

US012241570B2

(12) United States Patent Johnston et al.

(54) NEGATIVE PRESSURE CONNECTOR SEAL

(71) Applicant: C. R. Bard, Inc., Franklin Lakes, NJ (US)

(72) Inventors: Gabriel A. Johnston, Broomfield, CO

(US); Sean E. Walker, Platteville, CO (US); Madeline Stich, Thornton, CO (US); Brett R. Skelton, Louisville, CO (US); Karthik Ganesan, Longmont,

CO (US)

(73) Assignee: C. R. Bard, Inc., Franklin Lakes, NJ (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 31 days.

(21) Appl. No.: 17/848,074

(22) Filed: Jun. 23, 2022

(65) Prior Publication Data

US 2023/0009524 A1 Jan. 12, 2023

Related U.S. Application Data

- (60) Provisional application No. 63/219,247, filed on Jul. 7, 2021.
- (51) **Int. Cl. F16L 21/00** (2006.01)
 A61F 7/00 (2006.01)
 F16K 15/14 (2006.01)
- (58) Field of Classification Search
 CPC . F16L 17/00; F16L 17/06; F16L 21/00; F16L 21/002; F16L 21/005; F16L 47/20;
 (Continued)

(10) Patent No.: US 12,241,570 B2

(45) **Date of Patent:** Mar. 4, 2025

(56) References Cited

U.S. PATENT DOCUMENTS

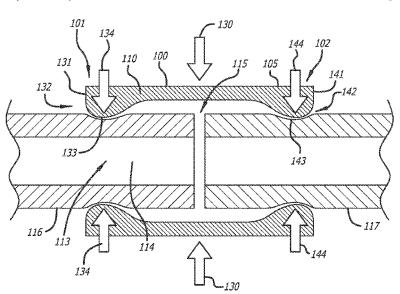
2,167,865 A * 8/1939 Beecher F16L 21/005 285/133.11

2,250,325 A 7/1941 Barnes (Continued)

FOREIGN PATENT DOCUMENTS

AU 678753 B3 6/1997 AU 2007201161 B2 12/2010 (Continued)

OTHER PUBLICATIONS


PCT/US2016/015688 filed Jan. 29, 2016 International Search Report and Written Opinion dated Apr. 1, 2016. (Continued)

Primary Examiner — Aaron M Dunwoody (74) Attorney, Agent, or Firm — Rutan & Tucker LLP

(57) ABSTRACT

A sealing member for providing a seal between fluid connectors includes a tubular member defining a lumen extending between a first end and a second end. The tubular member may receive a first connector via the first end and a second connector via the second end, and includes an annular wall extending between a first annular portion adjacent the first end and a second annular portion adjacent the second end. The first annular portion may engage the first connector, and the second annular portion may engage the second connector. When a pressure within the lumen is negative, atmospheric acting inward on the annular wall compresses the sealing member to define a contact force between the second annular portion and the second connector sufficient to define a fluid seal between the sealing member and the second connector.

24 Claims, 3 Drawing Sheets

US 12,241,570 B2 Page 2

(50)		G 1	5 400 500 4	4/1005	D 1
(58)	Field of Classification		5,409,500 A 5,411,541 A	4/1995 5/1995	Bell et al.
		/22; F16L 47/24; F16L 55/168; 7; F16L 55/1705; F16L 21/022;	5,423,751 A		Harrison et al.
		1/02; F16L 21/03; F16L 33/00;	5,456,701 A	10/1995	Stout
		3/20; F16L 33/207; F16L 31/00	5,466,250 A		Johnson, Jr. et al.
	USPC	285/417, 418, 9.2, 235, 236	5,470,353 A 5,476,489 A	11/1995	Koewler
		or complete search history.	5,484,448 A		Steele et al.
	11	1	5,486,207 A		Mahawili
(56)	Refere	nces Cited	5,514,169 A		Dickerhoff et al.
	II O DATEST	DOCK DOCK DESCRIPTION	5,545,194 A 5,605,144 A		Augustine Simmons et al.
	U.S. PATEN	T DOCUMENTS	5,609,620 A	3/1997	
	2,296,207 A 9/1942	Kittinger	5,620,482 A		Augustine et al.
		Bowen	5,624,477 A		Armond
		Poux	5,634,940 A 5,640,728 A		Panyard Graebe
		Chessey Kottemann	5,645,855 A	7/1997	
		Young, Jr.	5,658,325 A		Augustine
		Johnson, Jr. et al.	5,662,695 A 5,683,439 A	9/1997 11/1997	Mason et al.
		Curtis	5,720,774 A		Glucksman
		Zdenek Biskis	5,733,318 A	3/1998	Augustine
		Elkins	5,755,755 A		Panyard
	3,867,939 A 2/1975	Moore et al.	5,785,716 A 5,806,335 A		Bayron et al. Herbert et al.
		Welch et al.	5,824,025 A		Augustine
		Chittenden et al. Callery B01F 35/71	5,837,002 A	11/1998	Augustine et al.
	5,545,011 A 5/15/10	215/DIG. 8	5,840,080 A		Der Ovanesian
		Fletcher et al.	5,843,145 A 5,871,526 A	12/1998	Gibbs et al.
	4,059,293 A * 11/1977	Sipler F16L 27/11	5,879,378 A	3/1999	
	4.092.982 A 6/1978	285/236 Salem	5,887,437 A	3/1999	Maxim
		Golden	5,913,849 A		Sundstrom et al.
		Moore et al.	5,948,012 A 5,968,000 A		Mahaffey et al. Harrison et al.
		Tubin	5,986,163 A		Augustine
		Gammons et al. Daily	5,989,285 A		DeVilbiss et al.
		Reid et al.	6,010,528 A 6,019,783 A	1/2000	Augustine et al. Philips et al.
	4,195,631 A 4/1980	Baucom	6,030,412 A		Klatz et al.
	4,311,022 A 1/1982		6,047,106 A	4/2000	Salyer
		Yanagihara et al. Wyatt et al.	6,074,415 A		Der Ovanesian
		Stuebner	6,083,256 A 6,083,418 A		Der Ovanesian Czarnecki et al.
		Brannigan et al.	6,117,164 A		Gildersleeve et al.
		Vaillancourt Golden	6,176,869 B1		Mason et al.
		Samuelsen	6,176,870 B1 6,185,744 B1		Augustine Poholski
	4,884,304 A 12/1989	Elkins	6,188,930 B1		Carson
		Crews	6,189,149 B1	2/2001	Allen
		Nakashima et al. Streeter	6,189,550 B1*	2/2001	Stickel F16L 27/1021
	4,962,761 A 10/1990	Golden	6,197,045 B1	3/2001	285/236
		Hardy	6,234,538 B1	5/2001	
		Keusch et al. Faghri	6,238,427 B1	5/2001	
	5,005,374 A 4/1991	Spitler	6,255,552 B1 6,257,011 B1		Cummings et al. Siman-Tov et al.
	5,050,596 A 9/1991	Walasek et al.	6,290,716 B1		Augustine
	5,062,414 A		6,336,935 B1	1/2002	Davis et al.
		Genis	6,349,560 B1		Maier-Laxhuber et al.
		Quisenberry	6,352,550 B1 6,364,937 B1		Gildersleeve et al. McMahon
		Parrish et al.	6.371.976 B1		Vrzalik et al.
		Parrish et al. Mayn	6,375,674 B1	4/2002	Carson
		Steele et al.	6,389,839 B1	5/2002	
	5,154,706 A 10/1992	Cartmell et al.	6,436,130 B1 6,454,792 B1		Philips et al. Noda et al.
		Zacoi Sebraidar	6,461,379 B1	10/2002	Carson et al.
		Schneider Garrett et al.	6,463,212 B1	10/2002	
	5,289,695 A 3/1994	Parrish et al.	6,503,297 B1		Lu et al.
	5,300,103 A 4/1994	Stempel et al.	6,508,831 B1 6,508,859 B1		Kushnir Zia et al.
		Berke et al. Wallace	6,511,501 B1		Augustine et al.
		Szczesuil et al.	6,511,502 B2	1/2003	Fletcher
	5,383,919 A 1/1995	Kelly et al.	6,517,510 B1		Stewart et al.
		Avery Fox et al.	D471,987 S D472,322 S		Hoglund et al. Hoglund et al.
		Goldsmith	D472,522 S D474,544 S		Hoglund et al.
	, ,				<u> </u>

US 12,241,570 B2 Page 3

(56)		Referen	ces Cited	7,749,261			Hansen et al.
	II S II	PATENT	DOCUMENTS	7,763,061 7,771,461			Schorr et al. Schock et al.
	0.5.	TAILINI	DOCOMENTS	7,784,304			Trinh et al.
	6,559,096 B1	5/2003	Smith et al.	7,799,063			Ingram et al.
	6,584,797 B1		Smith et al.	7,827,815 7,867,266			Carson et al. Collins
	6,591,630 B2 6,601,404 B1		Smith et al. Roderick	7,897,260			Collins et al.
	6,613,030 B1		Coles et al.	7,896,910	B2	3/2011	Schirrmacher et al.
	6,620,187 B2		Carson et al.	7,918,243			Diodati et al.
	6,620,188 B1		Ginsburg et al.	8,047,010 8,052,624			Carson et al. Buchanan et al.
	6,645,232 B2	11/2003	Carson Hoglund et al.	8,066,752			Hamilton et al.
	6,648,905 B2 6,653,607 B2		Ellis et al.	8,182,521		5/2012	Kane et al.
	D483,125 S		Hoglund et al.	8,187,697			Quincy, III et al.
	6,660,027 B2		Gruszecki et al.	8,283,602 8,454,671			Augustine et al. Lennox et al.
	6,669,715 B2		Hoglund et al. Lalonde et al.	D685,916			Hoglund
	6,682,525 B2 D487,147 S		Ellingboe et al.	8,491,644	B1		Carson et al.
	D487,148 S		Ellingboe et al.	8,597,217	B2 1		Lowe et al.
	6,688,132 B2		Smith et al.	8,597,339 8,603,150			Augustine et al.
	6,692,518 B2	2/2004		8,603,150 8,632,576			Kane et al. Quisenberry
	6,699,267 B2 6,701,724 B2		Voorhees et al. Smith et al.	8,647,374			Koewler
	6,743,250 B2	6/2004		8,715,330			Lowe et al.
	6,755,801 B2		Utterberg et al.	8,778,119			Starr et al.
	6,755,852 B2		Lachenbruch et al.	8,808,344 8,840,581			Scott et al. McGill et al.
	D492,773 S 6,770,848 B2		Ellingboe et al. Haas et al.	9,034,458		5/2015	
	6,799,063 B2	9/2004		9,078,742	B2		Quincy, III et al.
	6,800,087 B2		Papay et al.	9,089,462			Lafleche
	6,802,855 B2		Ellingboe et al.	9,211,358 9,278,024			Sinko et al. Scott et al.
	6,802,885 B2 6,818,012 B2		Luk et al. Ellingboe	9,333,112			Carson
	6,827,728 B2		Ellingboe et al.	9,552,706	B2		Schneider et al.
	6,846,322 B2		Kane et al.	9,566,185			Carson et al.
	6,858,068 B2		Smith et al.	9,622,907			Carson et al.
	6,878,156 B1	4/2005		9,687,386 9,763,823			Voorhees et al.
	6,893,453 B2 6,904,956 B2	6/2005	Agarwal et al.	9,907,889			Locke et al.
	6,909,074 B1		Bradley	10,010,452			Wenske et al.
	6,921,198 B2	7/2005	Gruszecki et al.	10,123,902			Carson et al.
	6,931,875 B1		Allen et al.	10,220,198 10,258,501			Fuchs et al. Carson
	6,942,644 B2 6,960,243 B1		Worthen Smith et al.	10,441,458			Voorhees et al.
	6,968,711 B2		Smith et al.	10,441,707	B2 1		Voorhees et al.
	6,969,399 B2	11/2005	Schock et al.	10,548,778			Hassenpflug et al.
	7,008,445 B2	3/2006		10,912,672 11,234,859		2/2021	Jones et al. Voorhees et al.
	7,022,099 B2 7,044,960 B2		Litzie et al. Voorhees et al.	11,285,039			Steele et al.
	7,052,509 B2		Lennox et al.	11,975,123	B2	5/2024	Appel et al.
	7,055,575 B2	6/2006	Noel	2001/0039439			Elkins et al.
	7,056,335 B2		Agarwal et al.	2002/0007203 2002/0015689			Gilmartin et al. Munro et al.
	7,063,718 B2 7,077,858 B2		Dobak, III Fletcher et al.	2002/0013083			Dae et al.
	7,077,658 B2 7,097,657 B2		Noda et al.	2002/0138121	A1	9/2002	Fox
	7,101,389 B1	9/2006	Augustine et al.	2002/0161419			Carson et al.
	7,122,047 B2		Grahn et al.	2003/0074038 2003/0078638			Gruszecki et al. Voorhees et al.
	7,160,316 B2 7,172,586 B1		Hamilton et al. Dae et al.	2003/0078639			Carson
	7,240,720 B2	7/2007		2003/0078640	A1		Carson et al.
	7,303,554 B2	12/2007	Alonde et al.	2003/0109911			Lachenbruch et al.
	7,303,579 B2		Schock et al.	2003/0114903 2003/0135252		7/2003	Ellingboe MacHold et al.
	7,338,516 B2 7,361,186 B2		Quincy, III et al. Voorhees et al.	2003/0149359		8/2003	
	7,377,935 B2		Schock et al.	2003/0149461	A1	8/2003	
	7,507,250 B2	3/2009	Lennox	2003/0150232		8/2003	Brudnicki
	7,517,360 B2		Frey et al.	2003/0163179 2003/0163180		8/2003	Hoglund et al. Hoglund et al.
	RE40,815 E 7,547,320 B2		Kudaravalli et al. Schook et al.	2003/0163183			Carson
	RE40,868 E		Ryba et al.	2003/0163185			Carson
	7,621,944 B2		Wilson et al.	2003/0212416			Cinelli et al.
	7,621,945 B2	11/2009	Lennox et al.	2004/0030372		2/2004	Ellingboe et al.
	7,666,213 B2		Freedman, Jr. et al.	2004/0030373		2/2004	Ellingboe et al.
	7,678,716 B2 7,686,840 B2		Yahiaoui et al. Quincy, III et al.	2004/0059212 2004/0064170		3/2004 4/2004	Abreu Radons et al.
	7,727,228 B2		Abboud et al.	2004/0004170		4/2004	Dae et al.
	7,731,739 B2		Schock et al.	2004/0082886		4/2004	Timpson
	7,744,640 B1		Faries, Jr. et al.	2004/0087606		5/2004	Voorhees et al.

