD OF THE INVENTION

[0001] This invention is generally related to fluffy toys. Specifically, this invention relates to making fluffy toys more comfortable to cuddle up by allowing the temperature of the toys to adjust based on the surrounding temperatures. The toy is configured to adjust the temperature of the toy to make the toy more comfortable, after detecting that the human being's temperature has changed, or after detecting that the room temperature has changed.

BACKGROUND OF THE INVENTION

[0002] To many children, fluffy toys are lovely. These toys are made in different colors, shapes, or model different cartoon characters. Many children have their favorite fluffy toys in their young childhood. It is not uncommon to find that some boys and girls bring their stuffed animals to sleep with them. Fluffy toys or stuffed animals are warm and soft, as they are typically made of materials that are soft. Such materials include stuffed material, such as cotton. Occasionally, electronics are found in fluffy toys to create fluffy toys that bring in more variations. For example, electronic sensors inside a toy can respond to external stimuli and bring movements to the toy. Electronic sensors can be useful to fluffy toys in sensing surrounding temperatures. Currently, the temperature of a fluffy toy is made in that it is the same as the room temperature. When the room temperature is changed, the temperature of the fluffy toy is also changed accordingly. The temperature of fluffy toys may only be heated up, after cuddling up by children. Nowadays, however, the temperature of fluffy toys does not change before they are cuddled up. There is a need to come up with fluffy toys whose temperatures can be changed automatically in light of the temperatures of those who are going to cuddle up the toys.

SUMMARY OF THE INVENTION

[0003] A system is provided for making a toy more comfortable. In one disclosure, a system may comprises a toy including a body and a hand, wherein the toy's temperature is adjustable; an infrared tracking device used to wirelessly detect an amount of heat radiating from a remote object including a human being, wherein the tracking device is included in the toy; a laser-based distance measuring device included in the toy; a temperature tracking device in the toy used to measure a room temperature; a first heater included in the body of the toy; a second heater included in the hand of the toy; a first cooler included in the body of the toy; a second cooler included in the hand of the toy; a processor; and a memory storing instructions that cause the processor to execute a method. In one embodiment, the method comprises detecting whether the human being is getting closer to the toy, based on readings from the laser-based distance measuring device; enabling a temperature adjusting feature, after detected that the human being is getting closer to the toy; detecting the human being's body temperature by using the infrared tracking device to wirelessly detect the amount of heat radiating from a remote object including the human being; based on the detected human being's body temperature and a measured room temperature using the temperature tracking device, heating up or cooling down the toy, before the human being touches the toy; adjusting the temperature of the toy to make the toy more comfortable to cuddle up, after touching the toy by the human being; and returning the toy's temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy. In a different embodiment, the exemplary method may comprises detecting whether the human being is getting closer to the toy, based on readings from the laser-based distance measuring device; enabling a temperature adjusting feature, after detected that the human being is getting closer to the toy; detecting the human being's body temperature by using the infrared tracking device to wirelessly detect the amount of heat radiating from a remote object including the human being; based on the detected human being's temperature and a measured room temperature using the temperature tracking device, heating up or cooling down only certain parts of the toy, before the human being touches the toy; adjusting, by heating up or cooling down, the temperature of other parts of the toy, such as the hand of the toy, to make the toy more comfortable to cuddle up, only after the other parts of the toy are touched by the human being, wherein the adjustments are made in light of the temperature of the human being and the room temperature; and returning the toy's temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy. In another embodiment, the method comprises: detecting whether the human being is getting closer to the toy, based on readings from the laser-based distance measuring device; enabling a temperature adjusting feature, after detected that the human being is getting closer to the toy; detecting the human being's body temperature by using the infrared tracking device to wirelessly detect the amount of heat radiating from a remote object including the human being; based on the detected human being's temperature and a measured room temperature using the temperature tracking device, heating up or cooling down only certain parts of the toy, before the human being touches the toy; adjusting, by heating up or cooling down, the temperature of other parts of the toy, such as the hand of the toy, to make the toy more comfortable to cuddle up, only after the other parts of the toy are touched by the human being, wherein the adjustments are made in light of the temperature of the human being and the room temperature; further adjusting the temperature of the toy, to make the toy more comfortable to cuddle up, when detected that the human being's temperature has changed; and returning the toy's temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy. In an alternative system, however, the embodied method may comprise detecting whether the human being is getting closer to the toy, based on readings from the laser-based distance measuring device; enabling a temperature adjusting feature, after detected that the human being is getting closer to the toy; detecting the human being's body temperature by using the infrared tracking device to wirelessly detect the amount of heat radiating from a remote object including the human being; based on the detected human being's temperature and a measured room temperature using the temperature tracking device, heating up the first heater or cooling down the first cooler only the body of the toy, before the human being touches the toy; adjusting, by heating up of the second heater or cooling down the second cooler, the temperature of the hand of the toy, to make the toy more comfortable to cuddle up, only after the hand of the toy is touched by the human being, wherein the temperature adjustments are made in light of the temperature of the hand of the toy, the temperature of
the human being and the room temperature; further adjusting the temperature of the toy, to make the toy more comfortable to cuddle up, when detected that the room temperature has changed; and returning the toy’s temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] FIG. 1 illustrates an exemplary system to make a toy more comfortable.

