Office de la Propriete Canadian CA 2468057 A1 2005/02/01

Intellectuelle Intellectual Property
du Canada Office (21) 2 468 057
v organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2003/08/20 (51) CLInt.”/Int.CI." GOBF 12/02, HO4L 12/00

(87) Date publication PCT/PCT Publication Date: 2005/02/01 (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2004/06/09 MICROSOFT CORPORATION, US
(86) N° demande PCT/PCT Application No.: US 2003/026036 (72) Inventeurs/inventors:

GRIGOROVITCH, ALEXANDRE V., US:
(30) Priorité/Priority: 2003/08/01 (10/632,767) US CHOI. YEJIN, US:

PAULO DE CARVALHO, THALES, US
(74) Agent: SMART & BIGGAR

(54) Titre : MISE EN MEMOIRE CACHE POUR DIFFUSION DE FICHIERS AUDIOVISUELS
54) Title: SPARSE CACHING FOR STREAMING MEDIA

(57) Abrégée/Abstract:
Systems, methods, and data structures are described which allow or caching streaming media file iIn a manner that allows for
storage and retrieval of portions of the streaming media file that are temporally non-contiguous and/or encoded at differing bit rates.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 02468057 2004-06-09

41
ABSTRACT

Systems, methods, and data structures are described which allow or caching

streaming media file in a manner that allows for storage and retrieval of portions of

\
the streaming media file that are temporally non-contiguous and/or encoded at

differing bat rates.

10

15

20

25

CA 02468057 2004-06-09

£V355227197

SPARSE CACHING FOR STREAMING MEDIA

BACKGROUND OF THE INVENTION

Media streaming is a process for sending an audio/video presentation and
other data from streaming media files or from live streaming sources from one
location to another over a network, such as the Internet or an intranet. Typically,
media streaming involves sending a streaming media file from a server to a client,
where the streaming media file may be presented (viewed and/or listened to) using a
media player. Media streaming may also be carried out peer-to-peer. Unlike non-
streaming media transfer techniques, which require an entire media file to be
transferred before 1t may be presented, media streaming allows presentation of

ponioﬁs of the streaming media file while it 1s being transmitted or streamed to the

client.

Media streaming may be either unicast, where a streaming media file is
streamed from a server to a single client, or multi-cast, where the streaming media
file 1s streamed from a server to multiple clients. Additionally, media streaming
may be either live, where a streaming media file including data representing a live

event 1S streamed as 1t occurs, or on-demand, where the streaming media file is

stored in a streaming media file and streamed when it is requested. Onédemand
media streaming 1s typically unicast, with a separate streaming event occurring
between the server and each client.

A basic streaming media file typically includes at least two streams: a video
stream and an audio stream. More complex streaming media file will include
multiple video and/or audio streams, each stream being encoded at a different bit

rate (1.e., muiti-bit rate encoding). For example, a given portion or stream of video

10

15

20

25

CA 02468057 2004-06-09

2

may be stored in a multiple bit rate enooded streaming media file in six different
video streams, each stream being encoded at a different bit rate. When a client
requests the streaming media file from the server, a determination is then made as
to the bandwidth of the link between the server and the client. One of the six video
streams and an audio stream are then selected for transmission to the client, based
on predetermined bandwidth criteria. For example, the video and audio streams may
be selected such that their combined bit rates are less than a predetermined
percentage of the available link bandwidth. If, at some point in the streaming
process, the link bandwidth between the server and the client increases or
decreases, a different combination of audio and video streams is then selected to
meet the predetermined bandwidth criteria. This type of “stream selection™ from a
multi-bit rate encoded streaming media file based on available bandwidth is
commonly referred to as “intelligent streaming.”

In some client systems, the streaming experience is enhanced by caching
some or all of the received streaming media file at the client prior to playing the
streams. Caching the streams prior to playing them reduces the likelihood that a
problem 1n the network connection will interrupt the play of the streaming media
file at the client. Furthermore, in some systems, some minimal use of stream
navigation (rewinding, replay) may me carried out using the cache.

One problem that currently exists with respect to multi-bit rate encoding
and/or media stream caching is that there is no way for streams of varying bit rates
or non-temporally adjacent streams to be stored and then accessed in a seamless
manner, 1f at all. Typically, when a switch is made between media streams in a
streaming media file due to a change in bandwidth, any previously cached portions
of the streaming media file are discarded and a new stream cache is established.

Similarly, when a jump i1s made between temporally non-adjacent locations in a

10

15

20

25

CA 02468057 2004-06-09

3

streaming media file such as a seek operation, any previously cached portions of the

streaming media file are discarded and a new stream cache is established.

The various systems, methods, and data structures described below address

these and other problems.

SUMMARY OF THE INVENTION

Various systems, methods, and data structures are described herein relating
to caching streaming media file in a manner that allows for storage and retrieval of
portions of the streaming media file that are temporally non-contiguous and/or
encoded at differing bit rates.

In accordance with one implementation, a caching mechanism is used that
employs unique intermediate storage mechanisms that permit such temporally non-
contiguous and/or variously encoded portions of a streaming media file to be stored
in, and accessed from, a cache file. In accordance with another implementation, a
unique cache file structure 1s used that permits such temporally non-contiguous

and/or variously encoded portions of a streaming media file to be stored in, and

accessed from, a common file.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 illustrates an exemplary networking environment in which the various
systems, methods, and data structures described herein may me employed.
Fig. 2 1illustrates exemplary client and server devices.

Fig. 3 illustrates an exemplary arrangement and format of media streaming

data.

F1g. 4 1llustrates an exemplary data structure of a cache file.

10

15

20

25

CA 02468057 2004-06-09

‘. .
-

4
Fig. 5 1llustrates an exemplary operational tlow including vanious acts for

recording streaming media.

Fig. 6 1llustrates an exemplary operational flow including various acts for
playing streaming med}a.

Fig. 7 illustrates an exemplary general computer environment, which can be

used to implement the systems, methods, and data structures described herein.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Generally, the various systems, methods, and data structures described herein
relate to caching a streaming media file in a manner that allows for storage and
retrieval of portions of the streaming media that are temporally non-contiguous
and/or encoded at differing bit rates. As will be described, a client side caching
mechanism uses unique intermediate storage mechanisms and a unique cache file

structure that permits such “dissimilar” portions of a streaming media file to be

stored in, and accessed from, a cache file.

Exemplary Environment

Fig. 1 illustrates an exemplary network environment 100. In the environment
100, multiple (x) client devices 102(1), 102(2), . . . , 102(x) are coupled to multiple
(y) server devices 104(1), 104(2), . . ., 104(y) via a network 106. The network 106 1s
intended to represent any of a variety of conventional network topologies and types
(including wire and/or wireless networks). The network 106 may include, for
example, the Internet, an intranet, a Wide Area Network (WAN), a Local Area
Network (LAN), and/or various combinations of any of these or other networks.

