wo 2012/082811 A2 || I N0F V00 OO 00O A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2012/082811 A2

(51

eay)

(22)

(25)
(26)
(30)

1

(72

31

21 June 2012 (21.06.2012) WIPO I PCT
International Patent Classification:
GO6F 9/44 (2006.01) GO6F 9/46 (2006.01)
International Application Number:
PCT/US2011/064754
International Filing Date:
14 December 2011 (14.12.2011) (84)
Filing Language: English
Publication Language: English
Priority Data:
12/972,424 17 December 2010 (17.12.2010) Us

Applicant (for all designated States except US): MI-
CROSOFT CORPORATION [US/US]; One Microsoft
Way, Redmond, WA 98052-6399 (US).

Inventors: SPRADLIN, Jeremiah, C.; c/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,
Redmond, WA 98052-6399 (US). FORTIER, Dominique;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, WA 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW,ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of the
earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: VIRTUAL MACHINE BRANCHING AND PARALLEL EXECUTION

(57) Abstract: A state branching system is de-
scribed herein that allows parallel execution of

100 e . .
complex state transitions while leveraging

State Branching System
110

~

120

—~

130

—~

—~

time invested to setup a starting state. By al-
lowing branching at the virtual machine level,

1o the state branching system allows setup of a

Hypervisor
Component

Scheduling
Component

VM Comm.
Component

Branch

Identification
Component

particular condition or state in a virtual ma-
chine, then copying and branching to parallel
instances of the virtual machine to explore dif-
ferent possible subsequent states. Upon detect-

150

~

160

170

ing a large state change with unknown out-

180 k .
come, the state branching system instructs the

State
Cloning
Component

VM
Branching
Component

Clone
Coordination
Component

Results
Processing
Component

hypervisor to copy the executing virtual ma-
chine into one or more separate virtual ma-
chines. The system then allows divergent
branching between the two or more virtual

machines to explore different states from a

FIG. 1

similar starting point. Once the executions
have reached the next state, the system co-
ordinates to determine which copies will con-
tinue execution. Thus, the state branching sys-
tem allows faster exploration of complex state
changes.

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

VIRTUAL MACHINE BRANCHING AND PARALLEL EXECUTION

BACKGROUND

[0001] Branching can refer to any point in a computer program where
execution proceeds down multiple potential paths. There are a variety of types of
branching in computer science. At the machine level, software assembly
language instructions often contain conditional jumps. If the condition succeeds,
the processor will execute code at the location specified by the jump. If the
condition fails, the processor will continue executing code following the jump.
Today’s heavily pipelined, multi-core processors often begin speculatively
executing both paths of a branch. When execution reaches the branch condition
and the condition is evaluated, the processor keeps the branch taken and flushes
the intermediate results of speculatively executing the other branch. Branching
also occurs at the process level. Operating systems such as UNIX include
application programming interfaces (API), such as fork(), that creates a copy of a
process and continues executing in a new process. This can be used for
multithreading or for pursuing divergent potential paths of a process.

[0002] Testing complex systems often involves a fair amount of setup to get
the system to a particular condition and then test the system’s reaction to a variety
of stimuli. The stimuli may include providing a variety of inputs, in the form of fuzz
testing, manipulating connected hardware to test the system’s reaction, and so
forth. Some functions of a system may produce substantial state changes, such
that it is difficult to get back to the previous condition. In other instances, complex
systems may spend a long amount of time processing a batch of data only to find
out that the data was not needed, or that a branch will be taken that causes the
data to be unimportant.

[0003] Branching today applies at too low of a level to be helpful in these
situations. Testing of complex systems and other fields need a way to start from a
known state and explore multiple potential future states, without consuming too
much time and requiring laborious setup. Typically today, a test harness will run
multiple possible test passes serially or in more efficient cases may leverage
multiple machines to run tests in parallel. This can still be time consuming,
particularly if the test harness needs to get each machine to a common state to

start multiple tests. For complex state evaluations, the time involved may mean

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

less time for testing the system in as many permutations as the software
developer would like, and as a result more errors in the software product.
SUMMARY

