
US 200900.45991A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2009/0045991 A1

Schneider (43) Pub. Date: Feb. 19, 2009

(54) ALTERNATIVE ENCODING FOR LZSS (22) Filed: Aug. 15, 2007
OUTPUT

Publication Classification

(75) Inventor: James P. Schneider, Raleigh, NC (51) Int. Cl.
(US) H03M 7700 (2006.01)

Correspondence Address: (52) U.S. Cl. .. 341A60
RED HAT/BSTZ.
BLAKELY SOKOLOFF TAYLOR & ZAFMAN (57) ABSTRACT

LLP A data processing method where a source bit stream is
1279 OAKMEAD PARKWAY manipulated to produce four intermediate streams: flag bits,
SUNNYVALE, CA 94085-4040 (US) literals, offsets and lengths. Flag bits are grouped into multi

bit units, and an output stream containing flag units, literals,
(73) Assignee: Red Hat, Inc. offsets and lengths is emitted. The output stream occupies

fewer bits than the source bit stream, but encodes all the data
(21) Appl. No.: 11/893,571 of the source bit stream.

Start

Divide input Bit
Stream into Blocks

Perform LZSS Processing
to Produce Flags, Literals,

Offsets and Lengths

Group Flag Bits into
Multi-Bit Flag Units

: Compress Flag Units

Patent Application Publication Feb. 19, 2009 Sheet 1 of 5 US 2009/0045991 A1

TWO households, both alike in dignity,
115

In fair Verona, where we lay our scene,

From ancient grudge break to new mutiny,
Where Civil blood makes Civil hands unclean.

From forth the fatal loins of these two foes

A pair of Star-cross'd lovers take their life;
Whole Misadventured piteous overthrows

Do with their death bury their parents' strife. 11O

12O

LZSS
Encoding

OOOOOOOOOOOOOOO Two houselds, bo 4 14 28 14 48
OOOOOOOOOOOOOOOO th alike in dign 25 25 5 45 14
OOOOOOOOOOOOOO ity Ifair Veronaw 49 20 74 25 58
OOOO1 OOOOO 10 hwlay sceneFmnci 2 75 27 36 56
OOOO 101010OOOOO it grudgbak tw mu 86 15 11 O2
OOOO 101 OOOO 11 OOO tWvilloodesh uln 125 84 12 85
OO 1011 OOOOOOO1 ..fortoofA psr-cs 101 (9 18 18
1001011001010010 s' wife; misadepewD 25 4221 63 27
OO 111101101 OO1 wdor. 42 174 7 104
11 1 000110 0000 1 169 141 43

OO11011111 OOO1 19 18, 49 136
1OOOOOOOO1
111101010111010
11111111010 Compression

Compression: Y
165

145
155

Compression :
T

18O

Patent Application Publication Feb. 19, 2009 Sheet 2 of 5 US 2009/0045991 A1

9F 2 a. C a C is a
9. 212 7. 218 N

(Prior Art) 214 21 O

220

231

Flag Y,
: Literal a 1-232

Offset, Length —- 0, 21
Flag 0

Literal- i. r

Flag

Patent Application Publication Feb. 19, 2009 Sheet 3 of 5 US 2009/0045991 A1

Divide Input Bit !
Stream into Blocks

Perform LZSS Processing
to Produce Flags, Literals,

Offsets and Lengths

Emit Flags, Literals,
Offsets and Lengths Fig. 3

Patent Application Publication Feb. 19, 2009 Sheet 4 of 5 US 2009/0045991 A1

De-Interleave Stream
to Recover Flag
Units, Literals,

Offsets and Lengths
Tig. 4

41O

Decompress Lengths :
A50

Flag Bit

Enrit Literal Emit Previously
Decompressed Data

More
Flag Bits ig Flag Unit

490

US 2009/0045991 A1 Feb. 19, 2009 Sheet 5 of 5 Patent Application Publication

G •

| –« 6,5

| |----|----|
___---------~~~ ?ñoissºiduõõ? Quoissauduoo_},~~~o D

US 2009/0045991 A1

ALTERNATIVE ENCOOING FOR LZSS
OUTPUT

FIELD

0001. The invention relates to lossless data compression.
More specifically, the invention relates to methods for
improving compression ratios (decreasing the size of com
pressed data) and data formats that help compression and
decompression operations to proceed quickly.