It 1s to be appreciated that as used herein, a server device can be any device

or process that 1s a source of a streaming media file, and a client device can be any

10

15

20

25

CA 02468057 2004-06-09

>

device or process that receives the streaming media file (e.g., for presentation to a

user at the client device). For example, in a peer to peer network, the device or

process that is the source of the streaming media file can be reterred to as the server

s

device while the device or process that receives the streaming media file can be

referred to as the client device.

In accordance with the various embodiments described herein,
communication between the client devices 102 and the server devices 104 may
occur using any of a variety of conventional communication protocols (including
public and/or proprietary protocols). In one 1mplementation, communication
between devices 102 and 104 occurs using a version of the Hyper Text Transport
Protocol (HTTP). In another implementation, communication between devices 102
and 104 occurs using the Real Time Streaming Protocol (RTSP). Alternatively,
other protocols may be used, such as the Session Initiation Protocol (SIP), the
Simple Object Access Protocol (SOAP), and so forth.

The devices 102 and 104 may each be any of a variety of conventional
computing devices, including desktop PCs, workstations, mainframe computers,
Internet appliances, gaming consoles, handheld PCs, cellular telephones, personal
digital assistants (PDAs), set-top boxes, etc. One or more of the devices 102 and
104 may be the same types of devices, or alternatively different types of devices.

Although not shown, one or more additional devices (e.g., firewalls, routers,
gateways, bridges, multiple proxy servers, etc.) may be situated between a client
device 102 and a server device 104. It should be noted that multiple client devices

102 may access a single server device 104 and that a single client device 102 may

access multiple server devices 146.

Fig. 2 1llustrates an exemplary server device 104. As shown, the server

device 104 includes a streaming module 216 and one or more streaming media files

10

15

20

25

CA 02468057 2004-06-09

6

222. The server device 104 may be, for example, an origin server device 104 of Fig.
1, or alternatively another device (e.g., a proxy device). In general, the streaming
module 220 functions to receive a request for a streaming media file, or a portion of
a streaming media file, such as from the client device 102, and to stream the
streaming media file 222 or a portion of the file to the requester.

A “media file” includes one or more digital streams of information that may
be rendered by a media player. Typically, the media file will include two or more
streams that are temporally synchronized. The media file may also include other
streams which are independent. The contents of a media file may or may not be
compressed. The term “streaming media file” 1s used herein to indicate that a media
file 1s provided over a network to a client device and that playback of the media file
can begin prior to the media file being delivered in its entirety (e.g., providing the
media file data on an as-needed basis rather than pre-delivering the data in its
entirety before playback). A streaming media file may be publicly available or
alternatively restricted (e.g., restricted to only certain users, available only if the
appropnate fee 1s paid, etc.). A streaming media file can be any of a vanety of one
or more types of time-based media file, wherein information within the streaming

media file specifies the temporal presentation of some or all of the file during

playback, such as audio, video, temporal text presentation, animation, etc.

Additionally, the streaming media file may be pre-recorded or alternatively "live"

(e.g., a digital representation of a concert being captured as the concert is performed

and made available for streaming shortly after capture).

A streaming media file 222 may be stored and/or streamed in accordance

with any of a variety of different streaming media file formats. For example, a

streaming media file may be stored as a static streaming media file. Alternatively, a

streaming media file 222 may be streamed “live” from one or more streaming

10

15

20

25

CA 02468057 2004-06-09

7

media sources or producers. In one exemplary implementation, media files are
stored and/or streamed in accordance with the ASF format (Advanced Systems
Format or Advanced Streaming Format). Additional mformation regarding ASF is
ava;lable from Microsoft® Corporation of Redmond, Washington. The same
technique can be applied to other formats as well, such as MPEG (Moving Pictures
Experts Group)-1, MPEG-2, MPEG-4, Quicktime, etc.

As shown, the client device 102 includes a streaming media player 206, a
networking module 208, a caching module 210, and one or more cache files 216.
Included in the caching module 210 are a media cache module 212 and a byte cache
module 214. As shown, the one or more cache files are stored in a data storage

module 218 at the client device 102.

Generally, the streaming media player 206 provides a means by which a
streaming media file 222 may be selected by a user for presented at the client device
102. In accordance with one embodiment, the streaming media player 206 is an
application or applet that 1s executed by a processor on the client device 102. The
streaming media player 206 1s operable to receive and decode streaming media files
and to deliver the content of the streaming media files to appropriate video and
audio output devices at the client device 102.

In general, the networking module 208 functions as type a “gateway”
between the streaming media player 206 and various sources of streaming media
files. In this capacity, the networking module 208 performs a number of functions
related to establishing connections between the streaming media player 206 and the
various streaming media sources. For example, in accordance with one
embodiment, the networking module 208 establishes a network connection between

the streaming media player 206 and the server device 104. The networking module

10

15

20

25

CA 02468057 2004-06-09

8

208 also establishes a network connection between the streaming media player 206
and the caching module 210.

In addition, the networking module 208 performs a number of functions
related to determining from which of a number (;f available streaming media
sources the streaming media player 206 will receive data. For example, in
accordance with one embodiment, in response to receiving a request from the
streaming media player 206 for all or part of a particular streaming media
presentation, the networking module 208 determines whether the request can be
satisfied by retrieving the requested data from a previously stored cache file 216, or
whether the requested data needs to be retrieved from a server device.

In accordance with one embodiment, the networking module 208 determines
the streaming rate of the streaming media file between the streaming module 220
and the networking module 208 based on a variety of different factors. This can be
determined In any of a varnety of conventional manners, such as sending test
messages between devices 102 and 104, monitoring current and past behavior of
connections between devices 102 and 104, recetving an indication of the available
bandwidth from streaming module 220, and so forth. Given the current available
bandwidth, the networking module 208 1nitially requests a streaming rate that 1s a
particular amount less than the current available bandwidth. This particular amount

can be fixed (e.g., always 50kbps) or dynamic (e.g., 15% of the current available
bandwidth, or between 5% and 25% of the current available bandwidth).

In accordance with one embodiment, the networking module 208 creates or
instantiates the media cache module 212, described below. In accordance with this
embodiment, the networking module may create or instantiate a single networking

module or multiple networking modules. Other functions that may be performed by

the networking module 208 include, without limitation, determining if a cache file

10

15

20

25

CA 02468057 2004-06-09

9

related to a particular streaming media presentation 1s stored in the data storage
module and creating cache files in the data storage module. Conventional
components that are part of client device 102 may optionally be used to assist the
networking module 208. For example, in one exemplary implementation, the
Microsoft® Internet Explorer browser program includes cache management
functionality such as monitoring the expiration of items 1n the cache and/or garbage
collection, and the networking module 208 may use this functionality in performing
the various operations of the networking module outlined above.

In accordance with one embodiment, the data storage module 218 1s
composed of nonvolatile memory. For example, and without limitation, the data
storage module 218 may be composed of one or more nonvolatile memory devices,
such as magnetic or optical storage devices, magneto optical storage devices,
nonvolatile RAM, or other type of nonvolatile storage devices. In accordance with
another embodiment, the data storage module 218 1s composed of one or more types
of volatile memory devices.