[0004] A state branching system is described herein that allows parallel
execution of complex state transitions while leveraging time invested to setup a
starting state. The system works by modifying a hypervisor to allow branching at
a virtual machine level. By allowing branching at the virtual machine level, the
state branching system allows setup of a particular condition or state in a virtual
machine, then copying and branching to parallel instances of the virtual machine
to explore different possible subsequent states. The issue arises frequently for
larger and more complex evaluations, especially if the state of the machine is
dramatically affected by these evaluations. Upon detecting or being informed of a
large state change with unknown outcome(s), the state branching system instructs
the hypervisor to copy the executing virtual machine into one or more separate
virtual machines. The system then allows divergent branching between the two or
more virtual machines (the original and the copy) to explore different states from a
similar starting point. Once the executions have reached the next state, the
system coordinates to determine which copy or copies will continue execution.
Thus, the state branching system allows faster exploration of complex state
changes that substantially modify the state of a computer system.

[0005] This Summary is provided to introduce a selection of concepts in a
simplified form that are further described below in the Detailed Description. This
Summary is not intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit the scope of the
claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] Figure 1 is a block diagram that illustrates components of the state
branching system, in one embodiment.

[0007] Figure 2 is a flow diagram that illustrates processing of the state
branching system to branch from an original virtual machine to one or more clone
virtual machines to consider divergent states, in one embodiment.

[0008] Figure 3 is a flow diagram that illustrates processing of the state
branching system to exit one or more clone virtual machines and converge

execution back to an original virtual machine, in one embodiment.

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

[0009] Figure 4 is a timeline diagram that illustrates parallel processing of
branch paths by the state branching system, in one embodiment.

DETAILED DESCRIPTION

[0010] A state branching system is described herein that allows parallel
execution of complex state transitions while leveraging time invested to setup a
starting state. The system works by modifying a hypervisor to allow branching at
a virtual machine level. A hypervisor manages one or more virtual machine
processes that share resources (e.g., processor, memory, disk, and network) of a
physical machine. Although all of the virtual machines run on the same physical
machine, each generally is unaware of and isolated from the other virtual
machines. By allowing branching at the virtual machine level, the state branching
system allows setup of a particular condition or state in a virtual machine, then
copying and branching to parallel instances of the virtual machine to explore
different possible subsequent states. The issue arises frequently for larger and
more complex evaluations, especially if the state of the machine is dramatically
affected by these evaluations. One example is fuzzing, where being able to
branch an entire operating system within a virtual machine allows a software
developer to dramatically decrease the time spent setting up the next iteration to
be fuzzed and allows for faster exploration of the possible execution paths to be
fuzzed.

[0011] Upon detecting or being informed of a large state change with
unknown outcome(s), the state branching system instructs the hypervisor to copy
the executing virtual machine into one or more separate virtual machines. The
system then allows divergent branching between the two or more virtual machines
(the original and the copy) to explore different states from a similar starting point.
In some embodiments, the application can call into the hypervisor to allow the
hypervisor to spawn the existing virtual machine’s state and spawn a duplicate
copy or copies into a new virtual machine. The system then allows the copies to
coordinate their decision trees so they do not overlap. Once the executions have
reached the next state, the system coordinates to determine which copy or copies
will continue execution. In some cases, the system may branch briefly into
multiple virtual machines, explore a few states, and then combine the results back
into the original virtual machine until the next major state change repeats the

process.

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

[0012] In some embodiments, the state branching system depends on both
hypervisor and operating system modifications to allow virtual machine level
branching. The operating system includes an ability to detect when a branch is
desirable. This can involve many potential triggers, such as first chance exception
notifications, application requests, user mode second chance exceptions, and so
forth. The operating may also include an API or other means for an application to
specify which decision point should be modified per branching instance. The
hypervisor is modified to expose commands to allow the host or guest operating
system to request a duplication of an existing guest operating system instance.
The hypervisor can also freeze execution of the guest operating system,
preventing any hardware interrupts from provoking execution on the guest
operating system. In addition, the hypervisor instructs the memory management
unit (MMU) to duplicate the entire guest operating memory allocations for the new
branch instance. In some cases, the system may not duplicate all memory, but
rather only some data pages and possibly no executable pages, depending on the
level of branching support the hypervisor provides. In this way, either the host or
guest operating determines when a decision point has been reached that would
benefit from parallel evaluation of divergent paths, and requests a branch at the
virtual machine level from the hypervisor and/or operating system. Thus, the state
branching system allows faster exploration of complex state changes that
substantially modify the state of a computer system.

