
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0181591 A1

Bijanki et al.

US 2014O181591A1

(43) Pub. Date: Jun. 26, 2014

(54)

(71)

(72)

(73)

(21)

(22)

TEST STRATEGY FOR PROFILE-GUIDED
CODE EXECUTION OPTIMIZERS

Applicant: MICROSOFT CORPORATION,
Redmond, WA (US)

Inventors: Arjun Bijanki, Kirkland, WA (US);
Sandeep Agarwal, Redmond, WA (US);
Curtis Man, Seattle, WA (US); Louis
Lafreniere, Seattle, WA (US); Ritesh
Parikh, Redmond, WA (US); Sankar
Sundaram, Bellevue, WA (US)

Assignee: MICROSOFT CORPORATION,
Redmond, WA (US)

Appl. No.: 13/721,641

Filed: Dec. 20, 2012

104

Publication Classification

(51) Int. Cl.
G06F II/36 (2006.01)

(52) U.S. Cl.
CPC G06F II/3684 (2013.01)
USPC ... 71.4/38.1

(57) ABSTRACT
Systems, methods and computer program products are
described herein for testing a system that is designed to opti
mize the execution of code within an application or other
computer program based on profile data collected during the
execution of such code. The embodiments described herein
utilize what is referred to as a “profile data mutator” to mutate
or modify the profile data between the point when it is col
lected and the point when it is used to apply an optimization.
By mutating the profile data at this point, testing of a system
for optimized code execution can be significantly more thor
ough. Furthermore, such profile data mutation leads to a more
Scalable and efficient testing technique for profile-guided sys
tems for optimized code execution.

-100

computing device

documcnt

114

DOM
objects browser

application
16

Patent Application Publication Jun. 26, 2014 Sheet 1 of 10 US 2014/O181591 A1

computing device

document

114

DOM
objects browser

application
116

FIG. 1

document Script source 202
code 206 code 208

108 runtime engine
browser 204

application profile data
generator

rendering executable code
information 212 210

FIG 2

US 2014/O181591 A1 Jun. 26, 2014 Sheet 2 of 10 Patent Application Publication

apoool Kqenep· 95 e Ions

Patent Application Publication Jun. 26, 2014 Sheet 3 of 10 US 2014/O181591 A1

400
402 y

N
parse Source code coded in a dynamic language to generate parsed source code

404 N
convert the parsed source code to bytecode

406 N
interpret the bytecode using an interpreter

408

generate profile data regarding the bytecode

410 N
store the profile data

FIG. 4

204

profile data generator

502

code profiler

startup script library
profiler profiler

FIG. 5

Patent Application Publication Jun. 26, 2014 Sheet 4 of 10 US 2014/O181591 A1

600

602

determine a portion of the bytecode that is executed during startup

604 N

store an indication in the profile data of the portion of the
bytecode that is determined to be executed during startup

FIG. 6

702 N

generate profile data regarding a script library
module accessed by the Source code

7 04 N
store the profile data generated for the script library module

FIG. 7

800
1.

802

analyze the profile data to determine a condition
associated with a received portion of the bytecode

just-in-time compile the bytecode portion into a compiled
bytecode portion as a result of the determined condition

806

execute the compiled bytecode portion instead of interpreting the bytecode portion

808

store the compiled bytecode portion

FIG. 8

Patent Application Publication

1002

308

Jun. 26, 2014 Sheet 5 of 10

execution controller

902

inlining
module

field hoisting
module

CSE module

typed array
module

field copy
prop module

904

type
Specialization

module

redundant
type checking

module

array bounds
checking
module

COnStructOr
pattern
module

startup
module

FIG. 9

US 2014/O181591 A1

1000

parse and convert the determined Startup bytecode portion to bytecode prior to
parsing and converting to bytecode any of the remainder of the Source code

FIG 10

Patent Application Publication Jun. 26, 2014 Sheet 6 of 10 US 2014/O181591 A1

308

execution controller

102

compiled code
detector

condition condition
chccker chcck failurc

tracker

FIG.

1200
1202 W

receive a bytecode portion in the bytecode

1204
is compiled

bytecode for the
received bytecode
portion already

interpret the
received

bytecode portion

condition
check(s) pass?

1212

execute the compiled bytecode portion instead of interpreting the received bytecode portion

FIG. 12

Patent Application Publication Jun. 26, 2014 Sheet 7 of 10 US 2014/O181591 A1

1300
W

1302
track any condition check failures that occur with regard to a compiled bytecode portion

1304
predetermined
number of
failures

occurred?
compile the bytecode
portion into a Scoond

compiled bytecode potion

FIG. 13

US 2014/O181591 A1 Jun. 26, 2014 Sheet 8 of 10

uonnooxo

Patent Application Publication

Patent Application Publication Jun. 26, 2014 Sheet 9 of 10 US 2014/O181591 A1

1502

receive profile data associated with a script

1504

modify one or more data entities within the profile data to facilitate testing

1506

provide the one or more modified profile data entities to a JIT compiler
that performs JIT compilation of selected portions of the script based on

the profile data to obtain efficient execution thereof

FIG. 15

y 1600

1602

receive profile data associated with code

1604

modify onc or more data cntitics within thc profile data to facilitatic testing

1606

provide the one or more modified profile data entities to a code execution
optimizer that optimizes the execution of at least a portion of the code

based on the one or more modified profile data entities

FIG. 16

US 2014/O181591 A1 Jun. 26, 2014 Sheet 10 of 10 Patent Application Publication

KBIdsIGI

LI "OIH

B) BOI

|90/, I| ÖTZT (WVI)

US 2014/O181591 A1

TEST STRATEGY FOR PROFILE-GUIDED
CODE EXECUTION OPTIMIZERS

BACKGROUND

0001. Many types of programming languages exist. One
form of programming language is a Scripting language. A
Scripting language is a programming language that enables
control of one or more applications. A 'script, or program
generated according to a scripting language, may be written
in a same language or a different language from that of an
associated application. While applications are typically first
compiled to native machine code, Scripts are often interpreted
from source code.
0002 Another form of programming language is a
dynamic programming language. A dynamic programming
language is a programming language that performs some
behaviors during runtime that other programming languages
(that are not dynamic) may perform during compilation. Such
behaviors may include extending a program by adding new
code, extending objects and definitions, and/or modifying the
type system. Many scripting programming languages are also
dynamic programming languages.
0003) A web browser is an application for rendering web
pages for display. Scripts are frequently run on web pages in
order to dynamically change their content. Client-side Script
ing generally refers to Scripts that are executed client-side by
a web browser rather than being executed server-side on a
web server. Client-side Scripting can make web pages more
responsive to user input by avoiding one or more round trip
communications with the web server.
0004 Scripts written in dynamic programming languages
are difficult to execute efficiently. For instance, ECMAScript
(a scripting language standardized by Ecma International in
the ECMA-262 specification and ISO/IEC 16262) is an
example dynamic programming language used in Scripts that
is very flexible. In many ECMAScript programs, only a por
tion of the ECMAScript code is executed, and an even smaller
portion of the ECMAScript code is run during the program
start-up. As such, parsing of the entire code base unnecessar
ily delays the start of execution. In addition, most code actu
ally written in ECMAScript does not exploit the full range of
the ECMAScript language's flexibility. However, the
machine code generated by an ECMAScript compiler is gen
erated to correctly handle a wide spectrum of possibilities at
runtime, which results in inefficient execution.
0005 Systems exist that optimize the manner in which
Scripts written in dynamic programming languages are
executed, so that Such scripts may be executed more effi
ciently. For example, commonly-owned co-pending U.S.
patent application Ser. No. 13/229,594 to Lafreniere et al.,
entitled “Profile Guided JIT Code Generation and filed on
Sep. 9, 2011, describes a runtime engine that is configured to
execute a script and to collect and store profile data concern
ing the Script during such execution. The runtime engine is
further configured to use Such profile data to perform just-in
time (JIT) compilation of selected portions of the script. The
JIT-compiled portions of the script are then used to execute
the script in a more efficient manner than if the script were
executed only by a script interpreter. Still other systems may
exist that can optimize the execution of a script (or other code)
based on profile data that is collected during execution
thereof.
0006. The aforementioned profile data represents a sample
of the scripts historical behavior. It does not necessarily

Jun. 26, 2014

represent what the script will do in the future. Thus, any
optimizations applied to the manner of execution of the script
based on the profile data must be implemented in Such a
manner that the optimizations will behave correctly even if
the scripts behavior changes. For example, changes in the
behavior of the script should not cause program crashes or
incorrect functional behavior. It would be beneficial, then, if
the applied optimizations could be tested at a point when the
Script is behaving in a manner that deviates from the pattern of
behavior represented by the profile data.
0007 Most scripts, however, do not significantly change
their behavior from when profile data is collected to when
optimizations based on Such profile data have been applied.
This makes application of certain testing techniques less use
ful in Verifying that the system for optimizing Script execution
is behaving correctly. For example, a web crawler may be
used to test the system for optimizing Script execution by
causing the system to execute Scripts included within a series
of sequentially-accessed web pages. However, it has been
observed that most web page scripts do not significantly
change their behavior from when profile data about such
Scripts is collected to when optimizations based on Such pro
file data have been applied.

SUMMARY

0008. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.
0009. A system is described herein that includes one or
more processing units and a memory that is coupled to the one
or more processing units. The memory stores Software mod
ules for execution by the one or more processing units. The
Software modules include a runtime engine and a profile data
mutator. The runtime engine is configured to execute a script,
to collect profile data concerning the script during execution
thereof, and to perform JIT compilation of selected portions
of the script based on the profile data to obtain efficient
execution thereof. The profile data mutator is configured to
modify one or more profile data entities within the profile data
to facilitate testing of the runtime engine.
0010. A computer-implemented method is also described
herein. The computer-implemented method is for testing a
system that is configured to execute a script, to collect profile
data concerning the Script during execution thereof, and to
perform JIT compilation of selected portions of the script
based on the profile data to obtain efficient execution thereof.
In accordance with the method, one or more profile data
entities within the profile data are modified. Then, the one or
more modified profile data entities are provided to a JIT
compiler that performs the JIT compilation of the selected
portions of the script based on the profile data to obtain
efficient execution thereof.
0011. A method for testing a profile-guided code execu
tion optimizer is also described herein. The profile-guided
code execution optimizer is configured to execute code, to
collect profile data concerning the code during execution
thereof, and to implement optimizations to the execution of
the code based on the profile data. In accordance with the
method, the profile data is received. One or more profile data
entities within the profile data are then modified. The one or
more modified profile data entities are then provided to the

US 2014/O181591 A1

profile-guided code execution optimizer that optimizes at
least a portion of the code based on the one or more modified
profile data entities.
0012. Further features and advantages of the invention, as
well as the structure and operation of various embodiments of
the invention, are described in detail below with reference to
the accompanying drawings. It is noted that the invention is
not limited to the specific embodiments described herein.
Such embodiments are presented herein for illustrative pur
poses only. Additional embodiments will be apparent to per
Sons skilled in the relevant art(s) based on the teachings
contained herein.

BRIEF DESCRIPTION OF THE
DRAWINGS/FIGURES

0013 The accompanying drawings, which are incorpo
rated herein and form a part of the specification, illustrate the
present invention and, together with the description, further
serve to explain the principles of the invention and to enable
a person skilled in the pertinent art to make and use the
invention.
0014 FIG. 1 is a block diagram of a computing device that
includes a browser application configured to render pages
from received documents, according to an example embodi
ment.

0015 FIG. 2 is a block diagram of a browser application
that interacts with a runtime engine configured to execute
Scripts and to generate profile information about the Scripts,
according to an example embodiment.
0016 FIG. 3 is a block diagram of a runtime engine con
figured to interpret portions of a script and to execute com
piled portions of the Script based on profile information gen
erated based on the Script, according to an example
embodiment.

