(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
International Bureau
(43) International Publication Date
27 June 2013 (27.06.2013)
WO 2013/096908 A1

(51) International Patent Classification:
G06Q 40/00 (2012.01)
(57) Abstract: Systems and methods for use of pattern recognition in assessing or monitoring a current status of a vehicle, use of an accelerometer to determine a frame of reference, and characterizing of driver performance and its use in determining insurance coverage. A pattern recognition module is configured with one or more defined operating patterns that reflect a known change in vehicle status or operating or driving behavior. In an embodiment, a device that includes an accelerometer can be used to determine a frame of reference. A system and method is described for characterizing driver performance and using such characterization to determine a risk score or profile associated with a particular insured, wherein a data collection and assessment environment can provide information to the driver about their driving performance, which the driver can then use to improve their driving skills or obtain liability insurance quotes.

(21) International Application Number:
PCT/US20 12/071487
(22) International Filing Date:
(25) Filing Language:
English
(26) Publication Language:
English
(30) Priority Data:
61/616,722 28 March 2012 (28.03.2012) US
61/652,017 25 May 2012 (25.05.2012) US

(71) Applicant: SCOPE TECHNOLOGIES HOLDINGS LIMITED [ZA/ZA]: 29 Curzon Road, Bryanston, Johannesburg (ZA).

(72) Inventors: LAVIE, Samuel; 29 Curzon Road, Bryanston, Johannesburg (ZA). JACOBS, Friedl; 29 Curzon Road, Bryanston, Johannesburg (ZA). VAN DEN BERGH, Johann; 29 Curzon Road, Bryanston, Johannesburg (ZA).

(74) Agent: KENNA, Karl, F.; Fiesler Meyer LLP, 650 California Street, Fourteenth Floor, San Francisco, CA 94108 (US).

(71) Applicant: FUCHS, Gil [US/IL]; 14b Yonek HaDvash Street, 74010 Nes Tziona (IL).

(72) Inventor; and
(71) Applicant: KAR, Samuel; 94108 San Francisco, CA (US).

(54) Title: SYSTEMS AND METHODS FOR ASSESSING OR MONITORING VEHICLE STATUS OR OPERATOR BEHAVIOR

![FIGURE 1](image-url)
Published:
— with international search report (Art. 21(3))

— before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))
SYSTEMS AND METHODS FOR ASSESSING OR MONITORING VEHICLE STATUS OR OPERATOR BEHAVIOR

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.

Claim of Priority:

Field of Invention:

[0002] Embodiments of the invention are generally related to telematics and related technologies, and are particularly related to systems and methods for use of pattern recognition in assessing or monitoring a current status of a vehicle, use of an
accelerometer to determine a frame of reference, and characterizing of driver performance and its use in determining insurance coverage.

Background:

Telematics generally refers to the integration of telecommunications and informatics, and is often described in the context of sending and receiving information about moving objects by means of telecommunication devices. A well-known use of telematics is in regard to vehicles, and with control of moving vehicles, such as haulage trucks. Devices such as Global Positioning Systems (GPS) can be used to provide additional information beyond that provided by the vehicle itself. Telematics are of particular use in industries such as fleet management, which might also include tracking the location and operation of ships, trains, and planes.

Telematics information such as that provided by GPS is largely macro in nature, and does not necessarily reflect the micro-conditions of day-to-day driving. As such, conventional telematics information is generally less pertinent for monitoring casual vehicle users, and is typically not intended for providing information of particular interest to insurers, such as the number of passengers in a vehicle at the time of an accident.

Accelerometers are also sometimes used to determine vectors of acceleration or the change in speed of a particular, e.g., vehicle or other equipment. However, a problem arises when the accelerometer is not properly aligned with, or calibrated against a true dimension, such as the true forward direction of a vehicle, since the measurements obtained may not accurately reflect the operation of the vehicle. Compensating for such discrepancies can be complex, requiring computationally expensive calculations of angle cosines, and the resultant accelerometers can be difficult to install and maintain, and in some instances it may not be possible to mathematically compensate for the discrepancies.

Information about a vehicle, together with its driver, also has a bearing on factors such as liability insurance. For example, heavily-used vehicles are on the road more often, which means they potentially have more exposure to accidents. Additionally, certain drivers may have driving habits that are considered less safe than others. Information about these and other factors is useful when formulating insurance quotes for a particular vehicle or driver.

These are the general areas that embodiments of the invention are intended to address.
Summary:

[0008] Described herein is a system and method which uses pattern recognition in assessing or monitoring a vehicle status and/or an operator's driving behavior. A vehicle, for use by an operator or driver, can be equipped with a data collection and assessment system. The system can comprise one or more data collection devices, e.g., accelerometers, which can be used to capture data and information, or otherwise measure vehicle actions. A data communication module enables communication of the collected data and information, such as through the use of telematics, to one or more other systems, which can be local or onboard to the vehicle, or a remote system. A pattern recognition module is configured with one or more defined operating patterns, each of which operating patterns reflects either a known change in vehicle status corresponding to, e.g., when a passenger has embarked or disembarked the vehicle, or a known vehicle operating or driving behavior. Information collected as events describing a current vehicle status or a current driving behavior can be compared with the known operating patterns. In accordance with an embodiment, the information can then be used locally or communicated to an operator assessment and monitoring system or service, which can provide additional functionality, such as ensuring a driver's compliance with employment or other mandated driving requirements, or assessing a driver's suitability for insurance reasons, including, e.g., taking into account a driver's reactions to variations in the road, cornering, and other driving situations.

[0009] Also described herein is a system and method for use with a device that includes an accelerometer, which can be used to determine a frame of reference for the device relative to a moving vehicle or other equipment, and which can be subsequently used in assessing or monitoring the status of the vehicle or an operator thereof. In accordance with an embodiment, by sampling accelerometer data over a period of time, the system can determine a rotation matrix or skew between the device/accelerometer's orientation and understanding of direction, and the vehicle's true orientation or direction in three-dimensions. The information can be used to provide corrections to the accelerometer data, and to more accurately determine the vehicle's true orientation/direction and motion within a three-dimensional frame of reference.

[0010] Also described herein is a system and method for characterizing driver performance and using such characterization to determine a risk score and/or profile associated with a particular insured. The risk profile/score can then be used to determine an insurance premium for the insured. In accordance with an embodiment, a
driver can use a portable device equipped with a data collection and assessment environment, including one or more data collection devices that can be used to capture data and information or otherwise measure vehicle actions, and a data collection and assessment logic. The data collection and assessment environment can provide information to the driver about their driving performance, which the driver can then use to improve their driving skills. The information can also be used by the driver when obtaining liability insurance quotes. In accordance with an embodiment a framework (system) receives information about the driver's driving performance, and uses this information either to determine an insurance quote, or act as a broker/aggregator in inviting other insurance providers to offer an insurance quote. This allows the insurance quote to be better personalized to the driver themselves. In particular, the framework enables the driver to collect his own behavior data and provide that data to an insurer or insurance broker/aggregator, to receive a usage based insurance quote (UBI).

[0011] Also described herein is a system and method for use of carbon emissions in characterizing driver performance and using such characterization to determine a profile associated with a particular insured. The profile can then be used to determine an insurance premium for the insured. In accordance with an embodiment, a driver can use a portable device equipped with a data collection and assessment environment, including one or more data collection devices that can be used to capture data and information or otherwise measure the carbon emissions associated with a vehicle. A framework (system) can receive information about the driver's driving profile, and use this information either to determine an insurance quote, or act as a broker/aggregator in inviting other insurance providers to offer an insurance quote, or UBI.

Brief Description of the Figures:
[0012] Figure 1 shows an illustration of a system which uses pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment.

[0013] Figure 2 shows another illustration of a system which uses pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment.

[0014] Figure 3 shows another illustration of a system which uses pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment.