US 12,241,570 B2 Page 4

U.S. PATENT DOCUMENTS 2011/030878 Al 12201 O'Rordan et al. 202040133253 Al 22004 Gento et al. 20204013253 Al 122004 Carbon 20204013253 Al 122004 Auth et al. 202040125379 Al 122005 Carbon 202040125379 Al 122005 Carbon 20205025379 Al 122005 Carbon 20205025379 Al 122005 Carbon 20205025379 Al 122005 Carbon 20205025379 Al 122005 Control et al. 20205025379 Al 122005	(56) Refer	ences Cited	2011/0307040 A1		Peterson
2004/013233 Al	U.S. PATEN	IT DOCUMENTS			
2004-023151 Al 11/2004 Amb et al. 2012/005935 Al 42012 Machold et al.	C.B. 1711Ex	(T BOCOMBINIS			
2004/023712 Al 22004 misre et al. 2012/009536 Al 42012 Machold et al. 2012/010953 Al 7/2012 Stephan 2004/020730 Al 122004 misrecki et al. 2012/010935 Al 7/2012 Stephan 2005/0109536 Al 122005 Noda et al. 2013/01076 Al 12013 Misrecki et al. 2013/010775 Al 11/2013 Misrecki et al. 2014/010775 Al 11/2013 Misrecki et al. 2014/010775 Al 11/2014 Misrecki et al. 2014/01775 Al 11/2014 Misrecki et al. 2014/01775 Al 2014 Misrecki et al. 2015/010775 Al 2014 Misrecki et al. 2015/01077					
2004.002.5735 Al 12.2004 Check et al. 2012.018.02.1 Al 7.7021 Sephan					
2004-0263699 Al 122004 Check et al. 2012-021035 Al 7,2012 Stephan					
2005/00067583 A1 22005 Noch et al. 2013/0023808 A1 1/2013 Brown et al. 2005/0006761 A1 5/2013 Carson et al. 2013/0023807 A1 5/2013 Garden et al. 2013/0023807 A1 1/2013 Garden et al. 2014/00239 A1 1/2015 Dabrowink 2015/0024807 A1 1/2005 Carden et al. 2014/002481 A1 2/2014 Dabrowink 2014/0023807 A1 2/2014 Dabrowink 2014/0023807 A1 2/2015 Dabrowink 2014/0023807 A1 2/2015 Dabrowink 2014/0023807 A1 2/2015 Dabrowink 2/2014 Dabrowink					
2005000600714 Al 2.7005 2.700500060000000000000000000000000000000					
2005.005583 Al 2.2005 Northecs et al. 2015.0038042 Al 2.2013 3erolls et al. 2015.0050072 Al 1.2013 3erolls et al. 2015.0050073 Al 1.2013 3erolls et al. 2015.0050073 Al 1.2013 3erolls et al. 2015.0050073 Al 2.2014 3erolls et al. 2015.0050073 Al 2.2015 3erolls et al. 2015.0050073 Al 2.2016 3erolls et al. 2015.0050073 Al 1.2014 3erolls et al. 2015.0050073 Al 2.2016 3erolls et al. 2015.0051673 Al 1.2014 3erolls et al. 2015.0051673 Al 2.2015 3erolls et al. 2015.0051673 Al 2.2015 3erolls et al. 2015.0050073 Al 2.2015 2					
2005/0906714 Al \$2005 Freedman et al. 2013/03010725 Al 22016 Balagera et al. 2015/0301672502 Al 22005 Control 2005/030244250 Al 12005 Control 2005/030244250 Al 12005 Control 2005/030244250 Al 12005 Control 2005/0302430 Al 12005 Control 2005/0302430 Al 12005 Control 2005/0302430 Al 12005 Control 2005/0302430 Al 22006 Control 2005/0302430 Al 22005 Control 2005/030			2013/0238042 A1		
2005.01875.02 Al. 2,2001 Sempel et al. 2014-00197.05 Al. 2,2014 Elikins et al. 2005.0244.02 Al. 12,0005 Lanie tal. 2014-00197.05 Al. 6,2014 Dabrowiak 2005.026.02874.03 Al. 2,2006 Cirant 2014-00197.03 Al. 2,2014 Dabrowiak 2,2006.0003.03 Al. 2,2006 Cirant 2,2006.0003.03 Al. 2,2006 Cordani et al. 2014-00197.03 Al. 2,2014 Spence et al. 2,2006.0003.03 Al. 2,2006 Cordani et al. 2014-0018.03 Al. 1,2014 Spence et al. 2,2006.0003.03 Al. 2,2006 Cordani et al. 2014-0018.03 Al. 1,2014 Alignatine et al. 2,2006.0018.03 Al. 2,2015 Alignate et al. 2,2006.0018.03 Alignate et al. 2,2006.00277.73 Al. 1,2006 Alignate et al. 2,2006.00277.73 Al. 1,2206 Alignate et al. 2,2006.00277.73 Al. 1,2206 Alignate et al. 2,2006.00277.73 Al. 1,2206 Alignate et al. 2,2007.0038.03 Alignate et al.	2005/0096714 A1 5/200				
2005/024620					
2005.0288749 Al 1.22005 Carant 2014.0214.138 Al 7.2014 Vochees et al. 2006.0030016 Al 2.2006 Carant 2014.0277301 Al 9.2014 Varga et al. 2006.0030301 Al 2.2006 Cordani et al. 2014.0277301 Al 9.2014 Varga et al. 2006.0036888 Al 3.2006 Smith 2014.031649 Al 10.2014 Ifermánic et al. 2006.0012673 Al 6.2006 Callister et al. 2015.001673 Al 2.2015 Revas fal. 2006.0012673 Al 6.2006 Callister et al. 2015.001673 Al 2.2015 Revas fal. 2006.0012673 Al 6.2006 Callister et al. 2015.0021673 Al 2.2015 Revas fal. 2006.0012673 Al 6.2006 Callister et al. 2015.0021673 Al 2.2015 Dabrowink 2006.0012673 Al 6.2006 Callister et al. 2015.0027373 Al 2.2015 Dabrowink 2006.001273 Al 6.2006 Callister et al. 2015.0027373 Al 2.2015 Dabrowink 2006.0027474 Al 11.2006 Kitzono et al. 2015.0037373 Al 12.2015 Dabrowink 2006.0027574 Al 11.2006 Kitzono et al. 2015.0037373 Al 12.2015 Augustine et al. 2006.0027573 Al 2.2006 Canaso Canaso 2016.002277 Al 1.2016 Condense 2006.0027573 Al 2.2006 Canaso Canaso 2016.002277 Al 1.2016 Condense 2007.0040997 Al 2.2007 Fields et al. 2016.003333 Al 2.2017 Ward et al. 2007.0040997 Al 2.2007 Raylor Callister et al. 2017.004081 Al 2.2017 Ward et al. 2007.0070333 Al 3.2007 Fields et al. 2017.004081 Al 2.2017 Ward et al. 2007.0070333 Al 3.2007 Raylor Callister et al. 2017.004093 Al 2.2017 Ward et al. 2007.0070333 Al 2.2007 Raylor 2017.004093 Al 2.2017 Canaso Al 2.2017 2007.00727573 Al 1.2006 Canaso Al 2.2017 Ward et al. 2007.00727573 Al 1.2006 Canaso Callister et al. 2017.004093 Al 2.2017 Ward et al. 2007.00727573 Al 2.2008 Ginsburg 2017.004093 Al 2.2017 Ward et al. 2007.00727573 Al 2.2008 Ginsburg 2017.004093 Al 2.2017 Ward et al. 2007.00727573					
2006.0033916 Al 2,2006 Contamir et al. 2014-0277301 Al 9,2014 Sarga et al. 2006.003604 Al 2,2006 Contamir et al. 2014-0316494 Al 10,2014 Effention 2006.0026740 Al 4,2006 Contamir et al. 2014-0316494 Al 10,2014 Effention 2006.002673 Al 6,2006 Collister et al. 2014-0316493 Al 1,2015 Effention 2006.002673 Al 6,2006 Collister et al. 2015-0316373 Al 2,2015 Effention 2,2006.002673 Al 6,2006 Collister et al. 2015-0325643 Al 2,2015 Effention 2,2006.002673 Al 2,2015 Effect et al. 2015-0325643 Al 2,2015 Effect et al. 2015-0325643 Al 2,2015 Effect et al. 2015-0325643 Al 1,2016 Effet et al. 2015-0325643 Al 1,2016 Effet et al. 2015-03266703 Al 1,2016 Effet et al. 2015-03266703 Al 1,2016 Effet et al. 2015-03266703 Al 1,2016 Effet et al. 2015-0326733 Al 1,2015 Effet et al. 2015-0326733 Al 1,2016 Effet et al. 2015-032673 Al 1,2016 Effet et al. 2015-0326733 Al 1,2016 Effet et al. 2015-0326733 Al 1,2016 Effet et al. 2015-032673 Al 1,2017 Effet et al. 2015-032673 Al 1,2017 Effet et al. 2015-032673 Al 2,2016 Effet et al. 2015-032673 Al 2,2017 Effet et al. 2015-03267					
2006/0036304 Al 2/2006 Condani et al 2014/0288621 Al 9/2014 Efremkin 2006/0016409 Al 10/2014 Augustine et al 2016/00346309 Al 11/2014 Augustine et al 2016/0036014 Al 20206 Callister et al 2015/0023973 Al 20206 Callister et al 2015/0023973 Al 20206 Dobak 2015/0023973 Al 20206 Dobak 2015/0023973 Al 20206 Dobak 2015/00239073 Al 20206 Augustine et al 2015/00237378 Al 12/2016 Condani et al 2015/00237378 Al 12/2016 Condani et al 2016/0022477 Al 12/2016 Condani et al 2016/00234973 Al 20207/0049973 Al 20207					
2006007440 Al 42006 Lennox et al. 20140314694 Al 10/2014 Augustine et al. 2016007434539 Al 12/2016 Rivas Tapia 2006/012141 Al 6 2006 Dobak 20150023972 Al 82/015 Dabrowiak 2006/0161232 Al 7/2006 Rasza et al. 20150030973 Al 82/015 Dabrowiak 2006/0161232 Al 7/2006 Rasza et al. 20150030973 Al 82/015 Dabrowiak 2006/0161232 Al 7/2006 Rasza et al. 20150030973 Al 82/015 Dabrowiak 2006/0161232 Al 7/2006 Rasza et al. 20150030973 Al 11/2006 Rasza et al. 20150036693 Al 2010000000000000000000000000000000000					
2006.0123673 Al					
2006/0124141 Al 6/2006 Dobak 2015/0223972 Al 8/2015 Dabrowiak 2006/013023 Al 6/2006 Dobak 2015/0230973 Al 9/2015 Paradis 2006/019006 Al 8/2006 Dobak 2015/0230973 Al 9/2015 Paradis 2006/019006 Al 8/2006 Worthen 2015/0230973 Al 12/2015 Du 2006/02474 Al 11/2006 Nest et al. 2015/0366703 Al 12/2015 Du 2006/02474 Al 11/2006 Nest et al. 2015/0366703 Al 12/2015 Du 2006/02474 Al 11/2006 Nest et al. 2016/0008166 Al 12/2016 Al 2016/0008166 Al 12/2016 Al 2016/0008166 Al 12/2016 Al 2016/0008166 Al 12/2016 Al 2016/0008166 Al 2016/00					
2006/01/15/23 Al 6-2006 Dobak 2015/03/25/03 Al 8-2015 Dabrowiak et al.					
2006.0161232 Al 7/2006 Kasza et al. 2015/0250643 Al 92015 Paradis 2006.019066 Al 8/2006 Worthen 2015/0250673 Al 12/2015 Du 2006.024774 Al 11/2006 Nest et al. 2015/0366703 Al 12/2015 Du 2006/027474 Al 11/2006 Nest et al. 2015/0366703 Al 12/2015 Du 2006/02747 Al 11/2006 Nest et al. 2016/0008166 Al 12/2016 Augustine et al. 2016/0008166 Al 12/2016 Augustine et al. 2016/0008166 Al 12/2016 Augustine et al. 2016/0023473 Al 12/2016 Augustine et al. 2016/0023473 Al 12/2016 Augustine et al. 2016/0023473 Al 12/2016 Augustine et al. 2016/003833 Al 2/2016 Hilton et al. 2007/004997 Al 3/2007 Brian et al. 2016/003833 Al 2/2016 Hilton et al. 2007/004997 Al 3/2007 Paisner et al. 2017/0049618 Al 2/2017 Varied et al. 2007/004997 Al 3/2007 Augustine et al. 2017/0151887 Al 6/2017 Carson et al. 2007/0137355 Al 3/2007 Augustine et al. 2017/0158252 Al 8/2017 Carson et al. 2017/02346374 Al 8/2017 Augustine et al. 2017/02346374 Al 1/2007 Augustine et al. 2017/				8/2015	Dabrowiak et al.
2006.0235114 Al 10/2006 Kitzono et al. 2015/0366703 Al 12/2015 Jugustine et al. 2006.0236708 Al 12/2006 Nest et al. 2015/0373781 Al 12/2015 Augustine et al. 2016/002817 Al 12/2016 Schaefer et al. 2016/0028336 Al 2/2016 Carson 2006/0228787 Al 12/2006 Carson 2007/0404907 Al 12/2016 Schaefer et al. 2016/0028336 Al 2/2016 Hilton et al. 2007/0404907 Al 3/2007 Brian et al. 2017/0406818 Al 11/2016 Carson 2007/060891 Al 3/2007 Paisner et al. 2017/0138855 Al 5/2017 Carson et al. 2017/0138855 Al 5/2017 Carson et al. 2017/0138952 Al 7/2017 Carson et al. 2017/0138952 Al 7/2017 Carson et al. 2017/0138973 Al 7/2017 Carson et al. 2017/0124628 Al 8/2017 Berg et al. 2017/0124628 Al 8/2017 Berg et al. 2007/0124739 Al 9/2007 Hayes 2017/0246028 Al 8/2017 Berg et al. 2007/0124739 Al 9/2007 Taylor 2017/0246031 Al 8/2017 Berg et al. 2007/0124739 Al 9/2007 Carson et al. 2017/0246314 Al 8/2017 Bergaminpour et al. 2017/0246314 Al 8/2017 Bergaminpour et al. 2018/034914 Al 12/2017 Taylor et al. 2017/0348184 Al 12/2017 Taylor et al. 2018/034814 Al 12/2017 Taylor et al. 2008/03027523 Al 1/2008 Behringer et al. 2017/0348184 Al 12/2017 Taylor et al. 2008/03027534 Al 1/2008 Behringer et al. 2018/034273 Al 1/2017 Paradis et al. 2018/034273 Al 1/2017 Paradis et al. 2018/034273 Al 1/2017 Paradis et al. 2008/03027534 Al 1/2008 Behringer et al. 2018/034273 Al 1/2017 Paradis et al. 2008/03027534 Al 1/2008 Behringer et al. 2018/034273 Al 1/2017 Paradis et al. 2018/0360373 Al 2008/03027534 Al 1/2008 Behringer et al. 2018/036373 Al 2018/03					