BACKGROUND

0002 Contemporary data processing activities often pro
duce, manipulate, or consume large quantities of data. Storing
and transferring this data can be a challenging undertaking.
One approach that is frequently productive is to compress the
data so that it consumes less space. Data compression algo
rithms identify redundant or inefficiently-coded information
in an input data stream and re-encode it to be Smaller (i.e., to
be represented by fewer bits). Various types of input data may
have different characteristics, so that a compression algo
rithm that works well for one type of data may not achieve a
comparable compression ratio (the ratio between the uncom
pressed and compressed data sizes) when processing another
type of data.
0003) No known compression algorithm achieves the best
results for every data type; there is always an input data
stream that an algorithm simply cannot make any Smaller,
though there is often a different algorithm that could re
encode the same data stream in a smaller number of bits.
Sometimes, an algorithm operates in a way that both com
presses a data stream and exposes additional redundancy or
inefficient coding, so that a second compression stage could
shrink the information even further. The design of an effec
tive, general-purpose data compressor often involves trade
offs between the compression ratio and the number of stages
(more stages typically increase compression and decompres
sion processing time).
0004 FIG. 2 shows how a popular and effective data com
pression algorithm works. The LZSS algorithm, named after
its creators James Storer and Thomas Szymanski (who built
on work by Abraham Lempel and Jacob Ziv), compresses a
sequence of data symbols (e.g., data bytes) by identifying
repeated sequences of symbols in the input, and replacing the
sequences with Smaller symbols. To compress the word "aca
cia.” 210, an LZSS encoder 220 proceeds symbol by symbol
(i.e., letter by letter), and produces the compressed sequence
shown at 230. Reading from top to bottom, the compressed
sequence contains a flag 231 that indicates what sort of infor
mation follows the flag. In the version of the LZSS algorithm
depicted here, a flag value of 0 means that the following
element 232 is a “literal that is, it is exactly the same as the
corresponding input symbol 212. The next flag 233 is also 0.
and is followed by literal 234 (corresponding to input symbol
214). After processing two input symbols, the LZSS encoder
220 has increased the size of the output stream by two bits (the
flag bits 231 and 233). However, LZSS encoder 220 next
encounters symbols 218, the letters “ac, which are the same
as the first two letters. Consequently, the encoder emits flag
235 (value 1), followed by an offset-length pair 236 that
indicates a repetition of the two symbols located at offset 0.
Compression is achieved if the offset and length information,
plus the three flag bits, occupy less space than the first four
input symbols. An LZSS implementation can adjust the num

Feb. 19, 2009

ber of bits allocated to offsets and lengths (among other
parameters) to obtain satisfactory compression performance.
(Typically, compression algorithms have poor performance
on very short input streams, so the example discussed here
should not be taken as indicative of LZSS's potential perfor
mance, but only of its general operational principles.)
0005 Improvements to the generic LZSS algorithm
described with reference to FIG.2 may be useful and widely
applicable.

BRIEF DESCRIPTION OF DRAWINGS

0006 Embodiments of the invention are illustrated by way
of example and not by way of limitation in the figures of the
accompanying drawings, in which like references indicate
similar elements. It should be noted that references to “an or
“one' embodiment in this disclosure are not necessarily to the
same embodiment, and Such references mean "at least one.”
0007 FIG. 1 is an overview of an LZSS-based compres
sion process according to an embodiment of the invention.
0008 FIG. 2 shows how a basic LZSS compression algo
rithm operates.
0009 FIG.3 is a flow chart of data compression operations
performed by an embodiment of the invention.
0010 FIG. 4 outlines operations to decompress data that
has been compressed by an embodiment of the invention.
0011 FIG. 5 shows a data format that can be produced by
an embodiment of the invention.