0017 FIG. 4 depicts a flowchart of a method for executing
a script and generating profile information for the Script,
according to an example embodiment.
0018 FIG. 5 is a block diagram of a profile generator,
according to an example embodiment.
0019 FIG. 6 depicts a flowchart of a method for indicating
a startup portion of a script in profile data, according to an
example embodiment.
0020 FIG. 7 depicts a flowchart of a method for generat
ing profile data for a script library, according to an example
embodiment.
0021 FIG.8 depicts a flowchart of a method for compiling
a portion of a script based on profile data for the Script,
according to an example embodiment.
0022 FIG. 9 is a block diagram of an execution controller
that includes code optimization modules, according to an
example embodiment.
0023 FIG. 10 depicts a flowchart of a method for using
profile data to improve script startup, according to an example
embodiment.

0024 FIG. 11 is a block diagram of an execution control
ler configured for execution of stored compiled bytecode,
according to an example embodiment.
0025 FIG. 12 depicts a flowchart of a method for execut
ing a script, according to an example embodiment.
0026 FIG. 13 depicts a flowchart of a method for tracking
condition checks of compiled bytecode, according to an
example embodiment.

Jun. 26, 2014

0027 FIG. 14 is a block diagram of a system that may be
used to test a system for optimized code execution, according
to an embodiment.
0028 FIG. 15 depicts a flowchart of a method for testing a
system for optimized code execution in accordance with an
embodiment.
0029 FIG. 16 depicts a flowchart of a generalized method
for testing a profile-guided code execution optimizer inaccor
dance with an embodiment.
0030 FIG. 17 shows a block diagram of an example com
puter that may be used to implement embodiments of the
present invention.
0031. The features and advantages of the present invention
will become more apparent from the detailed description set
forth below when taken in conjunction with the drawings, in
which like reference characters identify corresponding ele
ments throughout. In the drawings, like reference numbers
generally indicate identical, functionally similar, and/or
structurally similar elements. The drawing in which an ele
ment first appears is indicated by the leftmost digit(s) in the
corresponding reference number.

DETAILED DESCRIPTION

I. Introduction

0032. The present specification discloses one or more
embodiments that incorporate the features of the invention.
The disclosed embodiment(s) merely exemplify the inven
tion. The scope of the invention is not limited to the disclosed
embodiment(s). The invention is defined by the claims
appended hereto.
0033 References in the specification to “one embodi
ment.” “an embodiment.” “an example embodiment,” or the
like, indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular fea
ture, structure, or characteristic. Moreover, Such phrases are
not necessarily referring to the same embodiment. Further,
when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to effect
Such feature, structure, or characteristic in connection with
other embodiments whether or not explicitly described.
0034. Numerous exemplary embodiments of the present
invention are described as follows. It noted that any section/
Subsection headings provided herein are not intended to be
limiting. Embodiments are described throughout this docu
ment, and any type of embodiment may be included under any
section/subsection.
0035 Systems, methods and computer program products
are described herein for testing a system that is designed to
optimize the execution of code within an application or other
computer program. In particular, embodiments described
herein may be used to test a system that is designed to opti
mize the execution of Scripts written in dynamic program
ming languages based on profile data collected during the
execution of Such scripts. For example, the approach to test
ing described herein may be applied to a system such as that
described in commonly-owned co-pending U.S. patent appli
cation Ser. No. 13/229,594 to Lafreniere et al., entitled “Pro
file Guided JIT Code Generation” and filed on Sep. 9, 2011
(“the 594 application”), the entirety of which is incorporated
by reference herein. The 594 application describes a runtime
engine that is configured to execute a script and to collect and

US 2014/O181591 A1

store profile data concerning the script during Such execution.
The runtime engine is further configured to use Such profile
data to perform JIT compilation of selected portions of the
script. The JIT-compiled portions of the script are then used to
execute the script in a more efficient manner than if the script
were executed only by a script interpreter.
0036. It is noted, however, that the systems, methods and
computer program products described herein are not limited
to testing the system for optimized code execution described
in the 594 application, but may be used to test any system that
can optimize the execution of a script (or other code) based on
profile data that is collected during execution thereof.
0037. The embodiments described herein utilize what is
referred to as a “profile data mutator” to mutate or modify the
profile data between the point when it is collected and the
point when it is used to apply an optimization. In the case of
the system described in the 594 application, this is the point
between when the profile data is collected and when it is used
by the JIT compiler to selectively compile a portion of the
Script. By mutating the profile data at this point, testing of a
system for optimized code execution can be significantly
more thorough. For example, if profile data is collected that
indicates that a particular variable included in the script is an
integer, mutating that profile data can cause the system for
optimized code execution to treat the variable as a floating
point number. The result is that a different optimization will
be applied, improving the testing coverage, without having to
change the script.
0038. As will be described herein, the technique used to
mutate the profile data can take a number of forms, including
but not limited to: (1) random mutations; (2) user-specified
mutations for each kind of field in the profile data; and (3)
user-specified mutations for each field in the profile data. In
accordance with technique (1), of the possible legal or valid
values for each field in the profile data, a random value is
chosen. In accordance with technique (2), all fields in the
profile data of a particular type are given the same mutation as
specified by a tester. In accordance with technique (3), the
tester specifies a mutation for each field in the profile data.
0039. The mutated profile data may then be used to test the
system for optimized code execution. For example, in one
implementation, an automated tool that crawls web sites and
applications is utilized to obtain scripts for execution by the
system while the profile data mutator is operating. A tester
specifies a mutation technique with a series of flags which are
passed to the profile data mutator. The profile data mutator
then applies the requested mutations to all profile data which
is collected by the system. The mutated profile data is used to
optimize the execution of the Scripts.
0040. By using the mutated profile data, much more thor
ough coverage of optimizations and recovery scenarios is
obtained as compared to traditional testing techniques such as
manual testing or directed testing. This leads to a more scal
able and efficient testing technique for profile-guided systems
for optimized code execution. Thus, embodiments described
herein enable a scalable, machine-driven method of testing
the functional correctness of a profile-guided system for opti
mized code execution, by mutating the profile data during
code execution.
0041 A particular implementation of the testing method
will be described herein in Section III. First, however, a
description of an example system for performing profile
guided optimized code execution will be described in Section
II. Such example system is consistent with the system

Jun. 26, 2014

described in the 594 application. Section III will then
describe how such a system may be modified to perform the
innovative testing method. Section IV will describe an
example computer that may be used to implement various
embodiments. Finally, Section V will provide some conclud
ing remarks.

II. Example System for Applying Profile-Guided
Code Execution Optimizations

0042. An example system that applies profile-guided code
execution optimizations will now be described in reference to
FIGS. 1-13. Such a system may be tested using a testing
strategy that will be described in Section III.
0043. The example system for applying profile-guided
code execution optimizations may be implemented in a vari
ety of environments. For instance, FIG. 1 shows a block
diagram of a web browsing environment 100 in which such a
system may be implemented. As shown in FIG. 1, environ
ment 100 includes a computing device 102, a server 104, and
a network 106. As also shown in FIG. 1, computing device
102 includes a browser application 108. Environment 100 is
described as follows. Environment 100 is provided for pur
poses of illustration, and it not intended to be limiting. The
example system for applying profile-guided code execution
optimizations may be implemented in further environments,
as would be apparent to persons skilled in the relevant art(s)
from the teachings herein.
0044 Computing device 102 may be any type of station
ary or mobile computing device, including a desktop com
puter (e.g., a personal computer, etc.), a mobile computer or
computing device (e.g., a PalmR) device, a RIM Blackberry(R)
device, a personal digital assistant (PDA), a laptop computer,
a notebook computer, a tablet computer (e.g., an Apple
iPadTM), a netbook, etc.), a mobile phone (e.g., a cell phone,
a smartphone such as an Apple iPhone, a Google AndroidTM
phone, a Microsoft Windows(R phone, etc.), or other type of
mobile device. Server 104 may be implemented in one or
more computer systems, including one or more servers,
which may be any type of computing device described herein
or otherwise known that is capable of enabling the corre
sponding functionality described herein.
0045 Computing device 102 and server 104 are commu
nicatively coupled by network 106. Network 106 may include
one or more communication links and/or communication net
works, such as a PAN (personal area network), a LAN (local
area network), a WAN (wide area network), or a combination
of networks, such as the Internet. Computing device 102 and
server 104 may be communicatively coupled to network 106
using various links, including wired and/or wireless links,
such as IEEE 802.11 wireless LAN (WLAN) wireless links,
Worldwide Interoperability for Microwave Access (Wi
MAX) links, cellular network links, wireless personal area
network (PAN) links (e.g., Bluetooth'TM links), Ethernet links,
USB links, or the like.
0046. A single computing device 102 is shown in FIG. 1
for purposes of illustration. However, any number of comput
ing devices 102 may be present in environment 100, including
tens, hundreds, thousands, and even greater numbers of com
puting devices 102. Each computing device may operate one
or more corresponding browser applications.
0047 Browser application 108 is a program that executes/
operates in computing device 102. Browser application 108
enables network information resources to be retrieved, pre
sented, and traversed. An information resource or object may

US 2014/O181591 A1

be retrieved by browser application 108 using a network
address, such as a uniform resource identifier (URI).
Examples of information resources include web pages,
images, videos, and other forms of content. Hyperlinks that
are present in information resources enable users easily to
navigate their browsers to related resources. Examples of
browser application 108 include Internet Explorer(R), pub
lished by Microsoft Corp. of Redmond, Wash., Mozilla Fire
foXR), published by Mozilla Corp. of Mountain View, Calif.,
Safari(R), published by Apple Inc. of Cupertino, Calif., and
Google(R) Chrome, published by Google Inc. of Mountain
View, Calif.
0048. As shown in FIG. 1, browser application 108 may
retrieve a document 112 from a server 104 through network
106. Document 112 may be a web document that includes
code of a markup language. Such as hyperText markup lan
guage (HTML), dynamic HTML (DHTML), extensible
HTML (XHTML), extensible markup language (XML), etc.
As shown in FIG.1, document 112 includes DOM (document
object model) objects 114 and one or more scripts 116. DOM
objects 114 include one or more objects represented in docu
ment 112 according to the DOM convention, which is a
cross-platform and language-independent convention for
representing and interacting with objects. DOM objects 114
may include objects that are directly included in document
112, and/or are referenced by document 112 and separately
retrieved from server 104 or other server. Script(s) 116
include code formatted according to a dynamic language
(e.g., ECMAScript, VBScript, AJAX, Python, Perl, etc.) that
enables changes to be made to DOM objects 114, including
changes based on factors such as user input, environmental
conditions (e.g., the time of day, or other variables), etc. The
code of script(s) 116 can access and modify objects of DOM
objects 114 on the fly without returning to server 104.
0049. As shown in FIG. 1, browser application 108
receives (e.g., loads) document 112. Browser application 108
includes a browser engine (e.g., a layout engine or rendering
engine) that formats information of document 112, and dis
plays the formatted information. For example, as shown in
FIG. 1, browser application 108 may generate a page 118
based on document 112 that is displayed by a display of
computing device 102.
0050 Browser application 108 may be configured to
execute one or more scripts 116 that are embedded in docu
ment 112, or separate from but associated with document 112.
For instance, FIG. 2 shows a block diagram of browser appli
cation 108 interacting with a runtime engine 202, according
to an example embodiment. Runtime engine 202 is config
ured to execute scripts for browser application 108, such as
script(s) 116 of FIG. 1. In one embodiment, runtime engine
202 may be separate from browser application 108 as shown
in FIG. 2. Such as a plug-in or add-in module to browser
application 108. In another embodiment, runtime engine 202
may be integrated in browser application 108.
0051. As shown in FIG. 2, browser application 108
receives document code 206, which is code in document 112
and/or referenced by document 112. A browser engine of
browser application 108 executes document code 206. If
browser application 108 encounters a script of document 112,
browser application 108 may provide script source code 208
of the script to runtime engine 202 for execution. Runtime
engine 202 is a runtime engine for Scripts programmed in a
dynamic programming language (or 'dynamic language').
As such, runtime engine 202 enables dynamic typing and

Jun. 26, 2014

further features of dynamic languages. In an embodiment,
runtime engine 202 may be implemented as a virtual machine
(VM). With dynamically typed languages, such as ECMAS
cript, Python, etc., often it is not known what type various
items of data may assume until the program code is actually
executed. For instance, it may not be known whether a
dynamically typed variable is an integer, a float, or a string
until the code is actually executed by the runtime engine.
Runtime engine 200 is configured to handle Such dynamic
capabilities of a dynamic language when executing Source
code 208.

0.052 Runtime engine 202 may generate executable code
210 based on executing script source code 208, which may be
executed (e.g., by one or more processors). Browser applica
tion 108 may generate rendering information 212 based on
the execution of document code 206 and based on executable
code 210.

0053 As shown in FIG. 2, runtime engine 202 includes a
profile data generator 204. Profile data generator 204 is con
figured to analyze script source code 208 to collect statistics
and further information about script source code 208. For
instance, profile data generator 204 may determine frequently
performed portions of script source code 208, startup portions
of script source code 208, and/or further information regard
ing script source code 208. Profile data generator 204 may
maintain the collected information as profile data. Runtime
engine 202 may use the collected profile data to more effi
ciently execute script source code 208, as described herein.
0054 According to an example embodiment, a runtime
engine (such as runtime engine 202 of FIG. 2) is configured to
collect profile information regarding a script being executed,
and to use the profile information to improve Script execution
performance. Such runtime engines may be configured in
various ways, in embodiments. For instance, FIG. 3 shows a
block diagram of a runtime engine 300, according to an
example embodiment. As shown in FIG. 3, runtime engine
300 includes an engine interface 302, a parser 304, a bytecode
generator 306, an execution controller 308, an interpreter
310, a JIT (just-in-time) compiler 312, storage 314, a machine
code executer 316, and a script library 318. Runtime engine
300 is described as follows.

0055 As shown in FIG. 3, engine interface 302 receives
script source code 208. Engine interface 302 is optionally
present, and in Some embodiments, parser 304 may be con
figured as an interface for runtime engine 300 rather than
having engine interface 302 present. When present, engine
interface 302 is a communication interface that provides one
or more methods for interfacing a host with runtime engine
300. In one example, embodiment, engine interface 302 may
be implemented according to IActiveScript developed by
Microsoft Corporation of Redmond, Wash. As shown in FIG.
3, engine interface 302 provides source code 208 to parser
304.

0056 Parser 304 receives and parses source code 208. For
instance, parser 304 may perform token generation or lexical
analysis on source code 208, so that source code 208 is
formatted into symbols or tokens. Parser 304 may perform
error checking on the tokens to determine whether allowable
expressions are formed, that syntax errors are not present, etc.
As shown in FIG.3, parser 304 outputs the parsed source code
as parsed source code 322. Parsed source code 322 may have
any suitable form, including being generated by parser 304 as
AST (abstract syntax tree) code, which includes a tree repre

US 2014/O181591 A1

sentation of the abstract syntactic structure of Source code
208, as would be known to persons skilled in the relevant
art(s).
0057. As shown in FIG. 3, bytecode generator 306
receives parsed source code 322. Bytecode generator 306 is
configured to convert parsed source code 322 into bytecode,
which includes instruction sets configured for efficient execu
tion by an interpreter, as well as for further compilation into
machine code. For instance, generated bytecode may repre
sent parsed source code 322 as numeric codes and corre
sponding optional parameters. As shown in FIG. 3, bytecode
generator 306 outputs the generated bytecode as bytecode
324. Bytecode 324 may have any suitable form, including
being generated by bytecode generator 306 in the form of
p-code (portable code), as would be known to persons skilled
in the relevant art(s).
0058 As shown in FIG.3, execution controller 308, inter
preter 310, and JIT compiler 312 each receive bytecode 324.
Furthermore, as shown in FIG. 3, interpreter 310 includes
profile data generator 204. Profile data generator 204 is con
figured to analyze bytecode 324 to collect statistics and fur
ther information regarding source code 208. Profile data gen
erator 204 generates profile data 320, which includes the
collected information, and which is stored in storage 314.
0059. As shown in FIG. 3, execution controller 308
accesses profile data 320, and is communicatively coupled to
interpreter 310 and JIT compiler 312. Based on bytecode 324
and profile information 320, execution controller 308 may
enable one of interpreter 310 and JIT compiler 312 to operate
on bytecode 324. Interpreter 310 is configured to interpret
bytecode 324 when enabled by an interpreter control signal
326 received from execution controller 308.JIT compiler 312
is configured to compile bytecode 324 when enabled by a
compiler control signal 328 received from execution control
ler 308. For instance, during a first execution of source code
208, profile data 320 may not yet exist. In such case, execu
tion controller 308 may enable interpreter 310 to interpret
bytecode 324 and to generate profile data 320. During subse
quent execution of Source code 208 (e.g., later during the
same first execution of Source code 208, and/or during a
Subsequent execution of source code 208), execution control
ler 308 may enable interpreter 310 to interpret portions of
source code 208, and may enable JIT compiler 312 to compile
other portions of source code 208, based on profile data 320.
0060. When interpreter 310 is enabled by interpreter con

trol signal 326, interpreter 310 interprets and executes byte
code 324. For instance, interpreter 310 may be implemented
as an ECMAScript interpreter, a VBScript interpreter, a
Python interpreter, or as an interpreter for another dynamic
language mentioned elsewhere herein or otherwise known. In
this manner, source code 208 may be at least partially
executed by operation of interpreter 310.
0061. When JIT compiler 312 is enabled by compiler con

trol signal 328, JIT compiler 312 compiles bytecode 324. For
instance, JIT compiler 312 may be implemented as an
ECMAScript compiler, a VBScript compiler, a Python com
piler, or as a compiler for another dynamic language men
tioned elsewhere herein or otherwise known. JIT compiler
312 is referred to as a “just in time compiler, because par
ticular bytecode portions may be compiled by JIT compiler
312 as the compiled bytecode is needed (e.g., is going to be
executed imminently) rather than pre-compiling bytecode
324 in its entirety prior to execution. As shown in FIG.3, JIT
compiler 312 generates compiled bytecode 330, which has

Jun. 26, 2014

the form of machine executable code or instructions. Com
piled bytecode 330 is received by machine code executer 316
(e.g., one or more processors), which executes compiled byte
code 330. In this manner, source code 208 may be partially
executed by operation of JIT compiler 312 and machine code
executer 316. Furthermore, as shown in FIG. 3, compiled
bytecode 330 may be stored in storage 314 as compiled byte
code 332 for access during Subsequent execution of source
code 208 by runtime engine 300.
0062) Runtime engine 300 of FIG.3 may operate in vari
ous ways to perform its functions. For instance, FIG. 4 shows
a flowchart 400 of a method for executing a script and gen
erating profile data for the Script, according to an example
embodiment. The method of flowchart 400 is described as
follows with reference to FIG.3. Further structural and opera
tional embodiments will be apparent to persons skilled in the
relevant art(s) based on the following discussion regarding
flowchart 400.

0063. The method of flowchart 400 begins with step 402.
In step 402, Source code coded in a dynamic language is
parsed to generate parsed source code. For example, as shown
in FIG. 3, parser 304 receives script source code 208 (option
ally through engine interface 302). As described above, parser
304 is configured to parse source code 208 into parsed source
code 322.

0064. In step 404, the parsed source code is converted to
bytecode. For instance, as shown in FIG.3, bytecode genera
tor 306 receives parsed source code 322. As described above,
bytecode generator 306 is configured to convert parsed source
code 322 into bytecode 324. Note that steps 402 and 404 may
be considered together as a process for generating bytecode
324 from received source code 208 and may be performed in
other ways, in embodiments.
0065. In step 406, the bytecode is interpreted using an
interpreter. For example, as shown in FIG. 3, interpreter 310
receives bytecode 324. As described above, interpreter 310 is
configured to interpret bytecode 324. For instance, interpreter
310 may interpret bytecode 324 by translating bytecode 324
to an efficient intermediate code representation, and execut
ing the intermediate code representation, or interpreting byte
code 324 in another manner to perform program execution.
0066. In step 408, profile data regarding the bytecode is
generated. For example, as shown in FIG. 3, profile data
generator 204 receives bytecode 324. Profile data generator
204 is configured to analyze bytecode 324 to collect statistics
and further information regarding source code 208. Profile
data generator 204 generates profile data 320, which includes
the collected information.

0067. In step 410, the profile data is stored. For example,
as shown in FIG. 3, profile data generator 204 stores profile
data 320 in storage 314. Note that storage 314 may include
one or more of any type of storage mechanism, including a
magnetic disc (e.g., in a hard disk drive), an optical disc (e.g.,
in an optical disk drive), a magnetic tape (e.g., in a tape drive),
a memory device such as a RAM (random access memory)
device, etc., and/or any other Suitable type of storage medium.
0068. Note that runtime engine 300 and/or flowchart 400,
when implemented as code that is executed in one or more
processors, may be distributed over one or more program
execution threads in any manner. For instance, in one
example, parser 304, bytecode generator 306, execution con
troller 308, and interpreter 310 may operate in a first thread
(e.g., a foreground or UI thread), and JIT compiler 312 may

US 2014/O181591 A1

operate in a second thread (e.g., a background thread). In
other embodiments, runtime engine 300 may be distributed
over threads in other ways.
0069. As described above with respect to FIGS. 3 and 4,
profile data generator 204 is configured to analyze bytecode
324 to collect statistics and further historical information
regarding source code 208, to generate profile data 320. Pro
file data generator 204 may be configured in various ways to
perform its functions. For instance, FIG. 5 shows a block
diagram of profile data generator 204, according to an
example embodiment. As shown in FIG. 5, profile data gen
erator 204 includes a code profiler 502, a startup profiler 504,
and a script library profiler 506. In embodiments, profile data
generator 204 may include any one or more of these features.
Profile data generator 204 of FIG. 5 is described as follows.
0070 Code profiler 502 is configured to analyze bytecode
324 for patterns that occur multiple times, and to generate
statistics and/or other historical information regarding the
patterns, which is included in profile data 320. The historical
pattern information may be used to detect the presence of
frequently executed functions (“hotspots”), loop bodies,
helper calls, property accesses, etc., in bytecode 324. By
indicating the presence of such patterns, the historical pattern
information may be used to more efficiently execute source
code 208. Such as by enabling machine code to be generated
for commonly-occurring patterns.
0071. For instance, code profiler 502 may monitor and
track how many times a particular script function is per
formed in bytecode 324 during execution of source code 208.
In profile data 320, code profiler 502 may indicate an identi
fier or a name of the function (in bytecode or other form) in
association with a number of times the function is performed
during execution of bytecode 324.
0072. In an embodiment, each function of a script may
have a corresponding function identifier (e.g., a numeric iden
tifier, an alphanumeric identifier, etc.) assigned to it in profile
data 320. The function identifiers may be generated in any
manner (e.g., by sequentially numbering the functions as each
function is profiled, generatingahash value for each function,
etc.), and may be used to uniquely identify each function in
profile data 320 for any purpose. For instance, an index may
be stored that maps functions in bytecode 324 to their corre
sponding identifiers. During Subsequent executions of source
code 208, each time a function is encountered in bytecode
324, the index may be accessed to determine the identifier
assigned to the function. Then, the identifier may be located in
profile data 320 to locate any stored profile information for
the function.
0073. In another example, code profiler 502 may monitor
and track how many times a particular loop of code ("code
loop' or “loop body') is performed in bytecode 324 during
execution of source code 208. In profile data 320, code pro
filer 502 may indicate a start instruction and a finish instruc
tion for the code loop to identify the code loop, for example,
or may indicate the code loop in another manner. Code pro
filer 502 may indicate a number of times the code loop is
performed in association with the identified code loop.
0074. In another example, code profiler 502 may monitor
and track objects (e.g., variables) in bytecode 324. For
instance, in profile data 320, code profiler 502 may indicate an
object, and may indicate one or more of a type of the object
(e.g., an integer, a floating point value, etc.), a shape of the
object (e.g., the properties of the object), and/or other object
features each time that the object is accessed and/or modified.

Jun. 26, 2014

In further examples, code profiler 502 may monitor and track
features of arrays (e.g.: array type or array bounds), values of
object properties, etc.
(0075 Code profiler 502 may also indicate in profile data
320 any portions of bytecode 324 that are not used (not
executed), including any functions, objects, loops, etc., that
are not used. For example, source code 208 may include
errors in coding that lead to portions of code that are not used,
may include utilities or library modules that are not used (e.g.,
may only use a portion of a library that is included in Source
code 208 in its entirety), and/or may include test code that was
used during source code testing but is not during normal
operation. In embodiments, during source code execution,
execution controller 308 may instruct parser 304 to not parse
(or partially parse) portions of bytecode 324 indicated as not
used in profile data 320, to increase execution efficiency.
0076. In further embodiments, code profiler 502 may track
generate further statistics and/or other historical information
regarding bytecode 324, and may include the historical infor
mation in profile data 320.
0077 Startup profiler 504 is configured to analyze byte
code 324 for bytecode that is used at the beginning of the
execution of source code 208, and to indicate this “startup'
bytecode in profile data 320. For example, in an embodiment,
startup profiler 504 may perform a method depicted in a
flowchart 600 of FIG. 6. Flowchart 600 depicts a metho for
indicating a startup portion of source code in profile data,
according to an example embodiment. The method of flow
chart 600 is described as follows.
(0078. The method of flowchart 600 begins with step 602.
In step 602, a portion of the bytecode that is executed during
startup is determined. For example, in an embodiment, star
tup profiler 504 may determine a startup portion of bytecode
324 that is executed first when execution of source code 208
begins. Startup profiler 504 may determine the startup portion
of bytecode 324 in any manner, such as by determining a
predetermined number of functions of bytecode 324 that
occur when bytecode 324 is first received at profile data
generator 204, determining a predetermined number of
instructions (e.g., a predetermined number of lines of byte
code 324) that occur when bytecode 324 is first received at
profile data generator 204, or in another manner.
0079. In step 604, an indication is stored in the profile data
of the portion of the bytecode that is determined to be
executed during startup. For example, in an embodiment,
startup profiler 504 may indicate the startup portion deter
mined in step 602 in profile data 320. Startup profiler 504 may
indicate the startup portion in profile data 320 in any manner,
by indicating function names or identifiers, by indicating
blocks of bytecode by line number, by indicating starting and
ending instructions for the startup portion, or in any other
a.

0080 Script library profiler 506 is configured to analyze
bytecode 324 for any accesses to script library modules that
are used during the execution of source code 208, and to
indicate these accessed script library modules in profile data
320. For instance, as shown in FIG. 3, interpreter 310 and/or
JIT compiler 312 may access a script library 318 during
execution of source code 208. Script library 318 may include
one or more library modules that include pre-coded functions.
These pre-coded functions may be accessed by source code
208 so that a developer of source code 208 does not have to
generate code for these functions, saving development time.
For instance, script library 318 may be an ECMAScript

US 2014/O181591 A1

library that includes modules of pre-coded ECMAScript,
may be an AJAX library that includes modules of pre-coded
AJAX, and/or may be a library for another dynamic language.
The library modules of script library 318 may be parsed by
parser 304 and converted by bytecode by bytecode generator
306, if needed, prior to being interpreted and/or compiled. In
embodiments, during Source code execution, execution con
troller 308 may instruct parser 304 to not parse library mod
ules of script library 318 not indicated as used in profile data
320, to increase execution efficiency.
0081. In an embodiment, script library profiler 506 may
perform a method depicted in a flowchart 700 of FIG. 7.
Flowchart 700 depicts a method for generating profile infor
mation for a script library, according to an example embodi
ment. The method of flowchart 700 is described as follows.
I0082. The method of flowchart 700 begins with step 702.
In step 702, profile data is generated regarding a script library
module accessed by the Source code. For example, in an
embodiment, script library profiler 506 may determine any
script library modules of script library 318 that are accessed
by bytecode 324 during the execution of source code 208, and
may indicate these accessed script library modules in profile
data 320. Script library profiler 506 may indicate the accessed
Script library modules in any manner, including by module
name, module storage location, etc.
0083. In step 704, the profile data generated for the script
library module is stored. For instance, as shown in FIG. 3,
profile data 320, which may include the accessed library
module profile information, may be stored in storage 314.
I0084. As described above with respect to FIGS. 3 and 4,
the execution of script source code 208 by runtime engine 300
may be improved based on profile data 320. For instance,
portions of bytecode 324 may be compiled and executed on
the fly rather than being interpreted to improve script execu
tion efficiency. In embodiments, to improve Script perfor
mance, run time engine 300 may compile portions of a script
for execution based on an analysis of Script profile data.
0085 For instance, FIG. 8 shows a flowchart 800 of a
method for compiling a portion of a script based on profile
data for the script, according to an example embodiment. In
an embodiment, runtime engine 300 of FIG.3 may perform
the method of flowchart 800. Further structural and opera
tional embodiments will be apparent to persons skilled in the
relevant art(s) based on the following discussion regarding
the method of flowchart 800.
I0086. The method of flowchart 800 begins with step 802.
In step 802, the profile data is analyzed to determine a con
dition associated with a received portion of the bytecode. For
example, as shown in FIG. 3, execution controller 308
receives bytecode 324 and profile data 320. In an embodi
ment, execution controller 308 may analyze profile data 320
to determine whether a portion of bytecode 324 may be inter
preted, or may be compiled rather than interpreted to improve
execution efficiency. Various conditions may be determined
by execution controller 308 during the analysis that indicate
that a received bytecode portion, Such as a function, a loop
body, a typed object, bytecode associated with an array, byte
code associated with an expression, or other bytecode por
tion, may be compiled to improve execution efficiency. For
instance, if a function is called in bytecode 324 a predeter
mined number of times, it may be desirable for the function to
be compiled rather than interpreted.
0087. In step 804, the bytecode portion is just-in-time
compiled into a compiled bytecode portion as a result of the

Jun. 26, 2014

determined condition. For example, as shown in FIG. 3,
execution controller 308 may generate compiler control sig
nal 328 to indicate to JIT compiler 312 to compile the byte
code portion. As such, when JIT compiler 312 is instructed by
compiler control signal 328, JIT compiler 312 compiles the
portion of bytecode 324 to generate compiled bytecode 330.
Compiled bytecode 330 may be referred to as "jitted” byte
code or "jitted' code because it is compiled on request, just
in-time.
I0088. In step 806, the compiled bytecode portion is
executed instead of interpreting the bytecode portion. For
instance, as shown in FIG. 3, compiled bytecode 330 is
received by machine code executer 316 (e.g., one or more
processors), which executes compiled bytecode 330. Note
that step 806 may or may not be performed, depending on the
particular embodiment. For instance, in one embodiment,
rather than interpreting the bytecode portion using interpreter
310, compiled bytecode 330 may be generated and executed.
In another embodiment, the bytecode portion may be inter
preted using interpreter 310, and compiled bytecode 330 may
be generated but not executed. Instead, in Such an embodi
ment, compiled bytecode 330 is generated so that it can be
executed a next time the corresponding bytecode portion is
encountered in bytecode 324.
I0089. In step 808, the compiled bytecode portion is stored.
For instance, as shown in FIG.3, compiled bytecode 330 may
be stored in storage 314 for access during Subsequent execu
tion of source code 208 by runtime engine 300.
I0090 Execution controller 308 may be configured in vari
ous ways to perform step 802 to detect various conditions in
the profile data for selecting between interpreting and com
piling bytecode. If one or more desired conditions are
detected, it may be desired to generate compiled machine
code to be executed rather than interpreting code. For
instance, FIG.9 shows a block diagram of execution control
ler 308 of FIG. 3, according to an example embodiment. As
shown in FIG.9, execution controller 308 includes a plurality
of code execution optimizer modules, including an inlining
module 902, a type specialization module 904, a field hoisting
module 906, a redundant type checking module 908, a CSE
(common Sub-expression elimination) module 910, an array
bounds checking module 912, a typed array module 914, a
constructor pattern module 916, a field copy prop module
918, and a startup module 920. Any one or more of these code
execution optimizer modules may be present in execution
controller 308 to detect the presence of one or more corre
sponding conditions, and to perform an optimization (e.g.,
compiling particular bytecode to generate machine code, etc.)
if the one or more conditions isfare detected. These features of
execution controller 308 are described as follows.
0091 Inlining module 902 is configured to analyze profile
data 320 to determine conditions where bytecode portions of
bytecode 324 may be performed multiple times without
change to functions, objects, etc. within the bytecode por
tions. When inlining module 902 determines such a bytecode
portion, inlining module 902 may replace the bytecode por
tion with machine code generated for the bytecode portion by
JIT compiler 312, in effect "inlining the machine code in
bytecode 324. The machine code may be executed faster,
improving overall program runtime efficiency. For instance,
profile data 320 may indicate that a bytecode portion includes
a first function that calls a second function. If profile data 320
indicates that the first function is called multiple times, and
calls the second function each time, machine code for the

US 2014/O181591 A1

second function may be generated that is used to replace the
second function in the first function.
0092. For instance, in the following example of ECMAS

cript, a first function “foo() may call a second function “bar(
) in source code 208:

function foo()

WScript. Echo(“In foo()');
blah();

function bar()

WScript. Echo(“In bar()');

blah = bar;

When this code is executed, the following text is printed:
0093. In foo()
0094. In bar()
However, the assignment “blah-bar may be hidden in vari
ous ways. In such case, JIT compiler 312 may not be able to
determine statically what code will be executed when calling
blah(), and blah() could be calling different functions at
different invocations of the function foo(). Profile data 320
may indicate to inlining module 902 that, in this case, the
assignment “blah ()' always calls “bar()'. As such, JIT com
piler 312 may generate machine code that is equivalent to the
following script code:

function foo()

WScript. Echo(“In foo()');
if (blah == bar)

WScript. Echo(“In bar()');
else

bailout to interpreter();

In this example, machine code for the function “bar() is
inlined into the function “foo() by inlining module 902. This
increases program efficiency by avoiding the overhead of
making a separate call to “bar()”. Furthermore, in this
example, “foo() may be configured by inlining module 902
such that a “bailout' may occur if “blah() does not call “bar(
)'. In such a case, the original ECMAScript script shown
above may be performed (by interpreter 310) rather than the
version of “foo() with inlined machine code for “bar().
Bailouts are described in additional detail further below.
0095 Type specialization (TS) module 904 is configured
to analyze profile data 320 to determine conditions where
bytecode portions of bytecode 324 contain typed objects that
maintain a same type during multiple executions by inter
preter 310 (e.g., a predetermined number of times, such as 2
times, 5 times, of other predetermined number of times).
When TS module 904 determines such a bytecode portion, TS
module 904 may direct JIT compiler 312 (via signal 328) to
compile the bytecode portion into machine code, with the
object having the same type as has been repeatedly used.
During source code execution, execution controller 308 may
point to the generated machine code, which can be executed
faster than interpreter 310 can interpret the bytecode portion.

Jun. 26, 2014

(0096. For example, with respect to ECMAScript, an
expression may have typed objects x, y, and w, as shown
below:

TS module 904 may determine from profile data 320 that y
and w have consistent types over multiple previous execu
tions by interpreter 310 (e.g., being of type integer, floating
point, string, etc.). If their types are consistent (e.g., floating
point), TS module 904 may direct JIT compiler 312 to com
pile their bytecode into machine code that assumes that y and
w are of the type that has previously been occurring. Machine
code may be generated to perform the addition of “y+w' with
the assumption that y and w are their particular recurring
types (e.g., floating point). This increases program efficiency
by avoiding the overhead of handling the possibility that their
types may change from one execution iteration to a next
execution iteration, as is possible in a dynamic language.
0097 Field hoisting module 906 is configured to analyze
profile data 320 to determine whether any implicit calls are
present in bytecode 324 that may disallow JIT compiler 312
from performing field hoisting. To perform field hoisting, JIT
compiler 312 may determine portions of bytecode 324 that
contain objects with properties that maintain a same value
during multiple executions by interpreter 310 (e.g., a prede
termined number of times, such as 2 times, 5 times, of other
predetermined number of times). Such as during a loop. In
such cases, JIT compiler 312 may compile the bytecode por
tion into machine code, to reference the previously used
object property value in a register or other location, where it
has been loaded. Field hoisting module 906 may analyze
profile data 320 to determine whether there are any implicit
calls in the loop, as these could undesirably modify property
values. If no implicit calls are present, the machine code may
be generated and used. If implicit calls are present, the
machine code may not be generated. During source code
execution, execution controller 308 may point to the gener
ated machine code, which can be executed faster than inter
preter 310 can interpret the bytecode portion.
(0098. For example, with respect to ECMAScript, an
expression may have an object “o' that has a property “x'
(represented as “o.x'), as shown in the “For loop below:

The property “o.x' is not invariant if (1) o is directly modified
(o-o2:), (2) o.x is directly modified (o.x=10:), (3) an explicit
function call modifies o oro.X, or (4) an implicit function call
modifies o or o.X.JIT compiler 312 may recognize (1), (2), or
(3). However, (4) is difficult to determine statically. For
instance, “y” or “o.x' may point to objects with a “valueof ()
member function overridden by a version that modifies “o.x'
itself. As such, field hoisting module 906 may determine from
profile data 320that there were no implicit calls previously. In
Such case, the value may be loaded in a register in memory,
where it may be rapidly accessed. JIT compiler 312 may

US 2014/O181591 A1

compile bytecode into machine code that accesses the prop
erty value stored in the register. For instance, the property
value may be loaded into a register referred to as “T1, which
may be referenced in the generated machine code (e.g., “y y+
T1 in the example above). This increases program efficiency
by avoiding the overhead of assuming that the property value
may change from one execution iteration to a next execution
iteration, as is possible in a dynamic language. Some runtime
checks may be performed to ensure that no implicit calls
occur. If an implicit call occurs during runtime, a bailout to
interpreter 310 may be performed.
0099 Redundant type checking (RTC) module 908 is con
figured to analyze profile data 320 to determine whether any
implicit calls are present in bytecode 324 that may disallow
JIT compiler 312 from performing redundant type checking.
To perform redundant type checking, JIT compiler 312 may
determine portions of bytecode 324 where an object has mul
tiple properties, and similar type checking is being performed
each time a property value of the object is loaded in bytecode
324. In such cases, JIT compiler 312 may compile the byte
code portion into machine code to more efficiently load the
property values at the same time, and to perform the type
checking for the multiple property values together, for the
same object. RTC module 908 may analyze profile data 320 to
determine whether between the two or more property values
loads there are any implicit calls that may change the shape of
the object. If no implicit calls are present, the machine code
may be generated and used. If implicit calls are present, the
machine code may not be generated. During source code
execution, execution controller 308 may point to the gener
ated machine code, which can be executed faster than inter
preter 310 can interpret the bytecode portion.
0100 For example, with respect to ECMAScript, an
object 'o' may have properties 'x' and “y” (represented as
“o.x' and “o.y') that are accessed at different times in source
code, as shown below:

2.

RTC module 908 may check profile data 320 to determine
whether any implicit calls are likely to be present between the
two property value loads. If Such property value loads are
present without the intervening implicit calls being likely, JIT
compiler 312 may compile the bytecode into machine code
that enables the property value loadings and type checking to
be performed togetherina more unified manner. For instance,
the property values may be loaded for both o.x and o.y at the
same time, and the type checking may be performed together
foro.X and o.y. This increases program efficiency by avoiding
the overhead of separate iterations of property value loading
and type checking.
0101 CSE module 910 is configured to analyze profile
data 320 to determine whether any implicit calls are present in
bytecode 324 that may disallow JIT compiler 312 from per
forming common Sub-expression elimination. To perform
common Sub-expression elimination, JIT compiler 312 may
determine portions of bytecode 324 that contain a common
expression being evaluated multiple times by interpreter 310
(e.g., a predetermined number of times, such as 2 times, 5

Jun. 26, 2014

times, of other predetermined number of times). In such
cases, the solution of the expression may be stored in a reg
ister in memory or other location, and JIT compiler 312 may
compile the bytecode portion into machine code to reference
the expression solution in the register or other location. CSE
module 910 analyzes profile data 320 to determine whether
between the expression evaluations there are any implicit
calls that may change the expression value. If no implicit calls
are present, the machine code may be generated and used. If
implicit calls are present, the machine code may not be gen
erated. Execution controller 308 may point to the generated
machine code when the expression is encountered during
execution, from which the expression solution can be loaded.
0102 For example, with respect to ECMAScript, the
expressions “y” and “w” may be same, but may be separately
evaluated, as shown in an example below:

CSE module 910 may check profile data 320 to determine
whether any implicit calls are likely to be present between the
two expressions that change the expression value (e.g., Such
as b pointing to an object with a valueof () function that
returns a different value each time). In such case, and if the
implicit calls are determined to be unlikely (e.g., determined
to not have occurred, determined to not have occurred with
high probability (e.g., 90% probability of not occurring),
etc.), JIT compiler 312 may cause the expression to be evalu
ated, and the solution to be stored in a register (e.g., referred
to as “T1). Furthermore, JIT compiler 312 may compile the
bytecode into machine code that loads the property value
from the register, rather than evaluating the expression, as
follows:

This increases program efficiency by avoiding the overhead
of evaluating the expression multiple times.
0103 Array bounds checking (ABC) module 912 is con
figured to analyze profile data 320 to check conditions where
bytecode portions of bytecode 324 contain arrays. ABC mod
ule 912 may direct JIT compiler 312 (via signal 328) to
compile a bytecode portion into machine code that more
efficiently handles an array. For instance, ABC module 912
may check whether an object is an array, whether an index
being applied to the array is within the preset bounds of the
array, and if so, to enable JIT compiler 312 to generate
machine that enables values for the array to be directly loaded
from the array.
0104 For example, with respect to ECMAScript, an array
"Ai may be defined to have a length of “length” in a “For
loop, as shown below:

US 2014/O181591 A1

For (i = 0; i < A.length: i++)

X = x + Ai

In this example, ABC module 912 may check whether 'Ali
is an array, and whether a value of “i' is within the bounds of
array Ai (e.g., is less than “length'). If profile data 320
indicates that during previous iterations, the value of “i' has
been within the preset bounds, ABC module 912 may direct
JIT compiler 312 to compile a bytecode portion correspond
ing to the above code into machine code so that array values
may be loaded directly from array Ai stored in memory.
This may increase program efficiency by avoiding the over
head of checking the array Ali' multiple times. However, if
ABC module 912 determines that “i' has previously been
outside bounds of array “Ai’, this optimization may not be
made.

0105 Typed array module (TAM) module 914 is config
ured to analyze profile data 320 to check conditions where
bytecode portions of bytecode 324 contain a typed array
being evaluated by interpreter 310 according to a particular
type. If profile data 320 indicates that an array is consistently
evaluated as having a same type (e.g., an integer array, a
floating point array, a string array, etc.), ABC module 912
may direct JIT compiler 312 (via signal 328) to compile a
bytecode portion into machine code that processes the array
according to the specific type.
0106 For example, with respect to ECMAScript, an array
"Ai may be used in an expression, as shown in an example
below:

ECMAScript supports various types of arrays, including a
normal array that contains values of any type, a floating point
array (only includes floating point numbers), an integer array
(that includes only integers), etc. Without profile data 320,
array Ai may be considered to be a normal array. If profile
data 320 indicates that array Ai has previously included a
single type, ABC module 912 may direct JIT compiler 312
(via signal 328) to compilea bytecode portion for the above
expression into machine code that processes the array accord
ing to the specific type. This may increase program efficiency
by avoiding the overhead of handling all possible types for the
array “Ai’.
0107 Constructor pattern module 916 is configured to
analyze profile data 320 to determine whether any implicit
calls are present in bytecode 324 that may disallow JIT com
piler 312 from performing constructor pattern optimization.
To perform a constructor pattern optimization, JIT compiler
312 may determine portions of bytecode 324 that indicate an
object is being constructed during execution by interpreter
310. In such cases, JIT compiler 312 may compile the byte
code portion into machine code, to more efficiently construct
the object. Constructor pattern module 916 analyzes profile
data 320 to determine whether there are any implicit calls
while constructing the object (because these implicit calls
may have added/deleted fields). If no implicit calls are
present, the machine code may be generated and used. If
implicit calls are present, the machine code may not be gen
erated. During source code execution, execution controller

10
Jun. 26, 2014

308 may point to the generated machine code, which can be
executed faster than interpreter 310 can interpret the bytecode
portion.
0.108 For example, with respect to ECMAScript, an
object 'o' may be constructed by adding properties to it. Such
as the three properties “x', 'y', and “w”, in separate state
ments as shown in an example below:
0109 o.x=1
0110 oy=2
0111 o.w=3
In this example, prior to the above three statements, the object
“o does not include the properties “x”, “y”, and “w”. As
shown above for this example, a value is assigned to each
property when the property is added to object “o'. Construc
tor pattern module 916 may check profile data 320 to deter
mine whether any implicit calls occur while constructing the
object “o' that may change the shape of object “o”. If the
implicit calls are determined to be unlikely, JIT compiler 312
may compile the bytecode into machine code that adds the
three properties to the object 'o' in a single operation, and
that captures the property values for the three properties. This
increases program efficiency by avoiding the overhead of
adding multiple properties to an object over multiple separate
operations.
0112 Field copy propagation (FCP) module 918 is con
figured to analyze profile data 320 to determine whether any
implicit calls are present in bytecode 324 that may disallow
JIT compiler 312 from performing field copy propagation. To
perform field copy propagation, JIT compiler 312 may deter
mine bytecode portions of bytecode 324 that contain refer
ences to an object property that was previously assigned a
value. In such cases, JIT compiler 312 may compile the
bytecode portion(s) into machine code that replaces the
object property references with the previously assigned
value. FCP module 918 analyzes profile data 320 to deter
mine whether there are any implicit calls between the refer
ences that may change the property value. If no implicit calls
are present, the machine code may be generated and used. If
implicit calls are present, the machine code may not be gen
erated. During source code execution, execution controller
308 may point to the generated machine code, which can be
executed faster than interpreter 310 can interpret the bytecode
portion(s).
0113 For example, as shown below with respect to
ECMAScript, a property “X” of an object “o” may be assigned
a value '1', and Subsequently, an object “y” may be assigned
the value of the property value “x':

FCP module 918 may check profile data 320 to determine
whether any implicit calls occur between the two operations
with o.X (that may change the value of o.X). In such case, and
if the implicit calls are determined to be unlikely, the expres
sion of “o.x' may be replaced with the actual value of “1”
(e.g., y=1). JIT compiler 312 may compile the bytecode into
machine code that replaces “o.x” with the value “1”. This

US 2014/O181591 A1

increases program efficiency by avoiding the overhead of
looking up the property value each time 'o.X' is encountered
in bytecode.
0114 Startup module 920 is configured to cause startup
bytecode to be executed first when a script is executed. For
example, as described above, startup profiler 504 of FIG. 5 is
configured to analyze bytecode 324 for bytecode that is used
at the beginning of the execution of source code 208, and to
indicate this “startup' bytecode in profile data 320. Startup
module 920 of FIG. 9 is configured to cause the startup
bytecode indicated in profile data 320 to be executed prior to
other bytecode when a script begins execution.
0115 For instance, FIG. 10 depicts a flowchart 1000 of a
method for using profile data to improve Script startup,
according to an example embodiment. In an embodiment,
startup module 920 may perform the method of flowchart
1000. The method of flowchart 1000 is described as follows.

0116. The method of flowchart 1000 begins with step
1002. In step 1002, the profile data is accessed to determine
the portion of the bytecode to be executed during startup. As
described above, startup module 920 may access profile data
320 to determine startup bytecode indicated to be executed at
the beginning of execution of source code 208. In an embodi
ment, the startup bytecode may be associated with an identi
fier for source code 208. For example, in an embodiment,
startup profiler 504 of FIG. 5 may generate a hash value or
other identifier for source code 208 when identifying startup
bytecode for source code 208. The hash value (or other iden
tifier) may be indicated in profile data 320 with the indication
of the startup bytecode. When source code 208 is again
executed from the beginning, startup module 920 may gen
erate a hash value (or other identifier) for source code 208,
and may compare the generated hash value with the hash
value stored in profile data 320 to identify source code 208
and its indicated startup bytecode. In other embodiments, the
startup bytecode for source code 208 may be identified in
profile data 320 in another manner.
0117. In step 1004, the determined startup bytecode por
tion is parsed and converted to bytecode prior to parsing and
converting to bytecode any of the remainder of the Source
code. For instance, once startup module 920 determines the
startup bytecode in profile information 320, startup module
920 may instruct parser 304 of FIG.3 to parse the portion of
source code 208 corresponding to the startup bytecode prior
to any other portion of source code 208. In this manner,
bytecode generator 306 generates the startup bytecode first,
and source code 208 can start executing more rapidly.
0118. As such, compiled bytecode may be generated for
portions of source code based on profile data. The compiled
bytecode may be executed so that the source code may be
executed more efficiently. Furthermore, the compiled byte
code may be saved to be used during future source code
execution.

0119. As described above, based on profile data, portions
ofascript may be compiled and executed on the fly rather than
being interpreted to improve Script execution efficiency. In
embodiments, the profile data may be saved in persistent
storage to be used later on during the current execution of the
script, and/or to be used in future executions of the script. For
instance, the profile data may be accessed in persistent Stor
age, and cached in memory for use during Subsequent Script
executions. During Such subsequent Script executions, addi
tional profile data may or may not be generated. By accessing

Jun. 26, 2014

the previously generated profile data, a script may be
executed more efficiently by using previously generated
machine code.

I0120 Runtime engine 300 of FIG. 3 may operate to
improve Script execution performance using previously-gen
erated profile data in various ways, in embodiments. For
instance, FIG. 11 shows a block diagram of execution con
troller 308 of FIG. 3, according to an example embodiment.
As shown in FIG. 11, execution controller 308 includes a
compiled code (CC) detector 1102, a condition checker 1104,
and a condition check failure (CCF) tracker 1106. Any one or
more of these features may be included in execution control
ler 308, in embodiments. These features of execution control
ler 308 are described as follows.

I0121 CC detector 1102 is configured to check whether
compiled bytecode for bytecode 324 currently to be executed
has already been generated and stored in storage. For
instance, FIG. 3 shows compiled bytecode 332 stored in
storage 314. Compiled bytecode 332 includes compiled byte
code that was previously generated by JIT compiler 312 for
execution. If CC detector 1102 determines that compiled
bytecode exists in storage for a portion of bytecode 324 that is
about to be executed, CC detector 1102 may cause the com
piled bytecode to be executed (e.g., by machine code executer
316) instead of bytecode being interpreted by interpreter 310
or being compiled by JIT compiler 332.
0.122 Condition checker 1104 is configured to perform
one or more checks on compiled bytecode (e.g., compiled
bytecode 332) to verify that conditions expected by the com
piled bytecode are satisfied. If one or more of the expected
conditions fail, condition checker 1104 may point execution
of bytecode 324 to interpreter 310, which executes the byte
code 324 at the appropriate point, rather than executing com
piled bytecode 332.
I0123 CCF tracker 1106 is configured to track condition
failures determined by condition checker 1104. CCF tracker
1106 may maintain statistics about the failed conditions, and
if a sufficient number of failed conditions for a compiled
bytecode portion is registered, CCF tracker 1106 may instruct
JIT compiler 312 to compile a new version of the compiled
bytecode portion (to replace the compiled bytecode portion
having failures).
(0.124 FIG. 12 depicts a flowchart 1200 of a method for
executing a script, according to an example embodiment. In
an embodiment, runtime engine 300 of FIG.3 may perform
the method of flowchart 1200. Further structural and opera
tional embodiments will be apparent to persons skilled in the
relevant art(s) based on the following discussion regarding
the method of flowchart 1200. The method of flowchart 1200
is described as follows.

(0.125. The method of flowchart 1200 begins with step
1202. In step 1202, a bytecode portion in the bytecode is
received. For example, as shown in FIG.3, a bytecode portion
(e.g., a function, a loop, etc.) is received by execution con
troller 308 in bytecode 324.
I0126. In step 1204, whether compiled bytecode for the
received bytecode portion is already stored is determined. For
example, referring to FIG. 11, CC detector 1102 may deter
mine whether compiled bytecode exists in storage 314 of
FIG. 3 for the received portion of bytecode 324. If the com
piled bytecode is not present, operation proceeds from step
1204 to step 1206. If the compiled bytecode is present, opera
tion proceeds from step 1204 to step 1208.

US 2014/O181591 A1

0127. In step 1206, the received bytecode portion is inter
preted. Interpreter 310 of FIG.3 may by enabled by execution
controller 308 to interpret the bytecode portion of bytecode
324 because a compiled version of the bytecode portion does
not already exist. For instance, in an embodiment, execution
controller 308 may point execution of bytecode 324 to an
address of interpreter 310, or may enable interpreter 310 to
interpret the bytecode portion in other manner.
0128. Note that alternatively, rather than performing step
1206 to interpret the bytecode portion, operation may proceed
from step 1204 to step 802 of flowchart 800 (FIG. 8), to
determine whether the bytecode portion may be optimized.
0129. In step 1208, at least one condition check is per
formed on the compiled bytecode portion. In an embodiment,
condition checker 1104 of FIG. 11 may perform one or more
condition checks on the compiled bytecode portion that
already exists in storage 314. For instance, one or more con
dition checks may be performed depending on the particular
code execution optimizer module (FIG. 9) that was used to
generate the compiled bytecode portion.
0130. For instance, machine code for a second function
may be generated by inlining module 902 to be inlined into a
first function in bytecode 324 due to prior history indicated in
profile data 310. However, if condition checker 1104 deter
mines in a Subsequent execution that a different function from
the second function is performed in bytecode 324 during the
first function, a failed condition occurs.
0131 The other code optimizer modules of FIG.9 may
rely on no changes occurring to relevant objects, properties,
types, expressions, calls to functions, and/or other bytecode
features in bytecode 324. However, if such a change occurs, a
failed condition may occur. For example, TS module 904 may
assume that a type change to a relevant object does not occur;
field hoisting module 906 may assume that hidden/implicit
calls that change relevant property values do not occur; RTC
module 908 may assume that a change to the structure of a
relevant object does not occur; CSE module 910 may assume
that hidden/implicit calls that change relevant object values
do not occur, ABC module 912 may assume that an array
index value does not go out of bounds; typed array module
914 may assume that changes to types of relevant arrays do
not occur; constructor pattern module 916 may assume that
changes to values of any of the expression objects do not
occur; and FCP module 918 may assume that a relevant object
property value is not changed. For each of these optimiza
tions, if a critical assumption turns out to be incorrect, a
condition failure occurs.
0.132. In step 1210, whether the condition check(s) passed

is determined. If a condition check of step 1208 fails, opera
tion proceeds from step 1210 to step 1206. If the condition
check(s) of step 1210 passes, operation proceeds from step
1210 to step 1212.
0133. In step 1212, the compiled bytecode portion is
executed instead of interpreting the received bytecode por
tion. For instance, because compiled bytecode exists for a
portion of bytecode 324, and any condition checks for the
compiled bytecode portion passed, the compiled bytecode
portion may be executed. In an embodiment, execution con
troller 308 may point execution of the compiled bytecode
portion in storage 314 to an address of machine code executer
316, or may enable machine code executer 316 to execute the
compiled bytecode portion in any other manner. For example,
as shown in FIG. 3, compiled bytecode 330 is received at
machine code executer 316 to be executed.

Jun. 26, 2014

I0134) Note that if operation proceeds from step 1210 to
step 1206 due to a condition failure, a “bailout' may be said
to have occurred. In a “bailout.” instead of executing already
compiled bytecode, the corresponding bytecode portion in
bytecode 324 is interpreted by interpreter 310. Such as bailout
is a relatively expensive process, as slower interpretation of
bytecode is performed rather than executing machine code.
As such, in an embodiment, rather than performing a bailout
due to a condition failure, a code module (e.g., "helper code')
that is configured to correct the failed condition may be per
formed, and execution of the compiled bytecode portion may
continue. Such helper code may be generated for any one or
more of the code execution optimizer modules described
above. For instance, with regard to TS module 904 and typed
array module 914, helper code may be executed to handle the
undesired type change that occurred.
I0135 Condition check failure (CCF) tracker 1106 of FIG.
11 may perform its functions in various ways. For instance,
FIG. 13 depicts a flowchart 1300 of a method for tracking the
condition checking of compiled bytecode, according to an
example embodiment. Further structural and operational
embodiments will be apparent to persons skilled in the rel
evant art(s) based on the following discussion regarding the
method of flowchart 1300.
I0136. The method of flowchart 1300 begins with step
1302. In step 1302, any condition check failures that occur
with regard to a compiled bytecode portion is/are tracked. For
example, as described above with respect to FIG. 11, CCF
tracker 1106 may record any condition failures detected by
condition checker 1104. For instance, CCF tracker 1106 may
maintain a table or other data structure in storage (e.g., in
memory) that indicates one or more compiled bytecode por
tions (e.g., by corresponding identifiers, etc.) that have had
condition failures, and indicates a number of condition fail
ures that have occurred for each indicated compiled bytecode
portion.
I0137 In step 1304, whether a predetermined number of
condition check failures have occurred is determined. In an
embodiment, CCF tracker 1106 may compare the indicated
number of condition failures for compiled bytecode portions
to a predetermined unacceptable number of condition failures
(e.g., 1, 2, 5, or other value).
0.138. In step 1306, the bytecode portion is compiled into
a second compiled bytecode portion. For instance, in an
embodiment, for each compiled bytecode portion that
reaches the predetermined number of condition failures, CCF
tracker 1106 may instruct JIT compiler 312 to recompile the
bytecode corresponding to the failed compiled bytecode por
tion to generate a new compiled bytecode portion. The prior
version of the complied bytecode portion may be deleted, and
the new compiled bytecode portion may be stored in storage
314 for future access.

III. Example Test Strategy for Profile-Guided Code
Execution Optimizers

0.139. The preceding section provided an example of a
system that is designed to optimize the execution of code
within an application or other computer program. In particu
lar, the preceding section provided an example of a system
that is designed to optimize the execution of scripts written in
a dynamic programming language based on profile data col
lected during the execution of such scripts. Embodiments will
now be described that may be used to test such a system. It is
noted, however, that the testing techniques described herein

US 2014/O181591 A1

are not limited to testing the system for optimized code execu
tion described in the preceding section, but may be used to test
any system that can optimize the execution of a script (or
other code) based on profile data that is collected during
execution thereof.

0140 FIG. 14 is a block diagram of a system 1400 that
may be used to test the system for optimized code execution
described in the preceding section. As shown in FIG. 14,
system 1400 includes each of the elements of runtime engine
300. These elements operate in the manner described above.
As also shown in FIG. 14, system 1400 further includes a
profile data mutator 1402. Profile data mutator 1402 operates
to mutate or modify profile data 320 between the point when
it is collected and the point when it is used by JIT compiler
312 to apply an optimization by selectively compiling a por
tion of a script. By mutating the profile data at this point,
testing of a system for optimized code execution can be
significantly more thorough. For example, if profile data is
collected that indicates that a particular variable included in
the script is an integer, mutating that profile data can cause
system 1400 to implement an optimization that treats the
variable as a floating point number. The result is that a differ
ent optimization will be applied, improving the testing cov
erage, without having to change the Script.
0141 FIG. 15 depicts a flowchart 1500 of a method for
testing a system for optimized code execution in accordance
with an embodiment. The method of flowchart 1500 may be
used to test a system, such as system 300 of FIG. 3, which is
configured to execute a script, to collect profile data concern
ing the script during execution thereof, and to perform JIT
compilation of selected portions of the script based on the
profile data to obtain efficient execution thereof. In an
embodiment, profile data mutator 1402 of FIG. 14 may per
form the method of flowchart 1500. Further structural and
operational embodiments will be apparent to persons skilled
in the relevant art(s) based on the following discussion
regarding the method of flowchart 1500. The method offlow
chart 1500 is described as follows.

0142. As shown in FIG. 15, the method of flowchart 1500
begins at step 1502 in which profile data associated with a
Script is received. This step may be performed, for example,
by profile data mutator 1402 which receives profile data 320
when such profile data 320 is to be provided to JIT compiler
312 to implement a particular code execution optimization.
The particular code execution optimization may be deter
mined by execution controller 308 in a manner previously
described and may include, for example, any one of the code
execution optimizations discussed above in reference to FIG.
9. Thus, for example, the code execution optimization may
relate to inlining, type specialization, field hoisting, redun
dant type checking, common Sub-expression elimination,
array bounds checking, typed arrays, constructor optimiza
tions, or field copy propagation. This list is not intended to be
exhaustive, however, and the profile data may be received
pursuant to implementing other types of code execution opti
mizations.

0143. At step 1504, one or more profile data entities within
the profile data are modified to facilitate testing. This step
may also be performed by profile data mutator 1402 to pro
duce one or more modified profile data entities 1404 as shown
in FIG. 14. Examples of various types of profile data entities
that may be modified and various ways in which such profile
data entities may be modified will be provided below.

Jun. 26, 2014

0144. At step 1506, the one or more modified profile data
entities are provided to a JIT compiler that performs JIT
compilation of selected portions of the script based on the
profile data to obtain efficient execution thereof. This step
may also be performed by profile data mutator 1402 which
provides one or more modified profile data entities 1404 to
JIT compiler 312. JIT compiler 312 uses the one or more
modified profile data entities, rather than the original unmodi
fied version of such modified profile data entities, to perform
JIT compilation of selected portions of the script. The result is
that a different optimization is applied than would have been
applied if JIT compiler 312 had received unmodified versions
of the one or more profile data entities.
0.145) A variety of different kinds of profile data entities
may be generated by profile data generator 204 and thus a
variety of different kinds of profile data entities may be
mutated by profile data mutator 1404. To help illustrate this,
it is observed that there are several sites within a script at
which profile data may be collected by profile data generator
204. By way of example, consider the following ECMAScript
code:

War X = ...;
war array = ...;
function g() { ... };
war obj= ...;
function f(a)

Each site in “f” at which profile data may be collected is
annotated with a comment. Table 1, below, provides details on
what the profile data collected is, and the kind of profile data.

TABLE 1

Examples of Profile Data Entities that May be Collected/Mutated

Profile Data
Site Kind Description

1 TYPE Type of the return value of the function
2 TARGET Call target of the function
3 ARRAYTYPE. Type of the value loaded from the array
4 TYPE Type of the function parameter
5 TYPE Type of the property loaded from the object
6 IMPLICIT Any implicit code execution that may not be

CALL statically detectable
7 TYPE Type of result of division

The examples provided above in Table 1 are not intended to be
limiting and persons skilled in the relevant art(s) will appre
ciate that other profile data entities may be collected/mutated
in accordance with alternate embodiments.

0146 Table 1 helps illustrate that there are several kinds of
profile data entities that may be collected and thus mutated.
Mutating a profile data entity may comprise changing the
profile data entity from a first valid value for the profile data
entity to a second valid value for the profile data entity. Table
2 below provides a summary of the various kinds of profile

US 2014/O181591 A1

data that may be collected and mutated in accordance with
one example embodiment, and the values that profile data of
that kind may be mutated to.

TABLE 2

Kinds of Profile Data Entities and Associated Valid Values

Kind Possible values

TYPE unknown, tagged integer, integer, number, string,
non-numberintegerstring

ARRAY mixed, number, integer, tagged integer, string,
TYPE character, uints, uint16, uint32, int&, int16,

int32, floatã2, floató4, boolean, pixel data
TARGET a reference to a function that may be called
IMPLICIT no implicit calls, toString, valueOf, property
CALL 80CESSO

The examples provided above in Table 2 are not intended to be
limiting and persons skilled in the relevant art(s) will appre
ciate that other kinds of profile data entities may be collected
and mutated in accordance with alternate embodiments. Fur
thermore, persons skilled in the relevant art(s) will appreciate
that profile data entities may have valid values other than
those shown in Table 2 in accordance with alternate embodi
mentS.

0147 The particular technique used to mutate the profile
data can take a number of forms, including but not limited to:
(1) random mutations; (2) user-specified mutations for each
kind of field in the profile data; and (3) user-specified muta
tions for each field in the profile data. In accordance with
technique (1), of the possible legal or valid values for each
entity in the profile data, a random value is chosen. That is to
say, each profile data entity is modified from a first valid value
to a second randomly-selected valid value. In accordance
with technique (2), all fields in the profile data of a particular
type are given the same mutation as specified by a tester. In
accordance with technique (3), the tester specifies a mutation
for each field in the profile data.
0148. To help illustrate each of these three approaches,
consider the following code:

War X = ...;
war array = ...;
function f(a,b,c)

Again, the comments illustrate the sites in the code where
profile data is collected by profile data generator 204.
0149. In one embodiment, if a tester chooses to utilize the
random mutation technique, each site at which profile data is
collected will receive random profile data. The profile data
that profile data mutator 1402 creates is valid for the kind of
profile data being collected. Thus, for the above code, an
example of a random mutation might be:

Jun. 26, 2014

TABLE 3

Example of Randon Mutation Approach

Profile Data
Site Kind Before Mutation After Mutation

1 ARRAYTYPE integer String
2 ARRAYTYPE integer number
3 ARRAYTYPE integer float?
4 TYPE number String
5 TYPE number non-number

integer string
6 TYPE number integer

This kind of mutation may be useful for “fuzz' testing the
code execution optimizer that consumes the profile data, find
ing potential issues by passing in many unexpected inputs.
0150. In an embodiment in which a tester specifies muta
tions for each kind of entity in the profile data, the test may
choose to broadly mutate each kind of profile data entity in the
same way. For example, the specified mutations may be:

TABLE 4

Example of Approach in which Mutations are Specified by Kind

Profile Data
Location Kind Before Mutation After Mutation

1 ARRAYTYPE integer String
2 ARRAYTYPE integer String
3 ARRAYTYPE integer string
4 TYPE number integer
5 TYPE number integer
6 TYPE number integer

This sort of mutation may be useful in stress testing the code
execution optimizer's consumption of particular values for
profile data entities.
0151. In an embodiment in which a tester specifies muta
tions for each entity in the profile data, the tester may choose
to directly specify the mutation applied to a profile data entity
associated with a particular location in the script. Using this
technique, the tester would be able to directly specify that, for
example, location #1 in the code shown above would receive
profile data value “string. This kind of mutation can be
useful to test combinations of profile data across different
locations, or to annotate real world code to test failure sce
narios.

0152 The foregoing examples of methods for mutating
profile data entities are provided herein by way of example
only and are not intended to be limiting. Based on the teach
ings provided herein, persons skilled in the relevant art(s) will
readily appreciate that still other methods may also be used to
mutate profile data entities in accordance with alternate
embodiments.

0153. One the profile data has been mutated, it may then be
used to test the system for optimized code execution. For
example, in one implementation, an automated tool that
crawls web sites and applications (i.e., a so-called web
crawler) is utilized to obtain scripts for execution by system
1400 while profile data mutator 1402 is operating to mutate
collected profile data. Such automated tool may be executed
by a same machine upon which system 1400 is running,
although this is only and example and is not intended to be
limiting.

US 2014/O181591 A1

0154 System 1400 may also provide a means by which a
tester can specify a mutation technique to be applied by
profile data mutator 1402. For example, a tester may specify
the mutation technique with a series of flags or other indicator
(s) that are passed to profile data mutator 1402. In the embodi
ment shown in FIG. 14, the indicator(s) are stored within a
configuration file 1406 that can be accessed and edited by the
tester. The indicator(s) set within configuration file 1406 by
the tester are then passed to profile data mutator 1402 and
profile data mutator applies a particular mutation technique
based on the value of the indicator(s). However, this is only
one example of a method by which a tester can control profile
data mutator to apply a specific mutation technique and still
other methods may be used. For example, such indicator(s)
could be included within a registry key that is passed to profile
data mutator 1402. As another example, command line argu
ments or parameters may be input by the tester to specify the
desired mutation technique. As still another example, a
graphical user interface may be displayed to the tester that
enables the tester to choose which profile data entities to
mutate and how to mutate them. In an alternate implementa
tion, profile data mutator 1402 may not be controllable by a
tester and may apply profile data mutations in a fixed manner.
0155 By using the modified profile data output by profile
data mutator 1402, much more thorough coverage of optimi
Zations and recovery scenarios is obtained as compared to
traditional testing techniques such as manual testing or
directed testing. This leads to a more scalable and efficient
testing technique for profile-guided systems for optimized
code execution. Thus, embodiments described herein enable
a scalable, machine-driven method of testing the functional
correctness of a profile-guided system for optimized code
execution, by mutating the profile data during code execution.
0156. As previously noted, the testing techniques
described herein are not limited to the profile-guided code
execution optimization system described in the preceding
section, but instead may be used to test any system that can
optimize the execution of a script (or other code) based on
profile data that is collected during execution thereof. To help
illustrate this, FIG. 16 depicts a flowchart 1600 of a general
ized method for testing a profile-guided code execution opti
mizer in accordance with an embodiment. As shown in FIG.
16, the method offlowchart 1600 begins at step 1602 in which
profile data associated with code is received. At step 1604,
one or more data entities with the profile data received during
step 1602 are modified to facilitate testing of the profile
guided code execution optimizer. At step 1606, the one or
modified profile data entities are provided to the profile
guided code execution optimizer, which uses the modified
profile data entities to implement an execution optimization
to at least a portion of the code.

IV. Example Computing Device Embodiments

0157 FIG. 17 depicts an example processor-based com
puter system 1700 that may be used to implement various
embodiments described herein. For example, system 1700
may be used to implement computing device 102, server 104,
runtime engine 202, runtime engine 300, system 1400, or any
of the components thereof. System 1700 may also be used to
implement the methods of any of flowcharts 400, 600, 700,
800, 1000, 1200, 1300, 1500 and 1600. The description of
system 1700 provided herein is provided for purposes of
illustration, and is not intended to be limiting. Embodiments

Jun. 26, 2014

may be implemented in further types of computer systems, as
would be known to persons skilled in the relevant art(s).
0158. As shown in FIG. 17, system 1700 includes a pro
cessing unit 1702, a system memory 1704, and abus 1706 that
couples various system components including system
memory 1704 to processing unit 1702. Processing unit 1702
may comprise one or more processors or processing cores.
Bus 1706 represents one or more of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
or local bus using any of a variety of bus architectures. System
memory 1704 includes read only memory (ROM) 1708 and
random access memory (RAM) 1710. A basic input/output
system 1712 (BIOS) is stored in ROM 1708.
0159. System 1700 also has one or more of the following
drives: a hard disk drive 1714 for reading from and writing to
a hard disk, a magnetic disk drive 1716 for reading from or
writing to a removable magnetic disk 1718, and an optical
disk drive 1720 for reading from or writing to a removable
optical disk 1722 such as a CD ROM, DVD ROM, BLU
RAYTM disk or other optical media. Hard disk drive 1714,
magnetic disk drive 1716, and optical disk drive 1720 are
connected to bus 1706 by a hard disk drive interface 1724, a
magnetic disk drive interface 1726, and an optical drive inter
face 1728, respectively. The drives and their associated com
puter-readable media provide nonvolatile storage of com
puter-readable instructions, data structures, program modules
and other data for the computer. Although a hard disk, a
removable magnetic disk and a removable optical disk are
described, other types of computer-readable media can be
used to store data, Such as flash memory cards, digital video
disks, random access memories (RAMS), read only memories
(ROM), and the like.
0160 A number of program modules may be stored on the
hard disk, magnetic disk, optical disk, ROM, or RAM. These
program modules include an operating system 1730, one or
more application programs 1732, other program modules
1734, and program data 1736. In accordance with various
embodiments, the program modules may include computer
program logic that is executable by processing unit 1702 to
perform any or all of the functions and features of any of
computing device 102, server 104, runtime engine 202, runt
ime engine 300, or system 1400 as described above as well as
any components included therein. The program modules may
also include computer program logic that, when executed by
processing unit 1702, performs any of the steps or operations
shown or described in reference to flowcharts 400, 600, 700,
800, 1000, 1200, 1300, 1500 and 1600.
0.161. A user may enter commands and information into
system 1700 through input devices such as a keyboard 1738
and a pointing device 1740. Other input devices (not shown)
may include a microphone, joystick, game controller, Scan
ner, or the like. In one embodiment, a touchscreen is provided
in conjunction with a display 1744 to allow a user to provide
user input via the application of a touch (as by a finger or
stylus for example) to one or more points on the touchscreen.
These and other input devices are often connected to process
ing unit 1702 through a serial port interface 1742 that is
coupled to bus 1706, but may be connected by other inter
faces, such as but not limited to a parallel port, game port, or
a universal serial bus (USB).
0162. A display 1744 is also connected to bus 1706 via an
interface, such as a video adapter 1746. In addition to display

US 2014/O181591 A1

1744, system 1700 may include other peripheral output
devices (not shown) Such as speakers and printers.
0163 System 1700 is connected to a network 1748 (e.g., a
local area network or wide area network such as the Internet)
through a network interface or adapter 1750, a modem 1752,
or other Suitable means forestablishing communications over
the network. Modem 1752, which may be internal or external,
is connected to bus 1706 via serial port interface 1742.
0164. As used herein, the terms “computer program
medium.” “computer-readable medium, and “computer
readable storage medium' are used to generally refer to
media such as the hard disk associated with hard disk drive
1714, removable magnetic disk 1718, removable optical disk
1722, as well as other media such as flash memory cards,
digital video disks, random access memories (RAMS), read
only memories (ROM), and the like. Such computer-readable
storage media are distinguished from and non-overlapping
with communication media (do not include communication
media). Communication media typically embodies com
puter-readable instructions, data structures, program modules
or other data in a modulated data signal Such as a carrier wave.
The term "modulated data signal” means a signal that has one
or more of its characteristics set or changed in Such a manner
as to encode information in the signal. By way of example,
and not limitation, communication media includes wireless
media Such as acoustic, RF, infrared and other wireless
media. Embodiments are also directed to such communica
tion media.

0.165. As noted above, computer programs and modules
(including application programs 1732 and other program
modules 1734) may be stored on the hard disk, magnetic disk,
optical disk, ROM, or RAM. Such computer programs may
also be received via network interface 1750, serial port inter
face 1742, or any other interface type. Such computer pro
grams, when executed or loaded by an application, enable
system 1700 to implement features of embodiments of the
present invention discussed herein. Accordingly, Such com
puter programs represent controllers of system 1700.
0166 Embodiments are also directed to computer pro
gram products comprising software stored on any computer
useable medium. Such software, when executed in one or
more data processing devices, causes a data processing device
(s) to operate as described herein. Embodiments of the
present invention employ any computer-useable or computer
readable medium, known now or in the future. Examples of
computer-readable mediums include, but are not limited to
storage devices such as RAM, hard drives, floppy disks, CD
ROMs, DVD ROMs, zip disks, tapes, magnetic storage
devices, optical storage devices, MEMs, nanotechnology
based storage devices, and the like.
0167. In alternative implementations, any of computing
device 102, server 104, runtime engine 202, runtime engine
300, system 1400, or any of the components thereof may be
implemented as hardware logic/electrical circuitry or firm
ware. In accordance with further embodiments, one or more
of these components may be implemented in a system-on
chip (SoC). The SoC may include an integrated circuit chip
that includes one or more of a processor (e.g., a microcon
troller, microprocessor, digital signal processor (DSP), etc.),
memory, one or more communication interfaces, and/or fur
ther circuits and/or embedded firmware to perform its func
tions.

Jun. 26, 2014

V. CONCLUSION

0168 While various embodiments of the present invention
have been described above, it should be understood that they
have been presented by way of example only, and not limita
tion. It will be understood by those skilled in the relevant
art(s) that various changes in form and details may be made
therein without departing from the spirit and scope of the
invention as defined in the appended claims. Accordingly, the
breadth and scope of the present invention should not be
limited by any of the above-described exemplary embodi
ments, but should be defined only in accordance with the
following claims and their equivalents.
What is claimed is:
1. A system, comprising:
one or more processing units; and
a memory coupled to the one or more processing units, the
memory storing software modules for execution by the
one or more processing units, the Software modules
comprising:
a runtime engine that is configured to execute a script, to

collect profile data concerning the script during
execution thereof, and to perform just-in-time (JIT)
compilation of selected portions of the Script based on
the profile data to obtain efficient execution thereof;
and

a profile data mutator that is configured to modify one or
more profile data entities within the profile data to
facilitate testing of the runtime engine.

2. The system of claim 1, wherein the script is coded in a
dynamic programming language.

3. The system of claim 1, wherein the runtime engine is
configured to execute a byte code representation of the Script,
to collect profile data concerning the byte code representation
of the script during execution thereof, and to perform JIT
compilation of selected portions of the byte code representa
tion of the script based on the profile data to obtain efficient
execution thereof.

4. The system of claim 1, wherein the profile data mutator
is configured to modify one or more kinds of profile data
entities, the one or more kinds of profile data entities includ
ing one or more of

a type of a return value of a function;
a call target of a function;
a type of a value loaded from an array;
a type of a function parameter,
a type of a property loaded from an object;
an implicit code execution that may not be statically detect

able; and
a type of a result of a division.
5. The system of claim 1, wherein the profile data mutator

is configured to modify the one or more profile data entities
within the profile data by changing a value of each profile data
entity from a first valid value to a second randomly-deter
mined valid value.

6. The system of claim 1, wherein the profile data mutator
is configured to modify profile data entities of a kind specified
by a user.

7. The system of claim 1, wherein the profile data mutator
is configured to modify a user-specified profile data entity
associated with a particular location within the Script.

8. The system of claim 1, wherein the profile data mutator
is configured to identify the one or more profile data entities
to be modified based on information stored in a configuration
file.

US 2014/O181591 A1

9. The system of claim 1, wherein the profile data mutator
is configured to identify the one or more profile data entities
to be modified based on information stored in a registry key.

10. The system of claim 1, wherein the profile data mutator
is configured to identify the one or more profile data entities
to be modified based on user input received via a user inter
face.

11. The system of claim 1, wherein the memory further
StOres:

an automated tool configured to sequentially access a plu
rality of web pages that include web page scripts and to
provide the web page scripts to the runtime engine for
execution.

12. A computer-implemented method for testing a system
that is configured to execute a script, to collect profile data
concerning the Script during execution thereof, and to per
form just-in-time (JIT) compilation of selected portions of the
script based on the profile data to obtain efficient execution
thereof, the method comprising:

modifying one or more profile data entities within the
profile data; and

providing the one or more modified profile data entities to
a JIT compiler that performs the JIT compilation of the
selected portions of the script based on the profile data to
obtain efficient execution thereof.

13. The method of claim 12, wherein modifying the one or
more profile data entities comprises modifying one or more
kinds of profile data entities, the one or more kinds of profile
data entities including one or more of

a type of a return value of a function;
a call target of a function;
a type of a value loaded from an array;
a type of a function parameter,
a type of a property loaded from an object;
an implicit code execution that may not be statically detect

able; and
a type of a result of a division.
14. The method of claim 12, wherein modifying the one or

more profile data entities comprises changing a value of each
profile data entity from a first valid value to a second ran
domly-determined valid value.

15. The method of claim 12, wherein modifying the one or
more profile data entities comprises modifying profile data
entities of a kind specified by a user.

Jun. 26, 2014

16. The method of claim 12, wherein modifying the one or
more profile data entities comprises modifying a user-speci
fied profile data entity associated with a particular location
within the script.

17. The method of claim 12, wherein modifying the one or
more profile data entities comprises identifying the one or
more profile data entities to be modified based on information
stored in a configuration file, information stored in a registry
key, or user input received via a user interface.

18. A method for testing a profile-guided code execution
optimizer that is configured to execute code, to collect profile
data concerning the code during execution thereof, and to
implement optimizations to the execution of the code based
on the profile data, the method comprising:

receiving the profile data;
modifying one or more profile data entities within the

profile data; and
providing the one or more modified profile data entities to

the profile-guided code execution optimizer that opti
mizes at least a portion of the code based on the one or
more modified profile data entities.

19. The method of claim 18, wherein modifying the one or
more profile data entities comprises modifying one or more
kinds of profile data entities, the one or more kinds of profile
data entities including one or more of

a type of a return value of a function;
a call target of a function;
a type of a value loaded from an array;
a type of a function parameter,
a type of a property loaded from an object;
an implicit code execution that may not be statically detect

able; and
a type of a result of a division.
20. The method of claim 18, wherein modifying the one or

more profile data entities comprises performing one or more
of:

changing a value of each profile data entity from a first
valid value to a second randomly-determined valid
value;

modifying profile data entities of a kind specified by a user;
and

modifying a user-specified profile data entity associated
with a particular location within the script.

k k k k k