2006.0247744 Al 11.2006 Nest et al. 2016/0037878 Al 12.2015 Augustine et al. 2006.027698 Al 12.006 Amansiaphe et al. 2016/002477 Al 12.016 Schaefer et al. 2006.0203737381 Al 12.2005 Amansiaphe et al. 2016/003836 Al 12.016 Schaefer et al. 2006.0203737381 Al 12.006 Schott et al. 2016/003836 Al 2.2016 Schaefer et al. 2007/0049373 Al 12.005 Schott et al. 2016/003836 Al 2.2016 Carson 2007/0049373 Al 12.007 Schott et al. 2017/0049618 Al 2.2017 Carson 2007/0049373 Al 2.2017 Schaefer et al. 2017/0049618 Al 2.2017 Ward et al. 2017/0049618 Al 2.2018 English et al. 2018/0049763 Al 2.2018 English et al. 2018/0049763 Al 2.2018 English et al. 2018/0049763 Al					
2006/0276089 Al 122006					
2006 (0293734 Al 2)2006 Scott et al. 2016 (039336 Al 2)2016 Eliton et al. 2007/0043439 Al 2)2007 Brian et al. 2017/0049618 Al 2)2017 Ward et al. 2007/0049997 Al 3)2007 Fields et al. 2017/0049618 Al 2)2017 Stefan et al. 2017/0049618 Al 2)2017 Stefan et al. 2017/0049618 Al 2)2017 Stefan et al. 2017/0151087 Al 6)2017 Stefan et al. 2017/0151087 Al 6)2017 Stefan et al. 2017/0151087 Al 6)2017 Carson et al. 2007/013735 Al 7)2007 Callister et al. 2017/014925 Al 7,2017 Clark 2007/0127373 Al 7)2007 Callister et al. 2017/024528 Al 8,2017 Clark 2007/0127373 Al 7)2007 Eliton et al. 2017/024631 Al 8,2017 Clark 2007/0127373 Al 7)2007 Allister et al. 2017/024631 Al 8,2017 Clark 2007/0127373 Al 7)2007 Carson et al. 2017/024631 Al 8,2017 Clark 2007/0127373 Al 7)2007 Carson et al. 2017/024631 Al 8,2017 Clark 2007/0127373 Al 7)2007 Carson et al. 2017/024631 Al 8,2017 Clark 2007/0127373 Al 7)2007 Carson et al. 2017/024631 Al 8,2017 Clark 2007/0127373 Al 7)2007 Carson et al. 2017/024631 Al 8,2017 Clark 2007/012732 Al 1,2007 Carson et al. 2017/024631 Al 8,2017 Clark 2007/012732 Al 1,2007 Carson et al. 2017/024631 Al 2,2017 Carson et al. 2017/024631 Al 2,2017 Carson et al. 2008/014604 Al 2,2008 Ginsburg 2018/042762 Al 2,2018 Carson 2,008/014512 Al 2,008 Ginsburg 2018/042762 Al 2,2018 Carson 2,008/014512 Al 2,008 Carson 2,008/014512 Al 2,008 Carson 2,008/014512 Al 2,008 Carson 2,008/014512 Al 2,008 Carson 2,008/014513 Al 2,009 Al					
2007/0043499 A 2 2007 Brian et al. 2016/0324683 A 11/2016 Carson Carso					
2007/0049997 Al 3 2007 Fields et al. 2017/0049618 Al 2/2017 Ward et al. 2007/0054122 Al 3 2007 Agustine et al. 2017/0151087 Al 6/2017 Carson et al. 2017/0151087 Al 6/2017 Carson et al. 2017/0194040 Al 5/2007 Agustine et al. 2017/0151087 Al 6/2017 Carson et al. 2007/0194040 Al 5/2007 Callister et al. 2017/0246228 Al 8/2017 Septe et al. 2007/0123735 Al 7/2007 Callister et al. 2017/0246029 Al 8/2017 Carson et al. 2017/0246029 Al 8/2017 Carson et al. 2017/0246031 Al 8/2017 Benyaminpour et al. 2007/0279258 Al 1/2007 Carson et al. 2017/0246374 Al 8/2017 Carson et al. 2017/0244374 Al 8/2017 Carson et al. 2007/027925 Al 11/2007 Evisson 2017/0348145 Al 12/2017 Taylor et al. 2008/046046 Al 2/208 Ginsburg 2018/0042762 Al 1/2017 Taylor et al. 2008/046046 Al 2/2008 Ginsburg 2018/0042763 Al 1/2018 Carson et al. 2018/0342763 Al 1/2018 Carson et al. 2018/034277 Al 8/2018 Elighett et al. 2008/034534 Al 1/2019 Carson et al. 2018/034277 Al 8/2018 Elighett et al. 2009/0408283 Al 1/2019 Al 2018 Elighett et al. 2009/0408283 Al 1/2019 Al 2019					
2007/0068931 Al 3/2007 Augustine et al. 2017/0151087 Al 6/2017 Carson et al. 2007/01006404 3/2007 Carson et al. 2017/0124528 Al 8/2017 Voorhees et al. 2017/0124528 Al 8/2017 Cark 2007/0127373 Al 7/2007 Callister et al. 2017/024603 Al 8/2017 Clark 2007/0225782 Al 9/2007 Taylor 2017/024603 Al 8/2017 Clark 2007/0225782 Al 9/2007 Taylor 2017/024603 Al 8/2017 Clark 2007/0220925 Al 11/2007 Levinson 2017/0246031 Al 8/2017 Corbnes et al. 2017/02460374 Al 8/2017 Corbnes et al. 2017/02460374 Al 8/2017 Corbnes et al. 2017/0348145 Al 12/2017 Taylor et al. 2018/0804046 Al 2/2008 Carson et al. 2017/0348145 Al 12/2017 Taylor et al. 2008/0346046 Al 2/2008 Carson et al. 2017/0348145 Al 12/2017 Paradis et al. 2008/034762 Al 10/2008 Carson 2018/042763 Al 2/2018 Galer et al. 2008/034564 Al 10/2008 Dunning 2018/020724 Al 7/2018 Galer et al. 2008/034564 Al 10/2008 Carson 2018/021497 Al 8/2018 Carbon 2008/035544 Al 10/2008 Carson 2018/0214902 Al 8/2018 Carbon 2008/035644 Al 10/2008 Carson 2018/0216377 Al 9/2018 Highest et al. 2009/0018504 Al 1/2009 Pile-Spellman et al. 2018/0263677 Al 9/2018 Hilton et al. 2009/0018504 Al 1/2009 Carson et al. 2018/036537 Al 1/2019 Carson et al. 2019/038322 Al 3/2019 Carson et al. 2019/038323 Al 3/2019 Carson et al. 2019/038323 Al 3/2019 Hilton et al. 2009/0157004 Al 7/2009 Carson et al. 2019/0313277 Al 1/2019 Carson et al. 2019/0313277 Al 1/2009 Carson					
2007/0100404 Al					
2007/01/3735 Al 7/2007 Callister et al. 2017/02/46029 Al 8/2017 Clark 2007/02/3782 Al 9/2007 Taylor 2017/02/46029 Al 8/2017 Clark 2007/02/24782 Al 9/2007 Taylor 2017/02/46031 Al 8/2017 Clark 2007/02/4075 Al 10/2007 Carson et al. 2017/02/46374 Al 8/2017 Voorhees et al. 2007/02/4075 Al 1/2007 Levinson 2017/03/48144 Al 1/2/2017 Taylor et al. 2008/00/4064 Al 2/2008 Ginsburg 2018/00/34534 Al 1/2/2017 Paradis et al. 2008/00/4064 Al 2/2008 Ginsburg 2018/00/42762 Al 2/2018 Galer 2/208/00/40/40/4952 Al 10/2008 Quincy et al. 2018/00/42763 Al 7/2018 Galer 2/208/00/40/49524 Al 10/2008 Quincy et al. 2018/02/49524 Al 10/2008 Quincy et al. 2018/02/49524 Al 10/2008 Carson 2018/02/49524 Al 10/2008 Carson 2018/02/4952 Al 10/2008 Pile-Spellman et al. 2018/02/63677 Al 2/2018 Babrowiak et al. 2009/00/4366 Al 2/2009 Dae 2018/03/6539 Al 1/2/2009 Dae 2018/03/6539 Al 1/2/2018 Augustine et al. 2009/00/88525 Al 4/2009 Carson et al. 2019/00/83322 Al 3/2019 Huang et al. 2009/00/13/453 Al 1/2009 Carson et al. 2019/00/3322 Al 3/2019 Carson et al. 2019/00/331277 Al 7/2019 Delury et al. 2009/01/31835 Al 5/2009 Voorhees et al. 2019/02/61/69 Al 4/2009 Carson et al. 2019/03/61/61/40 Al 4/2019 Carson et al. 2019/03/61/61/61/61/61/61/61/61/61/61/61/61/61/					
2007/0213793 Al 9,2007 Hayes 2017/0246031 Al 8,2017 Cark 2007/0279278 Al 9,2007 Taylor 2017/0246374 Al 8,2017 Workees et al. 2007/02703278 Al 10,2007 Carson et al. 2017/0348144 Al 12,2017 Taylor 2017/0246374 Al 12,2017 Taylor et al. 2008/027523 Al 11,2008 Entinger et al. 2017/0348144 Al 12,2017 Voorhees et al. 2008/0404046 Al 2,2008 Ginsburg 2018/0042763 Al 12,2017 Paradis et al. 2008/041431 Al 5,2008 Ginsburg 2018/0042763 Al 2,2018 Galer et al. 2008/041431 Al 5,2008 Ginsburg 2018/0042763 Al 2,2018 Galer et al. 2008/04254 Al 10,2008 Quincy et al. 2018/0042763 Al 2,2018 Galer et al. 2008/024524 Al 10,2008 Quincy et al. 2018/0027024 Al 8,2018 Early et al. 2,2018 Galer et al. 2,2018/025534 Al 11,2008 Noel 2018/0214302 Al 8,2018 Eughett et al. 2,2009/0018504 Al 17,2009 Pile-Spellman et al. 2018/0276539 Al 11,2008 Pile-Spellman et al. 2018/0376539 Al 12,2018 Al 2,2018 Al 2,201					
2007/0244475 Al 10/2007 Carson et al. 2017/0246374 Al 8/2017 Voorhees et al. 2007/0270925 Al 11/2007 Levinson 2017/0348144 Al 12/2017 Taylor et al. 2008/0027523 Al 1/2008 Behringer et al. 2017/0348145 Al 12/2017 Voorhees et al. 2008/004046046 Al 2/2008 Ginsburg 2018/0042762 Al 2/2018 Galer 2/2018 2/2018 Galer 2/2018 Galer 2/2018 2/201					
2007/0270925 A1 11/2007 Levinson 2017/0348145 A1 12/2017 Taylor et al.					
2008:0027523 Al 1 /2008 Behringer et al. 2017/0348145 Al 1 /22017 Voorhees et al. 2008:0014431 Al 5/2008 Ginsburg 2018/0042762 Al 2/2018 Galer 2008:0147132 Al 6/2008 Quincy et al. 2018/0042763 Al 1 /22017 Paradis et al. 2008:0249524 Al 10/2008 Dunning 2018/0240764 Al 2/2018 Galer et al. 2008:0255544 Al 10/2008 Carson 2018/0214297 Al 8/2018 Babrowiak et al. 2009:018504 Al 1/2009 Pile-Spellman et al. 2018/0263677 Al 2/2018 Babrowiak et al. 2009:0043366 Al 1/2009 Dae 2018/0376539 Al 1 /2/2018 Babrowiak et al. 2009:009088825 Al 4/2009 Ota 2018/0376539 Al 1 /2/2018 Babrowiak et al. 2009:00909090909 Al 4/2009 Ota 2019/0083322 Al 3/2019 Babrowiak et al. 2009:0137800 Al 6/2009 Voorhees et al. 2019/0083323 Al 3/2019 Ames et al. 2009:013780 Al 7/2009 Obrees et al. 2019/002337 Al 4/2019 Carson et al. 2009:013780 Al 7/2009 Christensen et al. 2019/0262169 Al 8/2019 Vergara et al. 2009:0250367 Al 10/209 Beck et al. 2019/032317 Al <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