DETAILED DESCRIPTION

0012. An embodiment of the invention compresses an
input data stream by applying Lempel–Ziv-Storer-Szymanski
(“LZSS) processing to produce four intermediate data
streams. The data in the intermediate streams are grouped or
"packaged into easy-to-manipulate portions, and some of
the intermediate streams may be further compressed using
other compression algorithms. Finally, the (possibly doubly
compressed) intermediate streams are emitted as a com
pressed data stream containing all of the information in the
original input data stream. An embodiment may operate in the
reverse direction to decompress a data stream prepared as
described, thus recovering bit-for-bit the original input data
Stream.

0013 FIG. 1 shows an input data stream 110 containing
the first few lines of Shakespeare's Romeo and Juliet. An
input data stream may come from a file or other stored data
Source, or it may be the output of a preceding data-processing
operation. Embodiments of the invention can work in a “fil
ter” mode, compressing data as it is received; the algorithms
do not require simultaneous access to the complete data
stream. (At least a small amount of buffering is required,
however.) An input data stream may be broken into several
"chunks” or “blocks,” as indicated by dashed lines 115. Typi
cally, each block (except perhaps the last) contains the same
number of input data symbols. (By contrast, in FIG. 1 the
block separators 115 split the input text into groups of two
English lines, not into blocks containing the same number of
letters.) Data to be compressed are often represented by a
sequence of eight-bit “bytes.” but embodiments of the inven
tion can work on symbols represented by larger or Smaller
numbers of bits. The symbol size is usually chosen to be
easily manipulated by a data processing device such as a
computer that is to implement the methods of an embodiment.

US 2009/0045991 A1

0014 Input data stream 110 is processed via LZSS encod
ing logic 120, which operates along the lines described above
in reference to FIG. 2. In particular, LZSS encoding logic 120
produces four different streams of databased on input 110: a
series of flag bits 130, a series of literal symbols 140, a series
of offsets 150 and a series of lengths 160. The flag bits,
symbols, offsets and lengths are produced alternately by the
LZSS algorithm (i.e. first a flag, then either a literal or an
offset/length pair, then another flag, and so on) but are sorted
by type into the four intermediate streams 130, 140, 150 and
160. Elements of the four intermediate streams may be rep
resented by different numbers of bits: flags can be represented
by a single binary digit (“bit); literals require the same num
ber of bits as an input symbol; and (as mentioned earlier) the
number of bits in an offset or length can be adjusted according
to the desired characteristics of the LZSS compressor.
0015 The LZSS encoding phase 120 processes the input
symbol sequence 110 to remove repeated Sub-sequences of
input symbols, and produces the four derivative data streams
130, 140, 150 and 160. This achieves an initial degree of data
compression for many input streams, and also reorganizes
Some of the information contained in the input stream. For
example, the flag bit stream 130 accumulates information
about whether a particular point in the input stream contains
a sequence of symbols that appeared earlier in the input
stream. For example, the first “1” entry in the flag bit stream
corresponds to the second occurrence of the pair of characters
“ho' in the word “households.” The LZSS encoding detects
the repetition and replaces the second pair of characters with
the offset of the first pair and the length of the repeated
sequence (in this case, 2).
0016. The reorganization of information accomplished by
the LZSS encoding phase 120 may expose additional oppor
tunities to compress the data. Thus, an embodiment may
compress some or all of the intermediate data streams 130,
140, 150 and 160; as shown by “Compression” boxes 135,
145, 155 and 165. Each intermediate stream may have char
acteristics that make it amenable to compression by a differ
ent algorithm (since the LZSS processing has already
removed one sort of data redundancy, repeating the LZSS
processing on the intermediate streams may be less effective,
or even counterproductive). For example, the flags bit stream
130 and the lengths stream 160 may be amenable to compres
sion using run-length encoding (“RLE), where a sequence of
identical values is replaced by a count of the identical values
and a single copy of the repeated value. (When the RLE input
data is a series of binary digits, the single copy can be omit
ted.) Using RLE, the first few lines of the flags intermediate
stream 130 could be replaced by the numbers 9, 1, 26, 1, 1, 1,
10, 1, 2, 2 The first few lines of the lengths intermediate
stream 160 could be replaced by (18.2), (1,3), (1.5), (4.2), and
SO. O.