The caching module 210 provides a mechanism by which a streaming media
file may be written to and read from a cache file 216 1n the data storage module
218. As shown, the caching module 210 includes a media cache module 212 and a
byte cache module 214. As described in greater detaill below, the media cache
module 212 and the byte cache module 214 each create and/or manage in one or
more intermediate data structures into which various portions and arrangements of

received streaming media data are stored.

The media cache module 212 provides intermediate data structures for a
received streaming media file. In particular, the media cache module 212 creates in
one or more computer-readable media five types of data structures, a media cache

stream, a media cache segment, a media cache header segment, a byte cache index

10

15

20

25

CA 02468057 2004-06-09

10

segment, and a byte cache data segment. In operation, the media cache module 212
creates a single media cache header segment and a number of media cache streams
and media cache segments for each media file that is received. The media cache
moduie 212 creates and manages a media cach;:: stream for each different type and
encoded bit rate of stream received in a streaming media file by the client device
102. As used herein, a “type” of stream refers to the format or function (e.g. audio
or video) of the stream. As will be appreciated, the encoded bit rate of a stream is
the bit rate at which the stream was original stored in the streaming media file. As
such, if the media cache module 212 receives three video streams from a streaming
media file, each having a different bit rate, and two audio streams, each having a
different bit rate, the media cache module 212 will produce five different media
cache streams. In operation, the media cache module 212 will create a new media
cache stream each time a new type or bit rate of media stream is received by the
media cache module 212.

When a stream 1s received by the media cache module 212, the data within
the received stream is stored in a media cache segment within (i.e., logically
assoclated with) a media cache stream of the same type and bit rate as the received
stream. For example, it a video stream encoded at a bit rate of X is received by the

media cache module 212, the data from the received stream will be stored in a

media cache stream of the type “video,” having an associated bit rate of X. If a
media cache stream of the type “video” encoded at bit rate X has not yet been
created, the media cache module 212 will create such a media cache stream. Once
the media cache module 212 has created a media cache stream for a given type and
bite rate of a received stream, the media cache module 212 will create a separate

media cache segment for each temporally non-contiguous portion of the received

stream. As used herein, the term “temporally non-contiguous” refers to portions of a

10

15

20

25

CA 02468057 2004-06-09

11

received stream or streaming media file that are not adjacent to one another in terms
of the temporal presentation of their content during playback. As such, the media
cache module 212 will create a separate media cache segment in a given media
cache stream for each portion of the received stream that s not 1immediately
adjacent in time, relative to time structure of the received stream, to another media

cache stream in the given media cache stream.

Fig. 3 illustrates a graphical representation 300 of an arrangement of media
cache streams and media cache segments created by the media cache module 212
for a hypothetical streaming media file. The media cache streams and segment are
shown as being aligned vertically with respect to a time axis 340, where the time
axis indicates the playing time of the streaming media file.

As shown, the media cache module 212 has created three separate media
cache video streams: media cache video stream (1) 310, media cache video stream
(2) 312, and media cache video stream (3) 314, each of which is associated with a
different bit rate. Additionally, the media cache module 212 has created two
separate media cache audio streams: media cache audio stream (1) 316, and media
cache audio stream (2) 318, each of which 1s associated with a different bit rate.

As shown, the media cache module 212 has created: two temporally non-
contiguous media cache video segments 320 and 326 within media cache video
stream (1) 310; one media cache video segment 322 within media cache video
stream (2) 312; and one media cache video segment 324 within media cache video
stream (3). Additionally, the media cache module 212 has created: one media cache

audio segment 328 within media cache audio stream (1) 316; and one media cache

segment 330 within media cache audio stream (2).

As noted, the media cache module 212 also creates, for each received

streaming media file, a media cache header segment data structure. The media

10

15

20

25

CA 02468057 2004-06-09

12

cache header segment includes a file i1dentifier field, a media cache segment count
field, one or more media cache segment information fields, and/or a streaming
media file description.

In accordance with one embodiment, the file identiﬁer field includes a
Globally Unique Identifier (GUID) that i1dentifies the cache file into which the data
of each of the media cache streams and segments tor a given streaming media file
are stored. The media cache segment count field stores a number 1ndicating the total
number of media cache segments having data stored in the cache file. Each media
cache segment information field stores a media cache segment information data
structure for each media cache segment having data stored in the cache file.

The media cache segment information data structure includes fields
containing some or all of the following information about a single media cache
segment having data in the cache file: an 1dentifier of the media cache segment; a
stream 1dentifier that specifies the media cache stream that includes the media cache
segment; a segment start position indicator that indicates the start of the media
cache segment 1n the media cache stream that includes the media cache segment; a
segment end position 1dentifier that indicates the end of the media cache segment in
the media cache stream that includes the media cache segment, a stream size
indicator that specifies the size of the media cache stream including the media
cache segment; a previous segment identifier that specifies a media cache segment,
if any, immediately preceding the media cache segment in the media cache stream;

a next segment 1dentifier that specifies a media cache segment, if any, immediately

succeeding the media cache segment in the media cache stream, and a segment data

type 1dentifier that specifies the type of data (e.g. audio, video, etc.) included in the

media cache segment.

10

15

20

25

CA 02468057 2004-06-09

13

The information included in the streaming media file description 1s
dependent on the format of the streaming media file. However, generally, the
streaming media file description may include such information as descriptions of
the var{ous stream;s of the media file, a description of the codec used to generate the
content of the media file, and/or other meta data related to the content.

In operation, the media cache module 212 creates a byte cache index
segment and an associated byte cache data segment for each media cache segment
created by the media cache module. In accordance with one embodiment, each byte
cache data segment includes, without limitat.ion, the presentable data (e.g., audio or
video data, etc.) of the media cache segment from which it is created. In accordance
with one embodiment, each byte cache index includes, without limitation, the
following information related to the data in its associated byte cache data segment;
a start time, a duration time, an offset to the data in the byte cache data segment,
and/or the size of the data.

In accordance with one embodiment, the media cache module 212 creates or
instantiates the byte cache module 214, described below. In accordance with this
embodiment, the media cache module 212 may create or instantiate a single byte
cache module 214 or multiple byte cache modules.

The byte cache module 214 serves to, among other things, serialize and store
the data from the byte cache index segments and a byte cache data segments in the
cache file 216, in accordance with a predetermined cache file data structure format.
Fig. 4 illustrates one such exemplary cache file data structure format for the cache
file 216. As shown, the cache file 216 1s composed of a number of pages 410.
Included 1n these pages are a header page 412 and a number of data pages 414 —

420. In general, the data pages 414 — 420 includes the byte cache index and data

10

15

20

25

CA 02468057 2004-06-09

14

segments created by the media cache module 212, while the header page 412
includes information that describes one or more characteristics of the data pages.

As shown 1n Fig. 4, the header page 412 includes a number of header page
data fields 422. Included in the header page data ﬁélds 422 are a cache file header

data field424 and a number of cache file control record data fields 426 — 432. The

cache file header data field 424 further includes a number of cache header fields
436. Included 1n the cache header fields 436 are a cache header GUID field 438, a
flags field 440, a free pages record 442, a number of CFCRs data field 444, and an
external block ID field 446. The cache header GUID field 438 includes a globally
unique 1dentifier that uniquely identifies the cache file 216. The flags field 440
includes an indicator tlag that specifies whether the cache file includes valid data.