2008/014431 Al 5/2008 Clinsburg 2018/0042762 Al 2/2018 Galer 2008/0147152 Al 6/2008 Cuincy et al. 2018/0042763 Al 7/2018 Dabrowiak et al. 2008/0249524 Al 10/2008 Carson 2018/0214297 Al 8/2018 Hughett et al. 2008/0249534 Al 11/2008 Noel 2018/0263677 Al 9/2018 Dabrowiak et al. 2009/0018504 Al 1/2009 Pile-Spellman et al. 2018/0263677 Al 9/2018 Hilbron et al. 2009/0043366 Al 2/2009 Dae 2018/0376539 Al 1/2001 Huang et al. 2009/0066079 Al 3/2009 Miros et al. 2019/0083322 Al 3/2019 Huang et al. 2009/0088825 Al 4/2009 Carson et al. 2019/0083232 Al 3/2019 Huang et al. 2009/0098825 Al 4/2009 Carson et al. 2019/017446 Al 4/2019 Carson et al. 2009/0157000 Al 6/2009 Waller 2019/012337 Al 6/2019 Carson et al. 2009/0157000 Al 6/2009 Christensen et al. 2019/0201574 Al 7/2019 Cargon et al. 2009/0157000 Al 7/2009 Christensen et al. 2019/0201574 Al 7/2019 Certain et al. 2009/0157000 Al 7/2009 Christensen et al. 2019/0331277 Al * 10/2019 Vergara et al. 2009/0250367 Al 10/2009 Murdoch et al. 2020/0071051 Al 3/2020 2009/0280182 Al 11/2009 Biser et al. 2020/0071051 Al 3/2020 Lewis 2009/0299287 Al 12/2009 Carson et al. 2020/007151 Al 3/2020 Lewis 2009/0299287 Al 12/2009 Carson et al. 2020/00715341 Al 5/2020 Corriere et al. 2020/007151 Al 3/2020 Lewis 2009/0299287 Al 12/2009 Carson et al. 2020/007151 Al 3/2020 Lewis 2009/0299287 Al 12/2009 Carson et al. 2020/034597 Al 11/2020 Schirm et al. 2009/032619 Al 12/2009 Carson et al. 2020/034597 Al 11/2020 Schirm et al. 2009/032619 Al 12/2009 Carson et al. 2020/034597 Al 11/2020 Schirm et al. 2010/031220 Al 22/010 Barbknecht 2022/038344 Al 7/2022 Carany et al. 2010/031220 Al 22/011 Ross 2022/0287876 Al 9/2022 Smith et al. 2011/0015633 Al 7/2011 Christensen et al.					
2008/0147152 A1					
2008/0249524 Al 10/2008 Dunning 2018/02102497 Al 7/2018 Dabrowiak et al.					
2008/0275534 Al					
2009/0018504 Al 1/2009 Pile-Spellman et al. 2018/0263677 Al 9/2018 Hilton et al. 2009/0043366 Al 2/2009 Dae 2018/0376539 Al 12/2018 Augustine et al. 2009/0068825 Al 4/2009 Ota 2019/0085644 Al 3/2019 Ames et al. 2009/009629 Al 4/2009 Ota 2019/0085644 Al 3/2019 Ames et al. 2009/0181835 Al 5/2009 Waller 2019/0201574 Al 7/2019 Delury et al. 2009/0177184 Al 7/2009 Waller 2019/0201574 Al 7/2019 Delury et al. 2009/0182400 Al 7/2009 Dae et al. 2019/0201574 Al 1/2019 Delury et al. 2009/02820367 Al 10/2009 Murdoch et al. 2019/0201574 Al 1/2020 Landy, III et al. 2009/0287283 Al 11/2009 Biser et al. 2020/0001022 Al 3/2020 Landy, III et al. 2009/0287283 Al 11/2009 Biser et al. 2020/00155341 Al 5/2020 Voorhees et al. 2020/035691 Al 11/2009 Delury et al. 2020/0405530 Al 2/2020 Carson et al. 2020/0405530 Al 2/2021 Carson et al. 2020/0405530 Al 2/2011 Carson et al. 2020/0405530 Al 2/2011 Carson et al. 2020/04					
2009/0043366 Al 2/2009 Dae 2018/0376539 Al 12/2018 Augustine et al.					
2009/0088825 Al			2018/0376539 A1	12/2018	Augustine et al.
2009/0099629 A1	2009/0066079 A1 3/200	9 Miros et al.			
2009/0131835 A1 5/2009 Voorhees et al. 2019/0192337 A1 6/2019 Taylor et al. 2009/0157000 A1 6/2009 Waller 2019/0201574 A1 7/2019 Delury et al. 2009/0177184 A1 7/2009 Christensen et al. 2019/0331277 A1 10/2019 Vachon					
2009/0157000					
2009/0182400 A1 7/2009 Dae et al. 2019/0331277 A1 * 10/2019 Vachon	2009/0157000 A1 6/200	9 Waller			
2009/0250367 Al 10/2009 Murdoch et al. 2020/0001022 Al 1/2020 Landy, III et al. 2009/0280182 Al 11/2009 Beck et al. 2020/0071051 Al 3/2020 Lewis 2009/0287283 Al 11/2009 Biser et al. 2020/0155341 Al 5/2020 Voorhees et al. 2009/0299287 Al 12/2009 Carson et al. 2020/0345971 Al 11/2020 Carson et al. 2020/0405530 Al 12/2020 Taylor et al. 2020/0326619 Al 12/2009 Kagan 2021/060230 Al 3/2021 Hopper et al. 2010/0016933 Al 1/2010 Chen et al. 2022/0087874 Al 3/2022 Schneider et al. 2010/0168825 Al 7/2010 Barbknecht 2022/0151821 Al 5/2022 Voorhees et al. 2010/0198122 Al 8/2010 Freund 2022/0192865 Al 6/2022 Stich et al. 2021/00204765 Al 8/2010 Fierre et al. 2022/0233344 Al 7/2022 Hoglund 2010/0312202 Al 12/2010 Henley et al. 2022/0233347 Al 7/2022 Canary et al. 2011/0029051 Al 2/2011 Ross 2022/0280336 Al 9/2022 Smith et al. 2011/002508 Al 2/2011 Murro et al. 2022/0287875 Al 9/2022 Smith et al. 2011/015238 Al 5/2011 Nofzinger 2022/0287876 Al 9/2022 Smith et al. 2011/0152982 Al 6/2011 Richardson 2022/0296414 Al 9/2022 Smith et al. 2011/0166633 Al 7/2011 Stull 2022/0296414 Al 9/2022 Sible et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/					
2009/0280182 A1 11/2009 Beck et al. 2020/0071051 A1 3/2020 Lewis 2009/0287283 A1 11/2009 Biser et al. 2020/0155341 A1 5/2020 Voorhees et al. 2009/029287 A1 12/2009 Carson et al. 2020/0405530 A1 11/2020 Schirm et al. 2009/0312823 A1 12/2009 Patience et al. 2020/0405530 A1 12/2020 Taylor et al. 2009/0326619 A1 12/2009 Kagan 2021/060230 A1 3/2021 Hopper et al. 2010/0169833 A1 1/2010 Chen et al. 2022/0151821 A1 5/2022 Voorhees et al. 2010/0198122 A1 8/2010 Freund 2022/0192865 A1 6/2022 Hughett, Sr. et al. 2010/0198320 A1 8/2010 Heil et al. 2022/0192865 A1 7/2022 Hoglund 2010/0204765 A1 8/2010 Henley et al. 2022/0233344 A1 7/2022 Canary et al.					
2009/0299287 Al 12/2009 Carson et al. 2020/0345971 Al 11/2020 Taylor et al. 2009/0312823 Al 12/2009 Patience et al. 2021/0660230 Al 3/2021 Hopper et al. 2010/0016933 Al 1/2010 Chen et al. 2022/087874 Al 3/2022 Schneider et al. 2010/0169825 Al 7/2010 Barbknecht 2022/0151821 Al 5/2022 Voorhees et al. 2010/0198122 Al 8/2010 Freund 2022/0192865 Al 6/2022 Hughett, Sr. et al. 2010/0198320 Al 8/2010 Freund 2022/0192867 Al 6/2022 Stich et al. 2010/0198320 Al 8/2010 Hall et al. 2022/0233344 Al 7/2022 Stich et al. 2010/0312202 Al 12/2010 Henley et al. 2022/0233347 Al 7/2022 Canary et al. 2011/0029051 Al 2/2011 Ross 2022/0265468 Al 8/2022 Xu et al. 2011/0045056 Al 2/2011 Munro et al. 2022/0287875 Al 9/2022 Smith et al. 2011/0152982 Al 6/2011 Richardson 2022/0287876 Al 9/2022 Smith et al. 2011/0152982 Al 6/2011 Richardson 2022/026414 Al 9/2022 Bible et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2011/0172749 Al 7/2011 Christensen et al. 2022/0304847 Al 9/2022 Kuroda et al. 2022/0304847 Al 9/2022					
2009/0312823 A1 12/2009 Patience et al. 2020/0405530 A1 12/2020 Taylor et al. 2009/0326619 A1 12/2009 Kagan 2021/0060230 A1 3/2021 Hopper et al. 2010/016933 A1 1/2010 Chen et al. 2022/0887874 A1 3/2022 Schneider et al. 2010/0168825 A1 7/2010 Barbknecht 2022/0151821 A1 5/2022 Voorhees et al. 2010/0198122 A1 8/2010 Freund 2022/0192865 A1 6/2022 Hughett, Sr. et al. 2010/0198320 A1 8/2010 Fierre et al. 2022/0192867 A1 6/2022 Stich et al. 2010/0204765 A1 8/2010 Hall et al. 2022/0233344 A1 7/2022 Hoglund 2010/0312202 A1 12/2010 Henley et al. 2022/0233347 A1 7/2022 Canary et al. 2011/0029051 A1 1/2011 Filtvedt et al. 2022/0265468 A1 8/2022 Xu et al. 2011/0045056 A1 2/2011 Ross 2022/0280336 A1 9/2022 Smith et al. 2011/015238 A1 5/2011 Nofzinger 2022/0287875 A1 9/2022 Smith et al. 2011/0152982 A1 6/2011 Stull 2022/0287876 A1 9/2022 Smith et al. 2011/0152982 A1 6/2011 Stull 2022/026414 A1 9/2022 Bible et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al. 2022					
2009/0326619 A1 12/2009 Kagan 2021/0060230 A1 3/2021 Hopper et al. 2010/0016933 A1 1/2010 Chen et al. 2022/0087874 A1 3/2022 Schneider et al. 2010/0168825 A1 7/2010 Barbknecht 2022/0151821 A1 5/2022 Voorhees et al. 2010/0198122 A1 8/2010 Freund 2022/0192865 A1 6/2022 Hughett, Sr. et al. 2010/0204765 A1 8/2010 Pierre et al. 2022/0192867 A1 6/2022 Stich et al. 2010/0312202 A1 12/2010 Hall et al. 2022/0233344 A1 7/2022 Hoglund 2011/0029051 A1 1/2011 Filtvedt et al. 2022/0265468 A1 8/2022 Xu et al. 2011/0045056 A1 2/2011 Ross 2022/0280336 A1 9/2022 Smith et al. 2011/015238 A1 5/2011 Nofzinger 2022/0287875 A1 9/2022 Smith et al. 2011/0152982 A1 6/2011 Richardson 2022/0287876 A1 9/2022 Smith et al. 2011/0166633 A1 7/2011 Stull 2022/0296414 A1 9/2022 Bible et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al.				12/2020	Taylor et al.
2010/0168825 A1	2009/0326619 A1 12/200	9 Kagan			
2010/0198122 A1 8/2010 Freund 2022/0192865 A1 6/2022 Hughett, Sr. et al.					
2010/0198320					
2010/0204765 A1 8/2010 Hall et al. 2022/0233344 A1 7/2022 Hoglund 2010/0312202 A1 12/2010 Henley et al. 2022/0233347 A1 7/2022 Canary et al. 2011/0021960 A1 1/2011 Filtvedt et al. 2022/0265468 A1 8/2022 Xu et al. 2011/0045056 A1 2/2011 Ross 2022/0287875 A1 9/2022 Smith et al. 2011/015238 A1 5/2011 Nofzinger 2022/0287876 A1 9/2022 Smith et al. 2011/0152982 A1 6/2011 Richardson 2022/0296413 A1 9/2022 Jones 2011/0166633 A1 7/2011 Stull 2022/0296414 A1 9/2022 Bible et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al.			2022/0192867 A1	6/2022	Stich et al.
2011/0021960 A1 1/2011 Filtvedt et al. 2022/0265468 A1 8/2022 Xu et al. 2011/0029051 A1 2/2011 Ross 2022/0280336 A1 9/2022 Smith et al. 2011/0045056 A1 2/2011 Munro et al. 2022/0287875 A1 9/2022 Minchew et al. 2011/0125238 A1 5/2011 Nofzinger 2022/0287876 A1 9/2022 Smith et al. 2011/0152982 A1 6/2011 Richardson 2022/0296413 A1 9/2022 Jones 2011/0166633 A1 7/2011 Stull 2022/0296414 A1 9/2022 Bible et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al.	2010/0204765 A1 8/203	0 Hall et al.			
2011/0029051 A1 2/2011 Ross 2022/0280336 A1 9/2022 Minchew et al. 2011/0045056 A1 2/2011 Munro et al. 2022/0287875 A1 9/2022 Minchew et al. 2011/0125238 A1 5/2011 Nofzinger 2022/0287876 A1 9/2022 Smith et al. 2011/0152982 A1 6/2011 Richardson 2022/0296413 A1 9/2022 Jones 2011/0166633 A1 7/2011 Stull 2022/0296414 A1 9/2022 Bible et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al.					
2011/0045056 A1 2/2011 Munro et al. 2022/0287875 A1 9/2022 Minchew et al. 2011/0125238 A1 5/2011 Nofzinger 2022/0287876 A1 9/2022 Smith et al. 2011/0152982 A1 6/2011 Richardson 2022/0296413 A1 9/2022 Jones 2011/0166633 A1 7/2011 Stull 2022/0296414 A1 9/2022 Bible et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al.					
2011/0125238 A1 5/2011 Nofzinger 2022/0287876 A1 9/2022 Smith et al. 2011/0152982 A1 6/2011 Richardson 2022/0296413 A1 9/2022 Jones 2011/0166633 A1 7/2011 Stull 2022/0296414 A1 9/2022 Bible et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al.					
2011/0166633 A1 7/2011 Stull 2022/0296414 A1 9/2022 Bible et al. 2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al.	2011/0125238 A1 5/20	1 Nofzinger			
2011/0172749 A1 7/2011 Christensen et al. 2022/0304847 A1 9/2022 Kuroda et al.					

(56) References Cited

U.S. PATENT DOCUMENTS

2022/0347009	$\mathbf{A}1$	11/2022	Hughett, Sr. et al.
2022/0401259	$\mathbf{A}1$	12/2022	Basciano et al.
2023/0000668	A1	1/2023	Walker et al.
2023/0011631	$\mathbf{A}1$	1/2023	Yin et al.
2023/0019048	$\mathbf{A}1$	1/2023	Stich et al.
2023/0021245	$\mathbf{A}1$	1/2023	Walker et al.
2023/0040583	A1	2/2023	Falis et al.
2023/0077318	A9	3/2023	Voorhees et al.
2023/0190519	$\mathbf{A}1$	6/2023	Stich et al.
2024/0065884	A1	2/2024	Fallows et al.
2024/0082052	$\mathbf{A}1$	3/2024	Cho et al.
2024/0091054	A1	3/2024	Boone-Worthman et al
2024/0099878	A1	3/2024	Voorhees et al.
2024/0108497	A1	4/2024	Daw et al.
2024/0366422	$\mathbf{A}1$	11/2024	Johnston et al.

FOREIGN PATENT DOCUMENTS

CA	2729122 A1	7/2002
CN	102026596 A	4/2011
CN	101389372 B	8/2012
CN	102746518 A	10/2012
CN	103939695 B	3/2016
CN	113230017 A	8/2021
DE	102014118510 A1	6/2016
EP	1073388 A1	2/2001
EP	1616543 A2	1/2006
EP	1641503 A2	4/2006
EP	1718894 B1	7/2010
EP	2204150 A1	7/2010
EP	2269546 A1	1/2011
JР	2007029638 A	2/2007
JP	2013248293 A	12/2013
KR	20110020420 A	3/2011
WO	9807397 A1	2/1998
WO	98/31310 A1	7/1998
WO	199944552 A1	9/1999
WO	9953874 A1	10/1999
WO	2000040185 A1	7/2000
WO	2003086253 A2	10/2003
WO	2004075949 A2	9/2004
WO	2005028984 A1	3/2005
WO	2005117546 A2	12/2005
WO	2007120677 A2	10/2007
WO	2009/090403 A1	7/2009
WO	2009147413 A1	12/2009
WO	2009148636 A1	12/2009
WO	2012125916 A2	9/2012
WO	2012138980 A2	10/2012
WO	2016057119 A1	4/2016
WO	2017/127768 A1	7/2017
WO	2018075576 A1	4/2018
WO	2022/159879 A1	7/2022
WO	2022155130 A1	7/2022
WO	2022155132 A1	7/2022
WO	2022159513 A1	7/2022
WO	2022/165068 A1	8/2022
WO	2022235513 A1	11/2022
WO	2023121674 A1	6/2023
WO	2023140870 A1	7/2023
WO	2023154050 A1	8/2023

OTHER PUBLICATIONS

PCT/US2022/013672 filed Jan. 25, 2022, International Search Report and Written Opinion dated Jul. 15, 2022.

PCT/US2022/014147 filed Jan. 27, 2022 International Search Report and Written Opinion dated Jul. 18, 2022.

Advantage Engineering, "Proper Use of Inhibited Propylene Glycol", Jun. 12, 2001, http://www.ttequip.com/knowledgelibrary/Proper%20Use%20Of%20Inh-ibited%20Propylene%20Glycol.pdf Jun. 12, 2001.

Hyperphysicis, "Thermal Conductivity", available Jul. 31, 2010, https://web.archive.org/web/20100731025127/http://hyperphysics.phy-astr.g-us.edu/hbase/tables.thron.html Jul. 31, 2010.

Murray, R. Z., et al. "Development and use of biomaterials as wound healing therapies" Burns & Trauma (2019) 7:2 https://doi.org/10.1186/s41038-018-0139-7 (2019).

PCT/US2015/045548 filed Aug. 17, 2015 International Search Report and Written Opinion dated Nov. 24, 2015.

Sevgi, M., et al. "Topical Antimicrobials for Burn Infections—An Update" Recent Pat Antimfect Drug Discov. Dec. 2013; 8(3): 161-197

Stoica, A. E., et al. "Hydrogel Dressings for the Treatment of Burn Wounds: An Up-To-Date Overview" Materials 2020, 13, 2853; doi:10.3390/ma13122853. (2020).

U.S. Appl. No. 15/512,025, filed Mar. 16, 2017 Final Office Action dated Jun. 25, 2020.

 $U.S.\ Appl.\ No.\ 15/512,025,\ filed\ Mar.\ 16,\ 2017\ Non-Final\ Office\ Action\ dated\ Jul.\ 18,\ 2019.$

U.S. Appl. No. 16/597,393, filed Oct. 9, 2019 Corrected Notice of Allowability dated Nov. 18, 2021.

U.S. Appl. No. 16/597,393, filed Oct. 9, 2019 Non-Final Office Action dated Apr. 28, 2021.

PCT/US2022/011980 filed Jan. 11, 2022 International Search Report and Written Opinion dated Apr. 13, 2022.

PCT/US2022/013007 filed Jan. 19, 2022 International Search Report and Written Opinion dated Apr. 22, 2022.

PCT/US2022/026999 filed Apr. 29, 2022 International Search Report and Written Opinion dated Oct. 24, 2022.

PCTUS2022011971 filed Jan. 11, 2022 International Search Report and Written Opinion dated Apr. 21, 2022.

U.S. Appl. No. 17/589,849, filed Jan. 31, 2022 Final Office Action dated Jun. 27, 2023.

U.S. Appl. No. 17/589,849, filed Jan. 31, 2022 Non-Final Office Action dated Apr. 12, 2023.

U.S. Appl. No. 17/589,849, filed Jan. 31, 2022 Notice of Allowance

dated Aug. 23, 2023. PCT/US2021/065144 filed Dec. 23, 2021 International Search Report dated Oct. 4, 2022.

U.S. Appl. No. 18/536,087, filed Dec. 11, 2023 Non-Final Office

Action dated Jun. 28, 2024. PCT/US2022/013569 filed Jan. 24, 2022 International Search Report

and Written Opinion dated Aug. 29, 2022. PCT/US2022/016020 filed Feb. 10, 2022 International Search Report

and Written Opinion dated Oct. 31, 2022. U.S. Appl. No. 17/547,128, filed Dec. 9, 2021 Restriction Require-

ment dated Sep. 5, 2024. U.S. Appl. No. 17/583,090, filed Jan. 24, 2022 Restriction Require-

ment dated Sep. 6, 2024. U.S. Appl. No. 17/584,101, filed Jan. 25, 2022 Restriction Requirement dated Nov. 5, 2024.

U.S. Appl. No. 17/686,301, filed Mar. 3, 2022 Non-Final Office Action dated Oct. 1, 2024.

U.S. Appl. No. 17/689,791, filed Mar. 8, 2022 Restriction Requirement dated Oct. 16, 2024.

U.S. Appl. No. 17/691,990, filed Mar. 10, 2022 Restriction Requirement dated Oct. 16, 2024.

U.S. Appl. No. 17/694,416, filed Mar. 14,2022 Restriction Requirement dated Nov. 8,2024.

U.S. Appl. No. 17/709,019, filed Mar. 30, 2022 Restriction Requirement dated Oct. 16, 2024.

U.S. Appl. No. 17/723,210, filed Apr. 18, 2022 Restriction Requirement dated Oct. 16, 2024.

ment dated Oct. 10, 2024. U.S. Appl. No. 17/849,419, filed Jun. 24, 2022 Non-Final Office

Action dated Nov. 8, 2024. U.S. Appl. No. 18/536,087, filed Dec. 11, 2023 Notice of Allowance

dated Aug. 29, 2024. U.S. Appl. No. 17/552,309, filed Dec. 15, 2021 Restriction Require-

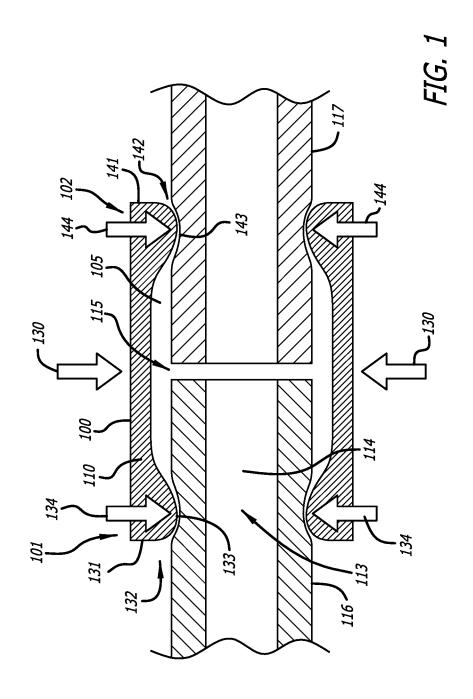
o. S. Appl. No. 17/689,791, filed Mar. 8, 2022 Non-Final Office

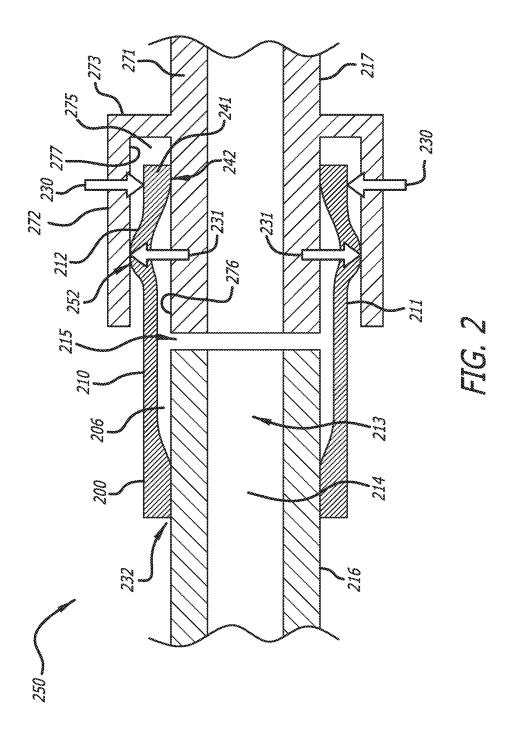
Action dated Dec. 30, 2024.

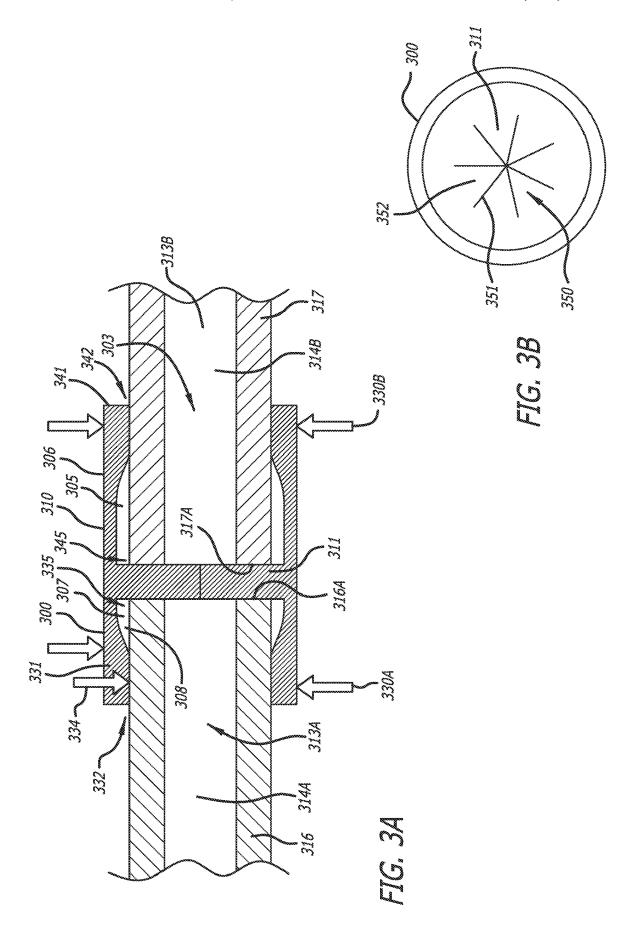
U.S. Appl. No. 17/690,908, filed Mar. 9, 2022 Non-Final Office Action dated Dec. 18, 2024.

U.S. Appl. No. 17/691,990, filed Mar. 10, 2022 Non-Final Office Action dated Dec. 17, 2024.

US 12,241,570 B2


Page 6


(56) References Cited


OTHER PUBLICATIONS

U.S. Appl. No. 17/709,019, filed Mar. 30, 2022 Non-Final Office Action dated Dec. 31, 2024.
U.S. Appl. No. 17/723,210, filed Apr. 18, 2022 Non-Final Office Action dated Dec. 20, 2024.

^{*} cited by examiner

NEGATIVE PRESSURE CONNECTOR SEAL

PRIORITY

This application claims the benefit of priority to U.S. 5 Provisional Application No. 63/219,247, filed Jul. 7, 2021, which is incorporated by reference in its entirety into this application.

BACKGROUND

Targeted temperature management (TTM) systems circulate a fluid (e.g., water) between one or more thermal contact pads coupled to a patient and a TTM fluid control module via a fluid deliver line (FDL). Fluid connectors between the 15 FDL and the pads and between the FDL and the control module provide for the selective connecting and disconnecting of the components. As a clinician may connect and disconnect the components for each TTM procedure (potentially several times per day), it is desirable for the connection 20 to be simple, straight forward, and require minimal forces. It is also important for the fluid seal between the connectors to be reliable.

To prevent water leakage from the TTM system, the system may be configured to operate under a negative 25 pressure so that, in the case of a leaking connection, air may leak into the system as opposed as to water leaking from the system. Disclosed herein are embodiments of devices and methods for utilizing negative internal pressure to improve connector seal reliability while minimizing clinician applied 30 forces to make the connection.

SUMMARY OF THE INVENTION

Briefly summarized, disclosed herein is a sealing member 35 for providing a seal between fluid connectors. The sealing member includes a tubular member defining a lumen extending between a first end and a second end. The tubular member is configured to receive a first connector via the first member includes an annular wall extending between a first annular portion adjacent the first end and a second annular portion adjacent the second end. The first annular portion is configured to engage the first connector and the second annular portion is configured to engage the second connec- 45 tor. When a pressure within the lumen is negative, atmospheric acting inward on the annular wall compresses the sealing member to define a contact force between the second annular portion and the second connector sufficient to define a fluid seal between the sealing member and the second 50

The pressure within the lumen is defined in response to a fluid pressure within a lumen extending through the first and second connectors and the lumen may be in fluid communication with the lumen extending through the first and 55 second connectors.

In some embodiments, when the pressure within the lumen is negative, atmospheric acting on the annular wall compresses the sealing member to define a contact force between the first annular portion and the first connector 60 sufficient to define a fluid seal between the sealing member and the first connector.

In some embodiments, the first annular portion is attached to the first connector and may also be sealably attached to the first connector. The second annular portion is configured 65 to slidably engage the second connector when a non-negative pressure is defined within the lumen.

One of the first connector or the second connector may be attached to one of a fluid delivery line or a thermal contact pad of a targeted temperature management system, and the other one of the first connector or the second connector may be attached to the other one of the fluid delivery line or a thermal contact pad. The fluid pressure may be defined in accordance with operation of the targeted temperature management system.

The sealing member may further include a septum extend-10 ing across the lumen between the first connector and the second connector, and the septum includes a pressure actuated valve. The valve is configured to (i) prevent fluid flow through the septum when a fluid pressure across the septum is below a defined pressure limit, and (ii) allow fluid flow through the septum when the fluid pressure across the septum exceeds the defined pressure limit.

Also disclosed herein is a fluid connector system, including a first connector, a complementary second connector fluidly coupled with the first connector, and a tubular sealing member defining a lumen extending between a first end and a second end. The tubular member is configured to receive the first connector via the first end and the second connector via the second end. The tubular member includes an annular wall extending between a first annular portion adjacent the first end and a second annular portion adjacent the second end. The first annular portion is configured to engage the first connector and the second annular portion is configured to engage the second connector. When a pressure within the lumen is negative, atmospheric acting on the annular wall compresses the sealing member to define a contact force between the second annular portion and the second connector sufficient to define a fluid seal between the sealing member and the second connector.

The pressure within the lumen is defined in response to a fluid pressure within a lumen extending through the first and second connectors and the lumen may be in fluid communication with the lumen extending through the first and second connectors.

In some embodiments, when the pressure within the end and a second connector via the second end. The tubular 40 lumen is negative, atmospheric acting on the annular wall compresses the sealing member to define a contact force between the first annular portion and the first connector sufficient to define a fluid seal between the sealing member and the first connector.

> In some embodiments, the first annular portion is attached to the first connector and may also be sealably attached to the first connector. The second annular portion is configured to slidably engage the second connector when a non-negative pressure is defined within the lumen.

> In some embodiments, the second connector includes a first annular connector wall and a second annular connector wall spaced radially outward of the first annular connector wall. A lateral bottom wall extends between the first and second annular connector walls to define an annular cavity, and the second annular portion is disposed within the annular cavity.

> An inside surface of the second annular portion is configured to slidably engage the first annular connector wall, and an outside surface of the second annular portion is configured to slidably and sealably engage the second annular connector wall. When a negative pressure is defined within the lumen, a fluid seal is defined between the inside surface of the second annular portion and the first annular connector wall, and when a non-negative pressure is defined within the lumen, a fluid seal is defined between the outside surface of the second annular portion and the second annular connector wall.

One of the first connector or the second connector may be attached to a component of a targeted temperature management (TTM) system, and the component may be one of a TTM module, a fluid delivery line, or thermal contact pad. The fluid pressure may be defined in accordance with operation of the targeted temperature management system.

The sealing member may include a septum extending across the lumen between the first connector and the second connector, and the septum includes a pressure actuated valve. The valve configured to prevent fluid flow through the septum when a fluid pressure across the septum is below a defined pressure limit, and allow fluid flow through the septum when the fluid pressure across the septum exceeds the defined pressure limit.

Also disclosed herein is a method of defining a seal between fluid connectors. The method includes (i) providing a tubular sealing member defining a lumen extending between a first end and a second end, (ii) inserting a first connector into the sealing member via the first end to define 20 a first engagement, (iii) inserting a second connector into the sealing member via the second end to define a second engagement, (iv) establishing a negative pressure within the lumen to transition the sealing member from a first engagement configuration to a second engagement configuration. In 25 the first engagement configuration, at least one of the first connector or the second connector is not sealably coupled with the sealing member, and in the second engagement configuration, atmospheric pressure compresses the sealing member to define a fluid seal between the least one of the first connector or the second connector and the sealing member. In the second engagement configuration, separation of the second connector from the first connector may be prevented.

The method may further include (i) establishing a nonnegative pressure within the lumen to transition the sealing member from the second engagement configuration to the first engagement configuration and (ii) separating the second connector from the first connector.

These and other features of the concepts provided herein will become more apparent to those of skill in the art in view of the accompanying drawings and the following description, which describe particular embodiments of such concepts in greater detail.

BRIEF DESCRIPTION OF DRAWINGS

A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:

FIG. 1 illustrates a side cross-sectional view of a sealing member for providing a fluid seal between connectors, in accordance with some embodiments.

FIG. 2 illustrates a side cross-sectional view of a connector system including a second embodiment of the sealing member, in accordance with some embodiments.

FIG. 3A illustrates a side cross-sectional view of a third $_{65}$ embodiment of the sealing member, in accordance with some embodiments.

4

FIG. 3B illustrates a septum of the sealing member of FIG. 3A, in accordance with some embodiments.

DETAILED DESCRIPTION

Before some particular embodiments are disclosed in greater detail, it should be understood that the particular embodiments disclosed herein do not limit the scope of the concepts provided herein. It should also be understood that a particular embodiment disclosed herein can have features that can be readily separated from the particular embodiment and optionally combined with or substituted for features of any of a number of other embodiments disclosed herein.

Regarding terms used herein, it should also be understood the terms are for the purpose of describing some particular embodiments, and the terms do not limit the scope of the concepts provided herein. Ordinal numbers (e.g., first, second, third, etc.) are generally used to distinguish or identify different features or steps in a group of features or steps, and do not supply a serial or numerical limitation. For example, "first," "second," and "third" features or steps need not necessarily appear in that order, and the particular embodiments including such features or steps need not necessarily be limited to the three features or steps. Labels such as "left," "right," "top," "bottom," "front," "back," and the like are used for convenience and are not intended to imply, for example, any particular fixed location, orientation, or direction. Instead, such labels are used to reflect, for example, relative location, orientation, or directions. Singular forms of "a," "an," and "the" include plural references unless the context clearly dictates otherwise. The words "including," "has," and "having," as used herein, including the claims, shall have the same meaning as the word "comprising." Furthermore, the terms "or" and "and/or" as used herein are 35 to be interpreted as inclusive or meaning any one or any combination. As an example, "A, B or C" or "A, B and/or C" mean "any of the following: A; B; C; A and B; A and C; B and C; A, B and C." An exception to this definition will occur only when a combination of elements, components, functions, steps or acts are in some way inherently mutually exclusive.

The phrases "connected to" and "coupled to" refer to any form of interaction between two or more entities, including mechanical, electrical, magnetic, electromagnetic, fluid, sig15 nal, communicative (including wireless), and thermal interaction. Two components may be connected or coupled to each other even though they are not in direct contact with each other. For example, two components may be coupled to each other through an intermediate component.

Any methods disclosed herein include one or more steps or actions for performing the described method. The method steps and/or actions may be interchanged with one another. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order and/or use of specific steps and/or actions may be modified. Moreover, sub-routines or only a portion of a method described herein may be a separate method within the scope of this disclosure. Stated otherwise, some methods may include only a portion of the steps described in a more detailed method.

Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art.

FIG. 1 illustrates a cross-sectional side view of a sealing member 100 coupled between representative fluid connectors, i.e., the first connector 116 and the second connect 117, in a connected state. A fluid lumen 113 extends longitudi-

nally through the connectors 116, 117. The sealing member 100 is configured to provide a fluid seal between the first and second connectors 116, 117. In some embodiments, the sealing member 100 may define a primary seal between the connectors. In other embodiments, the sealing member 100 may define a secondary seal (i.e., a backup seal) between the first and second connectors 116, 117.

In some embodiments, the first and second connectors 116, 117 may be attached to components of a TTM system (not shown). For example, the first and second connectors 10, 117 may define a fluid connection between a fluid delivery line and a thermal pad. In another example, the first and second connectors 116, 117 may define a fluid connection between a fluid delivery line and a TTM module.

The sealing member 100 may generally define a tubular 15 shape having an annular wall 110. The annular wall 110 may extend circumferentially around and longitudinally along each of the connectors 116, 117. The sealing member 100 may be positioned with respect to the connectors 116, 117 so that a junction point 115 of the connectors 116, 117 is located 20 between a first end 101 and a second end 102 of the sealing member 100.

The sealing member 100 may be an elastic sleave/shroud configured to deflect or deform in response to externally applied forces. In some embodiments, the sealing member 25 100 may include one or more deflectable/deformable portions. The sealing member 100 or at least a portion thereof may be formed of a flexible/deformable material such as silicone, ethylene propylene diene monomer rubber (EPDM), a natural rubber, or any other suitably flexible 30 material. In some embodiments, the sealing member 100 may include supporting structural elements, such as a coil, longitudinal stiffening wires, circular rings, or any other structure elements consistent with the functionality of the sealing member 100.

The sealing member 100 may be attached to the first connector 116 to inhibit or prevent longitudinal displacement of the sealing member 100 with respect to the first connector 116. In some embodiments, rotation of the sealing member 100 with respect to the first connector 116 may also 40 be inhibited. The attachment of the sealing member 100 to the first connector 116 may define a fluid seal 132 between sealing member 100 and the first connector 116.

The sealing member 100 may be coupled with the first connector 116 via a contact force between the sealing 45 member 100 and the first connector 116. For example, a first engagement portion 131 of the sealing member 100 may be sized to fit within a recess 133 of the first connector 116 while defining an interference fit with the first connector 116. In some embodiments, the sealing member 100 may 50 include a separate device (e.g., a band clamp, not shown) to define the contact force. In other embodiments, the sealing member 100 may be bonded to the first connector 116 via an adhesive. The coupling of the first engagement portion 131 with the first connector 116 may define the fluid seal 132 55 between the sealing member 100 and the first connector 116. By way of summary, the sealing member 100 may be permanently attached to the first connector 116 or selectively attached to and/or detached from the first connector 116.

The sealing member 100 engages the second connector 60 117 via a second engagement portion 141. The second engagement portion 141 is sized to fit within a recess 143 defining an interference fit with the second connector 117. The interference fit is defined to accommodate longitudinal displacement of the second connector 117 relative to sealing 65 member 100. In other words, a contact force 144 between the second engagement portion 141 and second connector

6

117 may be sufficiently minimal to allow the second connector 117 to be inserted into and extracted from the sealing member 100 manually be a clinician while also defining a seal 142 between the sealing member 100 and the second connector 117.

The sealing member 100 defines an annular chamber 105 (e.g., annular space or gap) between the connectors 116, 117 and the annular wall 110. The chamber 105 is bounded on the ends by the engagement portions 131, 141. The chamber 105 may be in fluid communication with the lumen 113 via a leak path between the connectors 116, 117 at the junction point 115. As such, the fluid pressure 114 within the lumen 113 may define a chamber pressure 106 of the chamber 105. In an instance of a negative pressure within the lumen 113, the resulting negative chamber pressure 106 causes atmospheric pressure to exert a radially inward force 130 on the annular wall 110. In such an instance, the radially inward force 130 causes an increase in the contact force 144 between the second engagement portion 141 and the second connector 117. The seal 142 between the second engagement portion 141 and the second connector 117 may be enhanced by the increase in the contact force 144 resulting from the negative chamber pressure 106.

In some embodiments, the radially inward force 130 applied to the annular wall 110 may also increase a contact force 134 between the first engagement portion 131 and the first connector 10. Consequently, the negative pressure 114 with the lumen 113 may define a greater integrity of the seal 132.

The sealing member 100 is configured to engage the second connector 117 according to a first engagement configuration and a second engagement configuration as defined by the pressure 114 within the lumen 113. More specifically, the sealing member 100 may be disposed in a first engagement configuration when the pressure 114 is non-negative. The sealing member 100 may transition toward the second engagement configuration in response to a negative pressure 114. In the first engagement configuration, the sealing member 100 may facilitate coupling and decoupling of the connectors 116, 117. As such, longitudinal and/or rotational displacement between the sealing member 100 and the second connector 117 is allowed in the first engagement configuration.

The second engagement configuration defines enhanced engagement properties over the first engagement configuration. The second engagement configuration defines a greater integrity of the seal 142 than the first engagement configuration. Similarly, the second engagement configuration may define a greater frictional force between the sealing member 100 and the second connector 117 resisting longitudinal and rotational displacement of the second connector 117 with respect to the sealing member 100.

In use, the sealing member 100 may automatically transition between the first engagement configuration and the second engagement configuration. In some embodiments, the sealing member 100 may transition from the second engagement configuration to the first engagement configuration to facilitate connection and/or disconnection of the connectors 116, 117. Similarly, the sealing member 100 may transition from the first engagement configuration to the second engagement configuration to establish the seal 142 only when the first connector 116 is coupled with the second connector 117. Additionally, the sealing member 100 may transition from the first engagement configuration to the second engagement configuration in response to a change

the pressure 116 toward the negative and in some embodiments, the negative pressure may be defined by the TTM module

A method of using the sealing member 100 may include the following steps or processes. The sealing member 100 is coupled with the first connector. The first connector 116 is coupled with the second connector 117 during which the second connector 117 is inserted within the sealing member 117. A negative pressure is established within the lumen 113. In the event of a leak between the connectors 116, 117, the negative causes the sealing member 100 to form a seal 142 between the sealing member 100 and the second connector 117. In some embodiments, the vacuum also causes the sealing member 100 to form a seal 132 between the sealing member 100 and the first connector 116. The negative is released from the lumen 113 and the second connector 117 is separated from the first connector 116 during which the second connector is withdrawn from the sealing member 100

FIG. 2 illustrates a connector system 250 in a connected 20 state. The connector system 250 generally includes a first connector 216, a complementary second connector 217, and sealing member 200. The sealing member 200 can, in certain respects, resemble components of the sealing member 100 described in connection with FIG. 1. It will be appreciated 25 that all the illustrated embodiments may have analogous features. Accordingly, like features are designated with like reference numerals, with the leading digits increment to "2." For instance, the annular wall is designated as "110" in FIG. 1, and an analogous annular wall is designated as "210" in 30 FIG. 2. Relevant disclosure set forth above regarding similarly identified features thus may not be repeated hereafter. Moreover, specific features of the sealing member 100 and related components shown in FIG. 1 may not be shown or identified by a reference numeral in the drawings or spe- 35 cifically discussed in the written description that follows. However, such features may clearly be the same, or substantially the same, as features depicted in other embodiments and/or described with respect to such embodiments. Accordingly, the relevant descriptions of such features apply 40 equally to the features of the sealing member 200. Any suitable combination of the features, and variations of the same, described with respect to the sealing member 100 and components illustrated in FIG. 1 can be employed with the sealing member 200 and components of FIG. 2, and vice 45 versa. This pattern of disclosure applies equally to further embodiments depicted in subsequent figures and described

The sealing member 200 is sealably attached to a first connector 216. The second connector 217 includes an inner 50 annular wall 271 defining the lumen of the second connect 217. The second connector 217 further includes an outer annular wall 272 spaced radially away from the inner annular wall 271. A bottom wall 273 extends between the inner wall 271 and the outer wall 272 to define an annular 55 cavity 275 (i.e., a receiving moat). The cavity 275 includes an inner sealing surface 276 and an outer sealing surface 277.

As shown in FIG. 2, when the connectors 216, 217 are coupled together, an extending portion 211 (i.e., an elastomeric sleeve) of the sealing member 210 is inserted within the cavity 275. When inserted, an expanded portion 212 of the sealing member 210 is disposed adjacent the outer sealing surface 277. The expanded portion 212 is sized to sealably contact the outer sealing surface 277. In other 65 words, in the free state (i.e., absent any external forces), an outside diameter defined by the expanded portion 212 is

8

greater than an inside diameter defined by the outer sealing surface 277. Consequently, upon coupling of the connectors 216, 217, the expanded portion 212 is compressed (i.e., forced radially inward) by the outer sealing surface 277 defining a seal 252 between the expanded portion 212 and the outer sealing surface 277 or more generally, between the sealing member 200 and the second connector 217.

In similar fashion to the sealing member 100 described above, the sealing member 200 may transition between a first engagement configuration and second engagement configuration in accordance with a change of fluid pressure 214 within the lumen 213. In the first engagement configuration, consistent with a positive/zero fluid pressure 214, the seal 252 is established between the sealing member 200 and the second connector 217. In the second engagement configuration, consistent with a negative fluid pressure 214, the seal 242 is established or enhanced between the sealing member 200 and the second connector 217.

In use, the seal 252 prevents leakage of water from the junction point 215 when a positive/zero pressure 214 is present within the lumen 213. More specifically, a positive/zero pressure 214 translates to the positive/zero chamber pressure 206 within the chamber 205 allowing the expanded portion 212 to define a contact force 231 against the outer sealing surface 277. The radially outward force 231 causes the expanded portion 212 to form the seal 252 with the outer sealing surface 277.

Similarly, air leakage into the lumen 213 is prevented by the seal 242 when a negative fluid pressure 214 is present within the lumen 213. More specifically, the negative fluid pressure 214 translates to a negative chamber pressure 206 causing the atmospheric pressure to exert a radially inward force 230 on the annular wall 210. The radially inward force causes the engagement portion 241 to form the seal 242 with the inner sealing surface 276.

A method of using the sealing member 200 may include forming the seal 252 between the sealing member 200 and the second connector 217 upon coupling of the second connector 217 with the first connector 216.

FIG. 3A illustrates a sealing member 300 in use with a first connector 316 and second connector 317. The sealing member 300 may generally define a tubular shape defining a sealing member lumen 303. The sealing member 300 includes an annular wall 310 and a septum wall 311 extending across the sealing member lumen 303. The annular wall 310 may extend circumferentially around and longitudinally along each of the connectors 316, 317. The sealing member 300 may be positioned with respect to the connectors 316, 317 so that the ends 316A, 317A of the connector 316, 317 are disposed adjacent the septum wall 311.