0017. Other compression techniques that may be useful
for compressing one or more of the intermediate streams
include Huffman coding (described in a 1952 paper entitled
“A Method for the Construction of Minimum-Redundancy
Codes' by David A. Huffman); or arithmetic coding (de
scribed in U.S. Pat. No. 4,122,440 issued to Langdon et al)
These compression techniques have been extensively studied,
and modifications to improve their performance are well
known. For example, the simplest Huffman and arithmetic
coding algorithms are called 'static.” but better compression
ratios are often achieved with more complex algorithms gen
erally known as “adaptive” Huffman (or adaptive arithmetic).

Feb. 19, 2009

The latter algorithms frequently compress better, but at a cost
of increased computation time. Both currently-existing and
after-developed techniques may be used as well.
0018. In a preferred embodiment, the flag stream is com
pressed using adaptive arithmetic coding, and the literals
stream is compressed using a two-stage processing: the Bur
rows-Wheeler Transform (see ''A Block Sorting Lossless
Data Compression Algorithm' by Michael Burrows and
David Wheeler, published 1994 in Research Report 124 of
Digital Systems Research Center) followed by either adaptive
Huffman or adaptive arithmetic coding.
0019 Finally, the (possibly compressed) intermediate
streams are combined, 170, and emitted as a compressed
output stream 180. The compressed stream may be stored in
a file, Supplied as input to a Subsequent processing step, or
transmitted over a network to another data processing system.
0020 Note that the “offsets intermediate data stream 150
shown in FIG. 1 contains offsets measured from the begin
ning of the input data stream. Consequently, an implementa
tion that worked as shown in this Figure would require that the
complete input data stream from the beginning to the present
processing location be available during both compression and
decompression. This is impractical in many situations. An
embodiment can relax this requirement by processing input
data in fixed-size blocks, with the offset referring to the begin
ning of the block; or by using a sliding window with the offset
indicating an earlier repeated sequence by its location relative
to the current work location (i.e., a backwards or “negative'
offset).
0021 Embodiments of the invention may conveniently be
implemented by a programmable data processing device Such
as a computer. As mentioned earlier, computers can often
manipulate certain “natural sizes of data more efficiently
than arbitrarily-sized data. Natural sizes (in bits) are often
powers of two, starting with eight: 8-bit bytes, 16-bit words,
32-bit long words, and 64-bit quad words (for example). An
embodiment of the invention may obtain increased process
ing speed by grouping data in the intermediate streams into
larger units that can be manipulated as natural-sized data
elements. For example, flag bits (either before or after com
pression) may be grouped into flag units containing 8, 16, 32
or more flag bits. Offsets and lengths may also be sized and
grouped to align with natural units. For example, an offset
may be limited to five bits, and stored together with a three-bit
length in an eight-bit byte. (Storing offsets and lengths
together like this may defeat compression opportunities that
are available when offsets are combined with other offsets
and compressed, while lengths are combined with other
lengths and compressed.) Data size and arrangement consid
erations are discussed in greater detail below.
0022 Turning to FIG. 3, a data compression method
according to an embodiment of the invention is depicted.
First, an input bit stream may be divided into blocks (310). In
some embodiments, each input block will be the same size
(except for a final block, which may be smaller). Next, each
block (or the whole input bit stream, if it is not divided into
blocks) is processed using LZSS to produce flags, literals,
offsets and length data (320). The flag bits are grouped into
multi-bit flag units (330). Flag units may contain a natural
number of bits for a programmable processor (e.g., 8 bits, 16
bits, 32 bits or 64bits). In some embodiments, all the flag bits
for the input data block may be grouped into a single flag unit.
Next, secondary compression operations may be performed
on the flag unit(s) (340), the literals (350), the offsets (360),