[0015] Figure 4 shows an illustration of a system which uses pattern recognition
in assessing or monitoring a vehicle status or an operator's driving behavior, as it may be used with a vehicle and driver, in accordance with another embodiment.

[0016] Figure 5 shows another illustration of a system which uses pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment.

[0017] Figure 6 shows an illustration of examples of data to be used with pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment.

[0018] Figure 7 shows a flowchart of a method of using pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment.

[0019] Figure 8 illustrates a system for use with an accelerometer to determine a frame of reference, in accordance with an embodiment.

[0020] Figure 9 illustrates a means for determining a frame of reference, in accordance with an embodiment.

[0021] Figure 10 further illustrates a means for determining a frame of reference, in accordance with an embodiment.

[0022] Figure 11 is a flowchart of a method for determining a frame of reference, in accordance with an embodiment.

[0023] Figure 12 is a flowchart of a method for calibrating and using a frame of reference, in accordance with an embodiment.

[0024] Figure 13 is a flowchart of a method for calibrating and using a frame of reference, in accordance with an embodiment.

[0025] Figure 14 is a flowchart of a method for calibrating and using a frame of reference, in accordance with an embodiment.

[0026] Figure 15 is a flowchart of a method for calibrating and using a frame of reference, in accordance with an embodiment.

[0027] Figure 16 is a flowchart of a method for calibrating and using a frame of reference, in accordance with an embodiment.

[0028] Figure 17 illustrates a system for characterizing driver performance and use in determining insurance coverage, in accordance with an embodiment.

[0029] Figure 18 illustrates use of a system for characterizing driver performance, in accordance with an embodiment.

[0030] Figure 19 illustrates use of an insurance provider and/or broker framework, in accordance with an embodiment.
[0031] Figure 20 is a flowchart of a method for characterizing driver performance and use in determining insurance coverage, in accordance with an embodiment.

[0032] Figure 21 illustrates a system for use of carbon emissions in characterizing driver performance and use in determining insurance coverage, in accordance with an embodiment.

[0033] Figure 22 illustrates use of a system for use of carbon emissions in characterizing driver performance, in accordance with an embodiment.

[0034] Figure 23 illustrates use of an insurance provider and/or broker framework, in accordance with an embodiment.

[0035] Figure 24 is a flowchart of a method for use of carbon emissions in characterizing driver performance and use in determining insurance coverage, in accordance with an embodiment.

Detailed Description:

[0036] Embodiments of the invention are generally related to telematics and related technologies, and are particularly related to systems and methods for use of pattern recognition in assessing or monitoring a current status of a vehicle, use of an accelerometer to determine a frame of reference, and characterizing of driver performance and its use in determining insurance coverage.

PATTERN RECOGNITION

[0037] In accordance with an embodiment, described herein is a system and method which uses pattern recognition in assessing or monitoring events describing a current vehicle status, such as determining when an operator or a passenger has embarked or disembarked the vehicle, and/or events describing an operator's current driving behavior. The information can be used locally or communicated to an operator assessment and monitoring system or service, which can provide additional functionality, such as ensuring a driver's compliance with employment or other mandated driving requirements, or assessing a driver's suitability for insurance reasons, including, e.g., taking into account a driver's reactions to variations in the road, cornering, and other driving situations.

[0038] Although many of the illustrations provided herein describe embodiments using vehicles and accelerometers, it will be evident that the systems and techniques described herein can be used with operator-controlled devices other than vehicles, such as trains and ships, and with other types of data collection devices.
Figure 1 shows an illustration of a system which uses pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment. As shown in Figure 1, in accordance with an embodiment, a vehicle 102, for use by an operator or driver 100, can be equipped with a data collection and assessment system 104. The system can comprise one or more data collection devices 106 (e.g., accelerometers or other measurement devices 110) that can be used to capture data and information, or otherwise measure vehicle actions. A data collection module 112 collects the data or information from the data collection devices, while a data communication module 112 enables communication of the collected data and information, such as through the use of telematics, to one or more other systems.

A pattern recognition module 118 is configured with one or more defined operating patterns 120, each of which operating patterns reflects either a known change in vehicle status corresponding to, e.g. when a passenger has embarked or disembarked the vehicle, or a known vehicle operating or driving behavior. For example, when an operator embarks a vehicle on the driver's side, the vehicle responds in a physically-measurable manner (e.g., by moving downwards momentarily or tilting to one side). When a passenger then embarks the same vehicle, perhaps from an opposite side or through the rear doors, the vehicle responds in a physically-measurable manner, albeit with a different pattern. Each discernible pattern or set of events reflects a known change in the vehicle status. A sequence of patterns can reflect, as in the above example, that the vehicle, or its vehicle status, now likely includes both the operator and the passenger. Similar physically-measurable patterns can reflect when the operator or passenger leaves or disembarks a vehicle.

A vehicle also responds in a physically-measurable manner to operator-based driving actions, e.g. by the operator turning the vehicle sharply at a corner. This enables the system to associate other events and patterns with an operator's driving behavior.

Sequences of patterns can be used to reflect changes both in the vehicle status and in the operator's driving behavior over a period of time, say from the time an operator embarks the vehicle, through a series of driving maneuvers, up until the time of a later accident.

In accordance with an embodiment, an operator assessment and monitoring module 122 includes information about one or more vehicle operators, including for each operator an identifier (ID) 124 and additional data or information 126...
describing that operator and/or their typical operating characteristics. An operator
feedback module 128 can be used to provide immediate or local feedback to the
operator depending on their current vehicle status and/or operator driving behavior.

[0044] Any resultant information, pattern matching, or driver feedback can also
be remotely communicated to an external operator assessment and monitoring system
or service 132, which can provide additional functionality, such as ensuring a driver's
compliance with employment or other mandated driving requirements, or assessing a
driver's suitability for insurance reasons.

[0045] Figure 2 shows another illustration of a system which uses pattern
recognition in assessing or monitoring a vehicle status or an operator's driving behavior,
in accordance with an embodiment. As shown in Figure 2, depending on the particular
implementation, a selection of the components of the system can be provided onboard
or locally to the vehicle, while others of the components can be provided elsewhere
separately or remotely from the vehicle, or by a third-party. For example, in accordance
with an embodiment, the vehicle 140 can include a collection and assessment system
142 that comprises one or more data collection devices 144, a data collection module
146, a data communication module 148, and an operator feedback module 152. An
external operator assessment and monitoring system or service 160, which in this
example is provided separately from the vehicle, can include a pattern recognition
module 162 configured with one or more defined operating patterns 163, and an
operator assessment and monitoring module 164 that includes information about one or
more vehicle operators, including for each operator an operator ID 166 and additional
data or information 166.

[0046] Different arrangements of modules/components can be provided in
accordance with different embodiments to suit particular implementations. In some
embodiments, the pattern recognition module can be provided onboard or locally to the
vehicle, to provide immediate or local feedback to the operator depending on a current
status of their vehicle and/or their current driving behavior, without a need for an
external system or service. For example, a system including local feedback might
determine that too many passengers have embarked the vehicle for preferred safe
driving, and communicate this information to the operator prior to them starting the
vehicle.

[0047] As further shown in Figure 2, the information collected describing a current
vehicle/operator status or driving pattern can be compared 170 with known operating
patterns, and the results of the comparison used in providing operator feedback and/or
updating operator profile data and/or providing other services such as assessment or monitoring of operator behavior 180.

[0048] Figure 3 shows another illustration of a system which uses pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment. As shown in Figure 3, depending on the particular implementation, the system can be used to assess and monitor a plurality of vehicles or their operators. In accordance with an embodiment, each vehicle 200, 210 comprises a data collection and assessment system 202, 212 that comprises one or more data collection devices 204, 214 (e.g., accelerometers), and a data collection module 206, 216. An external operator assessment and monitoring system or service 220 that includes a pattern recognition module 222 further comprises an operator assessment and monitoring module 224 that includes information about a plurality of vehicle operators, including for each operator an identifier (ID) 226, 228, 230 and additional data or information 232, 234, 236 describing that operator or their operating characteristics.

[0049] Figure 4 shows an illustration of a system which uses pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, as it may be used with a vehicle and driver, in accordance with another embodiment. As shown in Figure 4, while a vehicle 250 is used, and as events happen or as time passes T1 (252), T2 (254), T3 (256), current vehicle/operator data is communicated to a data collection and assessment system 260 (which as described above can be provided onboard to the vehicle or remotely via telematics). The information can then be used by or communicated to an operator assessment and monitoring system or service 262, which can provide additional functionality, such as ensuring a driver's compliance with employment or other mandated driving requirements, or assessing a driver's suitability for insurance reasons, including, e.g., taking into account a driver's reactions to variations in the road 264, cornering, and other driving situations.

[0050] Figure 5 shows another illustration of a system which uses pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment. As shown in Figure 5, in accordance with an embodiment the vehicle 270 can be equipped with a data collection and assessment system 272, including a data collection module 276, data communication module 278, and accelerometers 280 as data collection devices 274, or similar devices used to measure changes in acceleration or direction of a vehicle. Information can be collected from a plurality of (in the illustrated example) X 282, Y 284, and Z 286 axis-measuring
accelerometers, and collectively used to provide a current vehicle/operator data 290. The pattern recognition module 300 can be configured with one or more defined operating patterns 302, 304, 306, each of which reflects a known vehicle/operator status or driving pattern based on accelerometer data. The information provided regarding current vehicle/operator accelerometer-based-data can be compared with the known accelerometer-based operating patterns, and the results of the comparison used providing of operator feedback and/or updating of operator profile data and/or other services such as assessment or monitoring of operator behavior.

[0051] Figure 6 shows an illustration of examples of data to be used with pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment. As shown in Figure 6, in accordance with an embodiment wherein the data collection and assessment system utilize accelerometers, or similar devices used to measure changes in acceleration or direction of a vehicle, information can be collected from a plurality of X, Y, and Z axis-measuring accelerometers (320, 322, 324), and collectively used to provide a current vehicle/operating data 326. For example, as described above, when an operator or passenger embarks or disembarks a vehicle on the driver's side, the vehicle responds in a physically-measurable manner. In accordance with an embodiment, the accelerometers can detect the minor accelerations in the vehicle when a person enters the car and closes the door, takes a corner or brakes sharply, or drives in a manner considered unsafe. The information collected describing a current vehicle/operator status or driving pattern can be compared with known operating patterns, and the results of the comparison used in providing operator feedback and/or updating operator profile data and/or providing other services such as assessment or monitoring of operator behavior 328.

[0052] As further shown in Figure 6, each of the graphs 320, 322, 342 can show accelerations in the X, Y, and Z axes respectively for a stationary vehicle. Each time a passenger enter/exits the vehicle and the engine is on, the system registers a low amplitude up and down motion hovering around value 128 ±2 units for a non-event average, followed by a minor perturbation simultaneous in all three axes where the amplitude jumps above the "normal" amplitude. The system can recognize these up and down characteristics as a known pattern.

[0053] In accordance with an embodiment, further discernment can include, e.g. recognizing minor variations in the pattern to determine the vehicle being pushed to the left, representative of an entry on the right side; or the vehicle being pushed forward and
to the right, representative of an entry to the left-rear side. Information such as this can be used to ensure a driver's compliance with employment or other mandated driving requirements, or assessing a drivers suitability for insurance reasons, including, e.g. preventing insurance fraud, detecting patterns and then using occurrences of said patterns when they occur, to say with some level of confidence (a confidence coefficient) that an event of certain type occurred, which is particularly useful for post-accident investigations.

[0054] Figure 7 shows a flowchart of a method of using pattern recognition in assessing or monitoring a vehicle status or an operator's driving behavior, in accordance with an embodiment. As shown in Figure 7, at step 350, one or more known operating patterns are defined for use by the pattern recognition module. At step 352, while the vehicle is being used, current vehicle operating data is collected via data collection devices (e.g. accelerometers), for one or more operators. At step 254, the current vehicle/operator data is compared with operating patterns using pattern recognition module, to assess or monitor current operator. At step 356, the system provides operator feedback and/or updates of operator profile data and/or provides other services such as assessment or monitoring of operator behavior.

[0055] In accordance with various embodiments, the above-described systems and methods can be employed in a variety of use cases. For example, the system can be used in conjunction with an automatic rescue or emergency dispatch system, wherein information about the number of passengers in a vehicle can be automatically communicated to a central rescue or emergency service. As another example, the system can be used in conjunction with systems for parental or otherwise tracking the habits of younger drivers, e.g. to ensure that the number of passengers within a vehicle is kept within certain predefined limits, or for vehicle insurance purposes.

USE OF ACCELEROMETER TO DETERMINE FRAME OF REFERENCE

[0056] As described above, in the field of telematics, a problem arises when accelerometers are used but are not properly aligned with, or calibrated against a true dimension, such as the true forward direction of a vehicle, since the measurements obtained may not truly reflect the operation of the vehicle.

[0057] In accordance with an embodiment, described herein is a system and method for use with a device that includes an accelerometer, which can be used to determine a frame of reference for the device relative to a moving vehicle or other equipment, and which can be subsequently used in assessing or monitoring the status
of the vehicle or an operator thereof.

[0058] In accordance with an embodiment, the system can be provided as a small device which in turn can be mounted to e.g., the interior of a vehicle, and which includes one or more accelerometers. Since a vehicle generally travels in a horizontal plane, by sampling accelerometer data over a period of time, and also referring to information from one or more other on-board devices, such as a GPS, gyroscope or additional accelerometer, the system can first determine where the vehicle is "on the plane", i.e. determine the vehicle's true x-y plane inasmuch as it differs from the device/accelerometer's orientation and understanding of the plane. Given the knowledge of the x-y plane, the vehicle's z-axis can be readily determined in that the z-axis is perpendicular to the x-y plane. Next, to determine the vehicle's x-axis, data from the accelerometer, optionally in combination with the information from the other on-board devices, is used to determine the vehicle's forward direction. In accordance with an embodiment, since a vehicle's most prevalent acceleration is in a forward direction (while in contrast its most prevalent deceleration is in the opposite direction), a vehicle's instances of braking provides a particularly discernible change in acceleration/deceleration. By averaging the accelerometer data over several braking instances, the system can determine the vehicle's forward motion along a y-axis. Given the knowledge of the y-axis, the vehicle's x-axis can be readily determined in that it lies within the x-y plane, perpendicular to the y-axis (in other words, mutually perpendicular to both the y and z axes).

[0059] The resultant determinations can be stored as a rotation matrix that reflects the skew, represented either in Cartesian or polar coordinates, between the device/accelerometer's orientation and understanding of direction, and the vehicle's true orientation or direction in three-dimensions. The information can be used to provide corrections to the accelerometer data, and to more accurately determine the vehicle's true orientation/direction and motion within a three-dimensional frame of reference.

[0060] Although the above approach can be employed to first determine the frame of reference's x-y plane, followed by its z-axis, y-axis, and lastly x-axis, it will be evident that, in accordance with other embodiments and approaches, the various axes can be determined in a different order, e.g., first the x-y plane, followed by the x-axis, and finally the y and z axes. The particular order is dependent on the particular desired implementation, but the net result (i.e., the determination of those axes that comprise the frame of reference) is otherwise the same.

[0061] Also, it will be evident that the above approach works only while the
system is itself mounted to or otherwise fixed in position relative to the vehicle while the vehicle is moving. If, during use, the system was free to move relative to the vehicle, then it could not serve as an accurate frame of reference. However, in accordance with an embodiment, to account for occasional movement of the device, whenever a particular trip is finished, and subsequently a new trip is started at a later time, the system can be quickly reset and recalibrated using the above technique, to allow for occasions in which the system is removed from the vehicle between trips.

[0062] In accordance with an embodiment, information from the system regarding the motions of the vehicle in three dimensions can be used, for example, as an input to another system or process for determining operator behavior, such as that described in U.S. Provisional Patent Application titled "SYSTEM AND METHOD FOR USE OF PATTERN RECOGNITION IN ASSESSING OR MONITORING VEHICLE STATUS OR OPERATOR DRIVING BEHAVIOR", Application No. 61/578,511, filed December 21, 2011, and herein incorporated by reference. As described therein, information about the vehicle's maneuvers can be used in combination with known operating patterns to determine or assess an operator's driving pattern.

[0063] Although the illustrations provided herein primarily describe embodiments using vehicles, it will be evident that the techniques described herein can be similarly used with, e.g., trains, ships, airplanes, containers, or other moving equipment. Additionally, the techniques described herein can be used in combination with other systems, such as those that use dead-reckoning techniques, to provide additional types of combined information.

[0064] Figure 8 illustrates a system for use with an accelerometer to determine a frame of reference, in accordance with an embodiment. As shown in Figure 8, in accordance with an embodiment, a vehicle 402 can be equipped with a data collection and assessment system 404. The data collection and assessment system, which as described above can be provided as a small device mounted to the interior of a vehicle, comprises one or more data collection devices 406, including an accelerometer 408. Optionally other measurement devices, such as an on-board GPS 410, gyroscope 412, or additional measurement devices 413, can also be used to provide data or information about the vehicle's maneuvers. A data collection module 414 collects the data or information from the data collection devices, while a data communication module 416 enables communication of the collected data and information, such as through the use of telematics, to one or more other systems, such as an external system for assessing an operator's driving pattern. A frame determination module 418 samples or otherwise
receives accelerometer data over a period of time, and also information from the one or more other on-board devices, and uses this information to determine the frame of reference.

[0065] Figure 9 illustrates a means for determining a frame of reference, in accordance with an embodiment. As shown in Figure 9, as the vehicle moves, the system receives data or information 420 from the accelerometer (and optionally from any additional measurement devices provided). This information is used by the frame of reference determination module to determine a rotation matrix or skew 424 between the device/accelerometer's orientation and understanding of direction, and the vehicle's true orientation or direction in three-dimensions, and to more accurately determine the vehicle's true orientation/direction and motion within a three-dimensional frame of reference 430. The movement of the vehicle within the frame of reference can be used, e.g., in combination with known operating patterns as described above, to determine or assess an operator's driving pattern 440.

[0066] Figure 10 further illustrates a means for determining a frame of reference, in accordance with an embodiment. As shown in Figure 10, as the vehicle moves 450, at a time T1, data is received 451 from the accelerometer and from one or more other on-board devices, such as a GPS, gyroscope or additional accelerometer, and is used to determine an x-y plane for the vehicle 452, taking into account that the vehicle generally travels horizontally and by averaging the accelerometer data over a period of time. Given the knowledge of the x-y plane, the vehicle's z-axis can be readily determined in that the z-axis is perpendicular to the x-y plane. At a later time T2, data received 454 from the accelerometer is used to determine a y-axis 455, by averaging the accelerometer data over several braking instances. Given the knowledge of the z and y axes, the vehicle's x-axis can be readily determined.

[0067] Figure 11 is a flowchart of a method for determining a frame of reference, in accordance with an embodiment. As shown in Figure 11, at step 480, a vehicle is provided with a data collection and assessment system and data collection devices, including an accelerometer. At step 482, the system receives information from the accelerometer (and optionally from additional measurement devices), and, at step 484, determines a frame of reference, including first an x-y plane; and then an x-axis, y-axis and z-axis. At step 486, the movement of the vehicle within the frame of reference is used in assessing or monitoring the vehicle status.

[0068] Figures 12-16 are flowcharts of methods for calibrating and using a frame of reference, in accordance with an embodiment. The embodiments shown therein are
provided for purposes of illustration, and it will be evident that in accordance with other embodiments, different steps can be used.

[0069] As shown in Figures 12-16, the rotation matrix skew can be indicated by alpha, beta, and theta components, which represent the necessary correction between the device/accelerometer’s orientation and understanding of direction, and the vehicle’s true orientation or direction in three-dimensions. In accordance with other embodiments, different ways of representing skew can be used.

[0070] As shown in Figure 12, in accordance with an embodiment, at start 500, the following variables are initially defined:

\[
\begin{align*}
\text{AccRaw: Accelerometer Raw Average} \\
\text{AccRawCnt: Accelerometer Raw Sample Count} \\
\text{AccDelRaw: Accelerometer Raw Deceleration Average} \\
\text{AccDelRawCnt: Accelerometer Raw Deceleration Sample Count} \\
\text{Threshold1: Minimum number of samples required for AccRaw} \\
\text{Threshold2: Minimum number of samples required for AccDelRaw}
\end{align*}
\]

[0071] At step 502, the system determines whether AccRawCnt > Threshold1. If it is, then, at step 504, a value is calculated for Alpha rotation around the x-axis, to have AccRaw y-axis = 0; and to apply x-axis rotation. At step 506, a value is calculated for Beta rotation around the y-axis, to have AccRaw x-axis = 0; and to apply y-axis rotation. At step 508, the system determines whether AccRawCnt > Threshold2. If it is, then, at step 510, an x-axis and y-axis rotation is applied to AccDelRaw. At step 512, a value is calculated for Theta rotation around the z-axis, to have AccDelRaw x-axis = 0; and to apply z-axis rotation. At step 514, a rotation matrix is calculated using the Alpha, Beta and Theta angles. The process then ends 516.

[0072] Figure 13 illustrates a system calibration process in accordance with an embodiment. As shown in Figure 13, at step 520 the process is initialized. At step 522, the accelerometer output is received. At step 524, the system applies any factory offset calibrations, to eliminate any \(\omega \)g offset. At step 526, the raw accelerometer output can then be provided 526.

[0073] Figures 14 and 15 illustrate a data sampling process in accordance with an embodiment. As shown in Figure 15, the process starts 530 by acquiring accelerometer samples, including raw accelerometer input 532. The input is added both at steps 534, 536 to a sample A, which is incremented, and at step 536 if the
acceleration is greater than a threshold value (Δ Speed > Threshold) to a sample B 538 542, which is incremented. The counts can be compared at regular intervals.

[0074] As shown in Figure 15, following start 552, at step 554, Count A is compared to a required count, and if greater, the Alpha rotation is determined 556, 558 using the Sample A, and the Beta rotation is determined 560, 562 using the Sample A. At step 564, Count B is compared to a required count, and if greater, then at step 566 Alpha and Beta rotation are applied to Sample B, and the Theta rotation is determined 568, 570 using the Sample B. The process then ends 572.

[0075] Figure 16 illustrates a calibrated accelerometer output process in accordance with an embodiment. As shown in Figure 16, at step 582 the process is initialized. At step 584, the raw accelerometer input is received. At step 586, the system applies the Alpha, Beta and Theta rotations. At step 588, the calibrated accelerometer output can then be provided 526.

CHARACTERIZING OF DRIVER PERFORMANCE

[0076] As described above, in the insurance industry, information about such factors as whether a driver of a vehicle observes safe driving habits is useful when formulating insurance quotes for a particular vehicle or driver.

[0077] In accordance with an embodiment, described herein is a system and method for characterizing driver performance and using such characterization to determine a risk score and/or profile associated with a particular insured. The risk profile/score can then be used to determine an insurance premium for the insured. In accordance with an embodiment, a driver can use a portable device (e.g., a smartphone, PDA, computer or other device) equipped with a data collection and assessment environment, including one or more data collection devices (e.g., accelerometers, GPS) that can be used to capture data and information or otherwise measure vehicle actions, and a data collection and assessment logic (e.g., a downloadable software application).

[0078] The data collection and assessment environment can provide information to the driver about their driving performance, such as whether they make rapid braking/acceleration maneuvers, or drift outside of their lane, which the driver can then use to improve their driving skills.

[0079] The information can also be used by the driver when obtaining liability insurance quotes. In accordance with an embodiment a framework (system) receives information about the driver's driving performance, and uses this information either to
determine an insurance quote, or act as a broker/aggregator in inviting other insurance providers to offer an insurance quote. This allows the insurance quote to be better personalized to the driver themselves. In particular, the framework enables the driver to collect his own behavior data and provide that data to an insurer or insurance broker/aggregator, to receive a usage based insurance quote (UBI).

[0080] In accordance with an embodiment, the system and the driver performance information can be used to augment traditional insurance application questionnaires. The information received from a driver's data collection and assessment environment can be secured and/or anonymized prior to determining the driver's insurance quote, or inviting other insurance providers to offer an insurance quote.

[0081] In a typical implementation, a less-safe (i.e., "bad") driver, as determined by their driving performance, may not receive any benefit in providing their information. However, a safer (i.e., "good") driver, as determined by their driving performance, may receive a discount on their insurance quote that reflects their better performance. In accordance with an embodiment, the framework can also be used to consider periodic improvements, and provide additional insurance discounts to the driver over time.

[0082] Figure 17 illustrates a system for characterizing vehicle driver performance and use in determining insurance coverage, in accordance with an embodiment.

[0083] As shown in Figure 17, in accordance with an embodiment, a driver 600, can use a portable device 602 (e.g., a smartphone, PDA, computer, or other device) which is equipped with a data collection and assessment environment 604. In accordance with an embodiment, the portable device can itself include one or more data collection devices 606 (e.g., accelerometers, GPS, or other measurement devices) that can be used to capture data and information or otherwise measure vehicle actions. In accordance with other embodiments the data collection devices can be added to the portable device, e.g., as an aftermarket accessory.

[0084] A data collection and assessment logic 608 can similarly be built-into the portable device, or added as an aftermarket accessory, e.g., as a downloadable software application (app).

[0085] A pattern recognition module 618 is configured with one or more defined operating patterns, each of which operating patterns reflects either a known change in vehicle status, or a known vehicle operating or driving behavior. For example, a vehicle responds in a physically-measurable manner to driver-based driving actions, e.g., by the
driver turning the vehicle sharply at a corner. This enables the system to associate patterns with a driver's driving behavior, and to determine a risk score and/or profile associated with a particular driver. Sequences of patterns can be used to reflect changes both in the vehicle status and in the driver's performance, i.e., their driving behavior over a period of time, say from the time a driver embarks the vehicle, through a series of driving maneuvers, up until the time they disembark the vehicle, or over a period of days, weeks or months.

[0086] In accordance with an embodiment, a driver assessment and monitoring module 622 includes information about one or more drivers, including for each driver an identifier (ID) 624 and additional data or information 626 describing that driver and/or their typical operating characteristics. A driver feedback module 628 can be used to provide immediate or local feedback to the driver depending on their current vehicle status and/or driving performance.

[0087] The resultant information, pattern matching, or driver feedback can be remotely communicated to an external insurance provider and/or broker framework (system) 630, which uses the received information in determining insurance quotes for a particular vehicle or driver, or inviting other insurance providers to offer an insurance quote for the particular vehicle or driver. In particular, the framework enables the driver to collect his own behavior data and provide that data to an insurer or insurance broker/aggregator, to receive a usage based insurance quote (UBI).

[0088] In accordance with an embodiment, the system can incorporate or utilize additional functionality as further described in U.S. Provisional Patent Application titled "SYSTEM AND METHOD FOR USE OF PATTERN RECOGNITION IN ASSESSING OR MONITORING VEHICLE STATUS OR OPERATOR DRIVING BEHAVIOR", Application No. 61/578,511, filed December 21, 2011, and herein incorporated by reference.

[0089] Figure 18 illustrates use of a system for characterizing driver performance, in accordance with an embodiment. As shown in Figure 18, during use, a driver of a vehicle 650 can use their portable device (e.g., a smartphone, PDA, computer, or other device) suitably equipped with a data collection and assessment environment, to track their driving performance, either for their own use 654, or to communicate the information to an insurance provider and/or broker framework for use in determining an insurance quote, or act as a broker/aggregator in inviting 656 other insurance providers 658 to offer 660 an insurance quote. This allows the insurance quote to be better personalized to the driver themselves.
[0090] Figure 19 illustrates use of an insurance provider and/or broker framework, in accordance with an embodiment. As shown in Figure 19, an insurance provider and/or broker framework includes a customer interface 672 that allows a driver to communicate their driving performance information 670, and an insurance provider interface 674 that enables the insurance provider and/or broker to invite 656 other insurance providers 658 to offer an insurance quote 676 personalized to the driver. As described previously, the information received from a driver's data collection and assessment environment can be secured and/or anonymized prior to determining the driver's insurance quote, or inviting other insurance providers to offer an insurance quote. At a later point in time, the driver can provide updated driver performance data 678, and receive an updated insurance quote(s) 679 as required.

[0091] Figure 20 is a flowchart of a method for characterizing driver performance and use in determining insurance coverage, in accordance with an embodiment. As shown in Figure 20, at step 682, the system receives driver performance data provided by a data collection and assessment environment, and optionally other insurance application information, at an insurance provider and/or broker framework. At step 684, the system communicates driver performance data to and/or receives insurance information from one or more insurance provider(s). At step 686, insurance quote(s) are provided based on the driver performance data. At step 688, the system can receive updated driver performance data, and provide updated insurance quote(s) as required.

[0092] In accordance with an embodiment, a risk score can be calculated on the portable device (e.g., smartphone, PDA, computer or other device) itself. Alternatively, raw data or information can be collected from the portable device and uploaded to a driver rating platform for risk score calculation, resulting in a score that can then either be provided directly to the insurance provider, or reported back to the insured, for their use in applying for insurance coverage.

USE OF CARBON EMISSIONS IN CHARACTERIZING DRIVER PERFORMANCE

[0093] In accordance with an embodiment, described herein is a system and method for use of carbon emissions in characterizing driver performance and using such characterization to determine a profile associated with a particular insured. The profile can then be used to determine an insurance premium for the insured. In accordance with an embodiment, a driver can use a portable device equipped with a data collection and assessment environment, including one or more data collection
devices that can be used to capture data and information or otherwise measure the carbon emissions associated with a vehicle. A framework (system) can use this information either to determine an insurance quote, or act as a broker/aggregator in inviting other insurance providers to offer an insurance quote, or usage based insurance quote (UBI).

[0094] Figure 21 illustrates a system for use of carbon emissions in characterizing vehicle driver performance and use in determining insurance coverage, in accordance with an embodiment.

[0095] The amount of carbon emissions a particular vehicle generates is dependent on a variety of factors, such as the type of vehicle and its overall condition, environmental conditions, and the manner in which the vehicle is operated. For example, a vehicle driven at high speeds may generate more emissions than a vehicle driven at moderate speeds.

[0096] As shown in Figure 21, in accordance with an embodiment, a driver 700 of a vehicle 701 can use a carbon emissions-based driving assessment system 703, which can be provided as a portable device (e.g., a smartphone, PDA, computer, or other portable device), and which is equipped with a data collection and assessment environment 704.

[0097] In accordance with an embodiment, the assessment system can itself include one or more data collection devices 706 (e.g., accelerometers, GPS, or other measurement devices) that can be used to capture data and information or otherwise measure vehicle actions, together with a data collection and assessment logic 708. A pattern recognition module 718 is configured with one or more defined operating patterns, each of which operating patterns reflects either a known change in vehicle status, or a known vehicle operating or driving behavior. For example, a vehicle responds in a physically-measurable manner to driver-based driving actions, e.g., by the driver turning the vehicle sharply at a corner. This enables the system to associate patterns with certain driving behaviors.

[0098] In accordance with an embodiment, a carbon emissions assessment module 723 includes information about typical carbon emissions, and can compare current patterns of driving with known patterns to calculate carbon emissions for a current driver/vehicle.

[0099] The resultant information can be remotely communicated to an external insurance provider and/or broker framework (system) 730, which uses the received information in comparing the calculated carbon emissions against estimated carbon
emissions for similar types of vehicle, which is indicative of the driver's driving profile, and using the results in determining insurance quotes for the current vehicle/driver, or inviting other insurance providers to offer an insurance quote, or a usage based insurance quote (UBI).

[00100] In accordance with an embodiment, the system can incorporate or utilize additional functionality as further described in U.S. Patent Application titled "SYSTEM AND METHOD FOR USE OF PATTERN RECOGNITION IN ASSESSING OR MONITORING VEHICLE STATUS OR OPERATOR DRIVING BEHAVIOR"; Application No. 13/679,722, filed November 16, 2012, which claims the benefit of priority to U.S. Provisional Patent Application No. 61/578,511, filed December 21, 2011, herein incorporated by reference.

[00101] Figure 22 illustrates use of a system for characterizing driver performance, in accordance with an embodiment. As shown in Figure 22, during use, a driver of a vehicle 750 can use the carbon emissions-based driving assessment system to calculate carbon emissions for the current driver/vehicle, and to communicate 751 the information to an insurance provider and/or broker framework for use in determining an insurance quote, or act as a broker/aggregator in inviting 756 other insurance providers 758 to offer an insurance quote 760.

[00102] Figure 23 illustrates use of an insurance provider and/or broker framework, in accordance with an embodiment. As shown in Figure 23, an insurance provider and/or broker framework includes a customer interface 772 that allows a driver to communicate their calculated carbon emissions, and an insurance provider interface 774 that enables the insurance provider and/or broker to invite other insurance providers to offer 776 an insurance quote personalized to the driver, based on a comparison 773 of the calculated carbon emissions against estimated carbon emissions for similar types of vehicle. The information received from the carbon emissions-based driving assessment system can be secured and/or anonymized prior to determining the driver's insurance quote, or inviting other insurance providers to offer an insurance quote.

[00103] Figure 24 is a flowchart of a method for use of carbon emissions in characterizing driver performance and use in determining insurance coverage, in accordance with an embodiment. As shown in Figure 24, at step 782, the system receives calculated carbon emissions provided by the carbon emissions-based driving assessment system, at the insurance provider and/or broker framework. At step 784, the system compares calculated carbon emissions against estimated carbon emissions
for similar types of vehicle, which is indicative of the driver's driving profile. At step 786, the system determines and provides insurance quote(s) based on the calculated carbon emissions for the driver/vehicle.

[00104] The present invention may be conveniently implemented using one or more conventional general purpose or specialized digital computers or microprocessors programmed according to the teachings of the present disclosure, or a portable device (e.g., a smartphone, PDA, computer or other device), equipped with a data collection and assessment environment, including one or more data collection devices (e.g., accelerometers, GPS). Appropriate software coding can readily be prepared by skilled programmers based on the teachings of the present disclosure, as will be apparent to those skilled in the software art.

[00105] In some embodiments, the present invention includes a computer program product which is a non-transitory storage medium (media) having instructions stored thereon/in which can be used to program a computer to perform any of the processes of the present invention. The storage medium can include, but is not limited to, any type of disk including floppy disks, optical discs, DVD, CD-ROMs, microdrive, and magneto-optical disks, ROMs, RAMs, EPROMs, EEPROMs, DRAMs, VRAMs, flash memory devices, magnetic or optical cards, nanosystems (including molecular memory ICs), or any type of media or device suitable for storing instructions and/or data.

[00106] The foregoing description of the present invention has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications that are suited to the particular use contemplated. For example, although the illustrations provided herein primarily describe embodiments using vehicles, it will be evident that the techniques described herein can be similarly used with, e.g., trains, ships, airplanes, containers, or other moving equipment, and with other types of data collection devices. It is intended that the scope of the invention be defined by the following claims and their equivalence.
What is claimed is:

1. A system which uses pattern recognition in assessing or monitoring operator behavior, comprising:
 - a data collection and assessment system comprising one or more data collection devices that can be used to capture data and information, or otherwise measure vehicle actions;
 - a data communication module which enables communication of the collected data and information, such as through the use of telematics, to one or more other systems;
 - a pattern recognition module configured with one or more defined operating patterns, each of which operating patterns reflects a known vehicle operating pattern;
 - an operator assessment and monitoring module which includes information about one or more vehicle operators, including for each operator an identifier and additional data or information describing that operator and/or their typical operating characteristics; and
 - wherein a current vehicle/operator status or driving pattern can be compared with known operating patterns, and the results of the comparison used in providing operator feedback and/or updating operator profile data and/or providing other services such as assessment or monitoring of operator behavior.

2. The system of claim 1, wherein resultant information, pattern matching, or driver feedback can be communicated to an operator assessment and monitoring system or service, which can provide additional functionality, such as ensuring a driver's compliance with employment or other mandated driving requirements, or assessing a driver's suitability for insurance reasons.

3. The system of claim 2, wherein the external operator assessment and monitoring system or service is provided separately from the vehicle.

4. The system of claim 1, wherein the operator assessment and monitoring module includes information about a plurality of vehicle operators, including for each operator an identifier and additional data or information describing that operator or their operating
5. The system of claim 1, wherein while a vehicle is used, and as events happen or as time passes, current vehicle/operator data is communicated to a data collection and assessment system.

6. The system of claim 1, wherein the captured data and information is collected from a plurality of accelerometers, and collectively used to provide a current vehicle/operator data.

7. The system of claim 6, wherein the accelerometers can detect the minor accelerations in the vehicle when a person enters the car and closes the door, takes a corner or brakes sharply, or drives in a manner considered unsafe.

8. A method of using pattern recognition in assessing or monitoring operator behavior, comprising the steps of:
 - providing a data collection and assessment system comprising one or more data collection devices that can be used to capture data and information, or otherwise measure vehicle actions;
 - providing a data communication module which enables communication of the collected data and information, such as through the use of telematics, to one or more other systems;
 - providing a pattern recognition module configured with one or more defined operating patterns, each of which operating patterns reflects a known vehicle operating pattern;
 - providing an operator assessment and monitoring module which includes information about one or more vehicle operators, including for each operator an identifier and additional data or information describing that operator and/or their typical operating characteristics; and
 - wherein a current vehicle/operator status or driving pattern can be compared with known operating patterns, and the results of the comparison used in providing operator feedback and/or updating operator profile data and/or providing other services such as assessment or monitoring of operator behavior.

9. The method of claim 8, wherein resultant information, pattern matching, or driver characteristics.
feedback can be communicated to an operator assessment and monitoring system or service, which can provide additional functionality, such as ensuring a driver's compliance with employment or other mandated driving requirements, or assessing a driver's suitability for insurance reasons.

10. The method of claim 9, wherein the external operator assessment and monitoring system or service is provided separately from the vehicle.

11. The method of claim 8, wherein the operator assessment and monitoring module includes information about a plurality of vehicle operators, including for each operator an identifier and additional data or information describing that operator or their operating characteristics.

12. The method of claim 8, wherein while a vehicle is used, and as events happen or as time passes, current vehicle/operator data is communicated to a data collection and assessment system.

13. The method of claim 8, wherein the captured data and information is collected from a plurality of accelerometers, and collectively used to provide a current vehicle/operator data.

14. The method of claim 13, wherein the accelerometers can detect the minor accelerations in the vehicle when a person enters the car and closes the door, takes a corner or brakes sharply, or drives in a manner considered unsafe.

15. A system for use with an accelerometer to determine a frame of reference, for subsequent use in assessing or monitoring a status of a vehicle or other equipment, or operator thereof, comprising:
 a data collection and assessment system comprising one or more data collection devices, including one or more accelerometers, that collects information from the one or more accelerometers as the vehicle or other equipment is moving; and
 a frame determination module which samples or otherwise receives accelerometer data over a period of time, and also information from one or more other on-board devices, and uses this information to determine a rotation matrix that reflects the skew between the system's orientation and understanding of direction, and the
vehicle's true orientation or direction in three-dimensions, and to determine a frame of reference for use in subsequently characterizing motions of the vehicle or other equipment in three dimensions.

16. The system of claim 15, further comprising a data communication module which enables communication of the collected information, and vehicle motion characterizations, to one or more other systems.

17. The system of claim 16, wherein the collected information, and vehicle motion characterizations are used together with pattern matching as part of an operator assessment and monitoring system or service.

18. The system of claim 15, wherein the frame determination module determines the frame of reference by sampling the accelerometer data, and

first determining averages over a period of time, to determine the moving vehicle or other equipment's x-y plane, and

then averaging the accelerometer data over several braking instances to determine an x-axis, y-axis and z-axis for the moving vehicle or other equipment.

19. The system of claim 15, wherein the x-axis, y-axis and z-axis determinations are stored as a rotation matrix, and used to subsequently characterize motions of the moving vehicle or other equipment in three dimensions.

20. A method for use with an accelerometer to determine a frame of reference, for subsequent use in assessing or monitoring a status of a vehicle or other equipment, or operator thereof, comprising:

using one or more accelerometers to collect information as the vehicle or other equipment is moving; and

sampling or otherwise receiving the accelerometer data over a period of time, and information from one or more other on-board devices, and using this information to determine a rotation matrix that reflects the skew between the system's orientation and understanding of direction, and the vehicle's true orientation or direction in three-dimensions, and to determine a frame of reference for use in subsequently characterizing motions of the vehicle or other equipment in three dimensions.
21. The method of claim 20, further comprising a data communication module which enables communication of the collected information, and vehicle motion characterizations, to one or more other systems.

22. The method of claim 21, wherein the collected information, and vehicle motion characterizations are used together with pattern matching as part of an operator assessment and monitoring system or service.

23. The method of claim 20, wherein the frame determination module determines the frame of reference by sampling the accelerometer data, and

first determining averages over a period of time, to determine the moving vehicle or other equipment's x-y plane, and

then averaging the accelerometer data over several braking instances to determine an x-axis, y-axis and z-axis for the moving vehicle or other equipment.

24. The method of claim 20, wherein the x-axis, y-axis and z-axis determinations are stored as a rotation matrix, and used to subsequently characterize motions of the moving vehicle or other equipment in three dimensions.

25. A non-transitory computer readable medium, including instructions stored thereon which when read and executed by one or more computers cause the one or more computers to perform the steps comprising:

using one or more accelerometers to collect information as the vehicle or other equipment is moving; and

sampling or otherwise receiving the accelerometer data over a period of time, and information from one or more other on-board devices, and using this information to determine a rotation matrix that reflects the skew between the system's orientation and understanding of direction, and the vehicle's true orientation or direction in three-dimensions, and to determine a frame of reference for use in subsequently characterizing motions of the vehicle or other equipment in three dimensions.

26. A system for characterizing vehicle driver performance and use in determining insurance coverage comprising:

a portable device with a data collection and assessment environment, including

one or more data collection devices that can be used to capture data and information or
otherwise measure vehicle actions, and a data collection and assessment logic;
wherein the data collection and assessment environment is configured to one or both

calculate a risk score or profile for a driver and provide the risk score or profile to the driver, and/or
capture information about the driver's driving performance, and provide the information to an external insurance provider or broker framework to calculate the risk score or profile,
for use in obtaining a usage based insurance quote (UBI) for the driver.

27. The system of claim 26, further comprising a framework which receives information about the driver's driving performance, and uses this information either to determine an insurance quote, or act as a broker/aggregator in inviting other insurance providers to offer an insurance quote.

28. A method of characterizing vehicle driver performance and use in determining insurance coverage comprising:
providing a portable device with a data collection and assessment environment, including one or more data collection devices that can be used to capture data and information or otherwise measure vehicle actions, and a data collection and assessment logic;
wherein the data collection and assessment environment is configured to one or both
calculate a risk score or profile for a driver and provide the risk score or profile to the driver, and/or
capture information about the driver's driving performance, and provide the information to an external insurance provider or broker framework to calculate the risk score or profile,
for use in obtaining a usage based insurance quote (UBI) for the driver.

29. The method of claim 26, further comprising providing a framework which receives information about the driver's driving performance, and uses this information either to determine an insurance quote, or act as a broker/aggregator in inviting other insurance providers to offer an insurance quote.
30. A system for characterizing vehicle driver performance and use in determining insurance coverage comprising:

- a framework which receives information about the driver's driving performance, and uses this information either to determine an insurance quote, or act as a broker/aggregator in inviting other insurance providers to offer an insurance quote, including

 - receiving information from a portable device with a data collection and assessment environment, including one or more data collection devices that can be used to capture data and information or otherwise measure vehicle actions, and a data collection and assessment logic, and

 - wherein the data collection and assessment environment is configured to one or both

 - calculate a risk score or profile for a driver and provide the risk score or profile to the driver, and/or

 - capture information about the driver's driving performance, and provide the information to the framework to calculate the risk score or profile,

 for use in obtaining a usage based insurance quote (UBI) for the driver.

31. A non-transitory computer readable medium, including instructions stored thereon which when read and executed by one or more computers cause the one or more computers to perform the steps comprising:

- providing a portable device with a data collection and assessment environment, including one or more data collection devices that can be used to capture data and information or otherwise measure vehicle actions, and a data collection and assessment logic;

- wherein the data collection and assessment environment is configured to one or both

 - calculate a risk score or profile for a driver and provide the risk score or profile to the driver, and/or

 - capture information about the driver's driving performance, and provide the information to an external insurance provider or broker framework to calculate the risk score or profile,

 for use in obtaining a usage based insurance quote (UBI) for the driver.

32. A system for use of carbon emissions in characterizing vehicle driver
performance and use in determining insurance coverage comprising:

a data collection and assessment environment, including

one or more data collection devices that can be used to capture data and information or otherwise measure vehicle actions,

a data collection and assessment logic, and

a carbon emissions assessment module which includes information about typical carbon emissions, and can compare current patterns of driving with known patterns to calculate carbon emissions for a current driver/vehicle; and

wherein the data collection and assessment environment is configured to one or both

compare current patterns of driving with known patterns to calculate carbon emissions for a current driver/vehicle, and

provide the information to an external insurance provider or broker framework to calculate a driver profile, for use in obtaining a usage based insurance quote (UBI) for the driver.

33. The system of claim 32, wherein results from the carbon emissions assessment module are compared with physical emission measurements in order to determine a precision built-in error, which enables certainty levels to be attached to the calculated emissions, and which can be used to associate confidence intervals with driver quality prediction scores.

34. A method for use of carbon emissions in characterizing vehicle driver performance and use in determining insurance coverage comprising:

providing a data collection and assessment environment, including

one or more data collection devices that can be used to capture data and information or otherwise measure vehicle actions,

a data collection and assessment logic, and

a carbon emissions assessment module which includes information about typical carbon emissions, and can compare current patterns of driving with known patterns to calculate carbon emissions for a current driver/vehicle; and

wherein the data collection and assessment environment is configured to one or both

compare current patterns of driving with known patterns to calculate carbon emissions for a current driver/vehicle, and
provide the information to an external insurance provider or broker framework to calculate a driver profile, for use in obtaining a usage based insurance quote (UBI) for the driver.

35. The method of claim 34, wherein results from the carbon emissions assessment module are compared with physical emission measurements in order to determine a precision built-in error, which enables certainty levels to be attached to the calculated emissions, and which can be used to associate confidence intervals with driver quality prediction scores.

36. A non-transitory computer readable medium, including instructions stored thereon which when read and executed by one or more computers cause the one or more computers to perform the steps comprising:

- providing a data collection and assessment environment, including
 - one or more data collection devices that can be used to capture data and information or otherwise measure vehicle actions,
 - a data collection and assessment logic, and
 - a carbon emissions assessment module which includes information about typical carbon emissions, and can compare current patterns of driving with known patterns to calculate carbon emissions for a current driver/vehicle; and

- wherein the data collection and assessment environment is configured to one or both compare current patterns of driving with known patterns to calculate carbon emissions for a current driver/vehicle, and

- provide the information to an external insurance provider or broker framework to calculate a driver profile, for use in obtaining a usage based insurance quote (UBI) for the driver.
Operator (Driver) operating Vehicle 100

Operator Feedback Module 128

Operator ID 124 Operator Data 126

Operator Assessment and Monitoring Module 122

Operating Patterns 120

Pattern Recognition Module 118

Data Communication Module 116

Data Collection Module 112

(e.g. Accelerometers, other Devices 110)

Data Collection Devices 106

Data Collection and Assessment System 104

Vehicle 102

External Operator Assessment and Monitoring Systems and Services 132

FIGURE 1
Operator Feedback Module 152

Data Communication Module 148

Data Collection Module 146

Data Collection Devices 144

Data Collection and Assessment System 142

Vehicle 140

Operator ID 166

Operator Data 168

Operator Assessment and Monitoring Module 164

Operating Patterns 163

Pattern Recognition Module 162

External Operator Assessment and Monitoring System 160

Providing of Operator Feedback and/or Updating of Operator Profile Data and/or other Services such as Assessment or Monitoring of Operator Behavior 180

Comparison of Current Vehicle/Operator Data with Operating Patterns 170

FIGURE 2
Define one or more known Operating Patterns for use by Pattern Recognition Module

While vehicle is being used, collect Current Vehicle Operating Data Via Data Collection Devices (e.g. Accelerometers), for one or more Operators

Compare Current Vehicle/Operator Data with Operating Patterns using Pattern Recognition Module, to assess or monitor current Operator

Providing of Operator Feedback and/or Updating of Operator Profile Data and/or other Services such as Assessment or Monitoring of Operator Behavior

FIGURE 7
FIGURE 10

451 T1: Receive information from Accelerometer, and determine X-Y plane (and Z-Axis)

455 T2: Receive information from Accelerometer, and determine X-Axis, and Y-Axis

450 Send X-Axis

452 Send Y-Axis

459 Send Z-Axis

Vehicle 402

Frame of Reference 431

Frame Determination Module 418
Provide Vehicle with Data Collection and Assessment System and Data Collection Devices, including Accelerometer

Receive information from Accelerometer (and optionally from additional Measurement Devices)

Determine Rotation Matrix that reflects the skew between the Accelerometer's orientation and understanding of direction, and the vehicle's true orientation/direction

Determine Frame of Reference, for use in determining vehicle's true orientation/direction

Use movement of Vehicle within Frame of Reference in Assessing or Monitoring Vehicle Status

FIGURE 11
Start 500

AccRawCnt> Threshold1

Yes

Calculate Alpha rotation around x-axis to have
AccRaw y-axis = 0;
Apply x-axis rotation

Calculate Beta rotation around y-axis to have
AccRaw x-axis = 0;
Apply y-axis rotation

AccDelRawCnt> Threshold2

Yes

Apply x-axis and y-axis rotation to
AccDelRaw

Calculate Theta rotation around z-axis to have
AccDelRaw x-axis = 0;
Apply z-axis rotation

Calculate Rotation matrix using Alpha, Beta and Theta angles

End 516

FIGURE 12
Calculate Calibration Values

Start 552

Count A > required count 554

Yes

Calculate Alpha rotation using Sample A 556

alpha rotation 558

Calculate Beta rotation using Sample A 560

beta rotation 562

No

Count B > required count 564

Yes

Apply alpha and beta rotation to Sample B 566

No

Calculate Theta rotation using Sample B 568

theta rotation 570

End 572

FIGURE 15
Calibrated Accelerometer Output

init

Raw Accelerometer Input

Apply alpha, beta and theta rotation

Calibrated Accelerometer Output

FIGURE 16
Receive Driver Performance Data provided by Data Collection and Assessment Environment, and optionally other insurance application information, at Insurance Provider and/or Broker Framework.

Communicate Driver Performance Data to and/or receive insurance information from one or more Insurance Provider(s).

Provide Insurance Quote(s) based on Driver Performance Data.

Receive Updated Driver Performance Data, and provide Updated Insurance Quote(s) as required.
FIGURE 24

1. Receive Calculated Carbon Emissions provided by Carbon Emissions-Based Driving Assessment System, at Insurance Provider and/or Broker Framework.

2. Compare Calculated Carbon Emissions against Estimated Carbon Emissions for similar types of vehicle, which is indicative of the driver's Driving Performance.

3. Determine and Provide Insurance Quote(s) based on Driver Performance Data.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC(8) - G06Q 40/00 (2013.01)

USPC - 705/4

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC (8) - G06Q 40/00 (2013.01)

USPC - 705/4

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC - 701/29.1; 340/903; 701/36; 701/56 (See Keywords Below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Thomsoninnovation.com; Patbase; Google Scholar; Google Patents; Freepatentonline

Search Terms: vehicle, automobile, car, sensor, accelerometer, monitoring, feedback, pattern, style, behavior, score, index, risk, insurance, rate, quote, premium, telematics, usage based insurance, portable device, orientation, operator, driver, profile,

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 2004/0153362 A1 (BAUER et al.), 05 August 2004 (05.08.2004), entire document, especially Abstract; para [0051], [0055], [0192], [0204], [0208], [0220]-[0222], [0229]</td>
<td>26-31</td>
</tr>
<tr>
<td>Y</td>
<td>US 2009/0210257 A1 (CHALFANT et al.), 20 August 2009 (20.08.2009), entire document, especially Abstract; para [0005][0006][0025][0028][0036]</td>
<td>1-14</td>
</tr>
<tr>
<td>Y</td>
<td>US 6,282,496 B1 (CHOWDHARY), 28 August 2001 (28.08.2001), entire document, especially Abstract; col 2, ln 47-60; col 4, ln 25-65; col 10, ln 1 to col 11, ln 10; col 11, ln 45 to col 12, ln 23</td>
<td>15-25</td>
</tr>
<tr>
<td>Y</td>
<td>US 201,010,6370 A1 (DUDDLE et al.), 05 May 2011 (05.05.2011), entire document, especially Abstract; para [0026][0031][0071][0074][0077][0107][0193]</td>
<td>32-36</td>
</tr>
<tr>
<td>A</td>
<td>US 7,715,961 B1 (KARGUPTA), 11 May 2010 (11.05.2010), entire document</td>
<td>1-36</td>
</tr>
</tbody>
</table>

Date of the actual completion of the international search

02 April 2013 (02.04.2013)

Date of mailing of the international search report

19 APR 2013

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:

Lee W. Young

PCT (Ref: sk: 571-272*1)300
PCT OSP: 571-272-7774

Form PCT/ISA/2.10 (second sheet) (July 2009)