The number of CFCRs data field 444 includes an identifier that specifies the
number of cache file control records included in the header page data fields 422.
The external block ID field 446 includes a pointer to a page in the cache file that
includes additional cache file control records. The external block ID field 446 is
used 1n the instance where the number of cache file records required in the cache
file 1s grater than the number of cache file control records that may be included in
the header page 412.

The tree pages record 442 includes a number of table record data fields 441,
including a number of free pages data field 443, a first external block ID field 445,
and a free page record field 447. The number of free pages data field 443 includes
an 1dentifier indicating the number of free pages in the cache file. The free page

record field 447 includes a table particularly identifying the various free data pages

in the cache file. In the case where the number of free data pages exceeds the

number of free data pages that can be specified in the free page record field 447, the

10

15

20

235

CA 02468057 2004-06-09

15

first external block ID includes a pointer to a page that includes a data structure
identifying additional free data pages.

Each of the cache file control records 426 — 432 is associated with a single
byte cache segment. In general, each of the cache file control records 426 — 432
includes information defining the position of its associated byte cache in the cache
file 216. As shown 1n Fig. 4, each cache file control record includes a number of
CFCR data fields 448. Included 1in the CFCR data fields 448 are a CFCR GUID
field 450, a first page index field 452, a first page offset field 454, a last page offset
field 456, and a cache pages table record 458. FEach of the CFCR data fields 448,
and the information contained therein, may be said to be associated with the single
byte cache segment associated With the cache file control record to which they
belong.

The GUID field 450 includes a globally unique identifier that uniquely
identifies the cache file control record in which it is included. In general, the first
page index field 452, the first page offset field 454, and the last page offset field
456, include addresses defining a window or range of addresses in which the daté
from the byte cache segment 1s stored.

In accordance with one embodiment, the first page index field 452 includes
an address of the first page mn the data pages including its associated byte cache
segment. The first page offset field 454 includes a pointer to location in a page,
relative to the start of the page indicated by the first page index field 452, of the
beginning of the data of its associated byte cache segment. The last page offset field
456 1ncludes a pointer to location in a page, relative to the start of the page

indicated by the first page index field 452, of the end of the data of its associated

byte cache segment.

10

15

20

23

CA 02468057 2004-06-09

16

The cache pages table record 458 1includes a number of table record data
fields 460, including a number of pages data field 462, a first external block ID 464,
and a cache page record 466. The number of pages data field 462 includes an
identiﬁé:r indicating the number of data pages that contain data from 1ts associated
byte cache segment. The cache page record field 466 includes a table 1dentifying
the various data pages that include data from its associated byte cache segment. In
the case where the number of data pages including data from its associated byte
cache segment exceeds the number of data pages that can be specified in the cache
page record field 466, the first external block ID field 464 includes a pointer to a
page that includes a data structure i1dentitying additional data pages that include

data from its associated byte cache segment.

Fig. 5 illustrates an exemplary operational tflow including various operations
500 for receiving and storing a streaming media file. In accordance with one
embodiment, the operational flow 1s implemented by a client device, such as client
device 102 of Fig. 2, and may be performed in software, firmware, hardware, or

combinations thereof.

As shown in Fig. 5, at the start of the operational flow 500 a request 1s made
510 for all or part of a specified streaming media file. For example, in accordance
with one embodiment, a request 1s made to a server device, such as server device
104 of Fig. 2, for a particular streaming media file. Following the request 510, a
determination operation 512 determines whether the requested streaming media file
1s available. If 1t 1s determined that the requested streaming media file is not
available, the operational flow 500 ends. If, however, it is determined that the

requested streaming media file 1s available, a create cache file operation 514 then

creates a cache file for storage of the requested streaming media file. In accordance

10

15

20

25

CA 02468057 2004-06-09

17

with one embodiment, the create cache file operation 514 creates the cache tile 1n a

data storage module, such as data storage module 218 of Fig. 2.

Following the creation of the cache file a request description operation 516
requests a description of the streaming media file frc:m the server device. A store
description operation 518 then receives and stores the streaming media file
description in the created cache file. Next, a select streaming media file stream
operation 520 selects a media stream from the server device for transter to the client
device. In accordance with one embodiment, the select streaming media file stream
operation 520 selects the stream for transfer based at least in part on the bandwidth
currently available between the client device and the server device. A stream
determination operation 522 then determines if corresponding media cache stream
exists in the cache file for the selected stream. That 1s, the stream determination
operation 522 determines whether a media cache stream having the same type and
bit rate as the selected stream 1s present in the cache file.

If it is determined that a corresponding media cache stream does not exists in
the cache file for the selected stream, a create media cache stream operation 524
then creates a corresponding media cache stream in the cache file. Following the
creation of the corresponding media cache stream, a create media cache segment
operation 526 creates a media cache segment in the media cache stream created in
operation 524 corresponding to the selected stream. Returning to the determination
operation 522, if 1t 1s determined therein that a corresponding cache stream already
exists 1n the cache file for the selected stream, the operational flow bypasses the
create streaming media cache stream operation 524, and proceeds to the create

media cache segment operation 526, where a media cache segment 1s created in the

corresponding media cache stream. Following the create media segment operation,

10

15

20

25

CA 02468057 2004-06-09

18

a streaming operation 528 then streams data from the selected stream into the
created media cache segment.

As data from the selected stream is being stream into the created media
segment cache, a detect seek Operatior; 530 determines whether a seek operation is
being requested. If 1t 1s determined that a seek operation is being requested, the
operational flow proceeds back to the select streaming media file stream operation
520. If 1t 1s determined that a seek operation is not being requested, the operational
flow proceeds to a detect change in bandwidth operation 532, which determines
whether the bandwidth between the client device and the server device has changed
since the select streaming media file stream operation 520 was performed. If it is
determined that a change in the bandwidth has occurred, the operational flow
returns to the stream determination operation 522. If it is determined that a change
in the bandwidth has not occurred, the operational flow proceeds to an end of
stream determination operation, where it is determined whether the end of the
selected stream 1n the select streaming media file stream operation 520 has been
reached. If it 1s determined that the end of the selected stream has not been reached,
the operational flow 500 proceeds back to the detect seek operation 530. If it is
determined that the end of the stream selected has been reached the operational
flow 500 proceeds to an requested media file complete determination operation 536,
where 1t 1s determined whether the media file requested at 510 has been completely
stored to the cache file. In accordance with one embodiment, the requested media
file will be determined to be complete if all desired streams have been completely
downloaded at an acceptable bit rate. If it is determined that the media file

requested has not been completely stored to the cache file, the operational flow 500

returns to the selected streaming media file stream operation 520. If however is

10

15

20

25

CA 02468057 2004-06-09

19

determined that the media file requested has been completely stored to the cache
file, the operational flow 500 ends.