US 2009/0045991 A1

and/or the lengths (370). Finally, the flags, literals, offsets and
lengths are emitted as a compressed data stream (380).
0023 FIG. 4 outlines the reverse operation, which decom
presses a compressed data stream prepared as described
above and reproduces the original input bit stream. First, the
compressed stream is de-interleaved to recover the flag units,
literals, offsets and lengths (410). Next, each of the interme
diate data streams is decompressed if it was compressed
during the original procedure: flag units decompressed (420),
literals decompressed (430), offsets decompressed (440) and
lengths decompressed (450). Then, for each flag bit in a flag
unit, if the flag bit is false (460), a literal symbol from the
literal intermediate stream is emitted (470). If the flag bit is
true (460), then previously-decompressed data at the offset
and length is repeated (480). If there are more flag bits in the
flag unit (490), then the process is repeated, otherwise more
compressed data from the compressed data stream is de
interleaved (410) and processed.
0024 FIG. 5 shows one possible arrangement of a com
pressed data stream prepared according to an embodiment of
the invention. A source stream 510 may be divided into a
plurality of equal-sized blocks 511, 512, 513 (and possibly
one smaller block 51n). Each block is compressed as
described above, yielding a corresponding plurality of com
pressed blocks 521, 522 (compressed blocks corresponding
to 513 and 51n not shown in this Figure). Each compressed
block includes a flag unit 531, literals 532, offsets 533 and
lengths 534. These components may be completely segre
gated, as shown here, or may be interleaved in a way that
permits efficient manipulation by a programmable processor.
Each component may be separately compressed, resulting in
a compressed flag unit 551, compressed literals 552, com
pressed offsets 553 and compressed lengths 554. The com
ponents may be interleaved at this stage, or placed into output
stream 540 separately and Successively, as shown here.
0025 Several considerations guide the arrangement of
compressed data to be placed in the output stream. First (and
most important), the compressing and decompressing pro
cesses must use compatible arrangements. The compressed
stream may contain flags or other indicators to control the
operation of the decompressor. For example, a bit appearing
in one of the intermediate data streams may indicate whether
the intermediate stream is compressed, or a multi-bit flag may
indicate which of several compression algorithms was used to
compress the intermediate stream. Thus, in Some embodi
ments, the compressed data stream may not have a fixed
structure, but its actual structure is self-describing so that the
decompressor can process it to recover the original Source
Stream.

0026. The LZSS compression algorithm produces (and
the decompression algorithm consumes) one flag bit, then
either a literal symbol or an offset/length pair, then another
flag bit, and so on. Since each of these items comprises a
different number of bits, they usually cannot be efficiently
manipulated when interleaved in that way. Therefore, an
embodiment of the invention groups the flag bits into multi
bit units, and may similarly group literals, offsets and lengths
for easier processing. Since flag bits are produced first during
compression, and required first during decompression, it is
often convenient to place a flag unit ahead of the literals,
offsets and lengths that the flag unit's flags describe. Group
ing large numbers of flags, literals, offsets and lengths
together may improve the compression ratios that can be
achieved by the secondary compression algorithms operating

Feb. 19, 2009

on the four intermediate data streams, but these improve
ments must be balanced against the increased amount of
buffer space required to decompress the intermediate streams
and then to decode the four streams to reproduce the original
input data.
0027. One practical implementation may split an input
stream into 4,096-byte (“4KB) blocks, group all the flag bits
for each block into a single flag unit, compress the flag unit
using run-length encoding, and emit the compressed flag unit,
the literals for the block, the offsets for the block and the
lengths for the block onto the compressed output stream.
Another practical implementation may use a 4 KB sliding
window with 12-bit negative offsets, and group flag bits into
flag units of 16 or 32 flag bits each, followed by the literals,
offsets and lengths corresponding to the flag bits in the flag
unit. Other implementations may choose different sizes for
flag units and other groupings to tailor the implementation for
execution by machines with different natural bit sizes, large
or small buffer memories, etc.
0028. An embodiment of the invention may be a machine
readable storage medium having stored thereon data and
instructions to cause a programmable processor to perform
operations as described above. In other embodiments, the
operations might be performed by specific hardware compo
nents that contain hardwired logic. Those operations might
alternatively be performed by any combination of pro
grammed computer components and custom hardware com
ponents.
0029 Instructions for a programmable processor may be
stored in a form that is directly executable by the processor
(“object' or “executable' form), or the instructions may be
stored in a human-readable text form called “source code'
that can be automatically processed by a development tool
commonly known as a “compiler” to produce executable
code. Instructions may also be specified as a difference or
“delta' from a predetermined version of a basic source code.
The delta (also called a “patch') can be used to prepare
instructions to implement an embodiment of the invention,
starting with a commonly-available source code package that
does not contain an embodiment.
0030. In the preceding description, numerous details were
set forth. It will be apparent, however, to one skilled in the art,
that the present invention may be practiced without these
specific details. In some instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.
0031. Some portions of the detailed descriptions were pre
sented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These
algorithmic descriptions and representations are the means
used by those skilled in the data processing arts to most
effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally, con
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.
0032. It should be borne in mind, however, that all of these
and similar terms are to be associated with the appropriate

US 2009/0045991 A1

physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the preceding discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “processing or “computing or “calculating or “deter
mining or “displaying or the like, refer to the action and
processes of a computer system or similar electronic comput
ing device, that manipulates and transforms data represented
as physical (electronic) quantities within the computer sys
tem's registers and memories into other data similarly repre
sented as physical quantities within the computer system
memories or registers or other Such information storage,
transmission or display devices.
0033. The present invention also relates to apparatus for
performing the operations herein. This apparatus may be
specially constructed for the required purposes, or it may
comprise a general purpose computer selectively activated or
reconfigured by a computer program stored in the computer.
Such a computer program may be stored in a computer read
able storage medium, Such as, but is not limited to, any type of
disk including floppy disks, optical disks, compact disc read
only memory (“CD-ROM), and magnetic-optical disks,
read-only memories (ROMs), random access memories
(RAMS), eraseable, programmable read-only memories
(“EPROMs), electrically-eraseable read-only memories
(“EEPROMs), magnetic or optical cards, or any type of
media Suitable for storing electronic instructions.
0034. The algorithms and displays presented herein are
not inherently related to any particular computer or other
apparatus. Various general purpose systems may be used with
programs in accordance with the teachings herein, or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure for
a variety of these systems will appear from the description
below. In addition, the present invention is not described with
reference to any particular programming language. It will be
appreciated that a variety of programming languages may be
used to implement the teachings of the invention as described
herein.
0035. A machine-readable storage medium includes any
mechanism for storing information in a form readable by a
machine (e.g., a computer). For example, a machine-readable
medium includes a machine readable storage medium (e.g.,
read only memory (“ROM), random access memory
(RAM), magnetic disk storage media, optical storage
media, flash memory devices, etc.), a machine readable trans
mission medium (electrical, optical, acoustical or other form
of propagated signals (e.g., carrier waves, infrared signals,
digital signals, etc.)), etc.
0036. The applications of the present invention have been
described largely by reference to specific examples and in
terms of particular allocations of functionality to certainhard
ware and/or software components. However, those of skill in
the art will recognize that efficient LZSS-based data compres
sion algorithms can also be implemented by Software and
hardware that distribute the functions of embodiments of this
invention differently than herein described. Such variations
and implementations are understood to be captured according
to the following claims.

1. A method comprising:
processing a source bit stream containing a sequence of

Source bits to produce a plurality of flag bits, a plurality
ofliterals, a plurality of offsets and a plurality of lengths:

Feb. 19, 2009

grouping the flag bits into at least one flag unit, each flag
unit containing more than eight flag bits; and

emitting the at least one flag unit, the plurality of literals,
the plurality of offsets and the plurality of lengths,

wherein the at least one flag unit, literals, offsets and
lengths together occupy fewer bits than the source bit
stream, and

wherein the at least one flag unit, literals, offsets and
lengths encode all the source bits of the source bit
Stream.

2. The method of claim 1, further comprising:
compressing at least one of the at least one flag unit, the

literals, the offsets or the lengths before the emitting
operation.

3. The method of claim 2 wherein a compression algorithm
for a compressing operation is one of run-length encoding,
Huffman coding or arithmetic encoding.

4. The method of claim 2, further comprising:
compressing all of the at least one flag unit, the literals, the

offsets and the lengths using adaptive arithmetic coding
before the emitting operation.