[0013] Figure 1 is a block diagram that illustrates components of the state
branching system, in one embodiment. The system 100 includes a hypervisor
component 110, a scheduling component 120, a VM communication component
130, a branch identification component 140, a state cloning component 150, a VM
branching component 160, a clone coordination component 170, and a results
processing component 180. Each of these components is described in further
detail herein.

[0014] The hypervisor component 110 shares resources of a physical
computing device between two or more virtual computing devices. Many
datacenters now use virtual machines to allow multiple production applications to
run on a single server, each within a virtual environment so that each application
thinks it has exclusive use of the machine. Instead, the application typically has

exclusive use of the virtual machine, but shares physical resources. The virtual

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

machine provides the application with a guaranteed amount of hardware
resources, such as central processing unit (CPU) speed, memory size, disk
capacity, network bandwidth, and so forth. Hypervisors are widely available for
commodity hardware that can allow multiple virtual machines to run side by side
on the same computer (e.g.,Xen, Hyper-V, and VMWare). The hypervisor
multiplexes (and sometimes schedules) access to the physical resources such as
CPU, memory, disk, and network. The hypervisor provides schedulers for both
CPU and I/O resources that are capable of providing a fixed partition of all
resources between two or more virtual machines. This can be done in many
ways, e.g. using hard-real time scheduling algorithms.

[0015] The scheduling component 120 provides scheduling of resource
usage on a physical machine and resource isolation between two or more virtual
machines, including an original virtual machine and a cloned virtual machine. The
scheduling component 120 may operate within the hypervisor and provide virtual
machine isolation so that each virtual machine can use physical machine
resources in a way that meets any guarantees provided to each virtual machine
for resource availability. For example, if a physical machine has a 2GHz
processor and each of two virtual machines has been guaranteed equivalent
specific portion of the processor’s time, then the scheduling component 120 may
ensure that each virtual machine gets to use one-half of the physical machine’s
processor time. The scheduling component 120 can provide similar divisions of
physical machine memory, disk space, network bandwidth, and other resources.
[0016] The VM communication component 130 provides one or more
channels of communication between two or more virtual machines. A variety of
techniques exists for cross-VM communication, including shared physical
memory, hyper calls that call into the hypervisor, storing files at a common
location on a physical disk, and so forth. The VM communication component 130
may receive coordination information from an original virtual machine and provide
coordinating instructions to one or more clone virtual machines. The coordination
information may ensure that each virtual machine follows a different branch to
evaluate multiple possible states. The hypervisor may manage the shared
communication channel and enforce security or other restrictions on the virtual
machines. The original virtual machine may leverage support within the

hypervisor for creating clones and coordinating activities between them.

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

[0017] The branch identification component 140 identifies a present state and
one or more subsequent states of software code that are candidates for branching
an original virtual machine running the software code to evaluate the subsequent
states in one or more clone virtual machines. The component 140 may identify
potential branches automatically by analyzing the software code or may be
directed by the application where to branch. Automatic identification of branches
occurs similar to CPUs today, where an analysis engine can look multiple steps
into the upcoming instruction stream and identify instructions, functions, or other
behavior that will substantially alter the state of the machine. Manual identification
can occur by a software developer programming a test or other application to
request branching at particular locations. For example, a test may setup state
common to several tests and then notify the host operating system to request a
branch to execute the divergent paths that each of the tests pursues.

[0018] The state cloning component 150 copies state information from the
original virtual machine to create one or more clone virtual machines having
similar state. The copying may copy the entire memory and other virtual hardware
of the original virtual machine, or may select only a subset to be used for exploring
the divergent state that each clone will pursue. For example, a test may close
numerous operating system handles of various types that take a long time to
open. The original virtual machine may perform the work of opening all of the
handles, while the clone virtual machines each close a particular type of handle to
test various conditions. In this example, each clone virtual machine pursues a
separate state, but may only need a copy of the state related to the handles or
more generally to the test application running on the virtual machine, rather than
all state information or other applications.