Fig. 6 illustrates an exemplary operational flow 600 including various
operations 600 for retrieving and presenting streaming media. The operational flow
600 includes operation for selectively retrieving a single stream, such as a single
video or audio stream, from a cache file, such as cache file 216. It should be
appreciated that multiple streams from a streaming media file and/or cache file may
be retrieved in accordance with the operational flow 600. In accordance with one
embodiment, the operational flow 600 i1s implemented by a client device, such as
client device 102 of Fig. 2, and may be performed in software, firmware, hardware,
or combinations thereof.

As shown 1n Fig. 6, at the start of the operational flow 600, a request is
received from a data requester (e.g. the media player) to play data from a desired
point 1n a particular type of stream. For example, a request may be received to start
playing a video stream from a particular a particular point in time with respect to a
particular streaming media file stored in a server. However, rather than going
directly to the server to service the request, a preferred bit rate operation 612
determines 1f the requested data 1s available in the cache file at a preferred bit rate.
The pretferred bit rate may be set or determined in a number of ways. For example,
and without limitation, in accordance with one embodiment, a packet-pair technique
1s used to determine the preferred bit rate. In accordance with another embodiment,
a user may explicitly specify the preferred bit rate.

If the requested data is not available in the cache file at the preferred bit
rate, a server request operation 614 then requests the requested data from the server
and stores the requested data in the cache file. Following the server request

operation 614, the operational flow returns to the preferred bit rate operation 612. In

10

15

20

25

CA 02468057 2004-06-09

20

accordance with one embodiment, after a number of unsuccessful attempts are
made to get the requested data from the server, a determination 1s made as to
whether the requested data i1s available 1n the cache file at bit rate lower than the
preferred bit rate. If so, the requested data at the lower bit rate may be accessed
from the cache file.

Next, a start point determination operation 616 determines which media
cache stream in the cache file includes the start point of the requested data. A data
available operation 618 then determines 1f the requested data 1s available from the
start point to the end of the stream. Stated another way, the data available operation
618 determines if there are any temporal discontinuities 1n the data in the stream
from the start point to the end of the stream. If it 1s determined that the data is

available from the start point to the end of the stream, the operational flow proceeds

to a determine cache segment operation 622, which determines the media cache
segment 1n the determined media cache stream that includes the start point. If,
however, 1t 1s determined that the data 1s not available from the start point to the
end of the stream, the operational flow proceeds to a server data request operation
620, which requests from the server any data that is needed to complete the stream,
such that there are no temporal discontinuities from the start point to the end of the
stream. The operational tlow 600 then proceeds to the determine cache segment
operation 622. It should be understood that the operational flow continues on after
the request has been made to the server by the server data request operation 620.
That 1s, the operational tlow is not suspended until the data requested in operation
620 is received from the server and stored.

Following the determine cache segment operation 622, a play operation 624
delivers the data from the determined media cache segment to the data requester for

play. While the determined media cache segment is being delivered to the data

10

15

20

25

CA 02468057 2004-06-09

21

requester, a seek determination operation 626 determines if a seek has been
requested to a new start point in the determined media cache stream. This may
occur, for example, when a seek operation 1s performed by the data requester to
another temporal location in the dete;rmined media cache stream. If the seek
determination operation 626 determines that a seek has been requested, the
operational flow 600 returns to the data available operation 618. If, however, the
seek determination operation 626 determines that a seek has not been requested,
and after the data from the determined media cache segment has been completely
delivered to the data requester, a cache stream end determination operation 628
determines whether the end of the determined media cachg: stream has been
reached. If 1t 15 determined that the end of the determined media cache stream has
not been reached, a next cache segment operation 630 determines the next media
cache segment in the determined media cache stream that is to be accessed. If,
however, it 1s determined that the end of the determined media cache stream has
been reached, the operational flow 600 proceeds to an end of file (EOF)
determination operation 632, where it 1s determined if the end of. the cache file has
been reached. If 1t 1s determined that the end of the cache file has not been reached,
the operational flow 600 returns to the cache stream end determination operation
628. If, however, it 1s determined that the end of the cache file has been reached,
the operational flow 600 ends.

Various operational flows have been illustrated in figs. 5 and 6. It should be

noted that the operations illustrated in figures can be performed in the order shown,

or alternatively in different orders.
Fig. 7 illustrates a general computer environment 700, which can be used to
implement the techniques described herein. The computer environment 700 is only

one example of a computing environment and is not intended to suggest any

10

15

20

235

CA 02468057 2004-06-09

22

limitation as to the scope of use or functionality of the computer and network

architectures. Neither should the computer environment 700 be interpreted as

having any dependency or requirement relating to any one or combination of
components illustrated in the exemplary computer environment 700. |
The computer environment 700 includes a general-purpose computing
device in the form of a computer 702. The computer 702 may be, for example, a
client device 102 or server device 104 of Figs. 1 or 2. The components of the
computer 702 may include, but are not limited to, one or more processors or
processing units 704, a system memory 706, and a system bus 708 that couples
various system components including the processor 704 to the system memory 706.

The system bus 708 represents one or more of any of several types of bus

structures, including a memory bus or memory controller, a peripheral bus, an

accelerated graphics port, and a processor or local bus using any of a variety of bus
architectures. By way of example, such architectures can include an Industry
Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) bus, an
Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA)

local bus, and a Peripheral Component Interconnects (PCI) bus also known as a

Mezzanine bus.

The computer 702 typically includes a variety of computer-readable media.
Such media can be any available media that 1s accessible by the computer 702 and
includes both volatile and non-volatile media, removable and non-removable media.
The system memory 706 includes computer-readable media in the form of
volatile memory, such as random access memory (RAM) 710, and/or non-volatile

memory, such as read only memory (ROM) 712. A basic input/output system
(BIOS) 714, containing the basic routines that help to transfer information between

clements within the computer 702, such as during start-up, is stored in ROM 712.

10

15

20

25

CA 02468057 2004-06-09

23

RAM 710 typically contains data and/or program modules that are immediately
accessible to and/or presently operated on by the processing unit 704.

The computer 702 may also include other removable/non-removable,
volatile/non-volatile computer storage media. By way of example, Fig. 7 illustrates
a hard disk drive 716 for reading from and writing to a non-removable, non-volatile
magnetic media (not shown), a magnetic disk drive 718 for reading from and
writing to a removable, non-volatile magnetic disk 720 (e.g., a “floppy disk™), and
an optical disk drive 722 for reading from and/or writing to a removable, non-
volatile optical disk 724 such as a CD-ROM, DVD-ROM, or other optical media.
The hard disk drnive 716, magnetic disk drive 718, and optical disk drive 722 are
each connected to the system bus 708 by one or more data media interfaces 726.
Alternatively, the hard disk drive 716, magnetic disk drive 718, and optical disk
drive 722 can be connected to the system bus 708 by one or more interfaces (not
shown).

The disk drives and their associated computer-readable media provide non-
volatile storage of computer-ireadable instructions, data structures, program
modules, and other data for computer 702. Although the example illustrates a hard
disk 716, a removable magnetic disk 720, and a removable optical disk 724, it is to
be appreciated that other types of computer-readable media which can store data
that 1s accessible by a computer, such as magnetic cassettes or other magnetic
storage devices, flash memory cards, CD-ROM, digital versatile disks (DVD) or
other optical storage, random access memories (RAM), read only memories

(ROM), electrically erasable programmable read-only memory (EEPROM), and the

like, can also be utilized to implement the exemplary computing system and

environment.

10

15

20

25

CA 02468057 2004-06-09

24

A number of program modules may be stored on the hard disk 716, magnetic
disk 720, optical disk 724, ROM 712, and/or RAM 710, including by way of
example, an operating system 726, one or more application programs 728, other
program modules 730, and program d;ta 732.

A user can enter commands and information into the computer 702 via mput
devices such as a keyboard 734 and a pointing device 736 (e.g., a “‘mouse’). Other
input devices 738 (not shown specifically) may include a microphone, joystick,
game pad, satellite dish, sernal port, scanner, and/or the like. These and other input
devices are connected to the processing unit 704 via input/output interfaces 740 that
are coupled to the system bus 708, but may be connected by other interface and bus
structures, such as a parallel port, game port, or a universal serial bus (USB).

A monitor 742 or other type of display device can also be connected to the
system bus 708 via an interface, such as a video adapter 744. In addition to the
monitor 742, other output peripheral devices can include components such as
speakers (not shown) and a printer 746 which can be connected to computer 702 via
the input/output interfaces 740.

The computer 702 may operate 1n a networked environment using logical
connections to one or more remote computers, such as a remote computing device
748. By way of example, the remote computing device 748 may be a personal
computer, portable computer, a server, a router, a network computer, a peer device
or other common network node, and the like. The remote computing device 748 is

1llustrated as a portable computer, and may include many or all of the elements and

features described herein relative to computer 702.

Logical connections between the computer 702 and the remote computer 748

are depicted as a local area network (LAN) 750 and a general wide area network

10

15

20

25

CA 02468057 2004-06-09

25

(WAN) 752. Such networking environments are commonplace in offices,

- enterprise-wide computer networks, intranets, and the Internet.

When implemented in a LAN networking environment, the computer 702
may be connected to a local network 750 via a network ihterface or adapter 754.\'
When implemented in a WAN networking environment, the computer 702 may
include a modem 756 or other means for establishing communications over the
wide network 752. The modem 756, which may be internal or external to computer
702, may be connected to the system bus 708 via the input/output interfaces 740 or
other appropriate mechanisms. It is to be appreciated that the illustrated network
connections are exemplary and that other means of establishing communication
link(s) between the computers 702 and 748 may be employed.

In a networked environment, such as that illustrated with the computing
environment 700, program modules depicted relative to the computer 702, or
portions thereof, may be stored in a remote memory storage device. By way of
example, remote application programs 758 reside on a memory device of remote
computer 748. For purposes of 1illustration, application programs and other
executable program components such as the operating system are illustrated herein
as discrete blocks, although 1t 1s recognized that such programs and components
may reside at various times in different storage components of the computing
device 702, and are executed by the data processor(s) of the computer.

Various modules and techniques may be described herein in the general
context of computer-executable instructions, such as program modules, executed by
one or more computers or other devices. Generally, program modules include

routines, programs, objects, components, data structures, etc. that perform particular

tasks or implement particular abstract data types. Typically, the functionality of the

10

15

20

25

CA 02468057 2004-06-09

v

26

program modules may be combined or distmbuted as desired in various
embodiments.

An implementation of these modules and techniques may be stored on or
transmitted across some form of computer-readable media. Computer-readable
media can be any available media that can be accessed by a computer. By way of
example, and not limitation, computer-readable media may comprise “computer
storage media” and “communications media.”

“Computer storage media” includes volatile and non-volatile, removable and
non-removable media 1implemented 1n any method or technology for storage of
information such as computer-readable 1nstructions, data structures, program
modules, or other data. Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium
which can be used to store the desired information and which can be accessed by a
computer.

“Communication media” typically embodies computer-readable instructions,
data structures, program moéiules, or other data in a modulated data signal, such as
carrier wave or other transport mechanism. Communication media also includes any
information delivery media. The term “modulated data signal” means a signal that
has one or more of its characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limitation, communication
media includes wired media such as a wired network or direct-wired connection,
and wireless media such as acoustic, RF, infrared, and other wireless media.

Combinations of any of the above are also included within the scope of computer-

readable media.

CA 02468057 2004-06-09

27

Although the description above uses language that i1s specific to structural
features and/or methodological acts, it 1s to be understood that the systems and

methods defined in the appended claims are not limited to the specific features or

\
’

acts described. Rather, the spectfic features and acts are disclosed as exemplary

forms of implementing the invention.

10

15

CA 02468057 2004-06-09

28

CLAIMS

1. A method comprising:

receiving a plurality of temporally non-contiguous portions of a streaming
media file, at least a first and a second of the non-contiguous portions being |
encoded at different bit rates; and

storing the plurality of temporally non-contiguous portions in a single cache

file.

2. A method as defined 1n claim 1, wherein the first and second non-

contiguous portions comprise video data.

3. A method as defined in claim 1, wherein the first and second non-
contiguous portions comprise video data and wherein a third non-contiguous

portion comprises audio data.

4, A method as defined in claim 1, wherein the cache file 1s stored in

non-volatile memory.

CA 02468057 2004-06-09

29

J. A method as defined in claim 1, wherein the act of storing comprises:
creating a plurality of media cache streams, each media cache stream
being associated with a unique bit rate;
storing the first non-contiguous portion in 'a media cache stream
5 associated with the bit rate of the first non-contiguous portion;
storing the second non-contiguous portion in a media cache stream
associated with the bit rate of the second non-contiguous portion; and

storing the media cache streams 1n the cache file.

10 6. A method as defined in claim 1, wherein the act of storing comprises:
creating a first media cache stream associated with the bit rate of the
first non-contiguous portion;
storing the first non-contiguous portion in a media cache segment of
the first media segment stream;
15 creating a second media cache stream associated with the bit rate of

the second non-contiguous portion;

storing the second non-contiguous portion in a media cache segment

of the second media cache stream;

creating a byte cache index segment and a byte cache data segment

20 for each media cache segment; and

storing the byte cache index segments and the byte cache data

segments in the cache file.

7. A method comprising:

25 creating a plurality of media cache streams, each media cache stream being

associated with a unique bit rate;

5

10

15

20

CA 02468057 2004-06-09

30

receiving a plurality of portions of a streaming media file, each portion being

associated with a unique temporal section of the streaming media file;

storing each portion in a media cache segment of a media cache stream
.- |
associated with a bit rate at which the portion was encoded, at least two of the

portions being stored in media cache segments 1n different media cache streams;

storing each of the media cache streams in a single cache file.

8. A method as defined in claim 7, wherein the act of storing comprises:

creating a byte cache index segment and a byte cache data segment for each
media cache segment; and

storing the byte cache index segments and the byte cache data segments in

the cache file.

9. A method as defined 1n claim 7, wherein the act of storing comprises:

creating a byte cache index segment and a byte cache data segment for each
segment; and

serializing the byte cache index segments and the byte cache data segments

in the cache file.

10. A method as detined in claim 7, wherein the cache file is stored in a

non-volatile manner.

10

15

20

CA 02468057 2004-06-09

31

11. A system comprising:
a data storage module;
a caching module operable to receive and store a plurality of temporally non-

contiguous portions of a streaming media file 1n a cache file in the data storage

module, two or more of the plurality of temporally non-contiguous portions being

encoded at different bit rates.

12. A system as defined in claim 11, wherein the data storage module

comprises a non-volatile data storage device.

13. A system as defined in claim 11, further comprising:

a processor; and

wherein the caching module comprises processor executable code.

14. A system as defined in claim 11, wherein the caching module

comprises:
a media cache module operable:
to store each of the plurality of temporally non-contiguous portions as
a media cache segment in one of a plurality of media cache streams; and

parse each media cache segment into a byte cache index segment and

a byte cache data segment.

10

15

20

25

CA 02468057 2004-06-09

32

15. A system as defined in claim 11, wherein the caching module
COMPIISES:
a media cache module operable to:
store each of the plurali'ty- of temporally non-contiguous
portions as a media cache segment in one of a plurality of media
cache streams, each media cache stream being associated with a
different bit rate; and
parse each media cache segment into a byte cache index
segment and a byte cache data segment; and
a byte cache module operable to store the byte cache index segments and the

byte cache data segments in the cache file.

16. A system as defined in claim 11, wherein the caching module
comprises:
a media cache module operable to:

create a plurality of media cache streams, each media cache stream
being associated with a unique bit rate; and

store each temporally non-contiguous portion as a media cache
segment 1n a media cache stream associated with a bite rate at which the temporally
non-contiguous portion was encoded; and ’

parse each media cache segment into a byte cache index segment and
a byte cache data segment; and

a byte cache module operable to:

store the byte cache index segments and the byte cache data segments

in the cache file.

10

15

CA 02468057 2004-06-09

33

17. A system as defined in claim 11, wherein the two or more of the
plurality of temporally non-contiguous portions include a first video portion
encoded at a first bit rate, a second video portion encoded at a second bit rate, and

\
an audio portion, and wherein the first video portion, the second video portion, and

the audio portion are stored in different media cache streams.

18. A system as defined in claim 11, wherein:

the streaming media file includes different data types; and

the caching module 1s operable to:

create a plurality of media cache streams, each media cache

stream being assoclated with a streamed media data type and a streamed

media encoded bit rate;

store each temporally non-contiguous portion of received
streamed media data in a media cache stream associated with the streamed
media data type and a streamed media encoded bit rate of the temporally
non-contiguous portion; and

store the media cache streams in the cache file.

CA 02468057 2004-06-09

34

19. A system as defined 1n claim 11, wherein:
the streaming media file includes different data types; and
the caching module 1s operable to:
create a plurality of media cache streams, each media cache
5 stream being associated with a streamed media data type and a streamed
media encoded bit rate; and
store each temporally non-contiguous portion of received
streamed media data as a media cache segment in a media cache stream
associated with the streamed media data type and a streamed media encoded
10 bit rate of the temporally non-contiguous portion;
parse each media cache segment into a byte cache index
segment and a byte cache data segment; and

store the byte cache index segments and the byte cache data

segments in the cache file.

15
20. A system as defined in claim 11, wherein the caching module is
operable to:
store each of the plurality of temporally non-contiguous portions as a
media cache segment in one of a plurality of media cache streams;
20 create a segment/stream map specifying the media cache segment and
stream in which each temporally non-contiguous portion is stored; and
parse each media cache segment into a byte cache index segment and
a byte cache data segment.
25 21. A computer-readable medium having computer-executable

instructions for performing acts comprising:

CA 02468057 2004-06-09

35

storing at a client a plurality of temporally non-contiguous portions of a
streaming media file received from a streaming media source in a cache file, each

of the plurality of temporally non-contiguous portions being encoded at a different

bit rate.
S
22. A computer-readable medium as defined in claim 21, wherein the act
of storing comprises:
recerving a first video portion of the streaming media file encoded at a first
bit rate;
10 storing the first video portion 1n a media cache video stream associated with

the first bit rate;
receiving a second video portion of the streaming media file encoded at a
second bit rate;
storing the second video portion in a media cache video stream associated
15 with the second bit rate;
receiving a first audio portion of the streaming media file;
storing the first audio portion in a media cache audio stream; and

storing the audio and video media cache streams in a cache file.

10

15

20

235

CA 02468057 2004-06-09

36

23. A computer-readable medium as defined in claim 21, wherein the act
of storing comprises:

receiving a first video portion of the streaming media file encoded at a first

bit rate;

storing the first video portion in a media cache video stream associated with
the first bit rate;

receiving a second video portion of the streaming media file encoded at a
second bit rate;

storing the second video portion in a media cache video stream associated
with the second bit rate;

receiving a third video portion of the streaming media file encoded at a first
bit rate, the a third video portion being temporally non-contiguous from the first
video portion;

storing the third video portion in the media cache video stream associated
with the first bit rate;

receiving a first audio portion of the streaming media file; and

storing the first audio portion in a media cache audio stream; and

storing the audio and video media cache streams in a cache file.

24. A computer-readable medium as defined 1n claim 21, wherein the act

of storing comprises:

storing each of the temporally non-contiguous portions in a unique media

cache segment;

forming at least two byte cache segments from each media cache segment;

and

storing the byte cache segments in the cache file.

10

15

20

CA 02468057 2004-06-09

37

25. A computer-readable medium as defined 1n claim 21, wherein the act

of storing comprises:
\

storing each of the temporally non-contiguous portions 1n at least two byte
cache segments; and

storing the byte cache segments 1n the cache file.

26. A computer-readable medium having stored thereon a data structure,
comprising:

a plurality of data pages including data representing a plurality of temporally
non-contiguous portions of a streaming media ﬁle received from a streaming media

source, at least two of the temporally non-contiguous portions being encoded at

different bit rates.

27. A computer-readable medium having stored thereon a data structure,
comprising:

a plurality of data pages storing one or more byte cache segments, each byte
cache. segment being derived from a temporally non-contiguous portion of a
streaming media file, at least two of the temporally non-contiguous portions being
encoded at different bit rates; and

a header page including information that describes one or more

characteristics of the data pages.

10

15

20

25

CA 02468057 2004-06-09

38

28. A computer-readable medium as defined in claim 27, wherein the
header page includes a plurality of cache file control records, each cache file
control record including information describing the location of a single byte cache

\

segment the data pages.

29. A computer-readable medium as defined in claim 27, wherein the
header page includes a plurality of cache file control records, each cache file
control record including information describing a location of a single byte cache

segment within the data pages and information indicating a number of pages

including the single byte cache record.

30. A computer-readable medium as defined m claim 27, wherein the
header page includes a plurality of cache file control records, each cache file

control record including information describing a beginning and an ending point of

a single byte cache segment within the data pages.

31. A computer-readable medium as defined in claim 27, wherein:
the header page includes a plurality ot cache file control records; and

at least one cache file control record includes an array including the Jocation

of each page within the cache file.

32. A computer-readable medium as defined in claim 27, wherein:

the header page includes a plurality of cache file control records; and

at least one cache file control record includes information indicating a page
containing a beginning of a single byte cache segment and an index specifying a

beginning of the single byte cache segment within the page.

10

15

20

CA 02468057 2004-06-09

39

33. A computer-readable medium as defined in claim 27, wherein:
the header page includes a plurality of cache file control records; and
at least one cache file control record includes information defining a

beginning and ending locations of a single byte cache segment in the data pages.

34. A computer-readable medium as defined in claim 27, wherein the
header page includes a plurality of cache file control records, each cache file
control record being associated with a single byte cache segment, each cache file
control record identitying a predetermined number of pages including at least a
portion of the byte cache segment associated with the cache file control record, each
cache file control record including a pointer to a page including information
identifying a predetermined number of pages other than the predetermined number

of pages including at least a portion of the byte cache segment associated with the

cache file.

35. A computer-readable medium as defined in claim 27, wherein the
header page includes:
a predetermined number of cache file control records, each cache file control

record including information describing the location of a single byte cache segment

in the data pages; and

a pointer to a cache file control record extension page including cache file

control records other than the predetermined number of cache file control records.

CA 02468057 2004-06-09

40

36. A system comprising:

means for receiving a plurality of temporally non-contiguous portions of a
streaming media file, at l¢ast two of the plurality of temporally non-contiguous
portions being encoded at a dlifferent bit rate; and

means for associating and storing the plurality of temporally non-contiguous

portions 1n a data structure.

Patent Agenis
Smart & Biggar

CA 02468057 2004-06-09

L/7

100
Y

CLIENT ' SERVER |
Y N DEVICE]

NETWORK

: , | 102
4 46 j ¥
CLIENT

104(2)

102(2) ~

CLIENT

104(1)

l
SERVER | SERVER

217

S SERVER Device 104: E | CLIENT DEVICE 102
a2 e
—
STREAMING MODULE | STREAMING MEDIA

220 PLAYER

206

|
2 -
1 . NETWORKING
STREAMING | | 1 | | MODULE
; § 4 :2()
MEDIA | &40
CONTENT L/ |
222 | e
N | Caching Module 219
u - |
| MEDIA CACHE
|
|

BYTE CACHE

MODULE
21

B Data Storage Module _2_,,‘1@ |

CACHE FILE ,
. 216 |

CA 02468057 2004-06-09

3/7

300

31_1_Q " Media Cache Video Stream (1) o . \

| Media Cache Video |/~ > Moda Gache T 326
Segment (1) Video Segment (4)
! 312 - Media Cache Video Stream (2)
1 Media Cache Video f~ 342
Segment (2) |
T@_:) Media Cache Video Stream (3)
324 \f_ Media Cache
Video Segment (3)
a1g Media Cache Audio Stream (1) —

t/ 328
Media Cache Audio Segment (1)

A S—- whabi ke ey, it

P vl A —

m Media Cache Audio étrear:(_Z) |

l e ————— . O —

330 X ‘Media Cache Audio Segment (2)

N EEE— time
- g e

CA 02468057 2004-06-09

023

417

- Cache |
- File
|
ad ‘.......) . . e ‘“:_““_:: “““““ —
412 414 416 418 420
| Header Page | Data Page 1 | Data Page 2 . Data Page N —410
* .
T s - e — ma—
/T T T ——
N
2 e
2
r/ — T S S T ——
424 426 428 430 1432
Cache Cache Cache | \ Cache
Eila | File File | o File 497
Head Control Controi Control
cader Record 1 | Record 2 Record M |
I R |
/ \\ \““\,\ hhhhhhhhhhhhhhh
/ N ~_ T Tmme——
/ \ ~o T T e s ——
/ N ~ » — BN EEE— B a
/] 450 | 452 | 454 | 456 458
/ \ -
/ AN | First First Last
/ N 448— GUID | Page | Page | Page .?:g:; eRPe&::goerZ
! N k ' Index | Offset | Offset |
! \\
{/ \\\.__.____..._ S l_ — SN N ———
/ N - \
/ \\ #_'_,.--' \
f . - \

/ ~ #_’,.-—'"’ \\
e L aan 1 aan T — - RN
a 438 440 L 442 444 449 < 436 | 462 464 466 |

mree #of | Ex 4 of | First Cache |
GUID | Flags | Pages | CFCRs | Block ID | 451 Pages | External | Page
* - Record] | —> | Block Id | Record
LA bt
443 449 447 |
First | Free
of Free External | Page -— 441

|) P
. Pages Block Id | Record 7"?' 4

CA 02468057 2004-06-09

5/7

/-510

:;/Request Streaming
Media File _

File Available?

% . , A 014
~ Create Cache File ,

” Request Streaming Media File
| Description

016

518
Store Description in Cache File

~ ’ 520
~ Select Streaming Media File Stream For Transfer

:; | 522

524

% Ves Does

: Corresponding Media Cache Stream Exit ..
l ‘ ~—____inFile? __—"

I‘ 5 y NO

Create Media Cache Segment in Media Cache 020

Stream Corresponding to Bit Rate

028

| |

|
|

532
‘Dete& Yes

Change in >
Bandwidth?

CA 02468057 2004-06-09

6/7

600 \

i:/r Request Play From Desirea Start ﬁ\ 610
? Point of Cached Stream

| | / 614
#,/Aff’ EyTZ /f F{ t{) t
Is Data Available No | nequestiuald

b-—f From Server and '
. , :
- at Preferred Bit Rate” E,X.Store " Cache File

616
o

; Determine Media Cache Stream
| Including Start Point

618
s No Request Data
. O ! From Server
— Data Available From Start P> ‘ 4 Store |
o Point to EOS? - and siore
| , - ~ Cache File

| - Yes Ve 622 |

| gf Determine Media Cache Segment
L Including Start Point

g /- 624

Play Data From Determined Media |
Cache Segment i

Seek~ 020 |
to New Start 2
Point?

Yes

INO 630~
End ,628 / Determine Next
| of Media Cache . » Media Cache
| - Stream? _~ No Segment
l ves Y 632
N & Yes
° EOF? s ! END

CA 02468057 2004-06-09

|

?

717

M
REMOTE
COMPUTING |

Device

.
g

 REMOTE
758 = AppLICATION

i

706 —.

E , S
{ DDGTi

Vtoeo ADAPTER

720 —

\
\‘_

DATA MEDIA
INTERFACES

/"

t
|
E
f
}

OPERATING ZZ_Q

QYSTEM

APPLICATION7 25
PROGRAMS

MODULES

PROGRAM 732 |
DATA

| SYSTEM BUS

\
U N

SYSTEM MEMORY

OPERATING
SYSTEM

726

APPLICATION

Ny

PROGRAM 730 f

CA 02468057 2004-06-09

704 —

1\.

PROCESSING
UNIT

- 740

R S

PROGRAMS 728

OTHER PROGRAM
MODULES 730

PRINTER Mous

\
~— 734

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings

