

EP 4 089 704 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:
09.04.2025 Bulletin 2025/15

(51) International Patent Classification (IPC):
H01H 33/12 (2006.01) **H01H 31/00 (2006.01)**
H01H 33/666 (2006.01) **H01H 3/42 (2006.01)**

(21) Application number: **21173739.0**

(52) Cooperative Patent Classification (CPC):
H01H 33/127; H01H 31/003; H01H 3/42;
H01H 33/022; H01H 33/122; H01H 33/666

(22) Date of filing: **13.05.2021**

(54) A MEDIUM VOLTAGE SWITCHING APPARATUS

MITTELSPANNUNGSSCHALTvorrichtung

APPAREIL DE COMMUTATION MOYENNE TENSION

(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

• **Corti, Davide**
I-24027 Nembro (BG) (IT)
• **Rambaldini, Simone**
I-20037 Paderno Dugnano (MI) (IT)

(43) Date of publication of application:
16.11.2022 Bulletin 2022/46

(74) Representative: **De Bortoli, Eros et al**
Zanoli & Giavarini S.p.A.
Via Melchiorre Gioia, 64
20125 Milano (IT)

(73) Proprietor: **ABB Schweiz AG**
5400 Baden (CH)

(56) References cited:
DE-A1- 102010 045 233 DE-A1- 102011 087 630
US-A- 4 268 890

(72) Inventors:
• **Invernizzi, Pierluigi**
I-24030 Corna Imagna (BG) (IT)

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

[0001] The present invention relates to a switching apparatus for medium voltage electric systems, more particularly to a load-break switch for medium voltage electric systems.

[0002] Load-break switches are well known in the state of the art.

[0003] These switching apparatuses, which are generally used in secondary distribution electric grids, are capable of providing circuit-breaking functionalities (namely breaking and making a current) under specified circuit conditions (typically nominal conditions for breaking a current and nominal conditions or fault conditions for making a current) as well as providing circuit-disconnecting functionalities (namely grounding a load-side section of an electric circuit).

[0004] Most traditional load-break switches of the state of the art have their electric poles immersed in a sulphur hexafluoride (SF_6) atmosphere as this insulating gas ensures excellent performances in terms of dielectric insulation between live parts and arc-quenching capabilities when currents are interrupted.

[0005] As is known, however, SF_6 is a powerful greenhouse gas and its usage is subject to severe restriction measurements for environmental preservation purposes. For this reason, over the years, there has been made a considerable effort to develop and design load-break switches not employing SF_6 as an insulating gas.

[0006] Some load-break switches have been developed, in which electric poles are immersed in pressurized dry air or in an environment-friendly insulation gas, such as mixtures of oxygen, nitrogen, carbon dioxide and/or fluorinated gases. Unfortunately, the experience has shown that these switching apparatuses generally do not show fully satisfactory performances, particularly in terms of arc-quenching capabilities and dielectric insulation.

[0007] Additionally, they generally adopt complicated solutions to operate their electric contact arrangements and they still offer poor performances in terms of structural compactness and reliability in operation.

[0008] DE 10 2011 087630 A1 discloses a switching apparatus according to the preamble of claim 1. Moreover, US 4 268 890 A discloses a switching apparatus lacking the track member mentioned in claim 1.

[0009] The main aim of the present invention is to provide a switching apparatus for MV electric systems that allows solving or mitigating the above-mentioned technical problems.

[0010] More particularly, it is an object of the present invention to provide a switching apparatus ensuring high-level performances in terms of dielectric insulation and arc-quenching capabilities during the current breaking process.

[0011] Another object of the present invention is to provide a switching apparatus showing high levels of reliability in operation.

[0012] Another object of the present invention is to provide a switching apparatus having electric poles with high compactness and structural simplicity.

[0013] Another object of the present invention is to provide a switching apparatus that can be easily manufactured at industrial level, at competitive costs with respect to the solutions of the state of the art.

[0014] In order to fulfill these aim and objects, the present invention provides a switching apparatus, according to the following claim 1 and the related dependent claims.

[0015] In a general definition, the switching apparatus of the invention comprises one or more electric poles.

[0016] The switching apparatus comprises, for each electric pole, a first pole terminal, a second pole terminal and a ground terminal. In operation, the first pole terminal can be electrically coupled to a first conductor of an electric line, the second pole terminal can be electrically coupled to a second conductor of said electric line and the ground terminal can be electrically coupled to a grounding conductor.

[0017] The switching apparatus comprises, for each electric pole, a fixed contact assembly including a plurality of fixed contact members spaced one from another.

[0018] In particular, said fixed contact assembly comprises a first fixed contact member electrically connected to the first pole terminal, a second fixed contact member and a third fixed contact member electrically connected to the second pole terminal, and a fourth fixed contact member electrically connected to the ground terminal.

[0019] The switching apparatus comprises, for each electric pole, a movable contact assembly rotatable about a rotation axis. Said movable contact assembly comprises:

- a first main contact member couplable to the first fixed contact member or the fourth fixed contact member, upon a rotational movement of said movable contact assembly about said rotation axis;
- a second main contact member couplable to the second fixed contact member or the third fixed contact member, upon a rotational movement of said movable contact assembly about said rotation axis;
- a vacuum chamber and a pair of arc contact members that are accommodated within said vacuum chamber and that can be mutually coupled or decoupled. Each arc contact member is electrically connected in series to a corresponding main contact member.

[0020] According to the invention, when the movable

[0021] The movable contact assembly is reversibly movable about said rotation axis in a first end-of-run position, which corresponds to a closed state of said switching apparatus, in a second end-of-run position, which corresponds to an earthed state of said switching apparatus, and in an intermediate position, which corresponds to an open state of said switching apparatus.

[0022] According to the invention, when the movable

contact assembly is in said intermediate position, the first main contact member is decoupled from the first and fourth fixed contact members, the second main contact member is decoupled from the second and third fixed contact members, and the arc contact members are coupled one to another.

[0021] Conveniently, when the movable contact assembly is in the first end-of-run position, the first main contact member is coupled to the first fixed contact member, the second main contact member is coupled to the second fixed contact member, and the arc contact members are coupled one to another.

[0022] Conveniently, when the movable contact assembly is in the second end-of-run position, the first main contact member is coupled to the fourth fixed contact member, the second main contact member is coupled to the third fixed contact member, and the arc contact members are coupled one to another.

[0023] According to an aspect of the invention, the above-mentioned arc contact members comprise a fixed arc contact member and a movable arc contact member. The movable arc contact member can be coupled to or decoupled from the fixed arc contact member by moving along a translation axis perpendicular to said rotation axis.

[0024] According to an aspect of the invention, the switching apparatus comprises, for each electric pole, at least a track member having a track surface with a cam profile and at least a drive member solidly coupled with the movable arc contact member.

[0025] Each drive member is adapted to slide along the track surface of a corresponding track member, upon a rotational movement of said movable contact assembly about said rotation axis.

[0026] Each drive member actuates said movable arc contact member along a translation axis perpendicular to said rotation axis between a coupled position to and an uncoupled position from said fixed arc contact member, when sliding along said track surface.

[0027] When the movable contact assembly is in said first end-of run position, each drive member is in a first position along said track surface.

[0028] When the movable contact assembly is in said intermediate position, the drive member is in said second position along said track surface.

[0029] When the movable contact assembly is in said second end-of run position, the drive member is in a third position along said track surface.

[0030] Conveniently, said second position is intermediate between said first and third positions.

[0031] Each drive member slides along a first track surface portion with a cam profile, when moving between said first and second positions, and it slides along a second track surface portion with a cam profile, when moving between said second and third positions.

[0032] Each drive member actuates the movable arc contact member to a coupled position to said fixed arc contact member, when said drive member is in said first

position or in said second position or in said third position along said track surface.

[0033] Each drive member actuates the movable arc contact member along said translation axis between a coupled position to and an uncoupled position from said fixed arc contact member, when sliding along said first track surface portion or said second track surface portion.

[0034] According to an aspect of the invention, each movable contact assembly comprises a cam mechanism coupled to the movable arc contact member.

[0035] Said cam mechanism is adapted to press the movable arc contact member against the fixed arc contact member, when said movable arc contact member is coupled to said fixed arc contact member and said movable contact assembly is in said first end-of-run position or in said second end-of-run position.

[0036] Preferably, the cam mechanism comprises:

- a push member movable with respect to the movable arc contact member along said translation axis;
- a spring member arranged along said translation axis and coupled to the push member and to the movable arc contact member.

[0037] According to some embodiments of the invention, the cam mechanism comprises a slider member coupled to the push member and couplable with one or more first cam surfaces or one or more second cam surfaces, when the movable contact assembly is in said first end-of-run position or in said second end-of-run position. The slider member exerts, on the push member, an actuation force directed to cause the compression of the spring member and the consequent pressing of the movable arc contact member against the fixed arc contact member, when said slider member is coupled to said one or more first cam surfaces or said one or more second cam surfaces.

[0038] According to other embodiments of the invention, the cam mechanism comprises a lever member having a cam profile and couplable to said push member and to one or more first sliding surfaces or one or more second sliding surfaces, when the movable contact assembly is in said first end-of-run position or in said second end-of-run position.

[0039] The lever member exerts, on the push member, an actuation force directed to cause the compression of the spring member and the consequent pressing of the movable arc contact member against the fixed arc contact member, when said lever member is coupled to said one or more first sliding surfaces or said one or more second sliding surfaces.

[0040] Further characteristics and advantages of the invention will emerge from the description of preferred, but not exclusive embodiments of the switching apparatus, according to the invention, non-limiting examples of which are provided in the attached drawings, wherein:

- Figures 1 is a schematic view of the switching appa-

- ratus, according to the invention;
- Figures 2-4 are schematic views partially showing an embodiment of the switching apparatus, according to the invention;
- Figures 5-7 are schematic views partially showing another embodiment of the switching apparatus, according to the invention;
- Figures 8-16 are schematic views illustrating operation of the switching apparatus of Figs. 5-7.

[0041] With reference to the figures, the present invention relates to a switching apparatus 1 for medium voltage electric systems.

[0042] For the purpose of the present application, the term "medium voltage" (MV) relates to operating voltages at electric power distribution level, which are higher than 1 kVAC and 1.5 kV DC up to some tens of kV, e.g. up to 72 kV AC and 100 kV DC.

[0043] The switching apparatus 1 is particularly adapted to operate as a load-break switch. It is therefore designed for providing circuit-breaking functionalities under specified circuit conditions (normally nominal conditions for making a current and nominal conditions or fault conditions for making a current) as well as circuit-disconnecting functionalities, in particular grounding a load-side section of an electric circuit.

[0044] The switching apparatus 1 comprises one or more electric poles 2.

[0045] Preferably, the switching apparatus 1 is of the multi-phase (e.g. three-phase) type and it comprises a plurality (e.g. three) of electric poles 2.

[0046] Preferably, the switching apparatus 1 comprises an insulating housing 4, which conveniently defines an internal volume where the electric poles 2 are accommodated.

[0047] Preferably, the insulating housing 4 has an elongated shape (e.g. substantially cylindrical or parallelepiped-like) developing along a main longitudinal axis A1 (figure 1). The electric poles 2 are arranged side by side along the longitudinal axis A1 at corresponding transversal planes perpendicular the said longitudinal axis.

[0048] In general, the insulating housing 4 of the switching apparatus may be realized according to solutions of known type. Therefore, in the following, it will be described only in relation to the aspects of interest of the invention, for the sake of brevity.

[0049] Conveniently, the internal volume of the switching apparatus 1 is filled with pressurized dry air or another insulating gas having a low environmental impact, such as mixtures of oxygen, nitrogen, carbon dioxide and/or fluorinated gases.

[0050] For each electric pole 2, the switching apparatus 1 comprises a first pole terminal 11, a second pole terminal 12 and a ground terminal 13.

[0051] The first pole terminal 11 is adapted to be electrically coupled to a first conductor of an electric line (e.g. a phase conductor electrically connected to an equiva-

lent electric power source), the second pole terminal 12 is adapted to be electrically connected to a second conductor of an electric line (e.g. a phase conductor electrically connected to an equivalent electric load) while the ground pole terminal 13 is adapted to be electrically connected to a grounding conductor.

[0052] In general, the terminals 11, 12, 13 of each electric pole 2 of the switching apparatus may be realized according to solutions of known type. Therefore, in the following, they will be described only in relation to the aspects of interest of the invention, for the sake of brevity.

[0053] According to the invention, for each electric pole 2, the switching apparatus 1 comprises a fixed contact assembly including a plurality of fixed contact members 5, 6, 7, 8 spaced one from another.

[0054] The above-mentioned fixed contact assembly comprises a first fixed contact member 5, a second fixed contact member 6, a third fixed contact member 7 and a fourth fixed contact member 8, which are circumferentially spaced around the longitudinal axis A1.

[0055] Each fixed contact member 5, 6, 7, 8 is at least partially made of an electrically conductive material.

[0056] As shown in cited figures (figures 2 and 5), each fixed contact member 5, 6, 7, 8 is preferably formed by a shaped piece of conductive material provided with a pair of parallel blades including suitable free contact surfaces with other electric contacts.

[0057] In principle, however, each fixed contact member 5, 6, 7, 8 may be realized according to other solutions of known type (e.g. according to a single-blade configuration), which are here not described in details for the sake of brevity.

[0058] For each electric pole 2, the first fixed contact member 5 and the second fixed contact member 6 are accommodated in the internal volume of the switching apparatus at opposite sides of the insulating housing 4 with respect to the longitudinal axis A1, in particular at lower and upper walls of the insulating housing 4 (reference is made to a normal installation position of the switching apparatus, as shown in figure 1).

[0059] Preferably, the fixed contact members 5, 6 are aligned along a first reference plane perpendicular to said upper and lower walls of the insulating housing 4 and passing through the longitudinal axis A1.

[0060] The first fixed contact member 5 is electrically connected to the first pole terminal 11 while the second fixed contact member 6 is electrically connected to the second pole terminal 12. To this aim, the fixed contact members 5, 6 include suitable connecting portions for electrical connection with the corresponding pole terminals 11, 12.

[0061] For each electric pole 2, the third fixed contact member 7 and the fourth fixed contact member 8 are accommodated in the internal volume of the switching apparatus at further opposite sides of the insulating housing 4 with respect to the longitudinal axis A1, in particular at opposite lateral walls of the insulating housing (reference is made to a normal installation position of

the switching apparatus, as shown in figure 1).

[0062] Preferably, the fixed contact members 7, 8 are aligned along a second reference plane perpendicular to said lateral walls of the insulating housing 4 and passing through the longitudinal axis A1.

[0063] The third fixed contact member 7 is electrically connected to the second fixed contact member 6 (and, therefore, to the second pole terminal 12) through a suitable conductive member 67 formed, for example, by a shaped piece of electrically conductive material (as shown in the cited figures) or by an electric cable.

[0064] The fourth fixed contact member 8 is electrically connected to the ground terminal 13. To this aim, the fixed contact member 8 includes a suitable connecting portion for electrical connection with said ground terminal.

[0065] According to the invention, for each electric pole 2, the switching apparatus 1 comprises a movable contact assembly 10 including a plurality of contact members 15, 16, 17, 18.

[0066] The movable contact assembly 10 rotates as a whole about a suitable rotation axis A1 (which is preferably the main longitudinal axis of the switching apparatus) along a given plane of rotation perpendicular to said rotation axis.

[0067] The movable contact assembly 10 can rotate according to a first rotation direction R1 or according to a second rotation direction R2, which is opposite to the first rotation direction R1. With reference to an observation plane of figures 8-16, the above-mentioned first rotation direction R1 is oriented counter-clockwise while the above-mentioned second rotation direction R2 is oriented clockwise.

[0068] As it will better illustrated in the following, the movable contact assembly 10 moves according to the first rotation direction R1 during an opening manoeuvre or a disconnecting manoeuvre of the switching apparatus and it moves according to the second rotation direction R2 during a closing manoeuvre or a reconnecting manoeuvre of the switching apparatus.

[0069] Preferably, the switching apparatus 1 comprises a motion transmission shaft 3 made of electrically insulating material, which can rotate about the rotation axis A1.

[0070] Preferably, the switching apparatus 1 comprises an actuation assembly 30 providing suitable actuation forces to actuate the movable components of the switching apparatus.

[0071] The motion transmission shaft 3 is conveniently coupled to the movable actuation assembly 30 and to the movable contact assembly 10 of each electric pole.

[0072] The motion transmission shaft 3 thus transmits rotational mechanical forces to move the movable contact assembly 10 of each electric pole about the rotation axis A1 during the manoeuvres of the switching apparatus.

[0073] Preferably, the actuation assembly 30 comprises an actuator 30A coupled to the transmission shaft 3 through a suitable kinematic chain 30B. The actuator

30A may be, for example, a mechanical actuator, an electric motor or an electromagnetic actuator.

[0074] In general, the actuation assembly 30 of the switching apparatus may be realized according to solutions of known type. Therefore, in the following, it will be described only in relation to the aspects of interest of the invention, for the sake of brevity.

[0075] Preferably, the movable contact assembly 10 of each electric pole comprises a main support enclosure 9, which is preferably arranged centrally at the rotation axis A1.

[0076] Preferably, the support enclosure 9 is conveniently made of an electrically insulating material. Preferably, the support enclosure 9 has an elongated shape (e.g. substantially cylindrical or parallelepiped-like) extending along a corresponding longitudinal axis A2, which is perpendicular to the rotation axis A1.

[0077] Preferably, the support enclosure 9 is solidly coupled to the motion transmission shaft 3 in such a way to rotate together with this latter about the rotation axis A1.

[0078] More preferably, as shown in the cited figures (figures 2 and 5), the support enclosure 9 is made in one piece with the motion transmission shaft 3.

[0079] According to the invention, the movable contact assembly 10 of each electric pole comprises first and second main contact members 15, 16 adapted to rotate about the rotation axis A1.

[0080] Preferably, the first and second main contact members 15 protrude from opposite sides of the support enclosure 9, which face the opposite walls of the insulating housing 4 where the first and fourth fixed contact members 5, 8 and the second and third fixed contact members 6, 7 are located, respectively.

[0081] Preferably, the main contact members 15, 16 are aligned along the longitudinal axis A2.

[0082] The main contact members 15, 16 are solidly coupled to the support enclosure 9 so as to rotate about the rotation axis A1 together with this latter.

[0083] Each main contact member 15, 16 of the movable contact assembly 10 is at least partially made of an electrically conductive material.

[0084] As shown in cited figures (figures 2 and 5), each main contact member 15, 16 is preferably formed by a shaped piece of conductive material including a pair of parallel blades having suitable free contact surfaces with other electric contacts.

[0085] In principle, however, each main contact member 15, 16 may be realized according to other solutions of known type (e.g. according to a single-blade configuration), which are here not described in details for the sake of brevity.

[0086] In operation, upon a rotational movement of the movable contact assembly 10 about the rotation axis A1, the first main contact member 15 can be coupled to or decoupled from the first fixed contact member 5 or it can be coupled to or decoupled from the fourth fixed contact member 8 while the second main contact member 16 can

be coupled to or decoupled from the second fixed contact member 6 or it can be coupled to or decoupled from the third fixed contact member 7. According to the invention, the movable contact assembly 10 of each electric pole comprises a vacuum chamber 14 and a pair of arc contact members that are accommodated in said vacuum chamber and that can be coupled to or decoupled from one to another.

[0087] According to preferred embodiments of the invention shown in the cited figures, such arc contact members comprise a fixed arc contact member 17 and a movable arc contact member 18.

[0088] Preferably, the fixed arc contact member 17 is electrically connected to the first main contact member 15 while the movable arc contact member 18 is electrically connected to the second main contact member 16.

[0089] Preferably, the fixed arc contact member 17 is solidly coupled to the support enclosure 9 so as to rotate together with this latter about the rotation axis A1.

[0090] The fixed arc contact member 17 is at least partially made of an electrically conductive material. The fixed arc contact member 17 is preferably formed by an elongated piece of conductive material having one end coupled to a first connecting member 170 (e.g. formed by a bolt), which is in turn coupled to the first main contact member 15, and an opposite free end (e.g. T-shaped) including a suitable contact surface with the movable arc contact member 18 (figures 3 and 6).

[0091] In principle, however, the fixed arc contact member 17 may be realized according to other solutions of known type (e.g. with a blade configuration), which are here not described in details for the sake of brevity.

[0092] The movable arc contact member 18 is coupled to the support enclosure 9 so as to rotate together with this latter about the rotation axis A1. However, the movable arc contact member 18 is movable with respect to the enclosure 9 and the fixed arc contact member 17 along a translation axis (which is preferably the longitudinal axis A2) perpendicular to the rotation axis A1 of the movable contact assembly 10.

[0093] In operation, the arc contact member 18 can be coupled to or uncoupled from the arc fixed contact member 17 by moving along the translation axis A2.

[0094] Preferably, the movable arc contact member 18 is coupled to the second main contact member 16.

[0095] As shown in cited figures, the movable arc contact member 18 is preferably formed by a shaped piece of conductive material having one end coupled to a second connecting member 180 and an opposite free end (e.g. T-shaped) including a suitable contact surface with the fixed arc contact member 17.

[0096] The connecting member 180 is coupled to each blade of the second main contact member 16 and a first connecting pin 220 couples the blades of the second main contact member 16. In this way, the movable arc contact member 18 can move together with each blade along the translation axis A2 while rotating together with the movable contact assembly 10 about the rotation axis

A1 (figures 4 and 7).

[0097] As shown in cited figures, the connecting member 180 is preferably formed by a shaped piece of conductive material having a portion formed by a bolt coupled to the movable arc contact member 18 and another portion including a pair of parallel blades arranged in parallel to the blades of the second main contact member 16.

[0098] In principle, however, the movable arc contact member 18 may be realized according to other solutions of known type (e.g. according to a configuration), which are here not described in details for the sake of brevity.

[0099] As mentioned above, the movable contact assembly 10 of each electric pole comprises a vacuum chamber 14, in which a vacuum atmosphere is present.

[0100] Conveniently, the arc contact members 17, 18 are accommodated in the vacuum chamber 14, so that their contact surfaces are mutually coupled or decoupled inside said vacuum chamber, therefore being permanently immersed in a vacuum atmosphere.

[0101] The vacuum chamber 14 may be realized according to solutions of known type. Therefore, in the following, it will be described only in relation to the aspects of interest of the invention, for the sake of brevity.

[0102] In operation, the switching apparatus 1 is capable of switching in three different operating states.

[0103] In particular, the switching apparatus 1 can switch in:

- 30 - a closed state, in which each electric pole 2 has the first and second pole terminals 11, 12 electrically connected one to another and electrically disconnected from the ground terminal 13. When the switching apparatus is in a closed state, a line current or a fault current can flow along each electric pole 2 between the corresponding first and second pole terminals 11, 12; or
- 35 - an open state, in which each electric pole 2 has the first and second pole terminals 11, 12 and the ground terminal 13 electrically disconnected one from another. When the switching apparatus is in an open state, no currents can flow along the electric poles 2; or
- 40 - an earthed state, in which each electric pole 2 has the first and second pole terminals 11, 12 electrically disconnected one from another and the second pole terminal 12 and the ground terminal 13 electrically connected one to another. When the switching apparatus is in an earthed state, no line currents can flow along the electric poles 2. However, the second pole terminal 12 of each electric pole (and therefore the second line conductor connected thereto) is put at a ground voltage.

[0104] In operation, the switching apparatus 1 is capable of carrying out different types of manoeuvres, each corresponding to a given transition among the above-mentioned operating states.

[0105] In particular, the switching apparatus 1 is capable of carrying out:

- an opening manoeuvre when it switches from a closed state to an open state; or
- a closing manoeuvre when it switches from an open state to a closed state; or
- a disconnecting manoeuvre when it switches from an open state to an earthed state; or
- a reconnecting manoeuvre when it switches from an earthed state to an open state.

[0106] Obviously, the switching apparatus 1 can switch from a closed state to an earthed state by carrying out an opening manoeuvre and subsequently a disconnecting manoeuvre.

[0107] Similarly, the switching apparatus 1 can switch from an earthed state to a closed state by carrying out a reconnecting manoeuvre and subsequently a closing opening manoeuvre.

[0108] In order to carry out the above-mentioned manoeuvres of the switching apparatus, the above-mentioned motion transmission shaft 3 suitably drives the movable contact assembly 10 of each electric pole according to the above-mentioned first rotation direction R1 or second rotation direction R2.

[0109] In general, upon actuation by the motion transmission shaft 3, the movable contact assembly 10 of each electric pole is reversibly movable between a first end-of-run position P_A , which corresponds to a closed state of the switching apparatus, and a second end-of-run position P_C , which corresponds to an earthed state of the switching apparatus.

[0110] Conveniently, the movable contact assembly 10 passes through an intermediate position P_B , which corresponds to an open state of the switching apparatus, when it moves between the first and second end-of-run positions P_A , P_C (figures 8-16).

[0111] When the movable contact assembly 10 is in the first end-of-run position P_A , and the switching apparatus is in a closed state, the first main contact member 15 is coupled to the first fixed contact member 5 and decoupled from the fourth fixed contact member 8, the second main contact member 16 is coupled to the second fixed contact member 6 and decoupled from the third fixed contact member 7, and the movable arc contact member 18 is coupled to the fixed arc contact member 17.

[0112] When the movable contact assembly 10 is in the second end-of-run position P_C , and the switching apparatus is in an earthed state, the first main contact member 15 is decoupled from the first fixed contact member 5 and coupled to the fourth fixed contact member 8, the second main contact member 16 is decoupled from the second fixed contact member 6 and coupled to the third fixed contact member 7, and the movable arc contact member 18 is coupled to the fixed arc contact member 17.

[0113] When the movable contact assembly 10 is in the

intermediate position P_B and the switching apparatus is in an open state, the first main contact member 15 is decoupled from both the first and third fixed contact members 5, 8 and the second main contact member 16 is decoupled from both the second and third fixed contact members 6, 7.

[0114] Differently from the known arrangements of the state of the art, however, when the movable contact assembly 10 is in the intermediate position P_B , the movable arc contact member 18 is coupled to the fixed arc contact member 17.

[0115] This solution allows remarkably improving the overall dielectric behaviour of the switching apparatus since it prevents or reduces the arising of partial discharge phenomena in the internal volume of the switching apparatus, which may frequently occur due to parasitic capacitances, when the switching apparatus is an open state.

[0116] According to an aspect of the invention, each electric pole 2 comprises at least a track member 20 made of electrically insulating material and having a track surface 21 with a cam profile and at least a drive member 22 solidly coupled with the movable arc contact member 18 and slidably coupled to the track surface 21 of a corresponding track member 20.

[0117] Preferably, each electric pole 2 comprises a track member 20 and a corresponding drive member 22 for each blade of the second main contact member 16 (figures 2 and 5).

[0118] In the embodiments shown in the cited figures, each electric pole 2 comprises a pair of track members 20 and a corresponding pair of drive members 22, each slidably coupled to the track surface 21 of a corresponding track member 20.

[0119] Each track member 20 may be fixed to the insulating housing 4 or be integral part of this latter. In the embodiments shown in the cited figures, each track member 20 extends between the second fixed contact member 6 and the third fixed contact member 7, conveniently with a curved shape.

[0120] Preferably, the track surface 21 of each track member 20 is arranged at an outer edge of this latter, which faces the walls of the insulating housing 4 where the second and third fixed contact members 6, 7 are located.

[0121] Preferably, each drive member 22 is formed by a roller arranged in such a way to run along the track surface 21 of a corresponding track member 20.

[0122] In the embodiments shown in the cited figures, each drive member 22 is slidably coupled to the second main contact member 16.

[0123] Preferably, each drive member 22 is arranged externally to a corresponding blade of the second main contact member 16 and it is coupled to the movable arc contact member 18 by means of the above-mentioned connecting pin 220 and connecting member 180.

[0124] In the embodiments shown in the cited figures, the permanent contact of each drive member 22 with a

corresponding track surface 21 of the track member 20 is ensured by a coupling force generated by the negative pressure constantly exerted on the movable arc contact member 18 (and directed to move this latter towards the fixed arc contact member 17) as the movable arc contact member 18 is accommodated in the vacuum chamber 14.

[0125] According to other embodiments of the invention, however, the permanent contact of the drive member 22 with the track surface 21 may be ensured also in different additional ways, for example by suitably arranging a confined tracking slot in which the drive member 22 can slide. Conveniently, each drive member 22 slides along the track surface 21 of a corresponding track member 20, upon a rotational movement of the movable contact assembly 10 (and consequently of the movable arc contact 18) about the rotation axis A1.

[0126] In this way, when the movable contact assembly 10 is in the first end-of-run position P_A, the drive member 22 is in a first position T_A along the track surface 21 (figure 8), when the movable contact assembly 10 is in the intermediate position P_B, the drive member 22 is in a second position T_B along the track surface 21 (figure 12), and when the movable contact assembly 10 is in the second end-of-run position P_C, the drive member 22 is in a third position T_C along the track surface 21 (figure 16).

[0127] The second position T_B is obviously intermediate between the first and third positions T_A, T_C. In the embodiments shown in the cited figures, the first position T_A is conveniently located at the second fixed contact member 6, the third position T_C is located at the third fixed contact member 7 and the second position T_B is substantially equally spaced from the first and third positions T_A, T_C.

[0128] When it slides along a corresponding track surface 21 (following a curved trajectory), each drive member 22 actuates the movable arc contact member 18 along the translation axis A2 between a coupled position to fixed arc contact member 17 and an uncoupled position from said fixed arc contact member, as said track surface has a cam profile.

[0129] Preferably, the track surface 21 is shaped so that the movable arc contact member 18 is actuated in a coupled position to the fixed arc contact member 17, when the drive member 22 is in the first position T_A or in the second position T_B or in the third position T_C along the track surface 21.

[0130] Preferably, each drive member 22 slides along a first track surface portion 21A with a cam profile when it slides between the first and second positions T_A, T_B.

[0131] When sliding along the first track surface portion 21A, each drive member 22 actuates the movable arc contact member 18 along the longitudinal axis A2 between a coupled position to and an uncoupled position from the fixed arc contact member 17.

[0132] In particular, the first track surface portion 21A is shaped so that the movable arc contact member 18 is decoupled from the fixed arc contact member 17 and it is

subsequently coupled again with the fixed arc contact member 17, when the drive member 22 slides along said first track surface portion.

[0133] To this aim, referring to the observation plane of figures 8-16, the first track surface portion 21A conveniently includes first and second surface segments curved towards the fixed arc contact member 17 respectively in proximity of the first and second positions T_A, T_B and a second surface segment curved away from the fixed arc contact member 17 between said first and second surface segments.

[0134] Preferably, each drive member 22 slides along a second track surface portion 21B with a cam profile when it slides between the second and third positions T_B, T_C.

[0135] When sliding along the second track surface portion 21B, each drive member 22 actuates the movable arc contact member 18 along the longitudinal axis A2 between a coupled position to and an uncoupled position from the fixed arc contact member 17.

[0136] In particular, the second track surface portion 21B is shaped so that the movable arc contact member 18 is decoupled from the fixed arc contact member 17 and it is subsequently coupled again with the fixed arc contact member 17, when the drive member 22 slides along the second track surface portion 21B.

[0137] To this aim, referring to the observation plane of figures 8-16, the second track surface portion 21B includes fourth and fifth surface segments curved towards the fixed arc contact member 17 respectively in proximity of the second and third positions T_B, T_C and a sixth surface segment curved away from the fixed arc contact member 17 between said fourth and fifth surface segments.

[0138] According to an aspect of the invention, the movable contact assembly 10 of each electric pole 2 comprises a cam mechanism 25 coupled to the movable arc contact member 18.

[0139] The cam mechanism 25 is conveniently adapted to press the movable arc contact member 18 against the fixed arc contact member 17, when the movable arc contact member 18 is coupled to the fixed arc contact member 17 and the movable contact assembly 10 is in the first end-of-run position P_A or in the second end-of-run position P_C.

[0140] Preferably, the cam mechanism 25 comprises a push member 26, which is movable with respect to the movable contact member 18 (and to each blade of the of the second main contact member 16) along the translation axis A2 and a spring member 27 coupled to the push member 26 and to the movable arc contact member 18, more particularly to the above-mentioned connecting member 180.

[0141] Preferably, the push member 26 is formed by a sleeve arranged coaxially with the connecting member 180 along the longitudinal axis A2.

[0142] Preferably, the spring member 27 is preferably formed by a compression spring arranged along the

longitudinal axis A2 and having an end coupled to a coupling surface of the connecting member 180 and the opposite end coupled to a coupling surface of the push member 26.

[0143] According to some embodiments of the invention (figures 2-4), the cam mechanism 25 comprises a slider member 28 coupled to the push member 26.

[0144] The slider member 28 is couplable with one or more first cam surfaces 31 or with one or more second cam surfaces 32 when the movable contact assembly 10 is in the first end-of-run position P_A or in the second end-of-run position P_c , respectively.

[0145] When it is coupled to the one or more first cam surfaces 31 or the one or more second cam surfaces 32, the slider member 28 exerts on the push member 26 an actuation force, which is directed to cause the compression of the spring member 27 and the consequent pressing of the movable arc contact member 18 against the fixed arc contact member 17.

[0146] Preferably, the slider member 28 is formed by a roller rotatably coupled to a second connecting pin 280, which is, in turn, solidly coupled to the push member 26 (figure 4).

[0147] In the embodiment shown in 2-4, the slider member 28 is conveniently positioned in the gap between the parallel blades of the second main contact member 6 and it can move with respect to these latter along the translation axis A2.

[0148] Preferably, a first jig member 310 may be fixed to the second fixed contact member 6, conveniently between the parallel blades of this latter. As an alternative, the first jig member 310 may be realized in one piece with the second fixed contact member 6.

[0149] The first jig member 310 includes the one or more first cam surfaces 31 (figures 3 and 4). Similarly (figure 3), a second jig member 320 may be fixed to the third fixed contact member 7, conveniently between the parallel blades of this latter. Alternatively, the second jig member 320 may be realized in one piece with the third fixed contact member 7. The second jig member 320 includes the one or more second cam surfaces 32.

[0150] According to possible variants, the first and second cam surfaces 31, 32 may be part of jig members solidly coupled to or integrally made with the insulating housing 4.

[0151] According to other embodiments of the invention (figures 5-7), the cam mechanism 25 comprises a lever member 29, which comprises one or more first lever surfaces coupled with the push member 26 and one or more second lever surfaces couplable with one or more first sliding surfaces 33 or with one or more second sliding surfaces 34, when the movable contact assembly 10 is in the first end-of-run position P_A or in the second end-of-run position P_c .

[0152] When it is coupled to the one or more first sliding surfaces 33 or the one or more second sliding surfaces 34, the lever member 29 exerts on the push member 26 an actuation force, which is directed to cause the com-

pression of the spring member 27 and the consequent pressing of the movable arc contact member 18 against the fixed arc contact member 17.

[0153] The lever member 29 is preferably solidly coupled to the movable arc contact member 18 (more particularly to the second connecting member 180).

[0154] In the embodiments shown in figures 5-7, the lever member 29 is a cam lever rotatably coupled to the first connecting pin 220 and positioned between the parallel blades of the second main contact member 6.

[0155] Preferably, a third jig member 331, which supports first rollers 332, is fixed to the second fixed contact member 6 between the parallel blades of this latter. The first rollers 332 include the one or more first sliding surfaces 33 for the lever member 29 (figures 6 and 7).

[0156] Similarly (figure 6), a fourth jig member 334, which supports second rollers 342, is fixed to the third fixed contact member 7 between the parallel blades of this latter. The second rollers 334 include the one or more second sliding surfaces 34 for the lever member 29.

[0157] According to possible variants, the first and second cam surfaces 31, 32 may be provided by rollers suitably coupled to jig members solidly coupled to or integrally made with the insulating housing 4.

[0158] The operation of the switching apparatus 1 for each electric pole 2 is now described in more details with particular reference to the embodiment of the invention of figures 5-7. The switching apparatus 1 operates similarly in the embodiment of figure 2-4.

Closed state of the switching apparatus

[0159] When the switching apparatus is in a closed state, each electric pole 2 is in the operating condition illustrated in figure 8.

[0160] In this situation, in each electric pole 2:

- the movable contact assembly 10 is in the first end-of-run position P_A ;
- the first main contact member 15 is coupled to the first fixed contact member 5;
- the second main contact member 16 is coupled to the second fixed contact member 6;
- the movable arc contact member 18 is coupled to the fixed arc contact member 17;
- the cam mechanism 25 presses the movable arc contact member 18 against the fixed arc contact member 17;
- each guiding member 22 is in the first position T_A along the track surface 21 of the corresponding track element 20.

[0161] When an electric pole 2 is in this operating condition, a line current can flow between the first and second pole terminals 11, 12, the first and second fixed contact members 5, 6, the first and second main contact members 15, 16 and the first and second arc contact members 17, 18, which are all electrically connected in

series.

Open state of the switching apparatus

[0162] When the switching apparatus is in an open state, each electric pole 2 is in the operating condition illustrated in figure 12.

[0163] In this situation, in each electric pole 2:

- the movable contact assembly 10 is in the intermediate position P_B ;
- the first main contact member 15 is decoupled from the first fixed contact member 5 and the fourth fixed contact member 8;
- the second main contact member 16 is decoupled from the second fixed contact member 6 and the third fixed contact member 7;
- the movable arc contact member 18 is coupled to the fixed arc contact member 17;
- the cam mechanism 25 does not operate;
- each guiding member 22 is in the second position T_B along the track surface 21 of the corresponding track element 20.

[0164] When an electric pole 2 is in this operating condition, no current flows between the first and second pole terminals 11, 12.

Earthed state of the switching apparatus

[0165] When the switching apparatus is in an earthed state, each electric pole 2 is in the operating condition illustrated in figure 16.

[0166] In this situation, in each electric pole 2:

- the movable contact assembly 10 is in the second end-of-run position P_C ;
- the first main contact member 15 is coupled to the fourth fixed contact member 8;
- the second main contact member 16 is coupled to the third fixed contact member 7;
- the movable arc contact member 18 is coupled to the fixed arc contact member 17;
- the cam mechanism 25 presses the movable arc contact member 18 on the fixed arc contact member 17;
- each guiding member 22 is in the third position T_C along the track surface 21 of the corresponding track element 20.

[0167] When an electric pole 2 is in this operating condition, no line current flows between the first and second pole terminals 11, 12 and the second pole terminal 12 is put at a ground voltage.

Opening manoeuvre

[0168] The switching apparatus 1 carries out an open-

ing manoeuvre, when it switches from the closed state to the open state.

[0169] Initially, each electric pole 2 is therefore in the operating condition of figure 8.

5 **[0170]** During an opening manoeuvre of the switching apparatus, each movable contact assembly 10 moves, according to the first rotation direction R_1 , between the first end-of-run position P_A and the intermediate position P_B .

10 **[0171]** The first main contact member 15 moves away from the first fixed contact member 5 while the second main contact member 16 moves away from the second fixed contact member 6.

15 **[0172]** When the second main contact member 16 starts moving according to the first rotation direction R_1 , the lever member 29 progressively decouples from the first sliding surfaces 33 (figures 5-7). Similarly, in the embodiments of figures 2-4, the slider member 28 progressively decouples from the first cam surfaces 31.

20 **[0173]** In both cases, as a consequence, the spring member 27 is progressively released and the movable arc contact member 18 is no more pressed against the fixed contact member 17.

25 **[0174]** In the meanwhile, the guiding member 22 starts moving away from the first position T_A towards the second position T_B by sliding along the first track surface portion 21A portion. However, this latter is shaped so that the movable arc contact member 18 remains coupled to the fixed arc contact member 17 until the spring member 27 is released.

30 **[0175]** At this stage of the opening manoeuvre (figure 9), the first and second main contact members 15, 16 are still coupled respectively to the first and second fixed contact members 5, 6 and no arcing phenomena arise between the electric contacts under separation yet.

35 **[0176]** Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the first track surface portion 21A (in particular along the first segment of this latter) thereby moving towards the second position T_B (figure 10). The movable arc contact member 18 progressively decouples from the fixed arc contact member 17. The first track surface portion 21A is conveniently shaped so that the movable arc contact member 18 decouples from the fixed arc contact member 17 while the first and second main contact members 15 are still coupled to the first and second fixed contact members 5, 6. In this way, possible arcing phenomena caused by the progressive interruption of the current flowing along the electric pole arise only internally to the vacuum chamber 14. At this stage of the opening manoeuvre, the lever member 29 is decoupled from the first sliding surfaces 33. The cam mechanism 25 does not operate anymore and the spring member 27 is released.

50 **[0177]** Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the first track surface portion 21A (in particular along the third segment of this latter) thereby mov-

ing towards the second position T_B (figure 11).

[0178] The movable arc contact member 18 is decoupled from the fixed arc contact member 17 and the first and second main contact members 15, 16 are decoupled from the first and second fixed contact members 5, 6. No arcing phenomena are normally present between the electric contacts under separation at this stage of the opening manoeuvre as the interruption of the current flowing along the electric pole 2 is already completed.

[0179] At this stage of the opening manoeuvre, the cam mechanism 25 does not operate and the spring member 27 is released.

[0180] Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the first track surface portion 21A (in particular along the second segment of this latter) and it reaches the second position T_B , when the movable contact assembly 10 reaches the intermediate position P_B (figure 12).

[0181] The movable arc contact member 18 couples again to the fixed arc contact member 17 while the first and second main contact members 15, 16 remain decoupled from the first and second fixed contact members 5, 6.

[0182] At this final stage of the opening manoeuvre, the cam mechanism 25 does not operate and the spring member 27 is released.

[0183] The switching apparatus 1 is now in an open state.

Closing manoeuvre

[0184] The switching apparatus 1 carries out a closing manoeuvre, when it switches from the open state to the closed state.

[0185] Initially, each electric pole 2 is therefore in the operating condition of figure 12.

[0186] During a closing manoeuvre of the switching apparatus, each movable contact assembly 10 moves, according to the second rotation direction R2, between the intermediate position P_B and the first end-of-run position P_A .

[0187] The first main contact member 15 moves towards the first fixed contact member 5 while the second main contact member 16 moves towards the second fixed contact member 6.

[0188] When the second main contact member 16 starts moving according to the second rotation direction R2, the guiding member 22 moves away from the second position T_B towards the first position T_A by sliding along the first track surface portion 21A (in particular along the second segment of this latter). The movable arc contact member 18 thus progressively decouples from the fixed arc contact member 17 (figure 11).

[0189] At this stage of the closing manoeuvre, the cam mechanism 25 does not operate and the spring member 27 is released.

[0190] Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the first track surface portion 21A (in particular along the third segment of this latter) thereby moving towards the first position T_A (figure 10).

[0191] The movable arc contact member 18 is still decoupled from the fixed arc contact member 17 while the first and second main contact members 15, 16 progressively couple with the first and second fixed contact members 5, 6, respectively.

[0192] At this stage of the closing manoeuvre, the cam mechanism 25 does not operate and the spring member 27 is still released.

[0193] Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the first track surface portion 21A (in particular along the third and first segments of this latter) thereby moving towards the first position T_A (figure 9).

[0194] The movable arc contact member 18 progressively couples to the fixed arc contact member 17 while the first and second main contact members 15, 16 are already coupled to the first and second fixed contact members 5, 6.

[0195] In the meanwhile, the lever member 29 touches the first sliding surfaces 33 and starts exerting an increasing actuation force on the push member 26 (figures 5-7).

[0196] Similarly, in the embodiments of figures 2-4, the slider member 28 touches the first cam surfaces 31 and starts exerting an increasing actuation force on the push member 26.

[0197] In both cases, as a consequence, the spring member 27 is progressively compressed.

[0198] Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the first track surface portion 21A (in particular along the first segment of this latter) and it reaches the first position T_A , when the movable contact assembly 10 reaches the closed position P_A (figure 8).

[0199] The movable arc contact member 18 is coupled to the fixed arc contact member 17 and the first and second main contact members 15, 16 are coupled from the first and second fixed contact members 5, 6.

[0200] The lever member 29 is fully coupled to the sliding surfaces 33. Similarly, in the embodiments of figures 2-4, the slider member 28 is fully coupled to the cam surfaces 31.

[0201] In both cases, as a consequence, the spring member 27 reaches its maximum compression and the movable arc contact member 18 is pressed against the fixed arc contact member 17.

[0202] The switching apparatus 1 is now in a closed state.

Disconnecting manoeuvre

[0203] The switching apparatus 1 carries out a disconnecting manoeuvre, when it switches from an open state to an earthed state.

[0204] Obviously, before carrying out a disconnecting manoeuvre, the switching apparatus has to carry out an opening manoeuvre as described above in order to switch in an open state.

[0205] Initially, each electric pole 2 is therefore in the operating condition of figure 12.

[0206] During a disconnecting manoeuvre of the switching apparatus, each movable contact assembly 10 moves, according to the first rotation direction R1, between the intermediate position P_B and the second end-of-run position P_C .

[0207] The first main contact member 15 moves towards the fourth fixed contact member 8 while the second main contact member 16 moves towards the third fixed contact member 7.

[0208] When the second main contact member 16 starts moving according to the first rotation direction R1, the guiding member 22 moves away from the second position T_B towards the third position T_C by sliding along the second track surface portion 21B (in particular along the fourth segment of this latter). The movable arc contact member 18 progressively decouples from the fixed arc contact member 17 (figure 13).

[0209] At this stage of the opening manoeuvre, the cam mechanism 25 does not operate and the spring member 27 is released.

[0210] Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the second track surface portion 21B (in particular along the sixth segment of this latter) thereby moving towards the third position T_C (figure 14).

[0211] The movable arc contact member 18 is decoupled from the fixed arc contact member 17 while the first and second main contact members 15, 16 progressively couple to the fourth and third fixed contact members 8, 7, respectively.

[0212] At this stage of the opening manoeuvre, the cam mechanism 25 does not operate and the spring member 27 is still released.

[0213] Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the second track surface portion 21B (in particular along the fifth segment of this latter), thereby moving towards the third position T_C (figure 15).

[0214] The movable arc contact member 18 progressively couples to the fixed arc contact member 17 while the first and second main contact members 15, 16 are already coupled to the fourth and third fixed contact members 8, 7, respectively.

[0215] In the meanwhile, the lever member 29 touches the second sliding surfaces 34 and starts exerting an increasing actuation force on the push member 26 (figures 5-7).

[0216] Similarly, in the embodiments of figures 2-4, the slider member 28 touches the second cam surfaces 32 and starts exerting an increasing actuation force on the push member 26.

[0217] In both cases, as a consequence, the spring

member 27 is progressively compressed.

[0218] Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the second track surface portion 21B (in particular along the fifth segment of this latter) and reaches the third position T_C , when the movable contact assembly 10 reaches the second end-of-run position P_C (figure 16).

[0219] The movable arc contact member 18 is coupled to the fixed arc contact member 17 and the first and second main contact members 15, 16 are coupled to the fourth and third fixed contact members 8, 7, respectively.

[0220] The lever member 29 is fully coupled to the second sliding surfaces 34.

[0221] Similarly, in the embodiments of figures 2-4, the slider member 28 is fully coupled to the second cam surfaces 32.

[0222] In both cases, as a consequence, the spring member 27 reaches its maximum compression and the movable arc contact member 18 is pressed against the fixed arc contact member 17.

[0223] The switching apparatus 1 is now in an earthed state.

25

Reconnecting manoeuvre

[0224] The switching apparatus 1 carries out a reconnecting manoeuvre, when it switches from an earthed state to an open state.

[0225] Initially, each electric pole 2 is therefore in the operating condition of figure 16.

[0226] During a reconnecting manoeuvre of the switching apparatus, each movable contact assembly 10 moves, according to the second rotation direction R2, between the second end-of-run position P_C and the intermediate position P_B .

[0227] The first main contact member 15 moves away from the fourth fixed contact member 8 while the second main contact member 16 moves away from the third fixed contact member 7.

[0228] When the second main contact member 16 starts moving according to the second rotation direction R2, the lever member 29 progressively decouples from the second sliding surfaces 34 (figures 5-7).

[0229] Similarly, in the embodiments of figures 2-4, the slider member 28 progressively decouples from the second cam surfaces 32.

[0230] In both cases, as a consequence, the spring member 27 is progressively released and the movable arc contact member 18 is no more pressed against the fixed contact member 17 (figure 15).

[0231] In the meanwhile, the guiding member 22 starts moving away from the third position T_C towards the second position T_B by sliding along the second track surface portion 21B.

[0232] Upon a further movement of the movable contact assembly 10 towards the intermediate position P_B ,

according to the second rotation direction R2, the guiding member 22 keeps on sliding along the second track surface portion 21B (in particular along the fifth and sixth segments of this latter) thereby moving towards the second position T_B (figure 14). The movable arc contact member 18 progressively decouples from the fixed arc contact member 17.

[0233] At this stage of the opening manoeuvre, the cam lever 29 (or the slider member 28) is decoupled from the second sliding surfaces 34 (or the second cam surfaces 32). The cam mechanism 25 does not operate anymore and the spring member 27 is released.

[0234] Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the second track surface portion 21B (in particular along the fifth segment of this latter) thereby moving towards the second position T_B (figure 13).

[0235] The movable arc contact member 18 is decoupled from the fixed arc contact member 17 and the first and second main contact members 15, 16 are decoupled from the first and second fixed contact members 5, 6.

[0236] At this stage of the opening manoeuvre, the cam mechanism 25 does not operate and the spring member 27 is released.

[0237] Upon a further movement of the movable contact assembly 10, the guiding member 22 keeps on sliding along the second track surface portion 21B (in particular along the fourth segment of this latter). The guiding member 22 reaches the second position T_B when the movable contact assembly 10 reaches the intermediate position P_B (figure 12).

[0238] The movable arc contact member 18 couples again to the fixed arc contact member 17 while the first and second main contact members 15, 16 remain decoupled from the first and second fixed contact members 5, 6.

[0239] At this final stage of the reconnecting manoeuvre, the cam mechanism 25 does not operate and the spring member 27 is released.

[0240] The switching apparatus 1 is now in an open state.

[0241] The switching apparatus, according to the invention, provides remarkable advantages with respect to the known apparatuses of the state of the art.

[0242] In the switching apparatus of the invention, the electric contacts 17, 18 accommodated within the vacuum chamber 14 of each electric pole are transitionally decoupled during the manoeuvres of the switching apparatus but remain mutually coupled when the switching apparatus is in a closed state, an open state or an earthed state. This allows improving the dielectric behaviour of the internal components of the switching apparatus, in particular when this latter is in an open state.

[0243] In the switching apparatus of the invention, the separation between the electric contacts 17, 18 accommodated within the vacuum chamber 14 is driven depending on the position reached by the main contact

members 15, 16 during an opening manoeuvre of the switching apparatus. The breaking process of the current flowing along each electric pole is thus made to occur at level of the electric contacts 17, 18. Possible electric arcs deriving from the interruption of a current flowing along each electric pole therefore form in a vacuum atmosphere only, which allows improving their quenching.

[0244] The switching apparatus of the invention has electric poles with a very compact, simple and robust structure with relevant benefits in terms of size optimization.

[0245] The switching apparatus, according to the invention, ensures high-level performances in terms of dielectric insulation and arc-quenching capabilities during the current breaking process and, at the same time, it is characterised by high levels of reliability for the intended applications.

[0246] The switching apparatus, according to the invention, is of relatively easy and cheap industrial production and installation on the field.

Claims

25 1. A switching apparatus (1) for medium voltage electric systems, said switching apparatus comprising one or more electric poles (2),

wherein, for each electric pole, said switching apparatus comprises:

- a first pole terminal (11), a second pole terminal (12) and a ground terminal (13), wherein said first pole terminal (11) is electrically couplable with a first conductor of an electric line, said second pole terminal (12) is electrically couplable to a second conductor of said electric line and said ground terminal (13) is electrically couplable to a grounding conductor;

- a fixed contact assembly including a plurality of fixed contact members spaced one from another,

- wherein said fixed contact assembly comprises a first fixed contact member (5) electrically connected to said first pole terminal (11), a second fixed contact member (6) electrically connected to said second pole terminal (12), a third fixed contact member (7), and a fourth fixed contact member (8) electrically connected to said ground terminal (13);

- a movable contact assembly (10) rotatable about a rotation axis (A1) and comprising:

- a first main contact member (15) couplable to said first fixed contact member (5) or said fourth fixed contact

member (8), upon a rotational movement of said movable contact assembly about said rotation axis (A1);
 - a second main contact member (16) 5
 couplable to said second fixed contact member (6) or said third fixed contact member (7), upon a rotational movement of said movable contact assembly about said rotation axis (A1);
 - a vacuum chamber (14) and a pair of 10
 arc contact members (17, 18) that are accommodated within said vacuum chamber and that can be coupled or decoupled one to or from another, each arc contact member being electrically connected in series to a corresponding main contact member (15, 16),
 wherein said arc contact members (17, 18) comprise a fixed arc contact member (17) and a movable arc contact member (18),
 15
 20

wherein said movable arc contact member (18) can be coupled to or decoupled from said fixed arc contact member (17) by moving along a 25
 translation axis (A2) perpendicular to said rotation axis (A1);
 wherein said movable contact assembly is reversibly movable about said rotation axis (A1) in a first end-of-run position (P_A), which corresponds to a closed state of said switching apparatus, in a second end-of-run position (P_C), which corresponds to a earthed state of said switching apparatus, and in an intermediate position (P_B), which corresponds to an open state 30
 35
 40
 45
 50
 55
 of said switching apparatus, at which said first and second pole terminals (11, 12) and said ground terminal (13) are electrically disconnected one from another; wherein when said movable contact assembly (10) is in said first end-of-run position (P_A), said arc contact members (17, 18) are coupled one to another, wherein said switching apparatus comprises, for each electric pole, at least a track member (20), which is made of electrically insulating material and has a track surface (21) with a cam profile, and at least a drive member (22) solidly coupled with said movable arc contact member (18), wherein each drive member (22) is adapted to slide along the track surface (21) of a corresponding track member (20), upon a rotational movement of said movable contact assembly (10) about said rotation axis (A1), wherein said drive member (22) actuates said movable arc contact member (18) along said translation axis (A2) between a coupled position to and an uncoupled position from said fixed arc contact member (17), when sliding along said

track surface (21),
 wherein when said movable contact assembly (10) is in said first end-of-run position (P_A), said drive member (22) is in a first position (T_A) along said track surface (21),
 wherein, when said movable contact assembly (10) is in said intermediate position (P_B), said drive member (22) is in a second position (T_B) along said track surface (21);
 wherein when said movable contact assembly (10) is in said second end-of-run position (P_C), said drive member (22) is in a third position (T_C) along said track surface (21);
 wherein said second position (T_B) is intermediate between said first and third positions, wherein said drive member (22) slides along a first track surface portion (21A) with a cam profile, when moving between said first and second positions (T_A, T_B), and slides along a second track surface portion (21B) with a cam profile, when moving between said second and third positions (T_B, T_C),
 wherein, when said movable contact assembly (10) is in said second end-of-run position (P_C), said first main contact member (15) is coupled to said fourth fixed contact member (8), said second main contact member (16) is coupled to said third fixed contact member (7), and said arc contact members (17, 18) are coupled one to another,
 wherein, when said movable contact assembly (10) is in said intermediate position (P_B), said first main contact member (15) is decoupled from said first and fourth fixed contact members (5, 8) and
 said second main contact member (16) is decoupled from said second and third fixed contact member (7) **characterized in that**
 the third fixed contact member (7) is electrically connected to said second pole terminal, wherein, when said movable contact assembly is in said first end-of-run position (P_A), said first main contact member (15) is coupled to said first fixed contact member (5) and said second main contact member (16) is coupled to said second fixed contact member (6), wherein, when said movable contact assembly is in said intermediate position (P_B), said arc contact members (17, 18) are coupled one to another,
 wherein said track surface (21) is shaped so that said movable arc contact member (18) is actuated to a coupled position to said fixed arc contact member (17), when said drive member (22) is in any of said first, second and third positions (T_A, T_B, T_C) along said track surface (21), wherein said track surface (21) is shaped so that said drive member (22) actuates said movable

arc contact member (18) along said translation axis (A2) between a coupled position to and an uncoupled position from said fixed arc contact member (17), when sliding along said first track surface portion (21A) or said second track surface portion (21B),
 5 wherein said movable arc contact member (18) is decoupled from said fixed arc contact member (17) and is subsequently coupled again with said fixed arc contact member (17), when said drive member (22) slides along said first track surface portion (21A),
 10 wherein said movable arc contact member (18) is decoupled from said fixed arc contact member (17) and is subsequently coupled again with said fixed arc contact member (17), when said drive member (22) slides along said second track surface portion (21B).

15

2. Switching apparatus, according to claim 1, **characterised in that** said movable contact assembly (10) comprises a cam mechanism (25) coupled to said movable arc contact member (18),
 20 wherein said cam mechanism is adapted to press said movable arc contact member (18) against said fixed arc contact member (17), when said movable arc contact member (18) is coupled to said fixed arc contact member (17) and said movable contact assembly (10) is in said first end-of-run position (P_A) or in said second end-of-run position (P_B).
 30

3. Switching apparatus, according to claim 2, **characterised in that** said cam mechanism (25) comprises:
 35 - a push member (26) movable with respect to said movable arc contact member (18) along said translation axis (A2);
 - a spring member (27) arranged along said translation axis (A2) and coupled to said push member (26) and to said movable arc contact member (18).
 40

4. Switching apparatus, according to claim 3, **characterised in that** said cam mechanism (25) comprises a slider member (28) coupled to said push member (26) and couplable with one or more first cam surfaces (31) or one or more second cam surfaces (32), when said movable contact assembly (10) is in said first end-of-run position (P_A) or in said second end-of-run position (P_C),
 45 wherein said slider member (28) exerts, on said push member (26), an actuation force directed to cause the compression of said spring member (27) and the consequent pressing of said movable arc contact member (18) against said fixed arc contact member (17), when coupled to said one or more first cam surfaces (31) or said one or more second cam surfaces (32).
 50

5. Switching apparatus, according to claim 3, **characterised in that** said cam mechanism (25) comprises a lever member (29) having a cam profile and couplable to said push member (26) and one or more first sliding surfaces (33) or one or more second sliding surfaces (34), when said movable contact assembly (10) is in said first end-of-run position (P_A) or in said second end-of-run position (P_C),
 55 wherein said lever member (29) exerts, on said push member (26), an actuation force directed to cause the compression of said spring member (27) and the consequent pressing of said movable arc contact member (18) against said fixed arc contact member (17), when coupled to said one or more first sliding surfaces (33) or said one or more second sliding surfaces (34).

6. Switching apparatus, according to one of the previous claims, **characterised in that** it is a load-break switch for medium voltage electric systems.

Patentansprüche

25 1. Schalteinrichtung (1) für elektrische Mittelspannungssysteme, wobei die Schalteinrichtung einen oder mehrere elektrische Pole (2) umfasst,
 wobei die Schalteinrichtung für jeden elektrischen Pol Folgendes umfasst:
 - einen ersten Polanschluss (11), einen zweiten Polanschluss (12) und einen Masseanschluss (13), wobei der erste Polanschluss (11) mit einem ersten Leiter einer elektrischen Leitung elektrisch koppelbar ist, der zweite Polanschluss (12) mit einem zweiten Leiter der elektrischen Leitung elektrisch koppelbar ist und der Masseanschluss (13) mit einem Erdungsleiter elektrisch koppelbar ist;
 - eine feste Kontaktanordnung, die mehrere feste Kontaktelemente umfasst, die voneinander beabstandet sind,
 wobei die feste Kontaktanordnung ein erstes festes Kontaktelement (5), das elektrisch mit dem ersten Polanschluss (11) verbunden ist, ein zweites festes Kontaktelement (6), das elektrisch mit dem zweiten Polanschluss (12) verbunden ist, ein drittes festes Kontaktelement (7) und ein viertes festes Kontaktelement (8), das elektrisch mit dem Masseanschluss (13) verbunden ist, umfasst;
 - eine bewegliche Kontaktanordnung (10), die um eine Drehachse (A1) drehbar ist und Folgendes umfasst:

- ein erstes Hauptkontaktelement (15), das bei einer Drehbewegung der beweglichen Kontaktanordnung um die Drehachse (A1) mit dem ersten festen Kontaktelement (5) oder dem vierten festen Kontaktelement (8) 5 koppelbar ist;
 - ein zweites Hauptkontaktelement (16), das bei einer Drehbewegung der beweglichen Kontaktanordnung um die Drehachse (A1) mit dem zweiten festen Kontaktelement (6) oder dem dritten festen Kontaktelement (7) koppelbar ist; 10
 - eine Vakuumkammer (14) und ein Paar Lichtbogenkontaktelemente (17, 18), die innerhalb der Vakuumkammer untergebracht sind und die miteinander gekoppelt oder voneinander entkoppelt werden können, wobei jedes Lichtbogenkontaktelement in Reihe mit einem entsprechenden Hauptkontaktelement (15, 16) elektrisch 15 verbunden ist, 20

wobei die Lichtbogenkontaktelemente (17, 18) ein festes Lichtbogenkontaktelement (17) und ein bewegliches Lichtbogenkontaktelement (18) umfassen, 25
 wobei das bewegliche Lichtbogenkontaktelement (18) durch Bewegen entlang einer Translationsachse (A2) senkrecht zu der Drehachse (A1) mit dem festen Lichtbogenkontaktelement (17) gekoppelt oder von diesem entkoppelt werden kann; 30
 wobei die bewegliche Kontaktanordnung reversibel um die Drehachse (A1) in eine erste Endlagenposition (P_A), die einem geschlossenen Zustand der Schalteinrichtung entspricht, in eine zweite Endlagenposition (P_C), die einem geerdeten Zustand der Schalteinrichtung entspricht, und in eine Zwischenposition (P_B), die einem offenen Zustand der Schalteinrichtung entspricht, an der der erste und der zweite Polanschluss (11, 12) und der Masseanschluss (13) elektrisch voneinander getrennt sind, beweglich ist; wobei, wenn sich die bewegliche Kontaktanordnung (10) in der ersten Endlagenposition (P_A) befindet, die Lichtbogenkontaktelemente (17, 18) miteinander gekoppelt sind, 35
 wobei die Schalteinrichtung für jeden elektrischen Pol mindestens ein Schienenelement (20), das aus elektrisch isolierendem Material besteht und eine Schienenoberfläche (21) mit einem Nockenprofil aufweist, und mindestens ein Antriebselement (22), das fest mit dem beweglichen Lichtbogenkontaktelement (18) gekoppelt ist, umfasst, 40
 wobei jedes Antriebselement (22) dazu ausgelegt ist, bei einer Drehbewegung der beweglichen Kontaktanordnung (10) um die Drehachse 45
 (A1) entlang der Schienenoberfläche (21) eines entsprechenden Schienenelements (20) zu gleiten, wobei das Antriebselement (22) das bewegliche Lichtbogenkontaktelement (18) entlang der Translationsachse (A2) zwischen einer an dem festen Lichtbogenkontaktelement (17) gekoppelten Position und einer davon entkoppelten Position betätigt, wenn es entlang der Schienenoberfläche (21) gleitet, 50
 wobei, wenn sich die bewegliche Kontaktanordnung (10) in der ersten Endlagenposition (P_A) befindet, sich das Antriebselement (22) in einer ersten Position (T_A) entlang der Schienenoberfläche (21) befindet, wobei, wenn sich die bewegliche Kontaktanordnung (10) in der Zwischenposition (P_B) befindet, sich das Antriebselement (22) in einer zweiten Position (T_B) entlang der Schienenoberfläche (21) befindet; 55
 wobei, wenn sich die bewegliche Kontaktanordnung (10) in der zweiten Endlagenposition (P_C) befindet, sich das Antriebselement (22) in einer dritten Position (T_C) entlang der Schienenoberfläche (21) befindet; wobei sich die zweite Position (T_B) zwischenliegend zwischen der ersten und der dritten Position befindet, wobei das Antriebselement (22) entlang eines ersten Schienenoberflächenabschnitts (21A) mit einem Nockenprofil gleitet, wenn es sich zwischen der ersten und der zweiten Position (T_A, T_B) bewegt, und entlang eines zweiten Schienenoberflächenabschnitts (21B) mit einem Nockenprofil gleitet, wenn es sich zwischen der zweiten und der dritten Position (T_B, T_C) bewegt, wobei, wenn sich die bewegliche Kontaktanordnung (10) in der zweiten Endlagenposition (P_C) befindet, das erste Hauptkontaktelement (15) mit dem vierten festen Kontaktelement (8) gekoppelt ist, das zweite Hauptkontaktelement (16) mit dem dritten festen Kontaktelement (7) gekoppelt ist und die Lichtbogenkontaktelemente (17, 18) miteinander gekoppelt sind, wobei, wenn sich die bewegliche Kontaktanordnung (10) in der Zwischenposition (P_B) befindet, das erste Hauptkontaktelement (15) von dem ersten und dem vierten festen Kontaktelement (5, 8) entkoppelt ist und das zweite Hauptkontaktelement (16) von dem zweiten und dem dritten festen Kontaktelement (7) entkoppelt ist, **dadurch gekennzeichnet, dass** das dritte feste Kontaktelement (7) elektrisch mit dem zweiten Polanschluss verbunden ist, wobei, wenn sich die bewegliche Kontaktanordnung in der ersten Endlagenposition (P_A) befindet, das erste Hauptkontaktelement (15) mit dem ersten festen Kontaktelement (5) gekoppelt ist;

pelt ist und das zweite Hauptkontaktelement (16) mit dem zweiten festen Kontaktelement (6) gekoppelt ist,
 wobei, wenn sich die bewegliche Kontaktanordnung in der Zwischenposition (P_B) befindet, die 5
 Lichtbogenkontaktelemente (17, 18) miteinander gekoppelt sind,
 wobei die Schienenoberfläche (21) so geformt 10
 ist, dass das bewegliche Lichtbogenkontaktelement (18) in eine mit dem festen Lichtbogenkontaktelement (17) gekoppelte Position betätigt wird, wenn sich das Antriebselement (22) in einer der ersten, zweiten und dritten Position (T_A, T_B, T_C) entlang der Schienenoberfläche 15
 (21) befindet, wobei die Schienenoberfläche (21) so geformt ist, dass das Antriebselement (22) das bewegliche Lichtbogenkontaktelement (18) entlang der Translationsachse (A2) zwischen einer mit dem festen Lichtbogenkontaktelement (17) gekoppelten Position und einer davon entkoppelten Position betätigt, wenn es entlang des ersten Schienenoberflächenabschnitts (21A) oder des zweiten Schienenoberflächenabschnitts (21B) gleitet,
 wobei das bewegliche Lichtbogenkontaktelement (18) von dem festen Lichtbogenkontaktelement (17) entkoppelt und anschließend wieder mit dem festen Lichtbogenkontaktelement (17) gekoppelt wird, wenn das Antriebselement (22) entlang des ersten Schienenoberflächenabschnitts (21A) gleitet,
 wobei das bewegliche Lichtbogenkontaktelement (18) von dem festen Lichtbogenkontaktelement (17) entkoppelt und anschließend wieder mit dem festen Lichtbogenkontaktelement (17) gekoppelt wird, wenn das Antriebselement (22) entlang des zweiten Schienenoberflächenabschnitts (21B) gleitet.

2. Schalteinrichtung nach Anspruch 1, **dadurch gekennzeichnet, dass** die bewegliche Kontaktanordnung (10) einen Nockenmechanismus (25) umfasst, der mit dem beweglichen Lichtbogenkontaktelement (18) gekoppelt ist,
 wobei der Nockenmechanismus dazu ausgelegt ist, 40
 das bewegliche Lichtbogenkontaktelement (18) gegen das feste Lichtbogenkontaktelement (17) zu drücken, wenn das bewegliche Lichtbogenkontaktelement (18) mit dem festen Lichtbogenkontaktelement (17) gekoppelt ist und sich die bewegliche Kontaktanordnung (10) in der ersten Endlagenposition (P_A) oder in der zweiten Endlagenposition (P_B) befindet.

3. Schalteinrichtung nach Anspruch 2, **dadurch gekennzeichnet, dass** der Nockenmechanismus (25) Folgendes umfasst:
 45
 50
 55

- ein Schubelement (26), das in Bezug auf das bewegliche Lichtbogenkontaktelement (18) entlang der Translationsachse (A2) beweglich ist;
 - ein Federelement (27), das entlang der Translationsachse (A2) angeordnet und mit dem Schubelement (26) und dem beweglichen Lichtbogenkontaktelement (18) gekoppelt ist.

4. Schalteinrichtung nach Anspruch 3, **dadurch gekennzeichnet, dass** der Nockenmechanismus (25) ein Schieberelement (28) umfasst, das mit dem Schubelement (26) gekoppelt und mit einer oder mehreren ersten Nockenflächen (31) oder einer oder mehreren zweiten Nockenflächen (32) kopplbar ist, wenn sich die bewegliche Kontaktanordnung (10) in der ersten Endlagenposition (P_A) oder in der zweiten Endlagenposition (P_C) befindet,
 wobei das Schieberelement (28) eine Betätigungs- 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140
 145
 150
 155
 160
 165
 170
 175
 180
 185
 190
 195
 200
 205
 210
 215
 220
 225
 230
 235
 240
 245
 250
 255
 260
 265
 270
 275
 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335
 340
 345
 350
 355
 360
 365
 370
 375
 380
 385
 390
 395
 400
 405
 410
 415
 420
 425
 430
 435
 440
 445
 450
 455
 460
 465
 470
 475
 480
 485
 490
 495
 500
 505
 510
 515
 520
 525
 530
 535
 540
 545
 550
 555
 560
 565
 570
 575
 580
 585
 590
 595
 600
 605
 610
 615
 620
 625
 630
 635
 640
 645
 650
 655
 660
 665
 670
 675
 680
 685
 690
 695
 700
 705
 710
 715
 720
 725
 730
 735
 740
 745
 750
 755
 760
 765
 770
 775
 780
 785
 790
 795
 800
 805
 810
 815
 820
 825
 830
 835
 840
 845
 850
 855
 860
 865
 870
 875
 880
 885
 890
 895
 900
 905
 910
 915
 920
 925
 930
 935
 940
 945
 950
 955
 960
 965
 970
 975
 980
 985
 990
 995
 1000
 1005
 1010
 1015
 1020
 1025
 1030
 1035
 1040
 1045
 1050
 1055
 1060
 1065
 1070
 1075
 1080
 1085
 1090
 1095
 1100
 1105
 1110
 1115
 1120
 1125
 1130
 1135
 1140
 1145
 1150
 1155
 1160
 1165
 1170
 1175
 1180
 1185
 1190
 1195
 1200
 1205
 1210
 1215
 1220
 1225
 1230
 1235
 1240
 1245
 1250
 1255
 1260
 1265
 1270
 1275
 1280
 1285
 1290
 1295
 1300
 1305
 1310
 1315
 1320
 1325
 1330
 1335
 1340
 1345
 1350
 1355
 1360
 1365
 1370
 1375
 1380
 1385
 1390
 1395
 1400
 1405
 1410
 1415
 1420
 1425
 1430
 1435
 1440
 1445
 1450
 1455
 1460
 1465
 1470
 1475
 1480
 1485
 1490
 1495
 1500
 1505
 1510
 1515
 1520
 1525
 1530
 1535
 1540
 1545
 1550
 1555
 1560
 1565
 1570
 1575
 1580
 1585
 1590
 1595
 1600
 1605
 1610
 1615
 1620
 1625
 1630
 1635
 1640
 1645
 1650
 1655
 1660
 1665
 1670
 1675
 1680
 1685
 1690
 1695
 1700
 1705
 1710
 1715
 1720
 1725
 1730
 1735
 1740
 1745
 1750
 1755
 1760
 1765
 1770
 1775
 1780
 1785
 1790
 1795
 1800
 1805
 1810
 1815
 1820
 1825
 1830
 1835
 1840
 1845
 1850
 1855
 1860
 1865
 1870
 1875
 1880
 1885
 1890
 1895
 1900
 1905
 1910
 1915
 1920
 1925
 1930
 1935
 1940
 1945
 1950
 1955
 1960
 1965
 1970
 1975
 1980
 1985
 1990
 1995
 2000
 2005
 2010
 2015
 2020
 2025
 2030
 2035
 2040
 2045
 2050
 2055
 2060
 2065
 2070
 2075
 2080
 2085
 2090
 2095
 2100
 2105
 2110
 2115
 2120
 2125
 2130
 2135
 2140
 2145
 2150
 2155
 2160
 2165
 2170
 2175
 2180
 2185
 2190
 2195
 2200
 2205
 2210
 2215
 2220
 2225
 2230
 2235
 2240
 2245
 2250
 2255
 2260
 2265
 2270
 2275
 2280
 2285
 2290
 2295
 2300
 2305
 2310
 2315
 2320
 2325
 2330
 2335
 2340
 2345
 2350
 2355
 2360
 2365
 2370
 2375
 2380
 2385
 2390
 2395
 2400
 2405
 2410
 2415
 2420
 2425
 2430
 2435
 2440
 2445
 2450
 2455
 2460
 2465
 2470
 2475
 2480
 2485
 2490
 2495
 2500
 2505
 2510
 2515
 2520
 2525
 2530
 2535
 2540
 2545
 2550
 2555
 2560
 2565
 2570
 2575
 2580
 2585
 2590
 2595
 2600
 2605
 2610
 2615
 2620
 2625
 2630
 2635
 2640
 2645
 2650
 2655
 2660
 2665
 2670
 2675
 2680
 2685
 2690
 2695
 2700
 2705
 2710
 2715
 2720
 2725
 2730
 2735
 2740
 2745
 2750
 2755
 2760
 2765
 2770
 2775
 2780
 2785
 2790
 2795
 2800
 2805
 2810
 2815
 2820
 2825
 2830
 2835
 2840
 2845
 2850
 2855
 2860
 2865
 2870
 2875
 2880
 2885
 2890
 2895
 2900
 2905
 2910
 2915
 2920
 2925
 2930
 2935
 2940
 2945
 2950
 2955
 2960
 2965
 2970
 2975
 2980
 2985
 2990
 2995
 3000
 3005
 3010
 3015
 3020
 3025
 3030
 3035
 3040
 3045
 3050
 3055
 3060
 3065
 3070
 3075
 3080
 3085
 3090
 3095
 3100
 3105
 3110
 3115
 3120
 3125
 3130
 3135
 3140
 3145
 3150
 3155
 3160
 3165
 3170
 3175
 3180
 3185
 3190
 3195
 3200
 3205
 3210
 3215
 3220
 3225
 3230
 3235
 3240
 3245
 3250
 3255
 3260
 3265
 3270
 3275
 3280
 3285
 3290
 3295
 3300
 3305
 3310
 3315
 3320
 3325
 3330
 3335
 3340
 3345
 3350
 3355
 3360
 3365
 3370
 3375
 3380
 3385
 3390
 3395
 3400
 3405
 3410
 3415
 3420
 3425
 3430
 3435
 3440
 3445
 3450
 3455
 3460
 3465
 3470
 3475
 3480
 3485
 3490
 3495
 3500
 3505
 3510
 3515
 3520
 3525
 3530
 3535
 3540
 3545
 3550
 3555
 3560
 3565
 3570
 3575
 3580
 3585
 3590
 3595
 3600
 3605
 3610
 3615
 3620
 3625
 3630
 3635
 3640
 3645
 3650
 3655
 3660
 3665
 3670
 3675
 3680
 3685
 3690
 3695
 3700
 3705
 3710
 3715
 3720
 3725
 3730
 3735
 3740
 3745
 3750
 3755
 3760
 3765
 3770
 3775
 3780
 3785
 3790
 3795
 3800
 3805
 3810
 3815
 3820
 3825
 3830
 3835
 3840
 3845
 3850
 3855
 3860
 3865
 3870
 3875
 3880
 3885
 3890
 3895
 3900
 3905
 3910
 3915
 3920
 3925
 3930
 3935
 3940
 3945
 3950
 3955
 3960
 3965
 3970
 3975
 3980
 3985
 3990
 3995
 4000
 4005
 4010
 4015
 4020
 4025
 4030
 4035
 4040
 4045
 4050
 4055
 4060
 4065
 4070
 4075
 4080
 4085
 4090
 4095
 4100
 4105
 4110
 4115
 4120
 4125
 4130
 4135
 4140
 4145
 4150
 4155
 4160
 4165
 4170
 4175
 4180
 4185
 4190
 4195
 4200
 4205
 4210
 4215
 4220
 4225
 4230
 4235
 4240
 4245
 4250
 4255
 4260
 4265
 4270
 4275
 4280
 4285
 4290
 4295
 4300
 4305
 4310
 4315
 4320
 4325
 4330
 4335
 4340
 4345
 4350
 4355
 4360
 4365
 4370
 4375
 4380
 4385
 4390
 4395
 4400
 4405
 4410
 4415
 4420
 4425
 4430
 4435
 4440
 4445
 4450
 4455
 4460
 4465
 4470
 4475
 4480
 4485
 4490
 4495
 4500
 4505
 4510
 4515
 4520
 4525
 4530
 4535
 4540
 4545
 4550
 4555
 4560
 4565
 4570
 4575
 4580
 4585
 4590
 4595
 4600
 4605
 4610
 4615
 4620
 4625
 4630
 4635
 4640
 4645
 4650
 4655
 4660
 4665
 4670
 4675
 4680
 4685
 4690
 4695
 4700
 4705
 4710
 4715
 4720
 4725
 4730
 4735
 4740
 4745
 4750
 4755
 4760
 4765
 4770
 4775
 4780
 4785
 4790
 4795
 4800
 4805
 4810
 4815
 4820
 4825
 4830
 4835
 4840
 4845
 4850
 4855
 4860
 4865
 4870
 4875
 4880
 4885
 4890
 4895
 4900
 4905
 4910
 4915
 4920
 4925
 4930
 4935
 4940
 4945
 4950
 4955
 4960
 4965
 4970
 4975
 4980
 4985
 4990
 4995
 5000
 5005
 5010
 5015
 5020
 5025
 5030
 5035
 5040
 5045
 5050
 5055
 5060
 5065
 5070
 5075
 5080
 5085
 5090
 5095
 5100
 5105
 5110
 5115
 5120
 5125
 5130
 5135
 5140
 5145
 5150
 5155
 5160
 5165
 5170
 5175
 5180
 5185
 5190
 5195
 5200
 5205
 5210
 5215
 5220
 5225
 5230
 5235
 5240
 5245
 5250
 5255
 5260
 5265
 5270
 5275
 5280
 5285
 5290
 5295
 5300
 5305
 5310
 5315
 5320
 5325
 5330
 5335
 5340
 5345
 5350
 5355
 5360
 5365
 5370
 5375
 5380
 5385
 5390
 5395
 5400
 5405
 5410
 5415
 5420
 5425
 5430
 5435
 5440
 5445
 5450
 5455
 5460
 5465
 5470
 5475
 5480
 5485
 5490
 5495
 5500
 5505
 5510
 5515
 5520
 5525
 5530
 5535
 5540
 5545
 5550
 5555
 5560
 5565
 5570
 5575
 5580
 5585
 5590
 5595
 5600
 5605
 5610
 5615
 5620
 5625
 5630
 5635
 5640
 5645
 5650
 5655
 5660
 5665
 5670
 5675
 5680
 5685
 5690
 5695
 5700
 5705
 5710
 5715
 5720
 5725
 5730
 5735
 5740
 5745
 5750
 5755
 5760
 5765
 5770
 5775
 5780
 5785
 5790
 5795
 5800
 5805
 5810
 5815
 5820
 5825
 5830
 5835
 5840
 5845
 5850
 5855
 5860
 5865
 5870
 5875
 5880
 5885
 5890
 5895
 5900
 5905
 5910
 5915
 5920
 5925
 5930
 5935
 5940
 5945
 5950
 5955
 5960
 5965
 5970
 5975
 5980
 5985
 5990
 5995
 6000
 6005
 6010
 6015
 6020
 6025
 6030
 6035
 6040
 6045
 6050
 6055
 6060
 6065
 6070
 6075
 6080
 6085
 6090
 6095
 6100
 6105
 6110
 6115
 6120
 6125
 6130
 6135
 6140
 6145
 6150
 6155
 6160
 6165
 6170
 6175
 6180
 6185
 6190
 6195
 6200
 6205
 6210
 6215
 6220
 6225
 6230
 6235
 6240
 6245
 6250
 6255
 6260
 6265
 6270
 6275
 6280
 6285
 6290
 6295
 6300
 6305
 6310
 6315
 6320
 6325
 6330
 6335
 6340
 6345
 6350
 6355
 6360
 6365
 6370
 6375
 6380
 63

électriques (2),

dans lequel, pour chaque pôle électrique, ledit appareil de commutation comprend :

- une première borne de pôle (11), une seconde borne de pôle (12) et une borne de terre (13), dans lequel ladite première borne de pôle (11) peut être couplée électriquement avec un premier conducteur d'une ligne électrique, ladite seconde borne de pôle (12) peut être couplée électriquement à un second conducteur de ladite ligne électrique et ladite borne de terre (13) peut être couplée électriquement à un conducteur de mise à la terre ;
- un ensemble de contact fixe incluant une pluralité d'éléments de contact fixes espacés les uns des autres,

dans lequel ledit ensemble de contact fixe comprend un premier élément de contact fixe (5) relié électriquement à ladite première borne de pôle (11), un second élément de contact fixe (6) relié électriquement à ladite seconde borne de pôle (12), un troisième élément de contact fixe (7), et un quatrième élément de contact fixe (8) relié électriquement à ladite borne de terre (13) ;

- un ensemble de contact mobile (10) rotatif autour d'un axe de rotation (A1) et comprenant :
 - un premier élément de contact principal (15) pouvant être couplé audit premier élément de contact fixe (5) ou audit quatrième élément de contact fixe (8), lors d'un mouvement de rotation dudit ensemble de contact mobile autour dudit axe de rotation (A1) ;
 - un second élément de contact principal (16) pouvant être couplé audit second élément de contact fixe (6) ou audit troisième élément de contact fixe (7), lors d'un mouvement de rotation dudit ensemble de contact mobile autour dudit axe de rotation (A1) ;
 - une chambre à vide (14) et une paire d'éléments de contact d'arc (17, 18) qui sont logés à l'intérieur de ladite chambre à vide et qui peuvent être couplés l'un à l'autre ou découpés l'un de l'autre, chaque élément de contact d'arc étant relié électriquement en série à un élément de contact principal (15, 16) correspondant,

dans lequel lesdits éléments de contact d'arc (17, 18) comprennent un élément de contact

d'arc fixe (17) et un élément de contact d'arc mobile (18),

dans lequel ledit élément de contact d'arc mobile (18) peut être couplé audit ou découpé dudit élément de contact d'arc fixe (17) en se déplaçant le long d'un axe de translation (A2) perpendiculaire audit axe de rotation (A1) ; dans lequel ledit ensemble de contact mobile est mobile de manière réversible autour dudit axe de rotation (A1) dans une première position de fin de course (P_A), qui correspond à un état fermé dudit appareil de commutation, dans une seconde position de fin de course (P_C), qui correspond à un état mis à la terre dudit appareil de commutation, et dans une position intermédiaire (P_B), qui correspond à un état ouvert dudit appareil de commutation, dans lequel lesdites première et seconde bornes de pôle (11, 12) et ladite borne de terre (13) sont déconnectées électriquement les unes des autres ;

dans lequel lorsque ledit ensemble de contact mobile (10) est dans ladite première position de fin de course (P_A), lesdits éléments de contact d'arc (17, 18) sont couplés l'un à l'autre, dans lequel ledit appareil de commutation comprend, pour chaque pôle électrique, au moins un élément de piste (20), qui est constitué de matériau électriquement isolant et a une surface de piste (21) avec un profil de came, et au moins un élément d'entraînement (22) couplé solidement audit élément de contact d'arc mobile (18),

dans lequel chaque élément d'entraînement (22) est adapté pour coulisser le long de la surface de piste (21) d'un élément de piste (20) correspondant, lors d'un mouvement de rotation dudit ensemble de contact mobile (10) autour dudit axe de rotation (A1), dans lequel ledit élément d'entraînement (22) actionne ledit élément de contact d'arc mobile (18) le long dudit axe de translation (A2) entre une position couplée audit et une position découpée dudit élément de contact d'arc fixe (17), lorsqu'il coulisse le long de ladite surface de piste (21),

dans lequel lorsque ledit ensemble de contact mobile (10) est dans ladite première position de fin de course (P_A), ledit élément d'entraînement (22) est dans une première position (T_A) le long de ladite surface de piste (21),

dans lequel lorsque ledit ensemble de contact mobile (10) est dans ladite position intermédiaire (P_B), ledit élément d'entraînement (22) est dans une seconde position (T_B) le long de ladite surface de piste (21) ;

dans lequel lorsque ledit ensemble de contact mobile (10) est dans ladite seconde position de

fin de course (P_C), ledit élément d'entraînement (22) est dans une troisième position (T_C) le long de ladite surface de piste (21) ; dans lequel ladite seconde position (T_B) est intermédiaire entre lesdites première et troisième positions, dans lequel ledit élément d'entraînement (22) coulisse le long d'une première partie de surface de piste (21A) avec un profil de came, lorsqu'il se déplace entre lesdites première et seconde positions (T_A, T_B), et coulisse le long d'une seconde partie de surface de piste (21B) avec un profil de came, lorsqu'il se déplace entre lesdites seconde et troisième positions (T_A, T_C), dans lequel lorsque ledit ensemble de contact mobile (10) est dans ladite seconde position de fin de course (P_C), ledit premier élément de contact principal (15) est couplé audit quatrième élément de contact fixe (8), ledit second élément de contact principal (16) est couplé audit troisième élément de contact fixe (7), et lesdits éléments de contact d'arc (17, 18) sont couplés l'un à l'autre, dans lequel lorsque ledit ensemble de contact mobile (10) est dans ladite position intermédiaire (P_B), ledit premier élément de contact principal (15) est découpé desdits premier et quatrième éléments de contact fixes (5, 8) et ledit second élément de contact principal (16) est découpé desdits second et troisième éléments de contact fixes (7), **caractérisé en ce que** le troisième élément de contact fixe (7) est relié électriquement à ladite seconde borne de pôle, dans lequel lorsque ledit ensemble de contact mobile est dans ladite première position de fin de course (P_A), ledit premier élément de contact principal (15) est couplé audit premier élément de contact fixe (5) et ledit second élément de contact principal (16) est couplé audit second élément de contact fixe (6), dans lequel lorsque ledit ensemble de contact mobile est dans ladite position intermédiaire (P_B), lesdits éléments de contact d'arc (17, 18) sont couplés l'un à l'autre, dans lequel ladite surface de piste (21) est formée de sorte que ledit élément de contact d'arc mobile (18) est actionné sur une position couplée audit élément de contact d'arc fixe (17), lorsque ledit élément d'entraînement (22) est dans l'une quelconque desdites première, seconde et troisième positions (T_A, T_B, T_C) le long de ladite surface de piste (21), dans lequel ladite surface de piste (21) est formée de sorte que ledit élément d'entraînement (22) actionne ledit élément de contact d'arc mobile (18) le long dudit axe de translation (A2) entre une position couplée audit et une

5
10
15
20
25
30
35
40
45
50
55

position découpée dudit élément de contact d'arc fixe (17), lorsqu'il coulisse le long de ladite première partie de surface de piste (21A) ou de ladite seconde partie de surface de piste (21B), dans lequel ledit élément de contact d'arc mobile (18) est découpé dudit élément de contact d'arc fixe (17) et est ensuite couplé de nouveau avec ledit élément de contact d'arc fixe (17), lorsque ledit élément d'entraînement (22) coulisse le long de ladite première partie de surface de piste (21A), dans lequel ledit élément de contact d'arc mobile (18) est découpé dudit élément de contact d'arc fixe (17) et est ensuite couplé de nouveau avec ledit élément de contact d'arc fixe (17), lorsque ledit élément d'entraînement (22) coulisse le long de ladite seconde partie de surface de piste (21B).

2. Appareil de commutation selon la revendication 1, **caractérisé en ce que** ledit ensemble de contact mobile (10) comprend un mécanisme de came (25) couplé audit élément de contact d'arc mobile (18), dans lequel ledit mécanisme de came est adapté pour presser ledit élément de contact d'arc mobile (18) contre ledit élément de contact d'arc fixe (17), lorsque ledit élément de contact d'arc mobile (18) est couplé audit élément de contact d'arc fixe (17) et ledit ensemble de contact mobile (10) est dans ladite première position de fin de course (P_A) ou dans ladite seconde position de fin de course (P_B).
3. Appareil de commutation selon la revendication 2, **caractérisé en ce que** ledit mécanisme de came (25) comprend :
 - un élément poussoir (26) mobile par rapport audit élément de contact d'arc mobile (18) le long dudit axe de translation (A2) ;
 - un élément ressort (27) agencé le long dudit axe de translation (A2) et couplé audit élément poussoir (26) et audit élément de contact d'arc mobile (18).
4. Appareil de commutation selon la revendication 3, **caractérisé en ce que** ledit mécanisme de came (25) comprend un élément coulissant (28) couplé audit élément poussoir (26) et pouvant être couplé à une ou plusieurs premières surfaces de came (31) ou une ou plusieurs secondes surfaces de came (32), lorsque ledit ensemble de contact mobile (10) est dans ladite première position de fin de course (P_A) ou dans ladite seconde position de fin de course (P_C), dans lequel ledit élément coulissant (28) exerce, sur ledit élément poussoir (26), une force d'actionnement dirigée pour provoquer la compression dudit élément ressort (27) et le pressage résultant dudit

élément de contact d'arc mobile (18) contre ledit élément de contact d'arc fixe (17), lorsqu'il est couplé auxdites une ou plusieurs premières surfaces de came (31) ou auxdites une ou plusieurs secondes surfaces de came (32). 5

5. Appareil de commutation selon la revendication 3, **caractérisé en ce que** ledit mécanisme de came (25) comprend un élément levier (29) ayant un profil de came et pouvant être couplé audit élément poussoir (26) et une ou plusieurs premières surfaces coulissantes (33) ou une ou plusieurs secondes surfaces coulissantes (34), lorsque ledit ensemble de contact mobile (10) est dans ladite première position de fin de course (P_A) ou dans ladite seconde position de fin de course (P_C),
10
dans lequel ledit élément levier (29) exerce, sur ledit élément poussoir (26), une force d'actionnement dirigée pour provoquer la compression dudit élément ressort (27) et le pressage résultant dudit élément de contact d'arc mobile (18) contre ledit élément de contact d'arc fixe (17), lorsqu'il est couplé auxdites une ou plusieurs premières surfaces coulissantes (33) ou auxdites une ou plusieurs secondes surfaces coulissantes (34). 15
20
25

6. Appareil de commutation selon l'une des revendications précédentes, **caractérisé en ce qu'il** s'agit d'un interrupteur à coupure en charge pour systèmes électriques moyenne tension. 30

35

40

45

50

55

20

FIG. 1

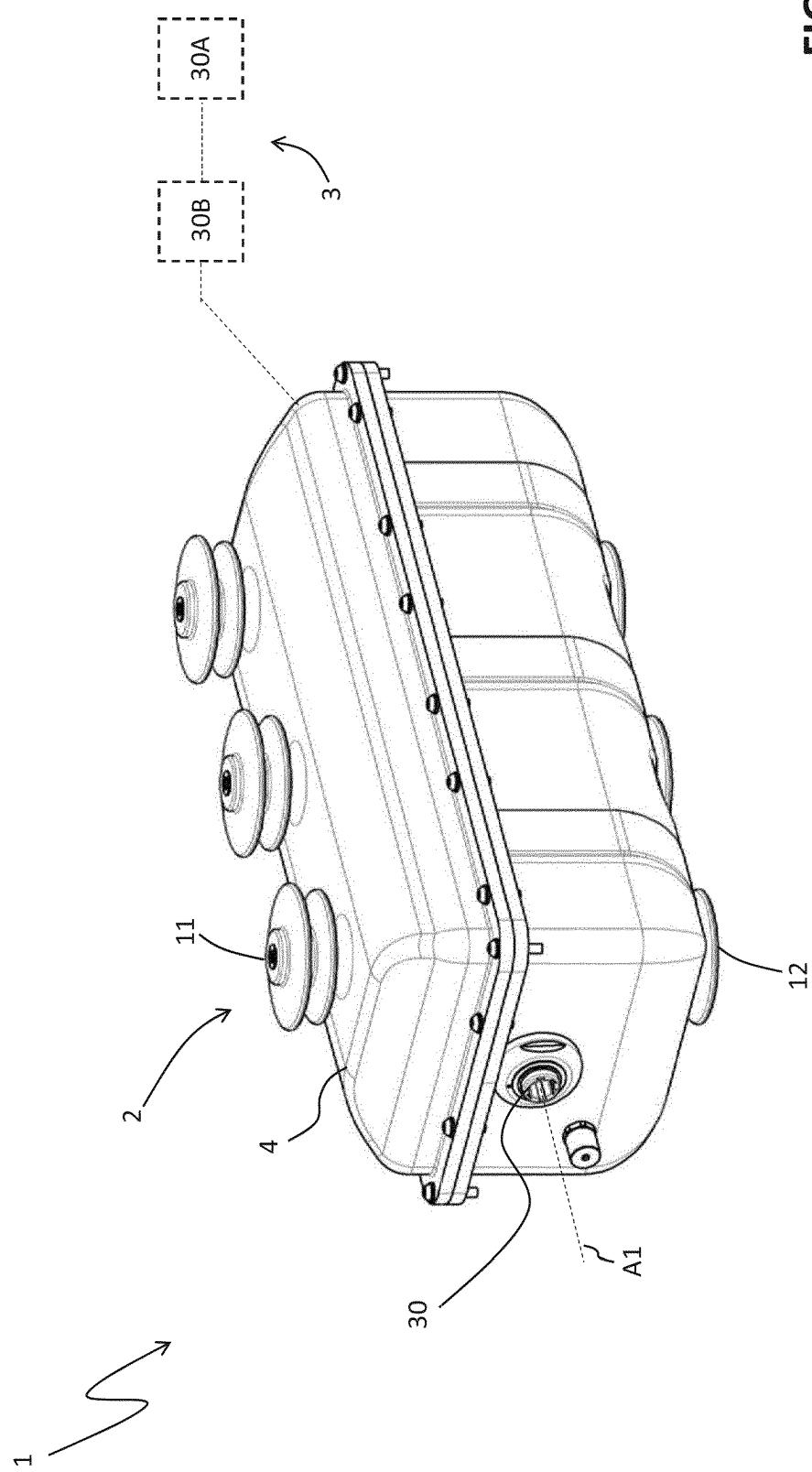


FIG. 2

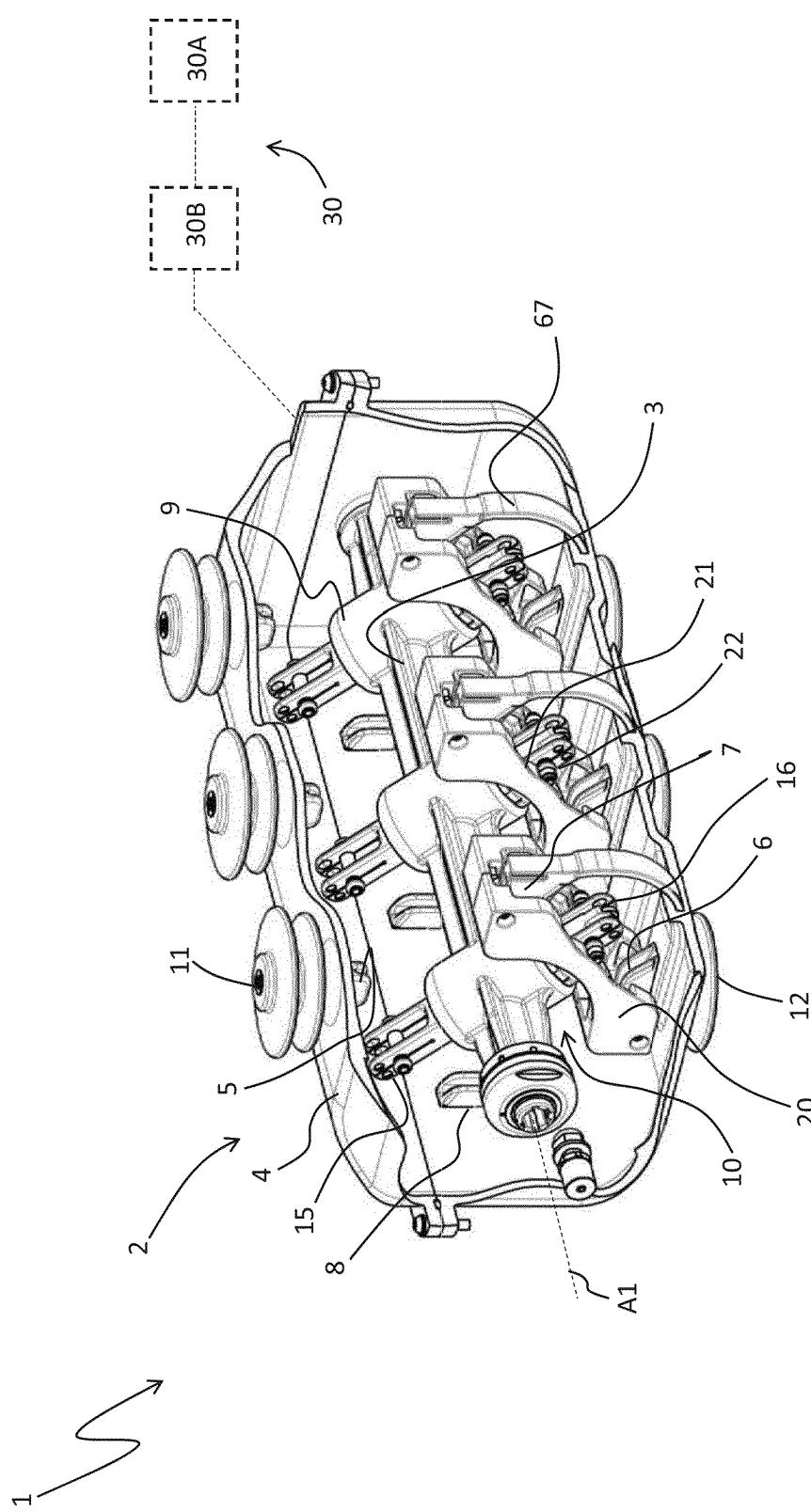


FIG. 3

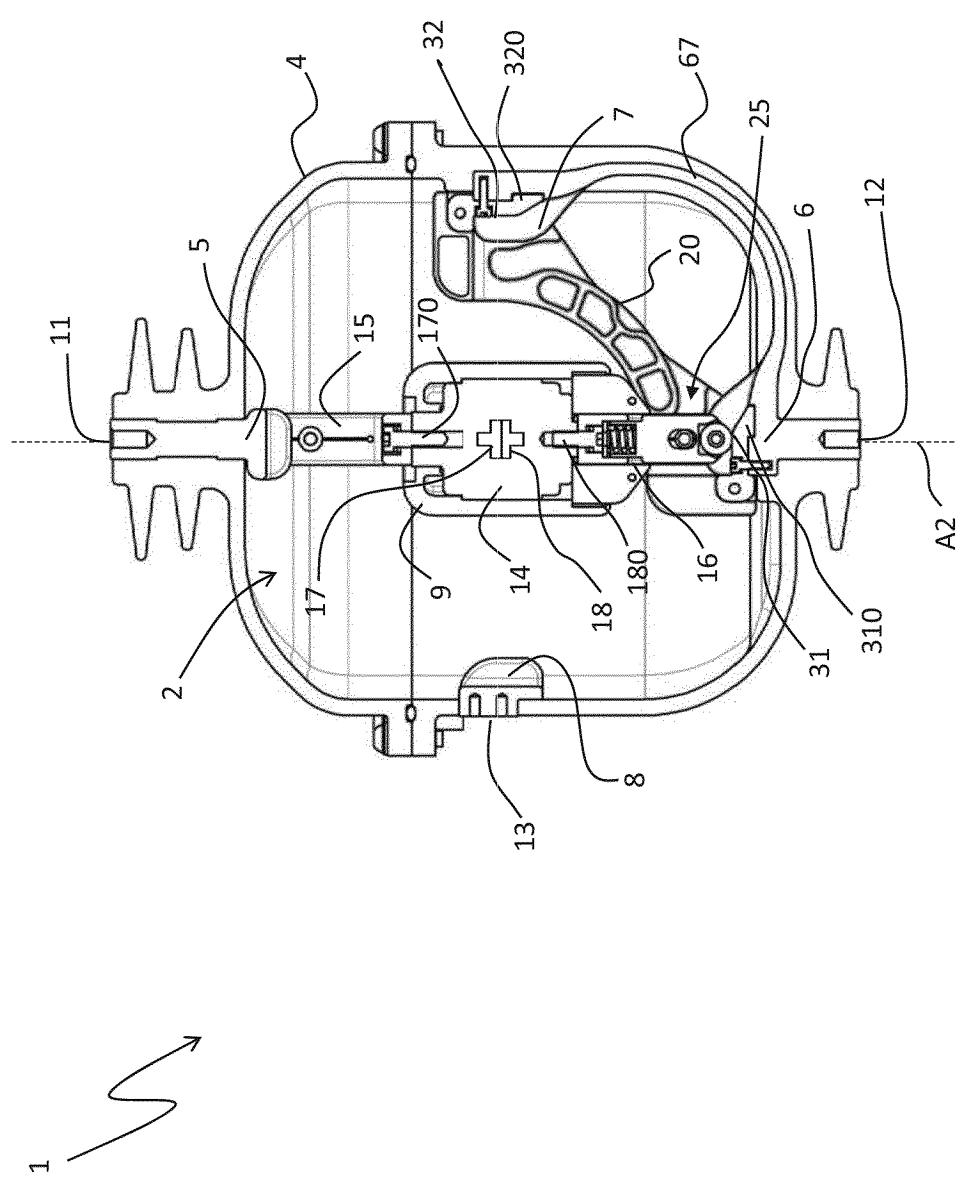


FIG. 4

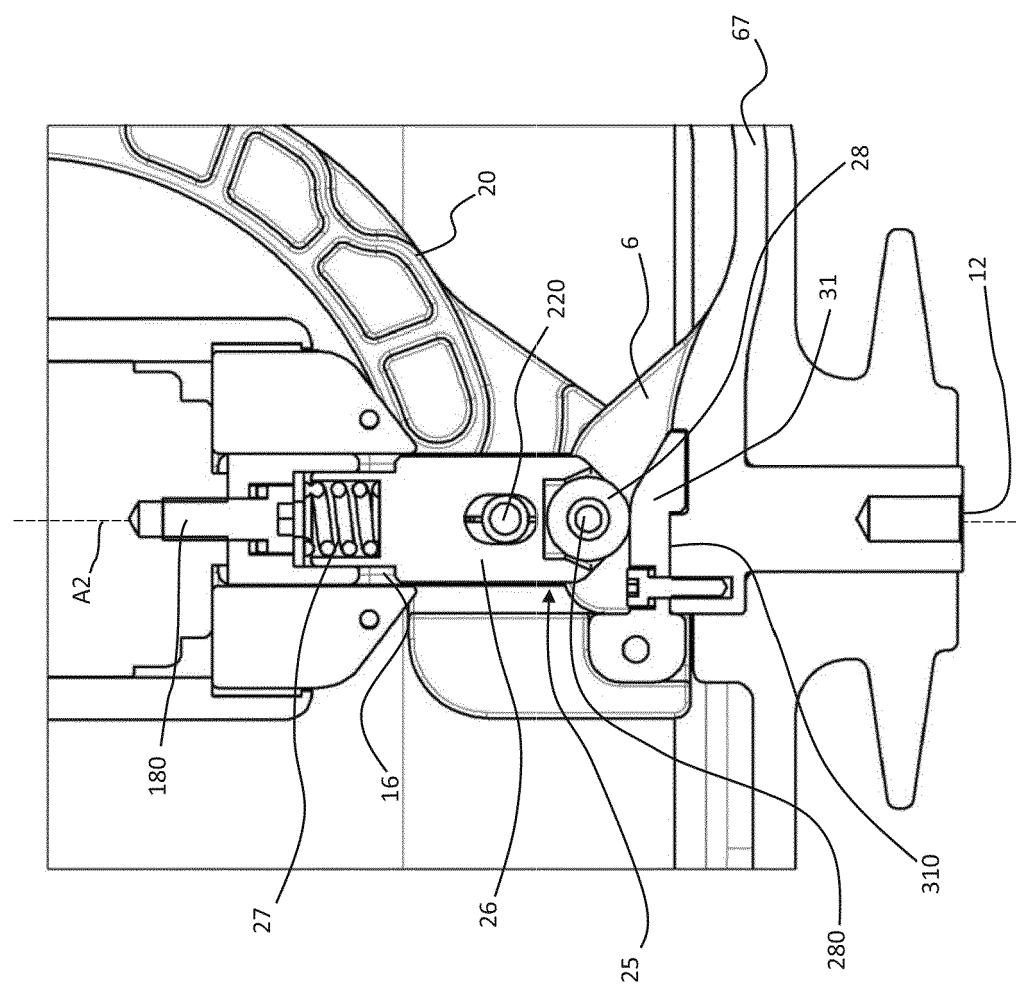


FIG. 5

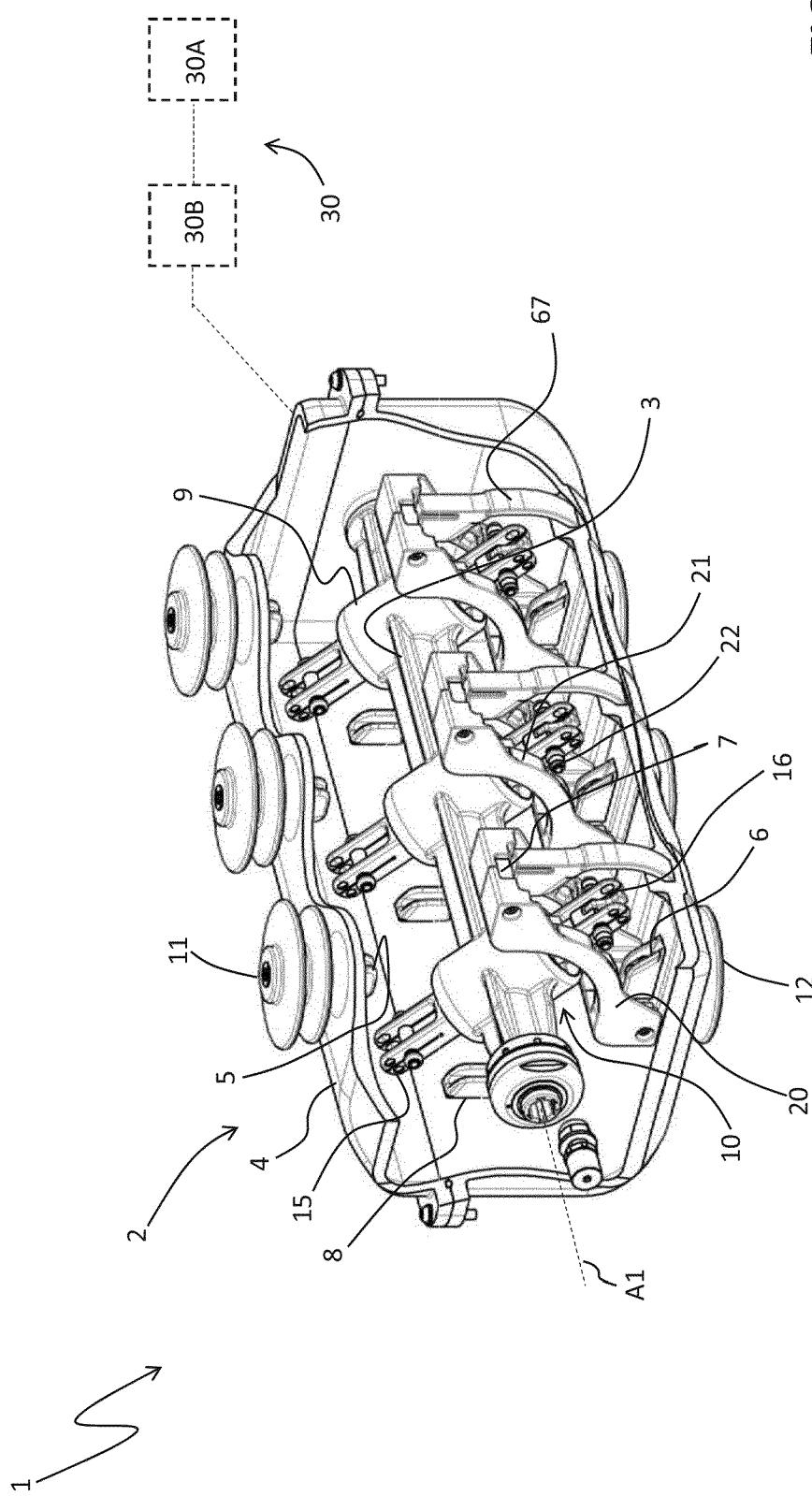


FIG. 6

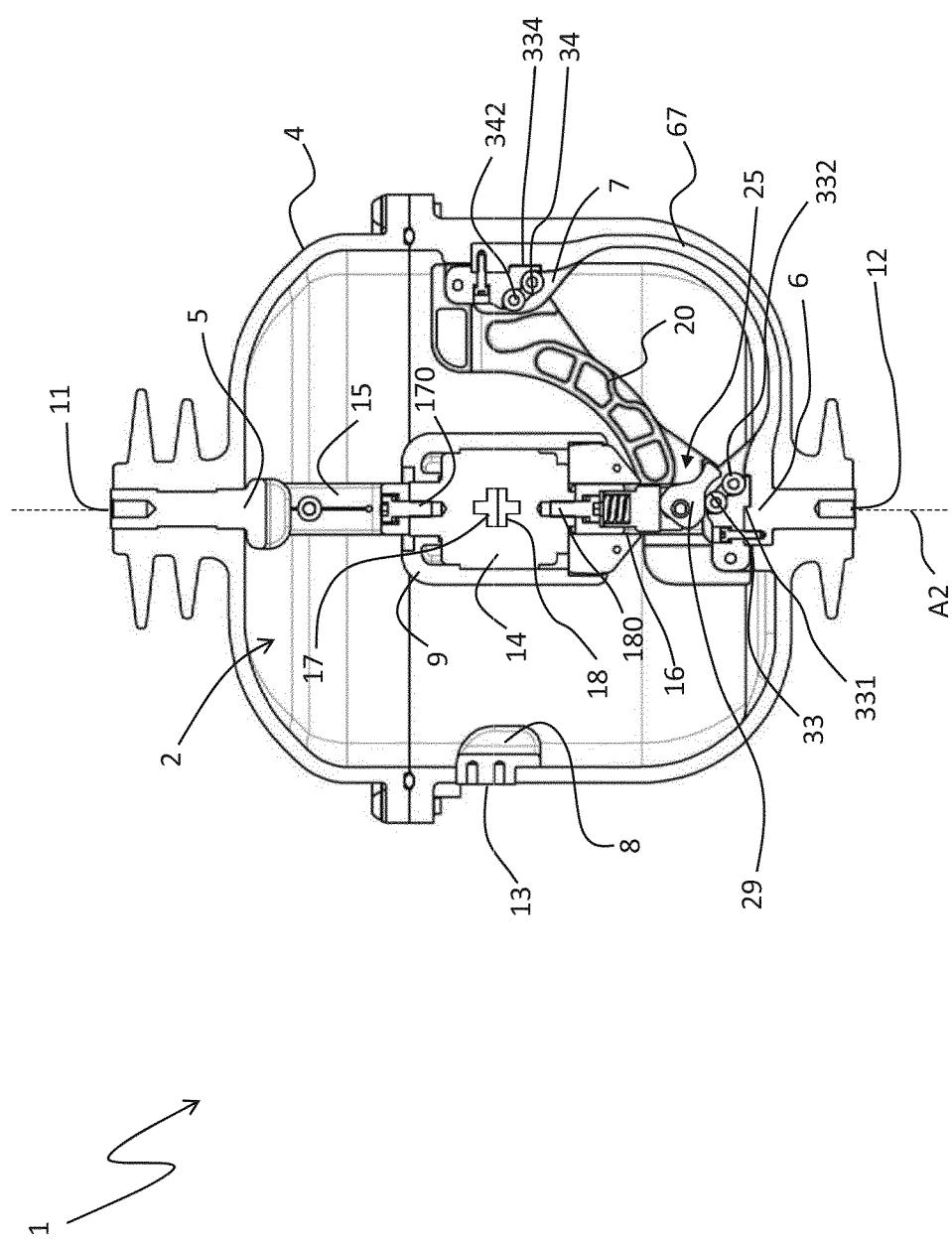


FIG. 7

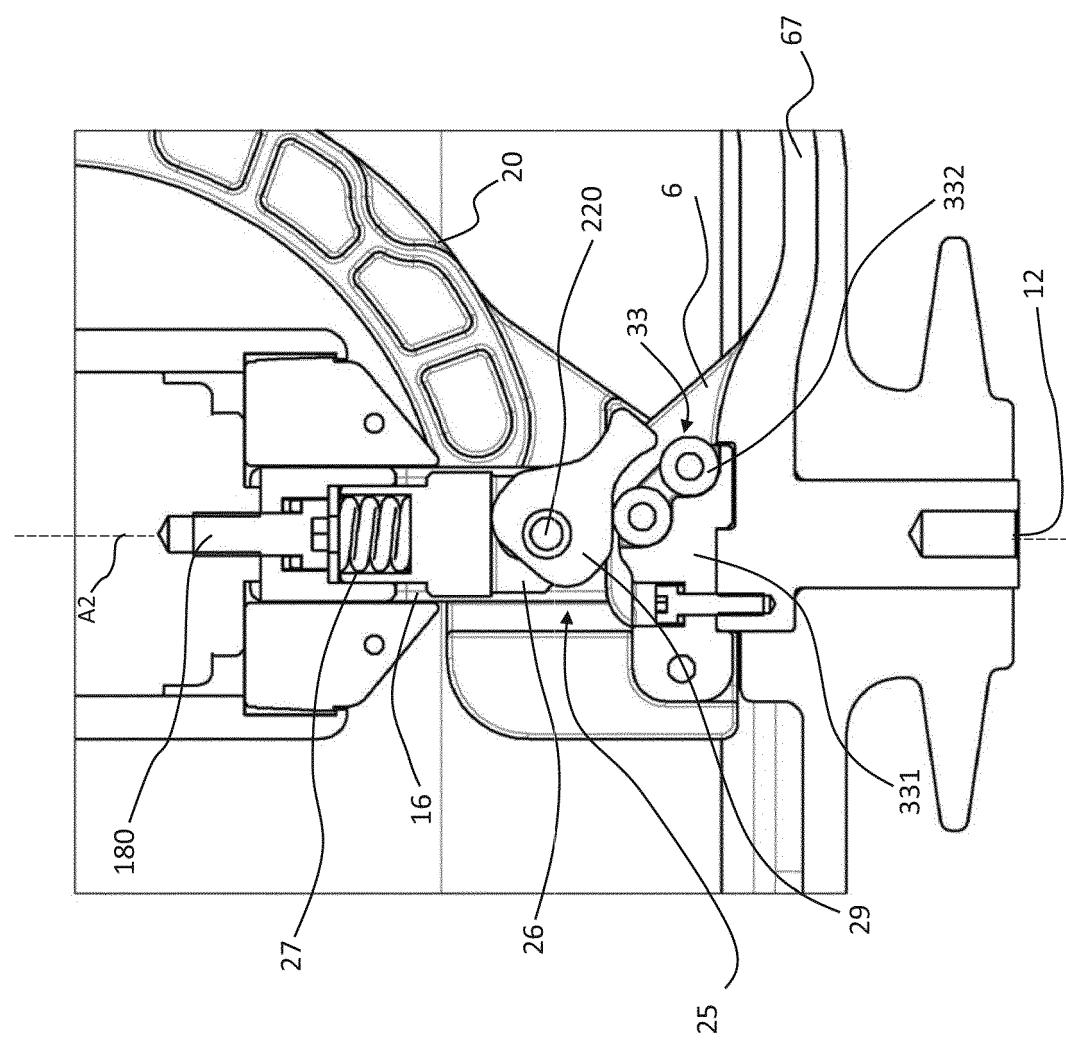


FIG. 8

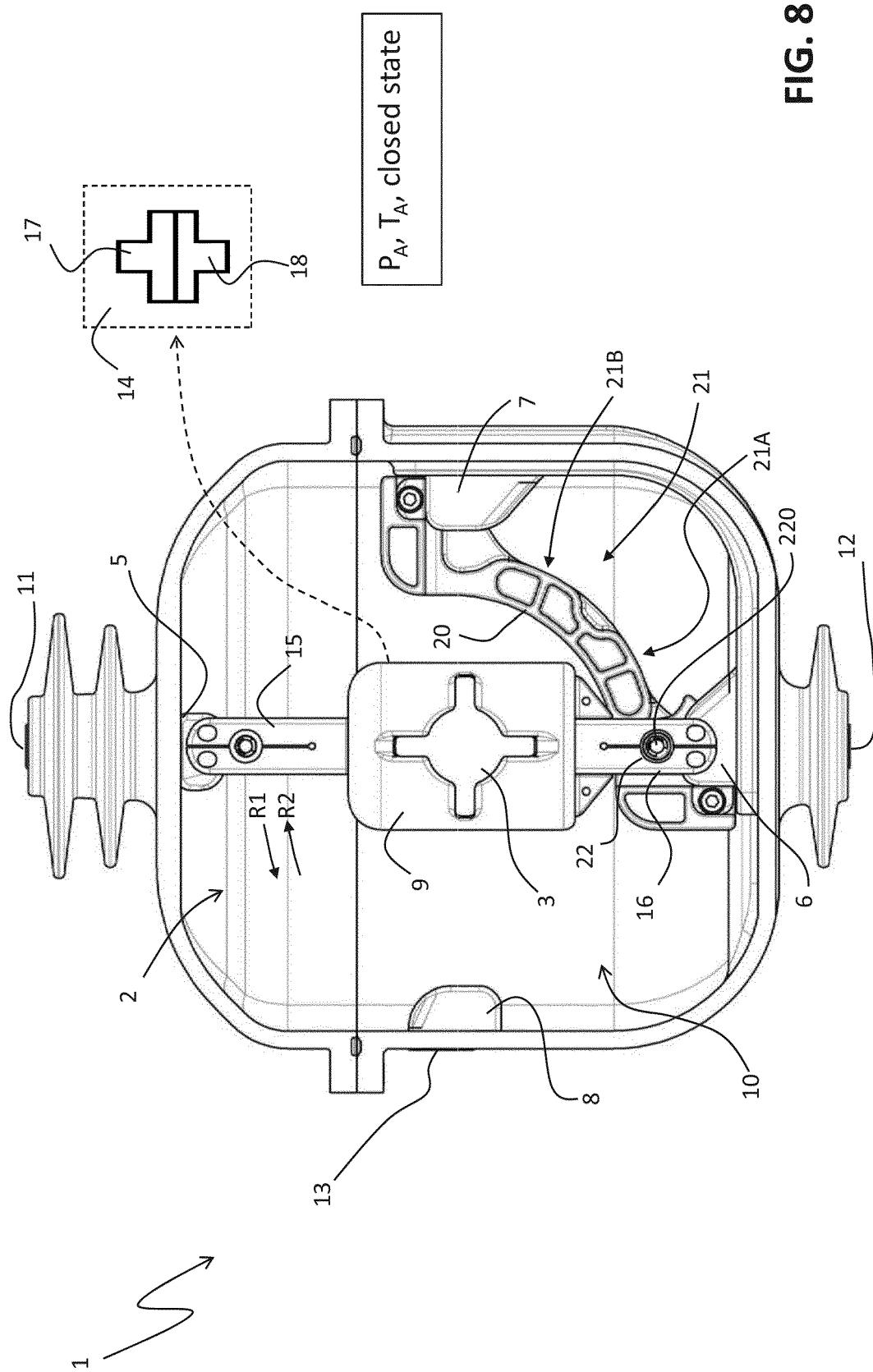


FIG. 9

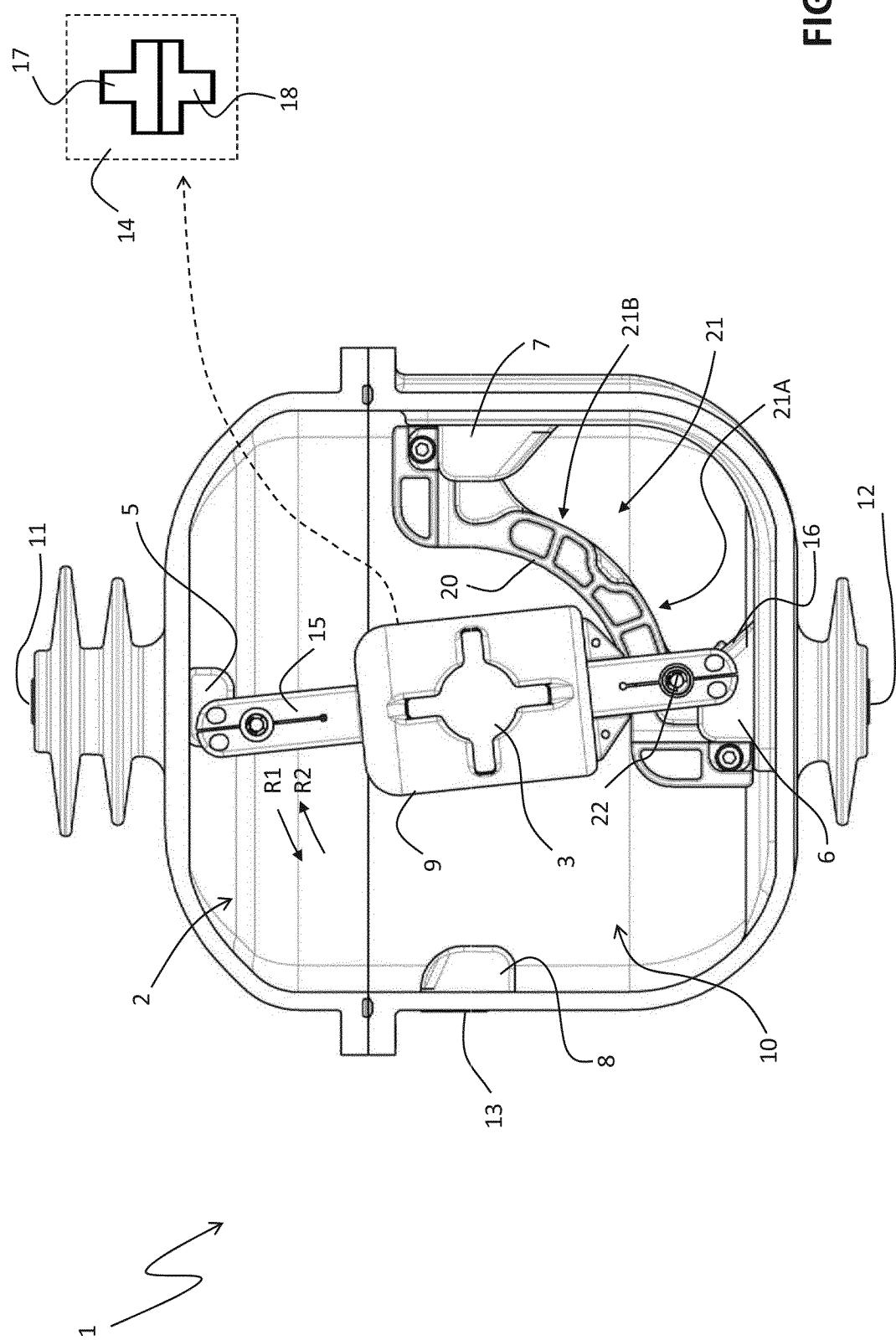


FIG. 10

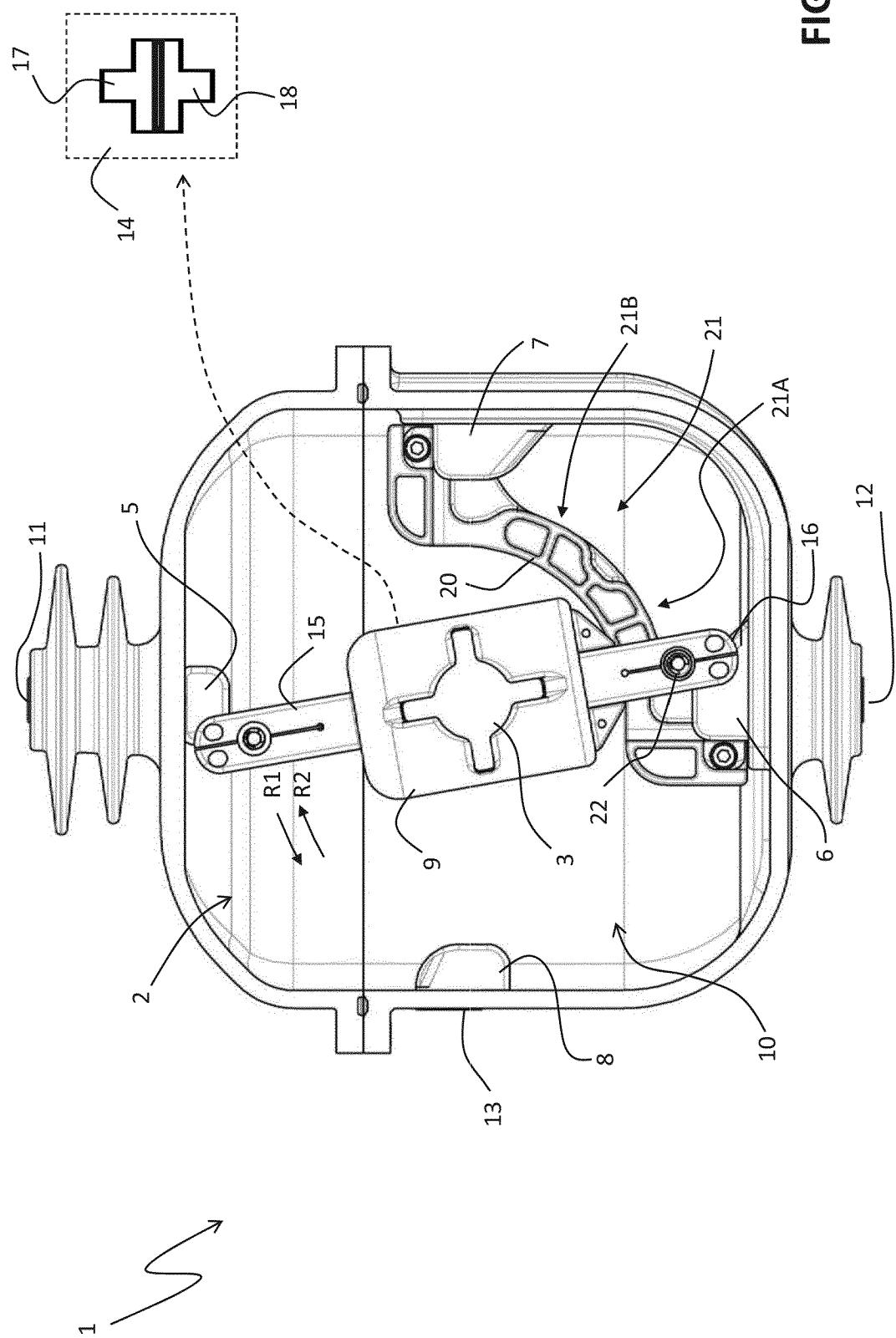


FIG. 11

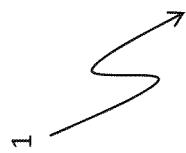
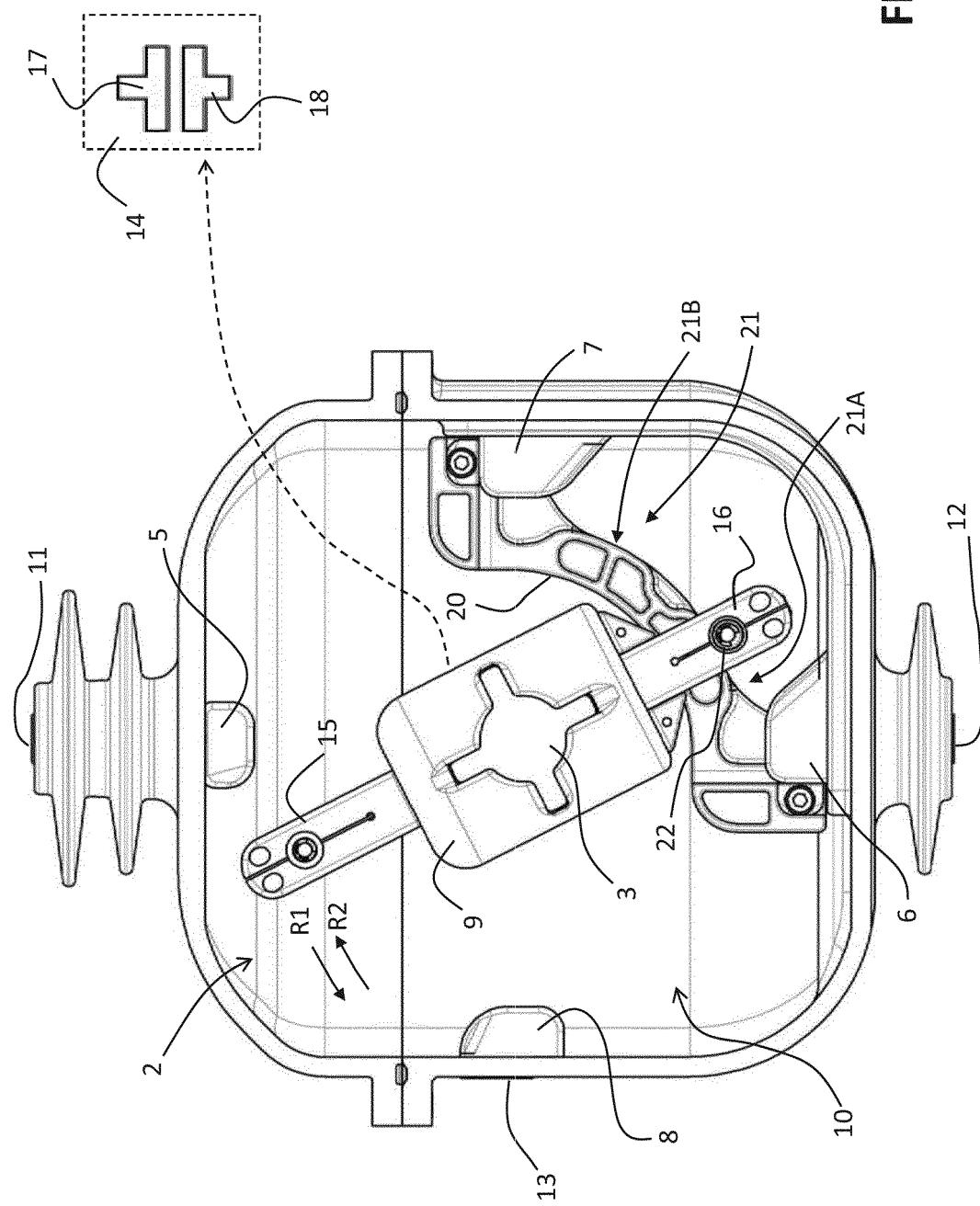



FIG. 12

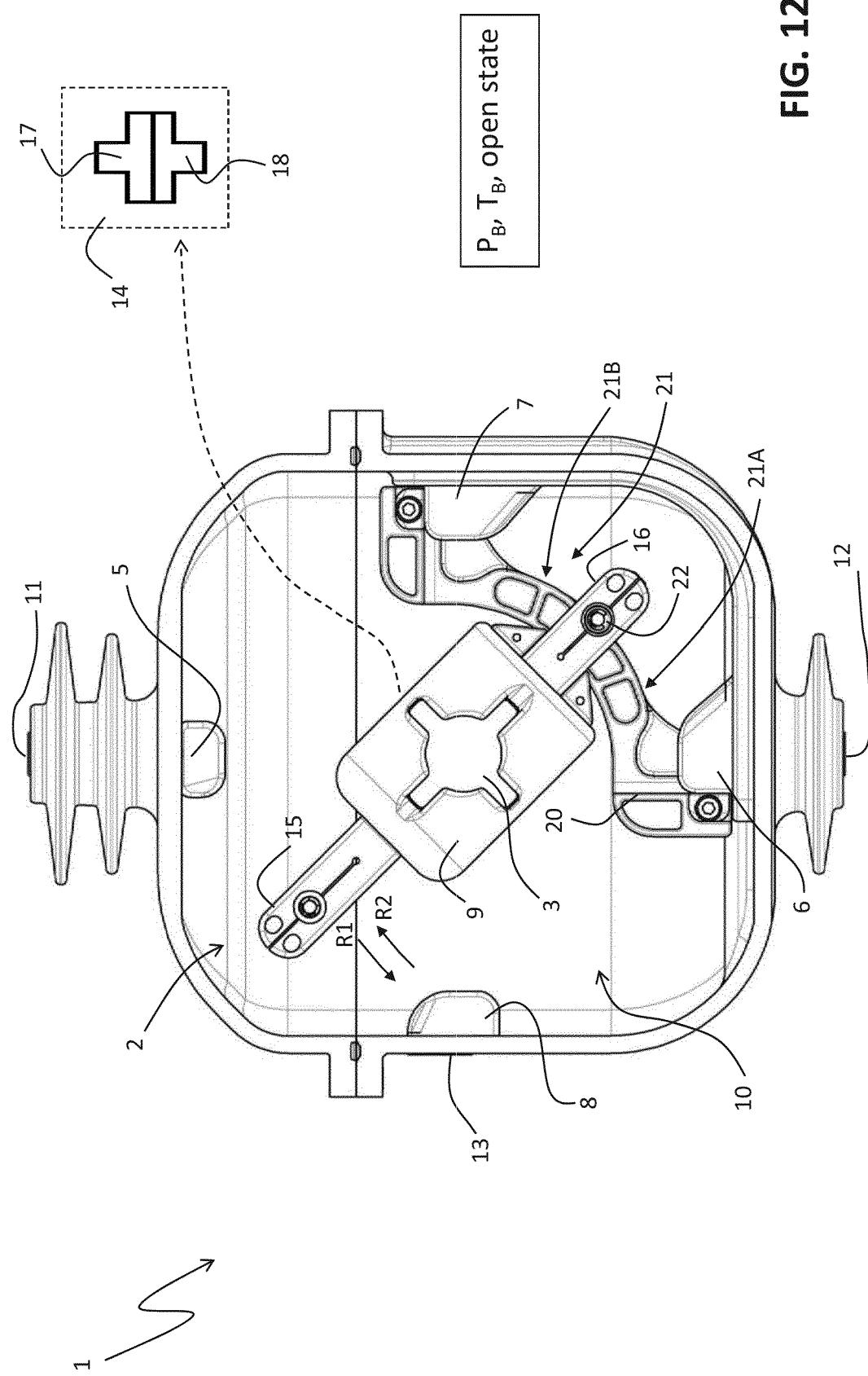


FIG. 13

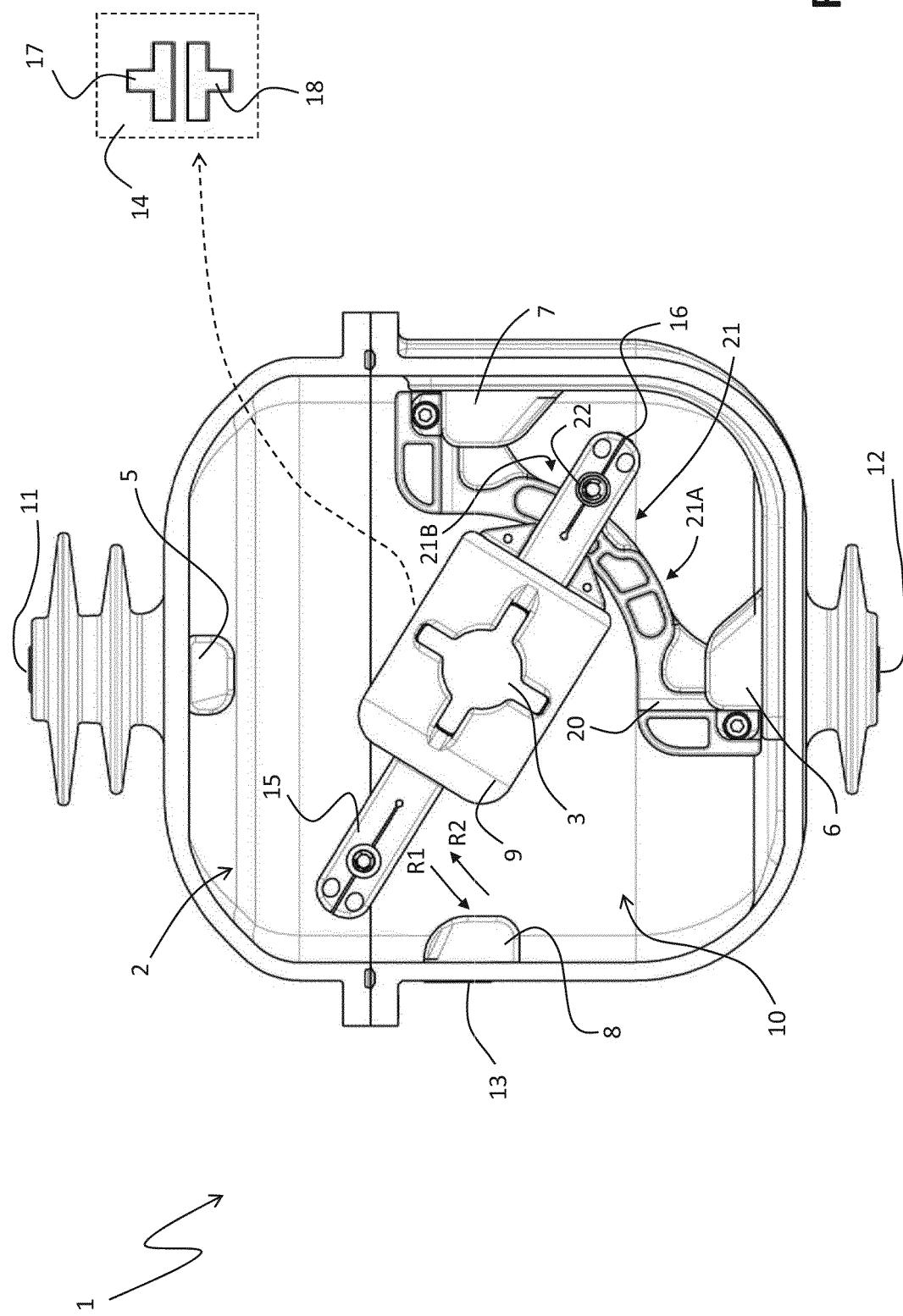


FIG. 14

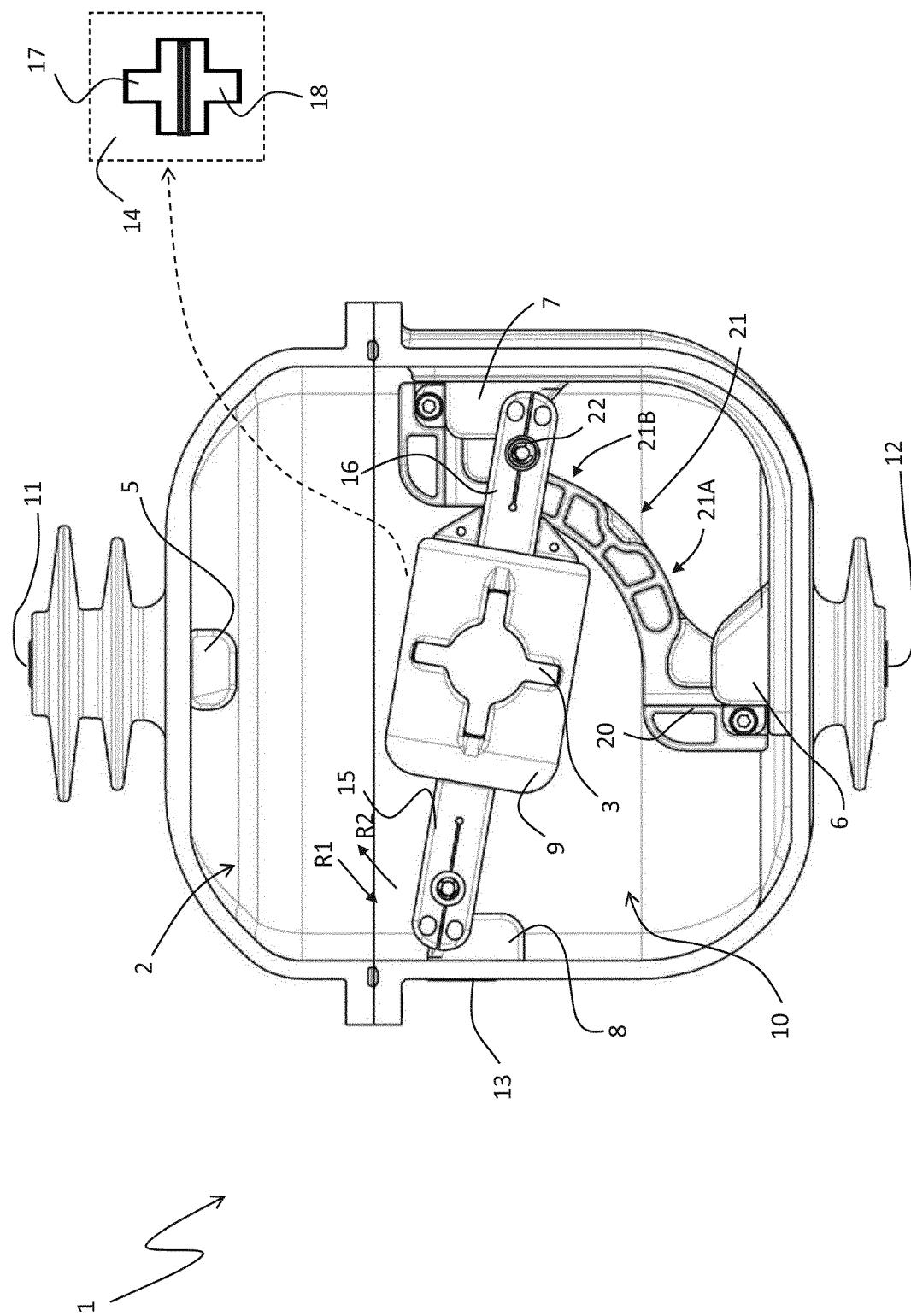


FIG. 15

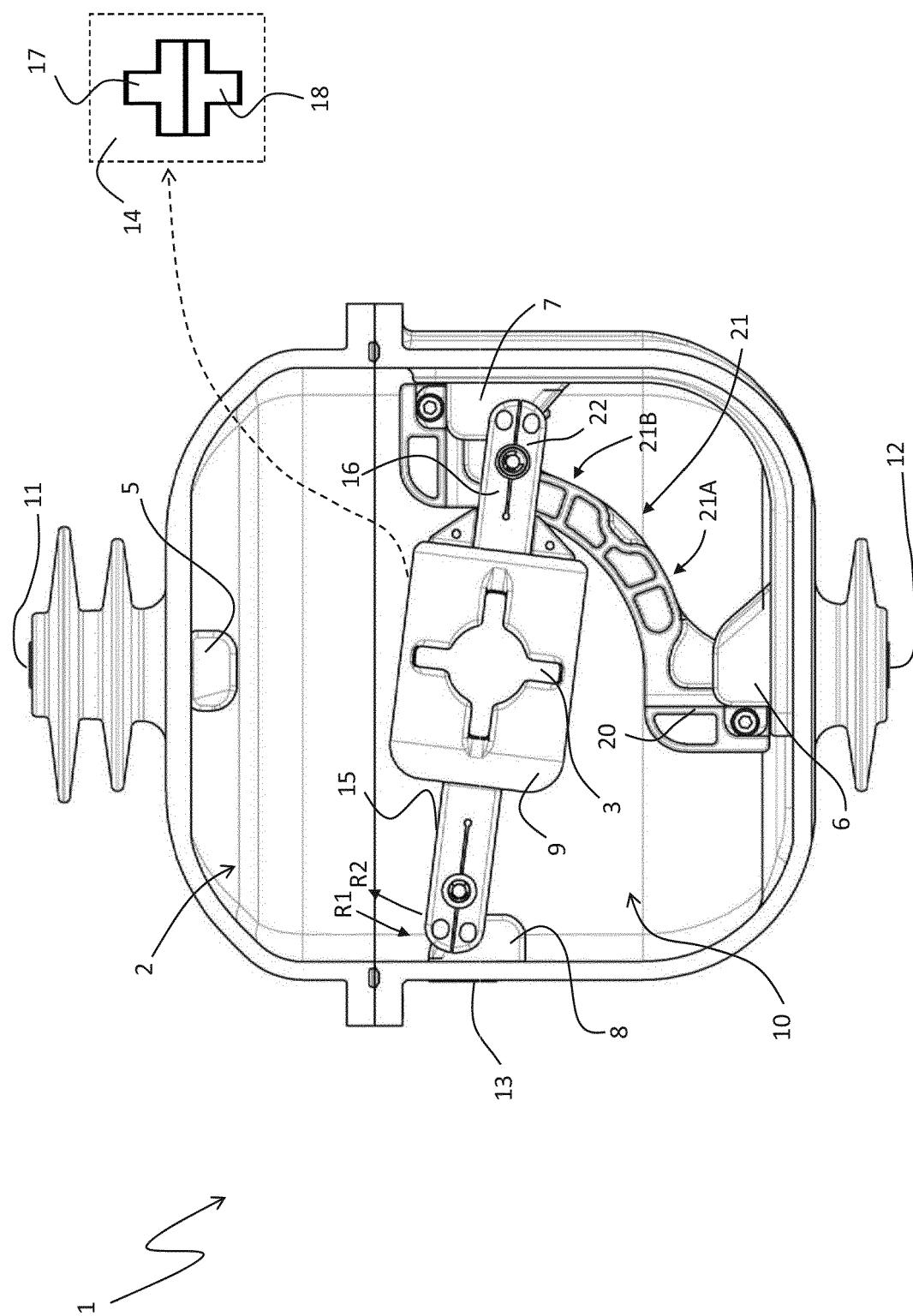
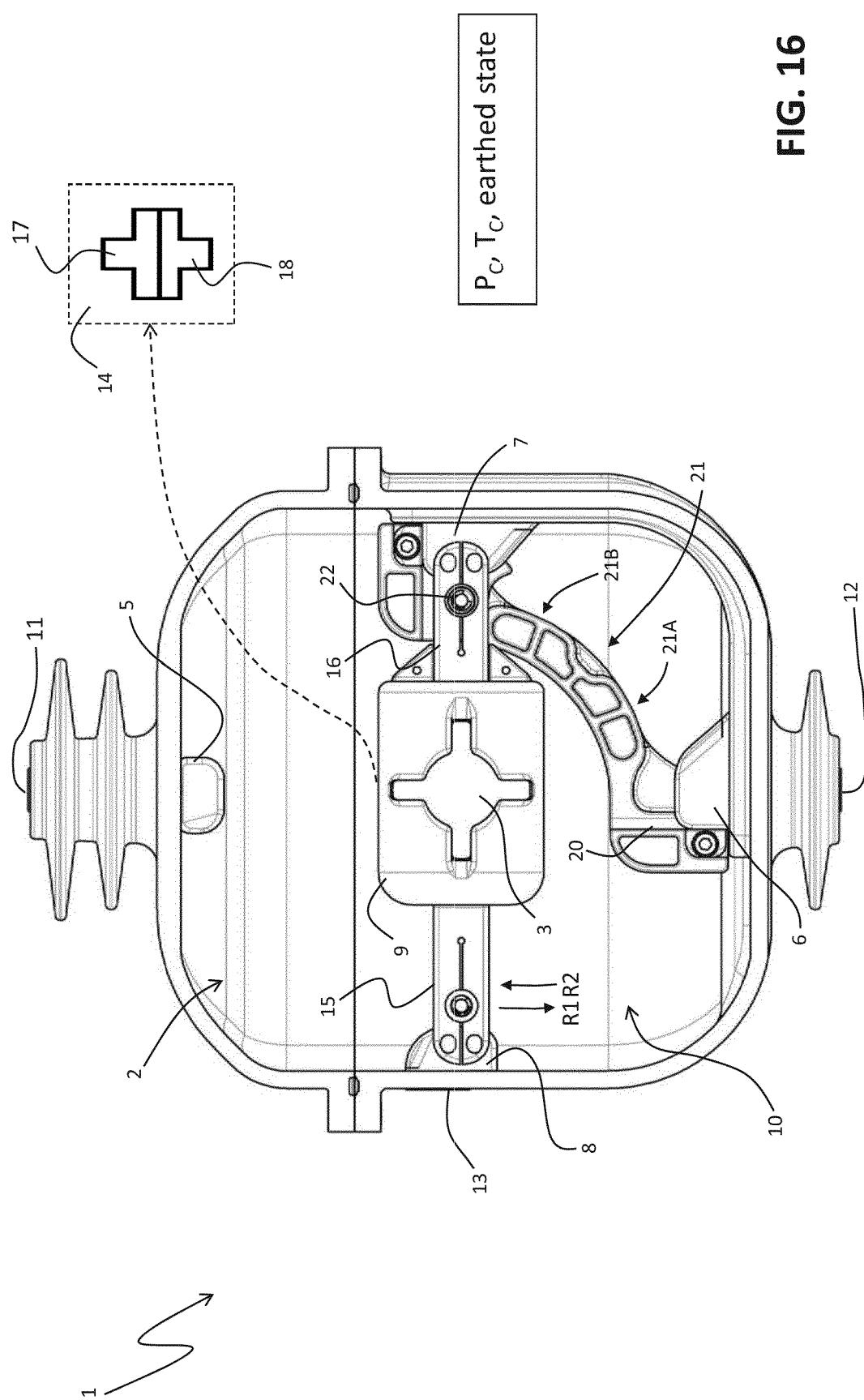



FIG. 16

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- DE 102011087630 A1 [0008]
- US 4268890 A [0008]