My invention relates to an anti-seepage breast device. More particularly, my invention relates to a rigid dish-shaped device having a centrally positioned protuberance on the concave side, which protuberance is adapted to be applied to a breast to overcome seepage.

Nursing mothers often have difficulty with breast seepage, i.e., galactorrhea. As a result, considerable inconvenience results and the clothes or waists may become soiled. Heretofore various means have been employed to overcome this difficulty. Rubber means in the form of wide bands across the breast have been employed, but these are exceedingly uncomfortable as well as inconvenient. Shields provided with absorbent means and devices for catching or collecting the seepage have also been suggested. But to all of these there are various objections which have interfered with their use and has introduced complications in connection with the nursing of the infant. Among these objections are particularly the inadequacy of the device to fulfill the desired end and also the fact that all these devices are uncomfortable and inconvenient. Also, their very size causes them to be conspicuous or reveal their presence, i.e., be noticeable.

The primary object of my invention is to provide a breast device which will overcome the various objections above set forth and inherent in the devices heretofore suggested or provided. Another primary purpose of my invention is to provide a breast device of a concave form in cross section, and having a protuberance centrally positioned for contacting the nipple—the circumferential edges or walls of the concave member to engage the areola portion of the breast, while the protuberance contacts the nipple with sufficient pressure to substantially prevent seepage of the milk from the breast.

Another object of my invention is to provide a breast device of such character, size and lightness of weight, as will avoid discomfort to the wearer and not be noticeable under the dress or waist.

The above mentioned general objects of my invention, together with others inherent in the same, are attained by the device illustrated in the following drawing, the same being preferred exemplary forms of embodiment of my invention, throughout which drawing like reference numerals indicate like parts:

Fig. 1 is a view of the breast device in perspective embodying my invention;
Fig. 2 is a view in cross-section of the same;
Fig. 3 is a diagrammatic view in cross section of my device and breast with the device in applied position;
Fig. 4 is a front view of the device in applied position with the means in the form of a breast up-lifting brassière to maintain the device in position;
Fig. 5 is a view in perspective of a modified form of the device embodying my invention;
Fig. 6 is a view in cross-section of said modified form; and
Fig. 7 is a view in cross-section of another modified form of my invention.

A dish-shaped member 10, having a protuberance 11 centrally positioned on the concave side thereof, is formed from any suitable material which may be given the desired shape. Moldable material, such as plaster of Paris or any plastic material may be used, such as Bakelite, vulcanized rubber or those plastics constituting derivatives of cellulose. Porous material, such as plaster of Paris, which is of an absorbent character, has been found to give satisfactory results, but any suitable material may be employed which is found to be most practical in manufacture and which will be non-irritating to the breast. The material is preferably of a light weight character so that its weight is substantially negligible, so far as the comfort of the wearer is concerned. The height of the protuberance may vary to suit different breasts.

The device may be formed by pressing the same out of a non-corroding metal, as for example, aluminum, and might have the form shown in Fig. 7.

The device is preferably of a disk or circular form and of a diameter to engage the portion surrounding the nipple, that is, the areola portion of the breast. Accordingly, the device has the convenience of being of relatively small dimensions and may be maintained in position by any snugly fitting uplifting band or brassière 12. The relatively small size of the device renders the same conveniently held in place by such brassière and does not interfere with the rest of the clothing, and does not become noticeable. The small size of the device also provides against discomfort in warm weather, as it avoids any tendency to cause the breast to perspire. It has been found that causing the protuberance 11 to engage the nipple with only a slight pressure is sufficient to cause a closing of the milk ducts and in this way prevent the seepage, and this without discomfort. When the device is removed it will be found that the nipple may be depressed, and it is a matter of a short interval before the nipple resumes its normal form.

The modified form of the invention shown in
Figs. 5 and 6 indicate that the protuberance may be of a relatively flat, broad form, and of much less height than is shown in Fig. 2. It will be readily understood that various sizes of the device may be employed to provide for the various sizes of the nipple and breast.

Obviously, the size of the device may be enlarged to cover more of the breast than the areola portion. However, the preferred size is set forth herein.

I claim:

An anti-seepage breast device comprising a rigid dish-shaped element having a protuberance centrally located on the concave side thereof, the circumferential edges of the element being adapted to contact the areola and the protuberance being adapted to contact the nipple of the breast of the wearer.

HAZEL R. LITTLEHALES.