DETAILED DESCRIPTION

[0005] Referring to FIG. 1, a system is provided for making a toy more comfortable. The disclosed system comprises a toy including a body and a hand, wherein the toy’s temperature is adjustable; an infrared tracking device used to wirelessly detect an amount of heat radiating from a remote object including a human being, wherein the tracking device is included in the toy; a laser-based distance measuring device included in the toy; a temperature tracking device in the toy used to measure a room temperature; a first heater included in the body of the toy; a second heater included in the hand of the toy; a first cooler included in the body of the toy; a second cooler included in the hand of the toy; a processor; and a memory storing instructions that cause the processor to execute a method, the method comprising: detecting whether the human being is getting closer to the toy, based on readings from the laser-based distance measuring device; enabling a temperature adjusting feature, after detected that the human being is getting closer to the toy; detecting the human being’s body temperature by using the infrared tracking device to wirelessly detect the amount of heat radiating from a remote object including the human being; based on the detected human being’s temperature and a measured room temperature using the temperature tracking device, heating up or cooling down only certain parts of the toy, before the human being touches the toy; adjusting, by heating up or cooling down, the temperature of other parts of the toy, such as the hand of the toy, to make the toy more comfortable to cuddle up, only after the other parts of the toy are touched by the human being, wherein the adjustments are made in light of the temperature of the human being and the room temperature; and returning the toy’s temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy.

[0007] As an enhanced system for making the toy even more comfortable, the system may include a toy including a body and a hand, wherein the toy’s temperature is adjustable; an infrared tracking device used to wirelessly detect an amount of heat radiating from a remote object including a human being, wherein the tracking device is included in the toy; a laser-based distance measuring device included in the toy; a temperature tracking device in the toy used to measure a room temperature; a first heater included in the body of the toy; a second heater included in the hand of the toy; a first cooler included in the body of the toy; a second cooler included in the hand of the toy; a processor; and a memory storing instructions that cause the processor to execute a method, the method comprising: detecting whether the human being is getting closer to the toy, based on readings from the laser-based distance measuring device; enabling a temperature adjusting feature, after detected that the human being is getting closer to the toy; detecting the human being’s body temperature by using the infrared tracking device to wirelessly detect the amount of heat radiating from a remote object including the human being; based on the detected human being’s temperature and a measured room temperature using the temperature tracking device, heating up or cooling down only certain parts of the toy, before the human being touches the toy; adjusting, by heating up or cooling down, the temperature of other parts of the toy, such as the hand of the toy, to make the toy more comfortable to cuddle up, only after the other parts of the toy are touched by the human being, wherein the adjustments are made in light of the temperature of the human being and the room temperature; further adjusting the temperature of the toy, to make the toy more comfortable to cuddle up, when detected that the human being’s temperature has changed; and returning the toy’s temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy. Alternatively, the system may also include a toy that includes a body and a hand, wherein the toy’s temperature is adjustable; an infrared tracking device used to wirelessly detect an amount of heat radiating from a remote object including a human being, wherein the tracking device is included in the toy; a laser-based distance measuring device included in the toy; a temperature tracking device in the toy used to measure a room temperature; a first heater included in the body of the toy; a second heater included in the hand of the toy; a first cooler included in the body of the toy; a second cooler included in the hand of the toy; a processor; and a memory storing instructions that cause the processor to execute a method, the method comprising: detecting whether the human being is getting closer to the toy, based on readings from the laser-based distance measuring device; enabling a temperature adjusting feature, after detected that the human being is getting closer to the toy; detecting the human being’s body temperature by using the infrared tracking device to wirelessly detect the amount of heat radiating from a remote object including the human being; based on the detected human being’s temperature and a measured room temperature using the temperature tracking device, heating up or cooling down only certain parts of the toy, before the human being touches the toy; adjusting, by heating up or cooling down, the temperature of other parts of the toy, such as the hand of the toy, to make the toy more comfortable to cuddle up, only after the other parts of the toy are touched by the human being, wherein the adjustments are made in light of the temperature of the human being and the room temperature; further adjusting the temperature of the toy, to make the toy more comfortable to cuddle up, when detected that the human being’s temperature has changed; and returning the toy’s temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy.