The sealing member 300 engages the second connector 317 via a second engagement portion 341. The second engagement portion 341 is sized to define a sliding fit between the sealing member 300 and the second connector 317. In other words, a contact force 344 between the second engagement portion 341 and second connector 317 may be sufficiently minimal to allow the second connector 317 to be inserted into and extracted from the sealing member 300.

The sealing member 300 defines an annular chamber 307 (e.g., annular space or gap) between the first connector 316 and the annular wall 310. The chamber 307 is bounded on the ends by the septum wall 311 and the first engagement portion 331. The chamber 307 may be in fluid communication with the lumen 313A via a leak path between the first connector 316 and the septum wall 311. As such, the fluid pressure 314A within the lumen 313A may define a chamber pressure 308 of the chamber 307. In an instance of a negative

fluid pressure 314A within the lumen 313A, the resulting negative chamber pressure 308 causes atmospheric pressure to exert a radially inward force 330A on the annular wall 310. In such an instance, the radially inward force 330A causes an increase in the contact force 334 between the first engagement portion 331 and the first connector 316. A seal 332 between the first engagement portion 331 and the first connector 316 may be defined by the contact force 334 resulting from the negative chamber pressure 308.

Similarly, the sealing member 300 defines an annular 10 chamber 305 (e.g., annular space or gap) between the second connector 317 and the annular wall 310. The chamber 305 is bounded on the ends by the septum wall 311 and the second engagement portion 341. The chamber 305 may be in fluid communication with the lumen 313B via a leak path 15 between the second connector 317 and the septum wall 311. As such, the fluid pressure 314B within the lumen 313B may define a chamber pressure 306 of the chamber 305. In an instance of a negative fluid pressure 314B within the lumen 313B, the resulting negative chamber pressure 306 causes 20 atmospheric pressure to exert a radially inward force 330B on the annular wall 310. In such an instance, the radially inward force 330B causes an increase in the contact force 344 between the second engagement portion 341 and the second connector 317. A seal 342 between the second 25 engagement portion 341 and the second connector 317 may be defined by the contact force 344 resulting from the negative chamber pressure 306.

The sealing member 300 may be attached to the first connector 316 to inhibit or prevent longitudinal displacement of the sealing member 300 with respect to the first connector 316. In some embodiments, rotation of the sealing member 300 with respect to the first connector 316 may also be inhibited. The attachment of the sealing member 300 to the first connector 316 may define a fluid seal between 35 sealing member 300 and the first connector 316. In other embodiments, the sealing member 300 may include a separate device (e.g., a band clamp, not shown) to define the contact force. In other embodiments, the sealing member 300 may be bonded to the first connector 316 via an 40 adhesive. The sealing member 300 may be permanently attached to the first connector 316 or selectively attached to and/or detached from the first connector 316.

The sealing member 300 is configured to engage the second connector 317 according to a first engagement configuration and a second engagement configuration as defined by a pressure within the lumen 313B. More specifically, the sealing member 300 may be disposed in a first engagement configuration when the pressure 314B is non-negative. The sealing member 300 may transition toward the second 50 engagement configuration in response to a pressure 314B that is negative. In the first engagement configuration, the sealing member 300 may facilitate coupling and decoupling of the connectors 316, 317. As such, longitudinal and/or rotational displacement between the sealing member 300 55 and the second connector 317 is allowed in the first engagement configuration.

The second engagement configuration may define enhanced engagement properties over the first engagement configuration. In some embodiments, the second engagement configuration may define a greater integrity of the seal 342 than the first engagement configuration. Similarly, the second engagement configuration may define a greater frictional force between the sealing member 300 and the second connector 317 resisting longitudinal and rotational displacement of the second connector 317 with respect to the sealing member 300.

10

In some embodiments, the septum wall 311 defines a face seal 335 with the end 316A of the first connector 316. The septum wall 311 may also define a face seal 345 with the end 317A of the second connector 317. As such the septum wall 311 may define a fluid seal between the connectors 316, 317.

FIG. 3B is an end view of the sealing member 300. The septum wall 311 includes one or more slits 351 extending through the septum wall 311. The slits 351 along with the corresponding elastomeric flaps 352 define a pressure actuated star valve 350. The slits 351 and flaps 352 are configured to define a septum seal in the absence of a pressure difference across the septum 311. More specifically, when the pressure difference across the septum 311 is below a defined limit, the star valve 350 is in a closed state preventing fluid flow through the sealing member 300. Conversely, when the pressure difference across the septum 311 exceeds the defined limit, the flaps 352 deflect to transition the star valve 350 to an open state allowing fluid flow through the sealing member 300.

In use, deliberate fluid flow (e.g., flow caused by a pump) through the connectors 316, 317 produces a pressure difference across the septum 311 causing the star valve 350 to open. When the fluid flow is stopped, the pressure difference is eliminated allowing the star valve 350 to close. In further use, the sealing member 300 may be attached to the first connector 316 so that when deliberate fluid flow is stopped and the connectors 316, 317 are separated, the sealing member 300 remains coupled with the first connector 316 preventing inadvertent fluid flow out of the first connector 316.

Without further elaboration, it is believed that one skilled in the art can use the preceding description to utilize the invention to its fullest extent. The claims and embodiments disclosed herein are to be construed as merely illustrative and exemplary, and not a limitation of the scope of the present disclosure in any way. It will be apparent to those having ordinary skill in the art, with the aid of the present disclosure, that changes may be made to the details of the above-described embodiments without departing from the underlying principles of the disclosure herein. In other words, various modifications and improvements of the embodiments specifically disclosed in the description above are within the scope of the appended claims. Moreover, the order of the steps or actions of the methods disclosed herein may be changed by those skilled in the art without departing from the scope of the present disclosure. In other words, unless a specific order of steps or actions is required for proper operation of the embodiment, the order or use of specific steps or actions may be modified. The scope of the invention is therefore defined by the following claims and their equivalents.

What is claimed is:

- 1. A sealing member for providing a seal between fluid connectors, comprising:
 - a tubular member defining a lumen extending between a first end and a second end, the tubular member configured to receive a first connector via the first end and a second connector via the second end, the tubular member comprising an annular wall defining:
 - a first annular portion adjacent the first end, the first annular portion configured to engage the first connector;
 - a second annular portion adjacent the second end, the second annular portion configured to engage the second connector; and
 - an annular chamber extending between the first annular portion and the second annular portion, the annular

chamber configured to receive the first connector and the second connector therein;

wherein during use:

- the first connector and the second connector extend into the annular chamber such that the annular chamber 5 defines an annular space between the annular wall and each of the first connector and the second connector,
- the annular chamber adjacent the first annular portion is in fluid communication with the annular chamber 10 adjacent the second annular portion, and
- when a pressure within the lumen is negative, atmospheric pressure acting on the annular wall compresses the tubular member to define at least a contact force between the second annular portion and 15 the second connector sufficient to define a fluid seal between the tubular member and the second connec-
- 2. The sealing member of claim 1, wherein the pressure within the lumen is defined in response to a fluid pressure 20 within a fluid lumen extending through the first connector and the second connector.
- 3. The sealing member of claim 2, wherein the lumen is in fluid communication with the fluid lumen.
- **4**. The sealing member of claim **1**, wherein when the 25 pressure within the lumen is negative, the atmospheric pressure acting on the annular wall compresses the tubular member to define the contact force between the first annular portion and the first connector sufficient to define the fluid seal between the tubular member and the first connector.
- 5. The sealing member of claim 1, wherein the first annular portion is configured to attach to the first connector.
- 6. The sealing member of claim 1, wherein the first annular portion is configured to sealably attach to the first connector.
- 7. The sealing member of claim 1, wherein the second annular portion is configured to slidably engage the second connector when a non-negative pressure is defined within
- 8. The sealing member of claim 1, further comprising a 40 septum extending across the lumen between the first annular portion and the second annular portion, the septum including a pressure actuated valve configured to:
 - prevent fluid flow through the septum when a fluid pressure across the septum is below a defined pressure 45 limit, and
 - allow fluid flow through the septum when the fluid pressure across the septum exceeds the defined pressure limit.
 - 9. A fluid connector system, comprising:
 - a first connector:
 - a complementary second connector fluidly coupled with the first connector; and
 - a tubular sealing member defining a lumen extending between a first end and a second end, the tubular 55 sealing member configured to receive the first connector via the first end and a second connector via the second end, the tubular sealing member, comprising an annular wall defining:
 - a first annular portion adjacent the first end, the first 60 annular portion configured to engage the first con-
 - a second annular portion adjacent the second end, the second annular portion configured to engage the second connector; and
 - an annular chamber extending between the first annular portion and the second annular portion, the annular

12

chamber configured to receive the first connector and the second connector therein:

wherein during use:

- the first connector and the second connector extend into the annular chamber such that the annular chamber defines an annular space between the annular wall and each of the first connector and the second
- the annular chamber adjacent the first annular portion is in fluid communication with the annular chamber adjacent the second annular portion, and
- when a pressure within the lumen is negative, atmospheric pressure acting on the annular wall compresses the tubular sealing member to define at least a contact force between the second annular portion and the second connector sufficient to define a fluid seal between the tubular sealing member and the second connector.
- 10. The fluid connector system of claim 9, wherein the pressure within the lumen is defined in response to a fluid pressure within a fluid lumen extending through the first connector and the second connector.
- 11. The fluid connector system of claim 10, wherein the lumen is in fluid communication with the fluid lumen.
- 12. The fluid connector system of claim 9, wherein when the pressure within the lumen is negative, the atmospheric pressure acting on the annular wall compresses the tubular sealing member to define a contact force between the first annular portion and the first connector sufficient to define a fluid seal between the tubular sealing member and the first connector.
- 13. The fluid connector system of claim 9, wherein the 35 first annular portion is attached to the first connector.
 - 14. The fluid connector system of claim 9, wherein the first annular portion is sealably attached to the first connec-
 - 15. The fluid connector system of claim 9, wherein the second annular portion is configured to slidably engage the second connector when a non-negative pressure is defined within the lumen.
 - 16. The fluid connector system of claim 9, wherein the second connector comprises:
 - a first annular connector wall;

50

- a second annular connector wall spaced radially outward of the first annular connector wall; and
- a lateral bottom wall extending between the first annular connector wall and the second annular connector wall, wherein the first annular connector wall, the second annular connector wall, and the lateral bottom wall define an annular cavity, and
- the second annular portion is disposed within the annular cavity.
- 17. The fluid connector system of claim 16, wherein: an inside surface of the second annular portion is configured to slidably engage the first annular connector wall,
- an outside surface of the second annular portion is configured to slidably and sealably engage the second annular connector wall.
- 18. The fluid connector system of claim 16, wherein:
- when a negative pressure is defined within the lumen, a fluid seal is defined between an inside surface of the second annular portion and the first annular connector wall, and

- when a non-negative pressure is defined within the lumen, a fluid seal is defined between an outside surface of the second annular portion and the second annular connector wall.
- 19. The fluid connector system of claim 9, wherein: one of the first connector or the second connector is attached to a component of a targeted temperature management (TTM) system, and

the component is one of a TTM module, a fluid delivery line, or a thermal contact pad.

- **20**. The fluid connector system of claim **19**, wherein a fluid pressure is defined in accordance with operation of the targeted temperature management system.
- 21. The fluid connector system of claim 9, wherein the tubular sealing member includes a septum extending across 15 the lumen between the first connector and the second connector, the septum including a pressure actuated valve configured to:
 - prevent fluid flow through the septum when a fluid pressure across the septum is below a defined pressure 20 limit, and
 - allow fluid flow through the septum when the fluid pressure across the septum exceeds the defined pressure limit.
- 22. A method of defining a seal between fluid connectors, $_{25}$ comprising:

providing a tubular sealing member defining a lumen extending between a first end and a second end;

14

inserting a first connector into the tubular sealing member via the first end to define a first engagement;

inserting a second connector into the tubular sealing member via the second end to define a second engagement:

- establishing a negative pressure within the lumen to transition the tubular sealing member from a first engagement configuration to a second engagement configuration, wherein:
- in the first engagement configuration, at least one of the first connector or the second connector is not sealably coupled with the tubular sealing member, and
- in the second engagement configuration, atmospheric pressure compresses the tubular sealing member to define a fluid seal between the at least one of the first connector or the second connector and the tubular sealing member.
- 23. The method of claim 22, wherein in the second engagement configuration, separation of the second connector from the first connector is prevented.
 - 24. The method of claim 22, further comprising:

establishing a non-negative pressure within the lumen to transition the tubular sealing member from the second engagement configuration to the first engagement configuration; and

separating the second connector from the first connector.

* * * * *