[0019] The VM branching component 160 executes the branch by starting
each created clone virtual machine and identifying a branch of execution for each
clone to pursue. For example, if the branch identification component 140
identifies five possible paths coming up in software code that each results in a
substantially different state, then a test application may direct the state cloning
component 150 to create four clones, where the original virtual machine will
pursue one of the states while the four clone virtual machines will pursue the
remaining four states. The VM branching component 160 informs each clone

virtual machine of the branch that it will consider, such as by directly setting the

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

instruction pointer and other machine state to the location and state surrounding
the branch. The VM branching component 160 then allows each virtual machine
to execute to explore the divergent states.

[0020] The clone coordination component 170 coordinates actions of each
clone virtual machine and the original virtual machines to allow discarding
unneeded branches or merging branch results. The purpose of executing
different branches is to find out where execution ends up. In many cases,
software code may pursue one of several branches then end up in a common
location with a result that differs based on the branch taken. Thus, it is common
to execute widely divergent code for a brief period after the branch, but to then
later converge at a common location to consider the result. The clone
coordination component 170 allows a test or other application code to send
multiple clone virtual machines off to do some work to consider various states, but
then to complete the circle by considering the result of each clone virtual machine
and transferring execution back to the original virtual machine when the
exploration of states is complete. This is similar to how a CPU today may
speculatively execute several branches and then flush those that do not end up
being taken, but is applied by the state branching system 100 on a much broader
scale at the virtual machine level.

[0021] The results processing component 180 processes results produced by
each virtual machine and provides the results to the clone coordination
component 170. Each virtual machine the original and the clones, may produce a
variety of results, including a simple numeric or text result or complex results such
as further state changes that occur to the virtual machine. As one example, an
antivirus program may want to execute several identified software code modules
found on a computing device being scanned for malicious code to determine if the
code modules do anything harmful to the computing device. The antivirus
program can spawn each software code module in a clone virtual machine that
has all of the characteristics of the original computing device, the results being
any changes that the software code makes to the clone. The antivirus program
can scan the results to determine if any are harmful (e.g., deleting significant files
or spamming contacts), and can provide a Boolean result to the original
application indicating whether harmful results were found. This allows each clone

to potentially mess up the state of the clone virtual machine in some way, but then

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

to be discarded by the antivirus program after the particular result is obtained. As
another example, an embedded device using the system can be designed to ping
a network to determine whether it should perform some complex action and how.
This branching would allow the device to use the physical device’s idle processing
power while the high-latency request was made. Perhaps this involves the
calculation to recalibrate a sensor or antenna array, and the embedded device
can begin the possible calculations prior to the receipt of the network response.
[0022] The computing device on which the state branching system is
implemented may include a central processing unit, memory, input devices (e.g.,
keyboard and pointing devices), output devices (e.g., display devices), and
storage devices (e.g., disk drives or other non-volatile storage media). The
memory and storage devices are computer-readable storage media that may be
encoded with computer-executable instructions (e.g., software) that implement or
enable the system. In addition, the data structures and message structures may
be stored or transmitted via a data transmission medium, such as a signal on a
communication link. Various communication links may be used, such as the
Internet, a local area network, a wide area network, a point-to-point dial-up
connection, a cell phone network, and so on.

[0023] Embodiments of the system may be implemented in various operating
environments that include personal computers, server computers, handheld or
laptop devices, multiprocessor systems, microprocessor-based systems,
programmable consumer electronics, digital cameras, network PCs,
minicomputers, mainframe computers, distributed computing environments that
include any of the above systems or devices, set top boxes, systems on a chip
(SOCs), and so on. The computer systems may be cell phones, personal digital
assistants, smart phones, personal computers, programmable consumer
electronics, digital cameras, and so on.

[0024] The system may be described in the general context of computer-
executable instructions, such as program modules, executed by one or more
computers or other devices. Generally, program modules include routines,
programs, objects, components, data structures, and so on that perform particular
tasks or implement particular abstract data types. Typically, the functionality of
the program modules may be combined or distributed as desired in various

embodiments.

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

[0025] Figure 2 is a flow diagram that illustrates processing of the state
branching system to branch from an original virtual machine to one or more clone
virtual machines to consider divergent states, in one embodiment. Beginning in
block 210, the system receives application code for execution on an original virtual
machine, wherein the application code includes at least one branch that results in
two or more possible states of the virtual machine. The system may receive a test
or other application code that changes the state of the machine, and branches
may occur based on conditions evaluated at runtime. The system identifies
branches that substantially alter the state of the original virtual machine and
executes one or more clone virtual machines in parallel to evaluate the paths
leading from the branch.