[0006] In another disclosure, the system for making a toy more comfortable may comprise a toy including a body and a hand, wherein the toy’s temperature is adjustable; an infrared tracking device used to wirelessly detect an amount of heat radiating from a remote object including a human being, wherein the tracking device is included in the toy; a laser-based distance measuring device included in the toy; a temperature tracking device in the toy used to measure a room temperature; a first heater included in the body of the toy; a second heater included in the hand of the toy; a first cooler included in the body of the toy; a second cooler included in the hand of the toy; a processor; and a memory storing instructions that cause the processor to execute a method, the method comprising: detecting whether the human being is getting closer to the toy, based on readings from the laser-based distance measuring device; enabling a temperature adjusting feature, after detected that the human being is getting closer to the toy; detecting the human being’s body temperature by using the infrared tracking device to wirelessly detect the amount of heat radiating from a remote object including the human being; based on the detected human being’s temperature and a measured room temperature using the temperature tracking device, heating up or cooling down only certain parts of the toy, before the human being touches the toy; adjusting, by heating up or cooling down, the temperature of other parts of the toy, such as the hand of the toy, to make the toy more comfortable to cuddle up, only after the other parts of the toy are touched by the human being, wherein the adjustments are made in light of the temperature of the human being and the room temperature; further adjusting the temperature of the toy, to make the toy more comfortable to cuddle up, when detected that the human being’s temperature has changed; and returning the toy’s temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy.
wirelessly detect the amount of heat radiating from a remote object including the human being; based on the detected human being’s temperature and a measured room temperature using the temperature tracking device, heating up the first heater or cooling down the first cooler only the body of the toy, before the human being touches the toy; adjusting, by heating up of the second heater or cooling down the second cooler, the temperature of the hand of the toy, to make the toy more comfortable to cuddle up, only after the hand of the toy is touched by the human being, wherein the temperature adjustments are made in light of the temperature of the hand of the toy, the temperature of the human being and the room temperature; further adjusting the temperature of the toy, to make the toy more comfortable to cuddle up, when detected that the room temperature has changed; and turning the toy’s temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy.

What is claimed is:

1. A system for making a toy more comfortable, comprising:
 a toy including a body and a hand, wherein the toy’s temperature is adjustable;
 an infrared tracking device used to wirelessly detect an amount of heat radiating from a remote object including a human being, wherein the tracking device is included in the toy;
 a laser-based distance measuring device included in the toy;
 a temperature tracking device in the toy used to measure a room temperature;
 a first heater included in the body of the toy;
 a second heater included in the hand of the toy;
 a first cooler included in the body of the toy;
 a second cooler included in the hand of the toy;
 a processor; and
 a memory storing instructions that cause the processor to execute a method.

2. The system of claim 1, wherein the method comprises:
 detecting whether the human being is getting closer to the toy, based on readings from the laser-based distance measuring device;
 enabling a temperature adjusting feature, after detected that the human being is getting closer to the toy;
 detecting the human being’s body temperature by using the infrared tracking device to wirelessly detect the amount of heat radiating from a remote object including the human being;
 based on the detected human being’s temperature and a measured room temperature using the temperature tracking device, heating up or cooling down only certain parts of the toy, before the human being touches the toy;
 adjusting, by heating up or cooling down, the temperature of other parts of the toy, such as the hand of the toy, to make the toy more comfortable to cuddle up, only after the other parts of the toy are touched by the human being, wherein the adjustments are made in light of the temperature of the human being and the room temperature; and
 returning the toy’s temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy.

3. The system of claim 1, wherein the method comprises:
 detecting whether the human being is getting closer to the toy, based on readings from the laser-based distance measuring device;
 enabling a temperature adjusting feature, after detected that the human being is getting closer to the toy;
light of the temperature of the hand of the toy, the temperature of the human being and the room temperature; further adjusting the temperature of the toy, to make the toy more comfortable to cuddle up, when detected that the room temperature has changed; and returning the toy’s temperature to normal, after detecting by the laser-based distance that the human being has stepped away from the toy.

* * * * *