5. The method of claim 2, further comprising:
compressing all of the at least one flag unit, the literals, the

offsets and the lengths using adaptive Huffman coding
before the emitting operation.

6. The method of claim 2 wherein the at least one flag unit
is at least two flag units, the method further comprising:

compressing a first of the at least two flag units; and
emitting a second of the at least two flag units without

compression.
7. The method of claim 1 wherein processing the source bit

stream comprises:
dividing the source bit stream into a plurality of equal-sized

blocks and no more than one Smaller block; and
producing a plurality of flag bits, a plurality of literals, a

plurality of offsets and a plurality of lengths for each of
the blocks.

8. The method of claim 7 wherein emitting comprises:
emitting the at least one flag unit, the plurality of literals,

the plurality of offsets and the plurality of lengths cor
responding to a first block before emitting the at least
one flag unit, the plurality of literals, the plurality of
offsets and the plurality of lengths corresponding to a
second, Subsequent block.

9. The method of claim 7 wherein all of the flag bits
corresponding to a block are grouped into exactly one flag
unit corresponding to the block.

10. A method comprising:
processing an input symbol sequence to remove repeated

Sub-sequences of input symbols and produce a plurality
of derivative data streams, a first of the derivative data
streams consisting exclusively of a series of binary flags;

compressing the first derivative data stream using a first
compression algorithm;

compressing a second derivative data stream using a sec
ond, different compression algorithm; and

outputting an output symbol sequence containing the com
pressed first derivative data stream and the compressed
second derivative data stream.

11. The method of claim 10 wherein the first compression
algorithm and the second compression algorithm are chosen
from the set consisting of run-length encoding, Huffman cod
ing and arithmetic coding.

US 2009/0045991 A1

12. The method of claim 10 wherein the input symbol
sequence is a first block of an input file, the method further
comprising:

repeating the processing, compressing and outputting
operations on a second block of the input file, the second
block containing an equal number of symbols as the first
block.

13. A method comprising:
processing a compressed bit stream containing four inter

leaved classes of compressed data, the classes identified
as flag units, literal data units, offset data units and
length data units;

recovering more than eight flag bits from a flag unit;
emitting a literal data unit to a decompressed output stream

for each flag bit having a first binary value; and
emitting a plurality of data units copied from the decom

pressed output stream for each flag bit having a second
binary value, a number of the plurality of data units
expressed by a length data unit, and an offset within the
decompressed output stream of the plurality of data units
expressed by an offset data unit.

14. The method of claim 13 wherein recovering the at least
eight flag bits from a flag unit comprises decompressing the
flag unit using one of a run length encoding algorithm, a
Huffman coding algorithm, or an arithmetic coding algo
rithm.

15. The method of claim 13 wherein the compressed bit
stream encodes a plurality of equal-sized blocks of decom
pressed data plus at most one smaller block of decompressed
data, and wherein recovering more than eight flag bits from a
flag unit comprises recovering all flag bits corresponding to
one of the blocks from a flag unit corresponding to the one of
the blocks.

16. The method of claim 15 wherein a size of each of the
equal-sized blocks of decompressed data is a power of two.

17. The method of claim 13, further comprising:
decompressing at least one of the literal data units, the

offset data units or the length data units.
18. The method of claim 17, further comprising:
decompressing the literal data units using arithmetic

encoding:
decompressing the offset data units using Huffman coding:

and
decompressing the length data units using run-length

encoding.
19. (canceled)
20. (canceled)
21. A machine-readable storage medium containing data

and instructions to cause a programmable processor to per
form operations comprising:

processing a source bit stream containing a sequence of
Source bits to produce a plurality of flag bits, a plurality
ofliterals, a plurality of offsets and a plurality of lengths:

grouping the flag bits into at least one flag unit, each flag
unit containing more than eight flag bits; and

emitting the at least one flag unit, the plurality of literals,
the plurality of offsets and the plurality of lengths,

wherein the at least one flag unit, literals, offsets and
lengths together occupy fewer bits than the source bit
stream, and

wherein the at least one flag unit, literals, offsets and
lengths encode all the source bits of the source bit
Stream.

Feb. 19, 2009

22. The machine-readable storage medium of claim 21,
wherein the operations further comprise:

compressing at least one of the at least one flag unit, the
literals, the offsets or the lengths before the emitting
operation using at least one of adaptive arithmetic cod
ing and adaptive Huffman coding.

23. The machine-readable storage medium of claim 22,
wherein the at least one flag unit is at least two flag units, the
operations further comprising:

compressing a first of the at least two flag units; and
emitting a second of the at least two flag units without

compression.
24. The machine-readable storage medium of claim 21,

wherein processing the source bit stream comprises:
dividing the source bit stream into a plurality of equal-sized

blocks and no more than one Smaller block; and
producing a plurality of flag bits, a plurality of literals, a

plurality of offsets and a plurality of lengths for each of
the blocks.

25. A machine-readable storage medium containing data
and instructions to cause a programmable processor to per
form operations comprising:

processing an input symbol sequence to remove repeated
Sub-sequences of input symbols and produce a plurality
of derivative data streams, a first of the derivative data
streams consisting exclusively of a series of binary flags;

compressing the first derivative data stream using a first
compression algorithm;

compressing a second derivative data stream using a sec
ond, different compression algorithm; and

outputting an output symbol sequence containing the com
pressed first derivative data stream and the compressed
second derivative data stream.

26. The machine-readable storage medium of claim 25,
wherein the inputSymbol sequence is a first block of an input
file, the operations further comprising:

repeating the processing, compressing and outputting
operations on a second block of the input file, the second
block containing an equal number of symbols as the first
block.

27. A machine-readable storage medium containing data
and instructions to cause a programmable processor to per
form operations comprising:

processing a compressed bit stream containing four inter
leaved classes of compressed data, the classes identified
as flag units, literal data units, offset data units and
length data units;

recovering more than eight flag bits from a flag unit;
emitting a literal data unit to a decompressed output stream

for each flag bit having a first binary value; and
emitting a plurality of data units copied from the decom

pressed output stream for each flag bit having a second
binary value, a number of the plurality of data units
expressed by a length data unit, and an offset within the
decompressed output stream of the plurality of data units
expressed by an offset data unit.

28. The machine-readable storage medium of claim 27,
wherein recovering the at least eight flag bits from a flag unit
comprises decompressing the flag unit using one of a run
length encoding algorithm, a Huffman coding algorithm, or
an arithmetic coding algorithm.

29. The machine-readable storage medium of claim 27,
wherein the compressed bit stream encodes a plurality of
equal-sized blocks of decompressed data plus at most one

US 2009/0045991 A1

Smaller block of decompressed data, and wherein recovering
more than eight flag bits from a flag unit comprises recovering
all flag bits corresponding to one of the blocks from a flag unit
corresponding to the one of the blocks.

30. The machine-readable storage medium of claim 27,
wherein a size of each of the equal-sized blocks of decom
pressed data is a power of two.

31. A system comprising:
a memory to store a source bit stream containing a

sequence of Source bits; and
a processor, coupled to the memory, to process the Source

bit stream to produce a plurality of flag bits, a plurality of
literals, a plurality of offsets and a plurality of lengths, to
group the flag bits into at least one flag unit, each flag
unit containing more than eight flag bits, and to emit the
at least one flag unit, the plurality of literals, the plurality
of offsets and the plurality of lengths,

wherein the at least one flag unit, literals, offsets and
lengths together occupy fewer bits than the source bit
stream, and

Feb. 19, 2009

wherein the at least one flag unit, literals, offsets and
lengths encode all the source bits of the source bit
Stream.

32. A system comprising:
a memory to store a compressed bit stream containing four

interleaved classes of compressed data, the classes iden
tified as flag units, literal data units, offset data units and
length data units; and

a processor, coupled to the memory, to process the com
pressed bit stream, to recover more than eight flag bits
from a flag unit, to emit a literal data unit to a decom
pressed output stream for each flag bit having a first
binary value, and to emit a plurality of data units copied
from the decompressed output stream for each flag bit
having a second binary value, a number of the plurality
of data units expressed by a length data unit, and an
offset within the decompressed output stream of the
plurality of data units expressed by an offset data unit.

c c c c c