[0026] Continuing in block 220, the system executes the original virtual
machine including the received application code. For example, the system may
operate within a hypervisor and direct execution of multiple virtual machines
sharing the same physical resources. The system executes the original virtual
machine until a branch is identified that potentially significantly changes the virtual
machine state. For example, the branch may delete files, perform a long
computation, create a large amount of data, or perform other state changing
operations.

[0027] Continuing in block 230, the system identifies a branch in the
application code running on the original virtual machine that results in two or more
possible states of the virtual machine. For example, the system may
automatically identify the branch by using code analysis tools well known in the art
to find divergent paths in the software code. Many static and runtime analysis
tools inspect software code at the binary and/or source code level and identify
locations of significant divergence in application state. In some embodiments, the
system may allow the application to indicate a location where the application will
branch into multiple possible states. For example, a test application may invoke
an operating system API that identifies two or more branch paths so that the
system can clone the virtual machine and execute the paths in parallel.

[0028] Continuing in block 240, the system creates one or more clone virtual
machines that duplicate a current state of the original virtual machine and then
process one path of the branch to explore a subsequent state in the created clone

virtual machine. Cloning may include setting up virtual machine specifications that

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

identify virtual hardware, copying memory state of the original virtual machine,
copying disks attached to the original virtual machine, and so forth. Some
virtualization software stores virtual machines in a single file, including any
embedded file system (e.g., VHD files used by MICROSOFT TM Virtual PC and
Hyper-V). The system may clone the virtual machine by pausing execution of the
original virtual machine and copying one or more files associated with the virtual
machine.

[0029] Continuing in block 250, the system sets up each clone virtual
machine to execute a different path of the identified branch. If the clones were
perfect clones of the original, they would each do the same thing as the original
next. However, one purpose of the state branching system is to allow each clone
to pursue a different path of the branch in parallel. Thus, the system sets up each
clone with information about which path it is responsible for exploring, and then
executes each clone and the original to allow it to explore its assigned path.
Setting up each clone may include identifying software code that the virtual
machine will run, setting the instruction pointer and register state to a particular
location, and so on.

[0030] Continuing in block 260, the system executes the original virtual
machine and cloned virtual machines to explore at least two paths of the identified
branch in parallel. If a particular path of the branch significantly alters the
machine state, only the virtual machine executing that branch will be affected.
Meanwhile, the original virtual machine may wait to determine effects of executing
the cloned virtual machines to gather information about the branch paths without
affecting the original virtual machine state. If the application code determines that
conditions are not met to take a branch path, the virtual machine(s) related to that
path can simply be discarded and the original virtual machine can continue. In
some cases, the system may select a clone virtual machine to continue as the
main virtual machine (i.e., taking over the role of the original virtual machine) and
the original virtual machine may terminate.

[0031] Continuing in block 270, the system receives at least one execution
result from the cloned virtual machines. The result may indicate a state reached
by the cloned virtual machine, information communicated from the cloned virtual
machine through a cross-VM communication channel, output produced by

executing a branch path executed by the cloned virtual machine, and so forth.

10

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

The original virtual machine may use the execution result to determine what to do
next or to select a virtual machine whose result the original virtual machine will
continue processing. Because the cloned virtual machines are executed in
parallel, the system will likely reach a result faster than would have been possible
trying each branch within the original virtual machine. After block 270, these steps
conclude.

[0032] Figure 3 is a flow diagram that illustrates processing of the state
branching system to exit one or more clone virtual machines and converge
execution back to an original virtual machine, in one embodiment. Beginning in
block 310, the system selects a first cloned virtual machine created by previously
detecting branches of application code in an original virtual machine and
spawning a cloned virtual machine to execute each branch path. On subsequent
iterations, the system selects the next cloned virtual machine.

[0033] Continuing in block 320, the system detects that the selected cloned
virtual machine has completed execution of the branch path to which it was
assigned. In some cases, the branch path may represent a small subsection of a
larger body of code, wherein the subsection produces result or changes state in a
way that it is useful to isolate execution of the branch to determine its result
outside of the larger body of code. During setup of the cloned virtual machine, the
system may insert an instruction (e.g., a halt or interrupt) or other indication at a
point when the cloned virtual machine will have completed execution of the branch
path. The hypervisor or other code can monitor for and detect the instruction to
detect completion of the cloned virtual machine.

[0034] Continuing in block 330, the system identifies a result state of
executing the cloned virtual machine. The result may include numeric results,
data produced by the cloned virtual machine, state changes to the cloned virtual
machine, and so on. The system may compare the cloned virtual machine to the
original virtual machine to identify changes produced by exploring the branch path
executed by the cloned virtual machine. If the original virtual machine decides to
take the path speculatively executed by the branch, then the original virtual
machine can copy the selected cloned virtual machine’s state differences or

identified result.

11

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

[0035] Continuing in decision block 340, the system determines whether
there are more cloned virtual machines associated with a current branch. If so,
the system loops to block 310 to select the next cloned virtual machine, else the
system continues at block 350 after each cloned virtual machine has been
processed.

[0036] Continuing in block 350, the system selects a branch to take based on
one or more conditions in the application code running on the original virtual
machine. In some embodiments, the cloned virtual machines operate as
speculative execution engines for speculatively executing branch paths that the
original virtual machine might take. After the original virtual machine executes to
a point that all conditions have been evaluated to know which path will be taken,
the original virtual machine can select one of the branches as the correct branch
and discard the others. In other embodiments, the cloned virtual machines may
represent cumulative results all of which are used by the original virtual machine,
but that are executed in parallel to reach the results faster. In such cases, the
original virtual machine receives a result from each cloned virtual machine,
performs any further processing on the received results, and continues after the
cloned virtual machines are done.

[0037] Continuing in block 360, the system copies the identified result state
from the cloned virtual machine that executed that selected branch. In this way,
the original virtual machine benefits from the parallel execution performed by the
individual cloned virtual machine. No matter which branch was taken, the original
virtual machine was not disturbed by the testing of each branch and did not have
to wait to serially execute the branch after preceding code was completed.
Rather, while the preceding code completed in the original virtual machines, the
cloned virtual machines each executed one of the branches, and the selected
virtual machine provides the result to the original virtual machine as soon as it is
ready (and before the original virtual machine would have been able to attain the
result itself).

[0038] Continuing in block 370, the system continues execution of the
original virtual machine using the copied result from the cloned virtual machine. In
some embodiments, the system may discard the original virtual machine and

continue execution through the selected cloned virtual machine. The system can

12

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

discard or “flush” any cloned virtual machines that represent branch paths not
taken. After block 370, these steps conclude.

[0039] Figure 4 is a timeline diagram that illustrates parallel processing of
branch paths by the state branching system, in one embodiment. The first row
410 of the timeline represents processing of the original virtual machine described
herein. In a traditional system, the original virtual machine or a physical machine
would perform all of the processing. The original virtual machine processes one
or more tasks 440 before encountering a branch 450 in the application code the
original virtual machine is executing. At some point before the branch, the original
virtual machine identifies the branch and spawns two cloned virtual machines that
execute potential paths of the branch in parallel. The second row 420 represents
the processing of a first cloned virtual machine and the third row 430 represents
the processing of a second cloned virtual machine. While the original virtual
machine completes the pre-branch tasks 440, the first cloned virtual machine
executes code associated with a first branch path 460 and the second cloned
virtual machine executes code associated with a second branch path 470 in
parallel. When the original virtual machine reaches the branch 450, it determines
a path of the branch to take based on the current state of the original virtual
machine and any conditions of the branch 450. The original virtual machine
selects the winning branch and copies the result 480 to the original virtual
machine. Then the original virtual machine continues execution, discarding the
cloned virtual machines. In this way, the cloned virtual machines prepared the
future state of the original virtual machine in parallel and isolated the original
virtual machine from invasive state changes that may have been involved in
evaluating each branch path.

[0040] In some embodiments, the state branching system provides a
framework for device driver testing. Device driver testing is often difficult because
it involves physical hardware and state changes that, if handled incorrectly, could
deadlock in the kernel space of the operating system. The state branching
system allows virtualizing the state changes of the physical hardware so that
multiple clone virtual machines operating in parallel can evaluate the results of
various potential hardware inputs and the corresponding driver response. This

facilitates faster and more robust development of device driver software code.

13

10

15

20

25

30

WO 2012/082811 PCT/US2011/064754

[0041] In some embodiments, the state branching system determines a
threshold for spawning additional virtual machines for exploring branch paths.
The creation and setup of virtual machines incurs a certain cost in terms of time
and resource usage. For small branches, the time involved in setting up cloned
virtual machines may not be worth the benefit gained from them. Thus, the
system may determine a threshold related to the benefit of using a cloned virtual
machine and only spawn new cloned virtual machines when the tradeoff will
ultimately save execution time or provide other positive results. The application
may be able to set or tune the threshold based on application-specific
considerations. Similarly, in some embodiments, the state branching system may
consider whether the cloned virtual machines will affect any resources outside of
the cloned virtual machine (i.e., issuing a command to an external or linked
physical device, sending packets over a network, etc.) when evaluating the benefit
of using cloned virtual machines for exploring branch paths.

[0042] In some embodiments, the state branching system spawns cloned
virtual machines on a different physical machine than the original virtual machine.
Virtual machines are well suited to easy movement between physical machines,
and the system may offload exploration of various branch paths to other physical
machines by executing some or all of the cloned virtual machines on a separate
physical machine. The cloned virtual machines can communicate with the original
virtual machine, if needed, via a network or other communication channel between
the physical machines.

[0043] In some embodiments, the state branching system provides
notifications from the hypervisor upon detecting an opportunity for using cloned
virtual machines for exploring branch paths. The hypervisor can monitor each
running process in a virtual machine and automatically detect instances in which a
separate virtual machine can prepare for a branch path in parallel. In such cases,
the hypervisor can provide an application notification that the application can
register for and respond to indicating whether the application wants the hypervisor
to spawn a cloned virtual machine.

[0044] In some embodiments, the state branching system provides a new
form of debugging that provides the effect of traveling back in time to various
states of an application running on a virtual machine. The system creates

checkpoints at various points in the application’s execution in the form of cloned

14

10

15

20

WO 2012/082811 PCT/US2011/064754

virtual machines. Each cloned virtual machine represents the application’s state
at a particular point in time and is isolated from any subsequent changes that
occurred to the application. This allows a software developer to attach a
debugger and inspect the application state at one or more points in time before or
during a problem occurring.

[0045] In some embodiments, the state branching system provides A-B
testing for comparing similar algorithms for performing various tasks. For
example, the system can test operating system paging or scheduling algorithms
by setting each up in a separate cloned virtual machine with a similar set of
processes to manage, and then executing each cloned virtual machine in parallel
to determine which algorithm provides better results, in terms of either faster
execution or other factors. Re-running such tests today serially introduces new
state. Even though a test harness attempts to set up the same state every time,
something invariably changes making comparisons difficult. Using the state
branching system, each test starts with a known cloned state and the results can
be compared with less influence from unexpected state changes.

[0046] From the foregoing, it will be appreciated that specific embodiments of
the state branching system have been described herein for purposes of
illustration, but that various modifications may be made without deviating from the
spirit and scope of the invention. Accordingly, the invention is not limited except

as by the appended claims.

15

WO 2012/082811 PCT/US2011/064754

CLAIMS
I/We claim:
1. A computer-implemented method for branching from an original virtual
machine to one or more clone virtual machines to consider divergent states, the
method comprising:
receiving application code for execution on the original virtual
machine, wherein the application code includes at least one
branch that results in two or more possible states of the virtual
machine;
executing the original virtual machine including the received
application code;
identifying a branch in the application code running on the original
virtual machine that results in two or more possible states of
the virtual machine;
creating one or more clone virtual machines that duplicate a current
state of the original virtual machine and then each process one
path of the branch to explore a subsequent state in the created
clone virtual machine;
setting up each clone virtual machine to execute a different path of the
identified branch;
executing the original virtual machine and cloned virtual machines to
explore at least two paths of the identified branch in parallel;
and
receiving at least one execution result from the cloned virtual
machines,

wherein the preceding steps are performed by at least one processor.

2. The method of claim 1 wherein receiving the application code
comprises receiving application code that changes the state of the machine and

that includes a branch based on conditions evaluated at runtime.

3. The method of claim 1 wherein executing the original virtual machine
comprises a hypervisor directing execution of multiple virtual machines sharing

the same physical resources.

16

WO 2012/082811 PCT/US2011/064754

4. The method of claim 1 wherein executing the original virtual machine
comprises executing the original virtual machine until a branch is identified that
potentially changes the virtual machine state beyond a predetermined threshold
and determining whether the cloned virtual machine will affect any resources

outside of the original virtual machine instance.

5. The method of claim 1 wherein identifying the branch comprises

automatically identifying the branch using a code analysis tool.

6. The method of claim 1 wherein identifying the branch comprises
receiving information from the application code that indicates a location where the

application will branch into multiple possible states.

7. The method of claim 1 wherein identifying the branch comprises
receiving an invocation of an application programming interface (API) that
identifies two or more branch paths whereby the system can clone the virtual

machine and execute the paths in parallel.

8. The method of claim 1 wherein creating clone virtual machines
comprises setting up one or more virtual machine specifications that identify
virtual hardware, copying memory state of the original virtual machine, and

copying one or more disks attached to the original virtual machine.

9. The method of claim 1 wherein creating clone virtual machines
comprises pausing execution of the original virtual machine and copying one or

more physical machine files associated with the virtual machine.

10. The method of claim 1 wherein setting up each clone comprises
setting up each clone with information about which path it is responsible for
exploring, and then executing each clone and the original virtual machine to allow

each to explore its assigned path.

17

WO 2012/082811 PCT/US2011/064754

11. The method of claim 1 wherein setting up each clone comprises
identifying software code that the clone virtual machine will run, and setting the
instruction pointer and register state of the clone virtual machine to a particular

location.

12. The method of claim 1 wherein receiving at least one execution result
comprises receiving an indication of a state reached by the cloned virtual

machine.

13. A computer system for virtual machine branching and parallel
execution, the system comprising:

a processor and memory configured to execute software instructions
embodied within the following components;

a hypervisor component that shares resources of a physical
computing device between two or more virtual machines and
provides support for cloning virtual machines;

a scheduling component that provides scheduling of resource usage
on a physical machine and resource isolation between two or
more virtual machines, including an original virtual machine and
a cloned virtual machine;

a VM communication component that provides one or more channels
of communication between two or more virtual machines;

a branch identification component that identifies a present state and
one or more subsequent states of software code that are
candidates for branching an original virtual machine running the
software code to evaluate the subsequent states in one or
more clone virtual machines;

a state cloning component that copies state information from the
original virtual machine to create one or more clone virtual
machines having similar state;

a VM branching component that executes the branch by starting each
created clone virtual machine and identifying a branch of

execution for each clone to pursue;

18

WO 2012/082811 PCT/US2011/064754

a clone coordination component that coordinates actions of each
clone virtual machine and the original virtual machines to allow
discarding unneeded branches or merging branch results; and

a results processing component that processes results produced by
each virtual machine and provides the results to the clone

coordination component.

14. The system of claim 13 wherein the VM communication component
receives coordination information from the original virtual machine and provides

coordinating instructions to one or more clone virtual machines.

15. The system of claim 13 wherein the branch identification component
automatically identifies potential branches via the hypervisor by analyzing the

software code.

19

WO 2012/082811 PCT/US2011/064754
1/4
100
State Branching System

110 120 130 140
Hypervisor Scheduling VM Comm. Ide%iﬁ"lrggt]ion
Component Component Component Component

150 160 170 180

State VM Clone Results
Cloning Branching Coordination Processing

Component Component Component Component

FIG. 1

WO 2012/082811 PCT/US2011/064754

2/4

< Branch VM)

Receive Application Code (210

Execute Original VM | ~220

|dentify Branch that

Change State ~— 230

Create Clone VM(s) |—"240

Setup Clone VM

Application Code 250

Execute Clone VM(s) | 260

Receive Clone VM
Results 270

(pone)

FIG. 2

WO 2012/082811 PCT/US2011/064754

3/4

(Exit Cloned Branch >

Select Flrs\t;lltl/lext Cloned 310

Detect Cloned VM Branch
Completion 7320

|dentify Branch Result
State 330

340

More Cloned
VMs?

Select Branch to Take (~"350

Copy Selected Branch
Result State 7360

Continue Original VM
Execution 370

< pone >

FIG. 3

PCT/US2011/064754

WO 2012/082811

4/4

y "OIA
Ssel
oey < Yled youeig
puo2ag
0L¥
ysel yed

02y < youesg 1si14

09v__
oLy < U youelg 2V visel LV el

08y oSy ovy

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings

