4197 A2 |0 0 0 OO A

v

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date

29 December 2004 (29.12.2004)

(10) International Publication Number

WO 2004/114191 A2

(51) International Patent Classification’: GO6F 19/00
(21) International Application Number:
PCT/EP2004/006620

(22) International Filing Date: 18 June 2004 (18.06.2004)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
60/480,618 20 June 2003 (20.06.2003) US
(71) Applicants (for all designated States except US): HE-
LIX GENOMICS PVT. LTD. [IN/IN]; Sri Janaki 302
Block I, Sri Sai Paradise, S.S. Nagar, Sreet No. 8,
Hubsdiguda, Uppal, Hyderabad 50007 (IN). TERRA-
MARK MARKENCREATION GMBH [DE/DE];

Wachmannstrasse 1b, 28209 Bremen (DE).

(72) Inventor; and
(75) Inventor/Applicant (for US only): PRASAD, Burra, V.,
L., S. [IN/IN]; Hyderabad, Andhra Pradesh (IN).

(74) Agents: BOEHMERT & BOEHMERT et al.; ENGEL-
HARD, Markus, Pettenkoferstr. 20-22, 80336 Miinchen
(DE).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI,
SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: METHOD AND APPARATUS FOR OBJECT BASED BIOLOGICAL INFORMATION, MANIPULATION AND

MANAGEMENT

(57) Abstract: A biological data manipulation system, and a programming language and system, and a method of use thereof, are
v={ disclosed. The system, apparatus, and method include a first data file receiver for receiving a first data file having,data indicative of a
% first data file type and data indicative of at least one biological data object, a first classifier that applies a plurality of rules to the first
& data file to parse the first data file into a first data file type and into a plurality of string classes, a second classifier that differentiates
& a master class for ones of the plurality of string classes, wherein the master class is differentiated against at least one selected from
the group consisting of a single biosequence master and a multiple biosequence master, and a third classifier that classifies an at least
one biological data object of the first data file, wherein the at least one biological data object is multiple inherited to the master class
in accordance with at least one of the plurality of rules, and in accordance with at least a partial sequence of stored biodata compared
by the third classifier against at least a partial sequence of at least one of the plurality of string classes.

10

15

20

25

WO 2004/114191 PCT/EP2004/006620

METHOD AND APPARATUS FOR OBJECT BASED
BIOLOGICAL INFORMATION, MANIPULATION AND MANAGEMENT

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention is directed generally to a
method and apparatus for manipulating information and managing
information between points and, more particularly, to an
apparatus and method for object based biological information

manipulation and management.

Description of the Background

- Researchers utilizing computers to enhance research
capabilities often face the difficult task of programming in
computer languages and software programs not designed for
scientific applications. Trying to compile results froﬁ a
variety of off-the-shelf programs into a single unified and
useable database can be an extremely difficult task. Further,
chpiling the numerous and varied data stores and databases
applicable to biological research, including structural

databases, sequence databases, genomic databases, metabolism

10

15

20

WO 2004/114191 PCT/EP2004/006620

databases, and similar databases, for accessing by a single
program or related programming set, is very difficult.

Thus, an obstacle for a biological researcher is the
time spent writing code for parsing file formats of data
retrieved from these existing and varied databases with the
goal of analyzing the retrieved data in a unified system. This
time spent by the researcher is non-productive, and time spent
on valuable research activities could be increased if the
researcher was provided with more efficient tools to access
and manipulate this desired information.

Several generations of biological programming have
yet to solve many of the difficulties faced by researchers
dependent on computerization. A first generation of
biosoftware was not object oriented (“00”), and hence included
small, isolated, stand alone applications having specific,
pre-determined objectives. This first generation of software
included programs designed for structure alignment (such as
ALIGN), structure validation (PROCHECK and WHATIF), database
searching for sequence homologies (BLAST: FASTA), pair wise
and multiple sequence alignment (CLUSTALW), surface area
calculations and shape complementarity(MSP, NACCESS), multiple
structure alignment (STAMP), and for visualization of

macromolecules (RASMOL, FRODO, and MOLSCRIPT). These programs

10

15

20

WO 2004/114191 PCT/EP2004/006620

are highly limited in scope and make it necessary for the
researcher to utilize many different programs to manipulate
one piece of data multiple ways.

Second generation biosoftware has abstracted to
improve user convenience as part of the objective. Second
generation programs include a collection and compilation of a
large set of disparate programs compiled together, wherein
each individual program is similar to first generation
software. Programs such as GCG and CCP4 suite belpng to this
second generation. Although these collections of individual
programs can organize and compile information together into a
single package, the programs are independent executables and
cannot communicate nor collaborate with one other. The use of
scripting languages can allow for communication and
collaboration between programs, but at a tremendous cost of
efficiency and speed.

Second generation biosoftware, like first generation
software, does not support 00 programming. A programmer has
to follow strict syntactic and semantic rules which can differ
between software packages, thereby making jumps between
software packages difficult. Additionally, the code produced
from these procedural packages is far from simple or

efficient. These programs do not automatically scale up, and

10

15

20

WO 2004/114191 PCT/EP2004/006620

are inflexible closed systems. Thus, the first and second
generation biosoftware could not appropriately handle the
ever-expanding library of biological terms and processes.

With the advent of whole genome projects, the amount
of déta to be analyzed and/or simulated is many orders of
magnitude higher than in the very recent past. The need to
handle large scale data analysis and simulation has created a
third generation of biosoftware based on the 00 platform.
This third generation has been created to overcome the
drawbacks of procedural languages. The starting point is to
build a user’s model by creating “objects.” These objects are
“data structures” encapsulated with a set of routines called
“methods”, which methods operate on the data. Objects can
also have “attributes.” An example would be the attribute
employee number (5 digits) of an employee object. An access
method could be “get employee.” Operations on the data can
only be performed via these methods.

Objects having similar behavior can be grouped in
the same “class.” Classes are arranged in a class
“hierarchy”. Classes and subclasses let objects in a subclass
“inherit” everything from the respective super class. 1In an
00 development application, objects use the services of other

objects, which in turn use the service of other objects, and

10

15

20

WO 2004/114191 PCT/EP2004/006620

so on. Several attempts have been made at creating
biosoftware in an 00 platform, most having abstracted only the
sequence domain. This leaves the utility of the bio-00
platform restricted to sequence analysis. Other bio-00
efforts have very limited and specific stand alone libraries.
Therefore, the need exists to provide the user with
a method and apparatus for an object based biological
programming environment that includes a hierarchical
organization for biodata, that encourages creativity, that
enables the researcher to quickly test and compare multiple
alternatives, that allows for the re-use of data and the
expansion of data libraries, that entails the abstraction
needed to efficiently handle complex biological data, and that
provides for the inclusion of databases operating on mis-

matched protocols.

BRIEF SUMMARY OF THE INVENTION

The present inventioﬁ includes a programming
language, system, and tool for a bioiogist to develop,
manipulate, and manage biological data using an object-
oriented paradigm (OOP), supported by programming languages

such as C++. The present invention may provide a set of

10

15

20

WO 2004/114191 PCT/EP2004/006620

Biological Abstract Data Types (BioADTs) that a programmer can
simplistically use to program in biological terminology. An
ADT defines a concept independent of programming language. A
representation of an ADT in OOP is herein called Class. The
present invention uses a class and inheritance OOP system to
provide an extensible, maintainable, reusable and biologist
friendly bio-programming environment that encourages
creativity in exploratory research and flexibility in
developing bio-computational applications.

The present invention may include a biological data
manipulation system, and a programming language and system,
including a first data file receiver for receiving a first
data file having data indicative of a first data file type and
data indicative of at least one biological data object, a
first classifier that applies a plurality of rules to the
first data file to parse the first data file into a first data
file type and into a plurality of string classes (e.g.,
nucleic acids, coordinates of atoms and 3D structure of
proteins, and/or other data suitable for placement or storage
in one or more string classes), a second classifier that
differentiates a master class for ones of the plurality of
string classes, wherein the master class is differentiated

against at least one selected from the group consisting of a

10

15

20

WO 2004/114191 PCT/EP2004/006620

single biosequence master and a multiple biosequence master,
and a third classifier that classifies an at least one
biological data object of the first data file, wherein the at
least one biological data object is multiple inherited to the
master class in accordance with at least one of the plurality
of rules, and in accordance with at least a partial sequence
of stored biodata compared by the third classifier against at
least a partial sequence of at least one of the plurality of
string classes.

Thus, the present invention provides the user with a
method and apparatus for an object based biological
programming environment which includes a hierarchical
organization for biodata, that encourages creativity, that
enables the researcher to quickly test and compare multiple
alternatives, that allows for the re-use of data and the
expansion of data libraries, that entails the abstraction
needed to efficiently handle complex biological data, and that
provides for the inclusion of databases operating on mis-
matched protocols.

Preferably and according to an additional and
optional aspect, the invention also provides for an internal
interpreter means, which is capable of processing biological

programming language features. Such interpreter means enable

10

15

20

WO 2004/114191 PCT/EP2004/006620

the user to have a programming environment feature, thereby
having the advantage of avoiding compilation and linking of
the code. Such an interpreter will enable the processing of
language features, using the set of defined classifiers
according to the present invention. This optional features can
be applied to the biological feature manipulation system, the
method and/or the computer-readable medium, carrying
respective data and information according to the present
invention.

The present invention thereby succeeds in providing
a very effective biological programming environment and
discovery system and therefore providing a very useful and
effective tool for a biologist.

Those and other advantages and benefits of the
present invention will become apparent from the detailed

description of the invention hereinbelow.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

For the present invention to be clearly understood
and readily praﬁticed, the present invention will be described
in conjunction with the following figures, wherein like

reference numerals designate like elements, and wherein:

10

15

20

WO 2004/114191 PCT/EP2004/006620

FIG. 1 is a block diagram illustrating an embodiment
of the structure of the present invention;

FIG. 1A is a block diagram illustrating a embodiment
of the system of the present invention;

FIG. 2 is a block diagram illustrating an embodiment
of the multiply derived hierarchy of the present invention;

FIG. 2A is a block diagram illustrating an
embodiment of the multiply derived hierarchy of the present
invention;

FIG. 2B is a block diagram illustrating an
embodiment of the multiply derived hierarchy of the present
invention;

FIG. 2C is a block diagram illustrating an
embodiment of the multiply derived hierarchy of the present
invention;

FIG. 3 is a block diagram illustrating an embodiment
of the multiply derived hierarchy of the present invention;

FIG. 4 is a block diagram illustrating a biological
data manipulator, a manipulation system, and at least one
programming hierarchy and system;

FIG. 5 is a block diagram illustrating at least one
classifier of the present invention for use in the system of

FIG. 1;

10

15

20

WO 2004/114191 PCT/EP2004/006620

FIG. 5A is a block diagram illustrating at least one
sequence format converter of the present invention for use in

the system of FIG. 1; and

FIG. 6 is a block diagram illustrating an embodiment

of a data library for use in the present invention.

DETAILED DESCRIPTION OF THE INVENTION

It is to be understood that the figures and
descriptions of the present invention have been simplified to
illustrate elements that are relevant for a clear
understanding of the present invention, while eliminating, for
purposes of clarity, many other elements found in a typical
information management system and method. Those of ordinary
skill in the art will recognize that other elements are
desirable and/or required in order to implement the present
invention. However, because such elements are well known in
the art, and because they do not facilitate a better
understanding of the present invention, a discussion of such
elements i1s not provided herein.

Objected Oriented Paradigm (“OOP"”) overcomes many
difficulties inherent in other programming paradigms, such as
an imperative programming paradigm like Pascal, a logic

programming paradigm like Prolog, or a functional programming

-10-

10

15

20

WO 2004/114191 PCT/EP2004/006620

paradigm like Haskell. OOP can overcome the inherent
difficulties of other paradigms by reducing the problem space
to deal with increasing complexity. OOP reduces the problem
space, and provides scalability, through three properties,
namely data abstraction, data encapsulation and inheritance.
Data abstraction divides a complex problem into simple and
conceptually independent entities that form the building
blocks of a project. The abstracted entities then can inter-
communicate and collaborate to simulate a complex phenomenon
by obeying a defined behavior. An exemplary specific
embodiment of the biological abstraction provided in the
present invention is illustrated in Figure 1. The defined
behavior or state of the abstracted entities is data
encapsulation. Data encapsulation segregates what is done
from how something is done, thereby giving the programmer the
ability to modify and improve techniques without disturbing
underlying data. The reduction of the problem space using
these three properties occurs by using the three properties to
form a hierarchy of inheritance. Code optimization and code
reuse may be employed through the use of a hierarchical
ordering.

Figure 1 is a block diagram illustrating the manner

in which such a hierarchy is created in accordance with the

-11-

10

15

20

WO 2004/114191 PCT/EP2004/006620

present invention. As illustrated, a bio-platform may be
provided, wherein the bio-platform accesses objects exterior,
or within, or related to the bio-platform. For example, the
bio-platform may access master domains, as those domains
relate to biological abstraction. In the illustrated example,
biological abstraction is performed to abstract biological
entities into one or more of the sequence of the biological
entity, the structure of the biological entity, and/or the
algorithm to be applied to the biological entity. Thus, for
example, a DNA sequence might fall within the sequence domain,
a molecular structure might fall within the structure domain,
and an assessment of molecular weight might fall within the
algorithmic domain.

As will be apparent to those skilled in the art in
light of the disclosure herein, the abstraction of the
biological entities into a master domain allows subsequent
abstraction, within the selected domain, into one or more
additional levels of abstraction, such as the codons within a
DNA sequence or amino acids in a protein sequence. Further,
the abstraction, as illustrated, may allow the
intercommunication of different domains, and/or of lower

hierarchical layers within each domain, such as the

-12-

10

15

20

WO 2004/114191 PCT/EP2004/006620

application of algorithms within the sequence domain to
sequences within the sequence domain.

Further, as shown in Figure 1, the abstraction of
biological entities into the hierarchy of the present
invention allows interaction with elements from other domains.
For example, a file format domain that allows the bio-platform
to assess, or formulate, the file type of a given file, may be
provided. Further, data libraries, such as those known in the
art as related to biological entities, may be provided, to
allow for interoperability with input biological sequences,
for example, upon application of one or more bioligical
algorithms to the input sequences, for example. Additionally,
visualization domains may be provided, such as to provide
interfaces to the bio-platform, and each other of the domains
of the bio-platform, to a user.

The visualization domain, in a preferred embodiment
of the invention, is further abstracted into BioGL class which
may be dependent on BioData class. The BioData class may have
Bioc2Ddata (two variables) and Bio3Ddata (three variables).

For example, using a compiler and an operating
system, such as a C++ compiler, v2.95 running in Mandrake
Linux, v8.1l, a biological data manipulation and management

system and language in accordance with the present invention

-13-

10

15

20

WO 2004/114191 PCT/EP2004/006620

may be implemented. The system and language of the present
invention may, in this exemplary embodiment, assist to explain
and manipulate biological entities, such as DNA, protein, or
carbohydrates, for example. These biological entities have
data and have a defined behavior or state associated
therewith, making these entities candidates to form BioADTs.
For example, a group of BioADTs, having an encapsulation and
interface to inter-communicate and collaborate, may provide a
class system, such as within the domain hierarchy of Figure 1,
to describe the biological complexity of the biological
entities. A set of BioADT classes allow for the simulation of
interaction of biological entities, such as the complex
molecular interactions within a cell.

These biological entity classes may describe
biological sequence information or structure information, for
example, as illustrated in Figure 1. The biological sequence
information may be stored as a string datatype and structure
information may be stored in user defined structures such as
BioPoint and BioAtom, for example, as illustrated in Figure
1A. For example, any sequence, such as a sequence of genomes,
genes, cDNAs, mRNAs, tRNAs, plasmids, ESTs, SNPs or proteins
102, may be stored 104 as a string datatypes, which string is

a standard C++ library class. A string class may allow for

-14-

10

15

20

WO 2004/114191 PCT/EP2004/006620

the performance of pattern searching, matching, counting,
comparing, substring fetching, and the like. The string class
may then be qualified with a sequence name. For example, a
BioSequence class may be implemented from a series of
biosequence ADTs to form the base class for derived sequence
classes.

For example, multiple sequence classes may be
derived from the base BioSequence class, wherein these derived
sequence classes have common properties inherited to the base
class from which they derive. In an embodiment,
BioDnaSequence and BioProteinSequence classes may, for
example, be derived to differentiate between protein sequences
and nucleotide sequences within the sequence domain, or
between additional method characteristics of a biomolecule,
for example. Such a hierarchy, wherein multiple derived
bioclasses 104 inherit to a common base bioclass 200, is
illustrated in Figure 2. An exemplary specific embodiment of
the inherency of a common base bioclass and multiple derived
bioclasses of the present invention is illustrated in Figure
2A. In Figure 2A, the file format of the file has been
assessed, the sequence aspects of the file have been assessed,
and the sequence nature of the file may be further broken down

into lower hierarchical levels, as illustrated. For example,

-15-

10

15

20

WO 2004/114191 PCT/EP2004/006620

DNA, genome, and/or protein sequences, among others, may be
subservient to a master bio-sequence class, which may, in
turn, subserve a standard language class, such as a C++ string
class.

Figure 2B illustrates an exemplary embodiment of a
derived hierarcy of the present invention. The present
invention, by basing the coding in objects, may build
continually outward from the basic levels of biological
building blocks, as illustrated. In other words, a BioPoint
may form the basis for a BioAtom, one or more BioAtoms the
basis for a BioMonomer, and so on, and this inheritance may be
implemented in the hierarchy of biological abstraction in the
present invention.

Referring now to Figure 2B, Biopoint may be, for
example, the coordinates of an atom. For example x,y, and z
coordinates together may form a biopiont. Most molecules (for
example, DNA, proteins), in living organisms, contain six
different atoms; hydrogen, carbon, nitrogen, phosphorous,
oxygen and sulfur. It should be noted, however, that some
molecules may contain atoms other than those specifically
exemplified herein. These may be referred to herein as
BioAtoms. Hence, BioPoint refers to x,y,z coordinates of

BioAtoms. Further, it is known in the art that atoms in a

-16-

10

15

20

WO 2004/114191 PCT/EP2004/006620

molecule may be held together in a fixed orientation by, for
example, covalent chemical bonds. BioMonomer herein refers to
such molecules, or groups of Biocatoms, held together chiefly
by covalent bonding, such as, for example, glucose,
methionine, lysine, etc. A Biochain herein refers to two or
more monomers held together by covalent chemical bonds. For
example, amino acids are monomeric building blocks of a
polypeptide chain. Likewise, monosaccharides are building
blocks of polysaccharides. Biomacromolecule may refer to
large biological molecules. For example, it is known that a
number of interactions that are weaker than covalent bonds may
help to determine the shape of many large biological molecules
and to stabilize complexes of two or more different molecules.
Some non-limiting examples of BioMacromolecules include
glycosilated proteins, multimeric proteins or macromoleuclar
assemblies. For example, it is known that multimeric proteins
contain several protein subunits held together by noncovalent
bonds. The protein macromolecular structures may combine with
other cell biopolymers, like lipids, carbohydrates and nucleic
acids, to form complex cell organelles, for example.

An additional exemplary specific embodiment of a
common base bioclass, and multiple derived bioclasses derived

therefrom, similar to the embodiment of Figure 2A, and for

-17-

10

15

20

WO 2004/114191 PCT/EP2004/006620

certain of the elements illustrated in Figure 2B, particularly
the BioMacromolecule hierarchical level, is illustrated in
Figure 2C.

A fundamental entity of biostructure information 300
may be represented by a set of three coordinates 302, as
illustrated in Figure 3. This fundamental entity may allow
for the creation of a BioPoint class in the present invention.
Further, a point qualified with a name and number may become
the primary entity of a chemical molecule, an atom. Thereby, a
BioAtom ADT class may be created, which inherits BioPoint, as
will be apparent to those skilled in the art, and as shown in
Figure 2B.

Similarly, any biomacromolecule may be defined as a
polymer of a defined set of monomers. A monomer 'contains' a
group of atoms. For example, proteins are all from a set of
20 amino acid residues. Similarly, all DNA/RNA molecules are
made from a set of 5 nucleotides, namely A, C, G, T or U.
Likewise, carbohydrates are formed from monosaccharides.

The difference in the number of atoms of the
monomeric units of biomolecules, i.e. the different numbers of
atoms in proteins, nucleic acids, or carbohydrates, for
example, makes static memory allocation to store the classes

correspondent thereto significantly less efficient due, in

-18-

10

15

20

WO 2004/114191 PCT/EP2004/006620

part, to differences in the required storage capacity. In
order to facilitate increased storage efficiency and improved
usage of memory, dynamic memory allocation (DMA), such as that
available using C++ standard template libraries, is employed.
Standard template libraries provide a set of sequence and
association containers, such as list, vector, deque, stack,
map, set, and multiset, for example. The content of each of
these containers may be randomly and quickly accessed by any
of numerous available methods.

A BioResidue ADT may be created to dynamically store
information regarding a residue, its name, the atom
information related thereto, and its number, for example, as a
given file, such as a PDB file. This BioResidue ADT may be a
BioResidue Class declared with a residue name, a residue
number and a group of atoms, for example. The information of
different atoms in the residue may then be dynamically stored
using a vector container, as discussed hereinabove, for
example. Similarly, BioNucleotide and BioMonosaccharide
Classes may be declared, for example.

A protein, for example, may be abstracted into group
of chains, with each chain having a correspondent group of
residues. Thereby, similarly to the BioResidue ADT, a

BioChain Class may be implemented having a vector standard

-19-

10

15

20

WO 2004/114191 PCT/EP2004/006620

template library to dynamically hold the BioResidues of the
BioChain. Hence, the BioChain would be a group of BioResidues
qualified with a Chain identifier. Further, a BioProtein
Class may contain a group of BioChains, and a BioWater, for
example, wherein the BioWater class may specially hold
information about water molecules. As set forth hereinabove,
structural information of each relevant bioclass may thusly be
abstracted to a series of classes that are aggregated,
contained or inherited from one another, independently and in
accordance with biological structure behaviors.

Figure 4 is a block diagram illustrating a
biological data manipulator, manipulation system, and
programming hierarchy and system 400. The system of Figure 4
includes a hierarchical organization for biodata, including at
least a data file receiver 402, and first 404, second 406, and
third classifier 408, wherein the first, second and third
classifiers may organize data received by the data file
receiver into a class and object multiple inheritance
hierarchy, such as that of an object-oriented programming.

The data file receiver receives a first data file.
The first data file includes data indicative of a first data
file type and at least one biological data object. As used

herein, a data file type, or file type, may include, for

-20-

10

15

20

WO 2004/114191 PCT/EP2004/006620

example, one or more of a plurality of file formats or
languages, such as Microsoft Word, Excel, C++, Java, or the
like, for example, and a data class may include classes and/or
objects used in object-oriented programming, as will be known
to those of ordinary skill in the art. The data file receiver
that receives the first data file may be a data receiver known
to those skilled in the art for receiving déta, such as a
hardware or software data processor, a hardware or software
data memory, or a software database, for example.

The first classifier applies a plurality of rules to
the first data file. These rules assess a data file type
and/or a file type of the first data file. This assessing may
be performed by parsing the first data file into a first data
file type and into at least one class, such as a string class.
The at least one class may be formed as a programming object
of a predetermined class, having predetermined methods and
characteristics associated thérewith. The string class may be
selected in accordance with the assessed data file type, for
example, such as wherein the data file type is a C++
biosequence and the string class are determined accordingly.

The second classifier differentiates a master class
for ones of the plurality of string classes. The master class

is differentiated against a plurality of available master

21-

10

15

20

WO 2004/114191 PCT/EP2004/006620

classes until a matching master class is obtained. The
selection of master classes includes at least a single
biosequence master class and a multiple biosequence master
class. The single sequence master class may be hereinafter
referred to as BioSequence, and the multiple sequence master
class may be hereinafter referred to as BioMultipleSequence.
The single sequence master class may be matched by the second
classifier for reading single sequence biodata, and the
multiple sequence master class may be matched by the second
classifier for reading multiple sequence biodata. The
multiple biosequence master class may be a grouping of single
biosequence master classes. The selected master class may
form a base class for derived sequence classes, such as those
classified by the third or a subsequent classifier, as
discussed hereinbelow. Additionally, the second classifier
may be scalable by addition of ones of the master classes.
Further, a plurality of methods, both internal and
external to the programming of the biodata manipulation
system, may be applicable to the matching master class. The
external methods may include, for example, external software
applications and programs. The methods applicable to the
selected master class may allow for manipulation of the

biodata corresponding to the selected master class, in

22-

10

15

20

WO 2004/114191 PCT/EP2004/006620

accordance with the characteristics of the selected master
class. The allowed manipulations may be received as
instructions from a user of the biodata manipulation system.
The third classifier classifies a biological data
object of the first data file. 1In an embodiment, the
biological data object may be multiple inherited to the master
class in accordance with the rules applicable to the
biological data object according to the first classifier, as
will be known to those skilled in the art of object oriented
programming. This multiple inheritance may occur in that all
third classifier biological data objects having a first file
type inherited to a second classifier master class
representing that first file type. Further, this multiple
inheritance may be in accordance with a partial sequence of
stored biodata, such as blodata stored in a processor or
memory or database associated with the biodata manipulation
system, compared by the third classifier against a sequence of
one of the string classes. The third classifier may be, for
example, a software comparator. The stored sequence of
biodata, which may be, for example, a DNA sequence, a genome,
a gene, a cDNA sequence, an RNA sequence, an mRNA sequence, a
tRNA sequence, a plasmid, an EST, an SNP, or an amino acid,

may be compared by the comparator against each sequence of one

-23-

10

15

20

WO 2004/114191 PCT/EP2004/006620

of the string classes. The comparator may differentiate, for
example, between a protein class and a nucleotide sequence
class. For example, the comparator may access a codon
library. The comparator may however also access any other
biological data library, without any restriction. The
comparator may then compare, over an entire one of the string
classes, codons within the codon library (or any other
biological data within a biological data library) to the
sequence of the string classes until a codon match (or
biological data match i1s obtained). This software comparator
may be, for example, a software for-loop that iterates, three
characters in the string class at a time, over the entire one
of the string class.

Further, a plurality of methods, such as method
objects, both internal and external to the programminé of the
biodata manipulation system, may be applicable to the
biological data object. The external method objects may
include, for example, external software applications and
programs. The methods applicable to the selected biological
data object may allow for manipulation of the biodata
corresponding to the selected biological data object, in
accordance with the characteristics of the selected biological

data object. The allowed manipulations may be received as

224-

10

15

20

WO 2004/114191 PCT/EP2004/006620

instructions from a user of the biodata manipulation system.
The third classifier may be scalable by addition of ones of
the biological data objects to select from, or by the addition
of method objects to operate on the biological data objects.

In an exemplary embodiment, a manipulation available
for the selected biodata class or object may be a calculation
of molecular weight of the biodata object. The calculation of
molecular weight may, for example, include an association of a
molecular counter number with each sequence of stored biodata.
Upon a match by the third classifier, an addition of the
molecular counter number of the stored biodata match for the
selected biological data object by the third classifier to a
previous molecular total weight of previous matches, and a
subtraction of a molecular weight of a water molecule, may be
performed by the third classifier.

In an embodiment of a manipulation, the third
classifier, or an additional classifier, such as a fourth
classifier 410 multiple inherited to the second classifier,
may include an amino acid library, wherein, upon location of a
codon match or a biological data match by the third
classifier, the third or subsequent classifier may compare the
codon match against the amino acid library to obtain an amino

acid match. The third, or subsequent, classifier may return a

25-

10

15

20

WO 2004/114191 PCT/EP2004/006620

single letter code indicative of the amino acid match. Thus,
over a series of iterations by the third or subsequent
classifier, each returned singlg letter code 1s appended to a
translated sequence string. A protein secondary structure may
then be predicted from the translated sequence by a comparison
on the translated sequence to at least one amino acid
propensity by, for example, an external application software
object. FEach single letter code may additionally have
associated therewith a molecular weight, a molecular volume, a
surface accessibility, a secondary structure propensity, a
number of atoms, and hydrophobicity index, to allow for
additional manipulations.

Figure 5 is a block diagram illustrating an
embodiment of a first classifier, also referred to as an
abstractor 504, for use in the system of Figure 1 of the
present invention. The abstractor 504 of the present
invention may include, for example, a coder 502 linked
directly or indirectly to an input device 412 and initial
source code 504, or the like, for example, connected to a
parser 512 that is preferably used for efficient data curing,
data mining, and data organization.

The parser 512 may indirectly access, such as

through multiple inherited classifiers, stored biodata, or

-26-

10

15

20

WO 2004/114191 PCT/EP2004/006620

incoming data from an input, such as foreign records 520. The
information stored in the foreign records 520 may be in the
form of flat files and may contain information about
macromolecules, which information may be indicative of a
biological data class. The flat files may contain not only
sequence or structure information, but also additional
information such as literature references, information about
function of sequences, coding regions, positions of important
mutations, crystallographic information, and secondary
structure information, for example. The information in the
foreign records 520 may be secured in an illustrative
embodiment.

The file information of the flat files may be
organized into fields, each with an identifier called a
record, illustratively shown herein as the first text on each
line. The names and length of records may differ from one
file format to another. For example, SWISSPROT and EMBL may
have records of size two characters, and PDB may have a record
size of maximum six characters. Each file format has
correspondent thereto standardized rules, such as rules
regarding format and grammar of the particular file. These

rules may available at respective home pages.

27-

10

15

20

WO 2004/114191 PCT/EP2004/006620

Each flat file record may have associated therewith
data, and may have a set of predefined properties. For
example, the CRYST1l record in a PDB file contains information
pertaining to unit cell and space group parameters, and may
occur only once per file. This association of data and
properties qualifies a record as an ADT, and hence each record
described in different file formats is implemented as a Class,
following the rules 512. Thereby, the abstractor 504, via the
parser and multiple inherited classes associated therewith as
multiple inherited classifiers, allows a user and/or developer
to access and manipulate only information of interest by
dividing files into smaller and simpler classes through the 00
class generation process 530. 1In this process 530, the
classes representing one file format may be multiple inherited

to a master class representing the file itself. For example

class BioGenBank : public BioGenBankLocus, public
BioGenBankDefinition, public BioGenBankVersion, public
BioGenBankAccession, public BioGenBankSegment, public
BioGenBankKeywords, public BioGepBankSource, public
BioGenBankReference, public BioGenBankFeatures, public
BioGenBankBaseCount, public BioGenBankOrigin, public

BioGenBankSequence {

28-

10

15

20

WO 2004/114191 PCT/EP2004/006620

public:
BioGenBank(const string&) ;

}s

Similarly, BioSwissProt and BioEmbl may share common
records. Thus, to create BioSwissProt class, common records
and the SWISSPROT specific classes are inherited 216 in the
same manner as BioEmbl uses to create the BioEmbl class, thus
allowing for code and record re-use throughout the system
between related classes. The use of multiple inheritance 216
thus allows code and records to be reused efficiently.
Likewise, since Fasta format is the simplest and most widely
used file format, a BioFasta class may be derived from a
master class, such as the BioSequence class, to read a flat
file in Fasta format. Derived classes may be written in a
selected database form 218 to, for example, a data storage
device 150.

In an embodiment of the invention, the single
sequence formats discussed hereinabove may be combined to form
multiple sequence formats. Multiple sequence formats may
include clustal format, multiple fasta, msf, multiplegde and
multiplepir, for example. To enable the reading of multiple

sequence formats by the parser 512 and the classifiers

9.

10

15

20

WO 2004/114191 PCT/EP2004/006620

multiple inherited therefrom, a base class called
BioMultipleSequence may be created, such as by the input 412
or the initial source code 504. BioMultipleSequence
preferably contains a group of BioSequences generated by the
00 class generator 530.

The BioMultipleSequence class may be an STL
container, and may be a map association container containing a
key and an associated value. Thereby, this class may be
accessed from a data storage device, for example, using a
value through a key. The key and value may be valid datatypes
or user defined data structures. For example, in the
BioMultipleSequence class, an int and Biosequence may be
associated.

Inter-multiple sequence format converters may be
incorporated as methods into the BioMultipleSequence class.
Thus, by creating BioMultipleSequence base class, programs
such as BOXSHADE and CLUSTALW may be added as methods.
BioClustal, BioMsf, BioMultipleFasta, BioMultipleGde,
BioMultiplePir, for example, may be classes derived from
BioMultipleSequences which read respective file formats. As
these derived multiple sequence classes are derived from
BioMultipleSequence Class, which represents combined ones of

the BioSequence class, irrespective of the format in which the

-30-

10

15

20

WO 2004/114191 PCT/EP2004/006620

files are read, the user may convert received records into any
desired format from within any derived multiple sequence
class, thereby allowing a multiple sequence of interest to be
operated using the operations provided in the BioSequence
class. An exemplary embodiment of the derived
BioMultipleSequences class is illustrated in Figure 5A.

Figure 6 is a block diagram illustrating an
embodiment of a data library 602 for use in the present
invention. A data library 602 of the present invention may
include, for example, an initializer 604, a BioAminoAcid
Library 606, a BioNucleicAcid Library 610, and a BioAtom
Library 614. Each library in the data library 602 allows
access to properties characterized by a set of attributes. For
example, in a BioAminoAcid Library 606, every amino acid has a
respective molecular weight, molecular volume, surface
accessibility, Chou & Fasman Secondary structure propensity,
number of atoms, and hydrophobicity index. Likewise, for
example, in a BioNucleicAcid Library 610, every nucleic acid
has a single letter nucleotide codes, nucleic acid name,
molecular weight, complementary base, an RNA base and so on.

In an embodiment, each library in the data library

602 may be initialized by its own initializer (603, 604, 605)

31-

10

15

20

WO 2004/114191 PCT/EP2004/006620

before accessing parameters associated with the respective
libraries.

For example, code correspondent to the data
libraries may include:
string BioDnaSequence: :getTranslatedSequence() ({
string y;
BioNucleicAcidLibrary: :codonInit () ;
BioArninoAcidLibrary::initialised();
for (int i =0; i< sequence .length();i+=3) {
y+=BioAminoAcidLibrary: :AminoAcid(BioNucleicAcidLibrary::
StdCodonTable[upperCase(sequence .sub str(i,3))]
.getSingleLetterCode(); }
return y; }

In addition to the well known standard codon table,
other codon tables containing unique codons associated with a
set of cell organelles (e.g., CAG as a start codon in the
codon table for mitochondria) or a given set of organisms
(e.g., codons for Valine as a start codon in the codon table
for bacteria, Pseudomonas sp., Staphylococcus sp.) may also be
provided as part of the data library. As stated earlier,
beside a codon library any other biological data library can
be uéed, the term "codon library" in this application has

therefore to be understood both in the sense of a direct codon

-32-

10

15

20

WO 2004/114191 PCT/EP2004/006620

library, but also in the sense of a biological data library in
a more general sense. Also the term "codon" as used in this
application should also cover biological data in a more
general sense.

Before accessing data from the data libraries, a
respective library, for example BioAminoAcidLibrary, may be to
be initialized with a static member function, such as, for
example, CodonInit() to access the codon table. Similarly,
when initialised() function is activated, for example, the
amino acid information and attributes may be accessed from
BioAminoAcidLibrary. Additionally, Sequence_ .length() may
give the total length of the sequence stored after reading an
annotated file such as, for example, GenBank.

Thus, through an iterating for-loop, for example, a
sequence may be iterated in or against a library sequence a
predetermined number of characters, such as three characters,
at a time. For example, by using sequence .substr(i, 3), a
three letter sub-string is held. This three letter string may
be passed to
BioNucleicAcidLibrary::StdCodonTable [upperCase (sequence_.Db) .
Using the stored three letter string,

BioNucleicAcidLibrary: :StdCodonTable may return the amino acid

corresponding to that three letter string. This amino acid

-33-

10

15

20

WO 2004/114191 PCT/EP2004/006620

may be passed to BioAminoAcidLibrary::AminoAcid[] as an

argument. To obtain a single letter code for the amino acid

passed as argument, method 'getSingleLetterCode()' may be

accessed, which method returns the single letter code of that

AminoAcid from the StdCodonTable. This returned single letter

code may be continuously appended to a string y which is

returned to method 'getTranslatedSequence' to obtain the

complete, translated amino acid sequence, i.e. the protein.
Similarly, the molecular weight of a protein

sequence may be calculated. For example, an embodiment of the

code include:

double BioProteinSequence: :getMolecularWeight ()

{

double mw;

map<string, BioAminoAcidLibrary> : : const iterator ci;

string::const iterator si;

BioAminoAcidLibrary: :initialised():

for(si sequence .begin();si != sequence .end(); sit++) {

for (ci BioAminoAcidLibrary: :AminoAcid.begin(); ci !=
BioAminoAcidLibrary: :AminoAcid.end();ci++) {
if({ (*si) == (*ci).second.getSingleletterCode())

mw += (*ci).second.getMolecularWeight()- 18.00; }

-34-

10

15

20

WO 2004/114191 PCT/EP2004/006620

return mw; }

In this example of calculation of the molecular
weight of a given protein sequence, two constant iterators
traverse the AminoAcid Container and the query sequence of
which the molecular weilght is to be calculated. When the
character of the query sequence is identical to the single
letter code in the AminoAcid container, the counter number of
molecular weight of that amino acid is added continuously, and
the molecular weight of a water molecule is subtracted
continuously, to iteratively obtain the molecular weight. The
total summation over all characters in the query sequence
yields the molecular weight of the protein sequence.

Similarly, using the data libraries, protein
secondary structure may be predicted from the query sequence,
due to the fact that the BioAminoAcidLibrary provides
properties, such as Chou & Fasman propensities, for example,
for each amino acid. To access the atomic mass of carbon atom
from the BioAtomLibrary, the following code may be utilized:
BioAtomLibrary : :initialised{) ,.

cout< <Element["C"].getAtomicMass ()< <endl;

-35-

10

15

20

WO 2004/114191 PCT/EP2004/006620

Further, the hierarchical class organization of the
present invention allows simplistic communication between
domains. For example, a sequence from an Embl database and
CDS may be translated and then aligned with a sequence given
in the Atom record, not using Sedgres. Exemplary code to
perform this might include:

BioEmbl hy('p53.embl'};
BioChain hyp2 ('p52.pdh'};
BioAlign aln(hy.getTranslatedSequence (1234, 1788),

hyp2.getSequence ()), .

Further, to keep the number of functions and/or
methods to be memorized by a researcher in the present
invention to a minimum, the constructors and/or the methods
may be overloaded. For example:

a) BioChain{();

is a constructor that may be used to instantiate an empty
chain and then later populate it with relevant information
using pushXXX methods;

b)BioChain(const string&) ;

is a constructor used wherein the PDB file name is given as

the argument. It reads the first chain and stops from reading

-36-

10

15

20

WO 2004/114191 PCT/EP2004/006620

later chains. The chain termination may be through TER, BREAK
or END records or OXT string names, for example;
c)BioChain(const string& , char);

allows a chain to be loaded by giving the PDB file name as
first argument and giving the desired chainID as the second
argument;

d)BioChain(char chid; vector<BioResidue >);

is a constructor that allows a group of residues held together
in a vector STL to be converted as a BioChain datastructure.
This method of converting may be employed, for example, to
allow for use of the methods provided in BioChain Class;
e)BioChain(long atnumber,string atname, string resname, char
ch, longresnumber, double xI, doubleyI, double zI, double ocI,
double bfI, string atrec);

allows other constructors to read the information in different
ways, and finally populate the BioChain using this
constructor.

The following example projects function overloading:
GetMean (), BioMatrix, getHelixDirectionCosines() method
BioMatrix BioPdbHelix: :getHelixDirectionCosines(const
string& file) {

BioChain ss = getHelixCoordinates(file); return

getHelixDirectionCosines(ss); }

-37-

10

15

20

WO 2004/114191 PCT/EP2004/006620
BioMatrix BioPdbHelix: : getHelixDirectionCosines (BioChainé& ss
) |
vector<double>11;
vector<double>ml ; vector<double>nl ;

BioMatrix Imn(3, 1);
if (ss.getNumberOfR.esidues () >= 4){
for (int i =1; i< ss.getNumberOfR.esidues() =-2; i++)

{

BioAtom cl = ss.getResidue(i-1).getAtom (“CA"});
BioAtom ¢2 = ss.getResidue(i).getAtom("CA");
BioAtom ¢3 = ss.getResidue(i+ 1).getAtom("CA");

Il

BioAtom c4 ss.getResidue (i+2) .getAtom ("CA") ;
double 1=0.0;double m=0.0;double n=0.0;
helixAxisDirectionCosines(¢ 1,c2,¢c3 ,c4,1l,m,n);
11.push back(l);

ml.push back(m); nl.push back(n); }

lmn[0] [0]=BioStatistics : :getMean(ll);

Imn[l][0]=BioStatistics: :getMean(ml);

Imn{2] [0]=BioStatistics: :getMean(nl); }

return lmn; }

In an exemplary embodiment of the present invention,

a macromolecular crystallographic class, herein referred to as

-38-

10

15

20

WO 2004/114191 PCT/EP2004/006620

BioHKL class, may be created to, for example, read Denzo
processed h, k, I and intensity files. This class may
incorporate, as member functions, crystallégraphic programs,
such as those for finding intensity statistics, computing
intensive refinement algorithms, or solving structures, for
example.

A BioAlign class may contain algorithms for sequence
alignment, such as I Local Alignment, Global Alignment, and n-
tuple Algorithms used in Blast and Fasta, for example. Each
algorithmic method class may be accessible to other classes
having properties that make accessibility to that algorithmic
method class practicable.

A file parser class may also be preferably included
in the present invention. All file parsers for the classes of
the biodata management system may be included in this class.
The file parser class may read a line of flat file data and
stores that line as a C + + string class. This class may
include static functions, such as readString(), readDouble,
readLong (), which may return string, double or long values,
respectively, dependently upon the starting and ending
positions given as arguments to the static function. Thereby,
the rules and grammar of different file formats are

implemented by this class to extract desired information. For

-30-

10

15

20

WO 2004/114191 PCT/EP2004/006620

example, the following implementation of BioProtein
illustrates the extraction of atom/residue information is
extracted from an ATOM record, using a file parser class

called BioHelperClass, from a PDB file:

String at_Name = BioHelperClass::readString(line2.12,15);

long at_ Number BioHelperClass::readLong(line2.6.10);

BioHelperClass::readString(line2,17, 19);

string resName

long resNumber BioHelperClass::readLong(line2.22.25);

double x- = BioHelperClass::readDouble (line2.30,37);
double y- = BioHelperClass::readDouble(line2,38.45);
double z- = BioHelperClass::readDouble(line2.46, 53);

double oc- BioHelperClass::readDouble (1ine2,54, 59);

double bf-

It

BioHelperClass::readDouble (line2. 60.65);
string at Record- = line2.substr (0, 6);

char chid = 1line2[217;

A BioMatrix class may additionally be included in
the present invention. BioMatrix may be a class designed to
perform matrix manipulations, such as matrix multiplication,
thereby creating dynamic arrays. In an exemplary embodiment,
the ,*, operator has been overloaded, which may simplify

coding as will be apparent to those skilled in the art.

-40-

10

15

20

WO 2004/114191 PCT/EP2004/006620

A BioStatistics class may be used to calculate mean,
maximum, minimum, standard deviation, variance and/or other
statistical utilities of a given data set. These methods are
static. The data may be passed to the static method as
contained in a vector STL. It will be apparent to those
skilled in the art that other statistical descriptors may be
added in, or in addition to, this class, such as basic utility
functions including BioDistance(), BioAngle(), BioTorsion (),
BioDirectionCosines (), BioDifference Vector (), Bio
VectorCrossProduct (), BioDotProduct(), BioNormalize(),
BioDotMagnitude (), toDegrees(), toRadians (), upperCase (),
lowerCase (), rmBlank(), and the like. These utility
functions may be coded into a BioUtilities header file.

Numerous other classes and libraries may be included
in the present invention, such as, but not limited to, a
BioScoringMatrixLibrary, which might include Blossum62, PAM250
and other substitution matrices, a BioSpaceGrouplLibrary, an
Exception and Error Handling Library, a visualization class, a
vector class, and/or a URL class. Further, the DatalLibrary
may be provided with information on geometrical parameters
like standard bond angles, bond distances and torsion angles.

In a specific illustrative embodiment of the present

invention, the manipulation and management system may include

-41-

10

15

20

WO 2004/114191 PCT/EP2004/006620

80 Classes with approximately 100 methods in total. Each
class may have a signature string prefixed “Bio", continued
with the relevant entity name, such as BioProtein, BioGenBank,
BioPdbSeqres, and BioEmblGn. Method names may start with a
lower case letter. For example, the first word of the name
may be a descriptive verbs, such as get, show, push, or pop.
The subsequent words in the name may start with an upper case
letter, such as getHelixDirectionCosines(). For example,
'pushXXX', such as pushResidue, pushChain, and pushAtom
interface methods may be used to populate different bio-
entities such as residue, chain, or atom. Non-member
functions having classes as arguments may start with the 'Bio"
signature, and subsequent words may start with an upper case
letter, such as wherein BioDistance() is a function that takes
two BioAtoms or two BioPoints as arguments to calculate the
distance, and returns the distance as a double. As shown, in
a preferred embodiment, nomenclature is selected to keep the
names intuitive to the researcher.

In a coding example of this illustrative
nomenclature, the getXXX functioﬁ returns a datatype, such as
a user defined datastructure, such as BioChain, or such as a
basic data type, such as double. For example:

BioProtein jxr('pdb2JXR.ent');

4.

10

15

20

WO 2004/114191 PCT/EP2004/006620

jxr.showAllChains () ;
cout<<xx.getChain (0O) .getNumberOjResidues () <<endl;
cout<<xx.getChain(1l).getNumberOjResidues () <<endl;

BioChain seg = jxr.getChainSegment (25,85, "CA”);

wherein “seg” is an instance of BioChain that is instantiated
and assigned only the CA atoms of the residues obtained from
25th to 85th residue from pdb2JXR.ent.

In this specific illustrative example, “showXXX”
function shows the results as standard output, by default, or
the results may be written into a file. For example:

BioPoint x (3.4, 4.5, 5.6);

X .showPoint () ;

By default, this passes 'cout' as the argument. In
the first showPoint(), 'cout' is the default value, such as
the terminal or console output. In the second showPoint, the
coordinates will be written to the file named "output". This
gives the researcher an opportunity to check results before
storing or working on those results. In 'show XXX' functions,
the user may thus pass the file pointer.

For example:

BioGenBank x("genbank.txt') ;

-43-

10

15

20

WO 2004/114191 PCT/EP2004/006620

String z = x.getSequenceSegment (35, 43);
BioSequence zz ("pgb5", z):

BioEmbl g ("emblgene.txt'), .

string y = g.getSequenceSegment (103, 133);
BioSequence yy("pr ",vy) :

zz.showDotPlot (yy, "pg55.dotplot');

In this specific illustrative example, the file
"pa55.dotplot" contains the dotplot of sequences in zz and yy.
Further, in this example, a BioSequence class is instantiated
with a constructor. The BioSequence constructor expects a
sequence name as first argument, and the corresponding
sequence as second argument. The function showDotPlot plots
the identity between two sequences in ascii format. The user
may further employ the local alignment method in BioSequence
class to give a relevant match, mismatch, and gap penalty as
arguments in the method.

| Accordingly, by practicing one or more of the above
empbodiments, in combination with a compiler-interpretor, one
can arrive ét an object oriented biological analysis
framework.

It will be apparent to those skilled in the art that

the bio-platform of the present invention, and particularly as

-44-

10

15

20

WO 2004/114191 PCT/EP2004/006620

disclosed herein throughout, such as, but not limited to, with
respect to Figure 1, may be accessed locally, or remotely,
such as via a computer network, such as an internet, an
intranet, and extranet, or such as via, for example, a radio
network, such as a cellular telephone , infrared, or RF
network. The bio-platform of Figure 1 icreases efficiency and
decreases time for analyzing, developing, and/or manipulating
biological concepts and modules, as such concepts and models
may be readily imported and engaged by the bio-platform of the
present invention, without significant need for programming or
re-programming to allow for operations on a variety of data of
differing types or differing formats. Access to the bio-
platform or the object oriented biological analysis framework
may be provided for a subscription fee or without a fee to
subscribers or users. The subscribers or users to such
information would include, for example, persons or businesses
in the drug design, gene discovery and genomics research
fields. Further, the bio-platform of the present invention
may provide for development of bio-applications, web-enabled
analysis, web-enabled educational programs and training
courses, and such other applications are nonetheless within

the bio-platform, and hence within the present invention.

-45.

WO 2004/114191 PCT/EP2004/006620

It will be apparent to those skilled in the art that
various modifications and variations may be made in the
apparatus and method of the present invention without
departing from the spirit or scope of the invention. Thus, it
is intended that the present invention cover the modification
and variations of this invention, provided those modifications
and variations come within the scope of the claims made herein

and the equivalents thereof.

-46-

WO 2004/114191 PCT/EP2004/006620
47

METHOD AND APPARATUS FOR OBJECT BASED
BIOLOGICAL INFORMATION, MANIPULATION AND MANAGEMENT

CLAIMS

1. A biological data manipulation system, comprising:

a first data file receiver for receiving a first data file
comprising data indicative of a first data file type and data
indicative of at least one biological data object;

a first classifier that applies a plurality of rules to
the first data file to parse the first data file into a first
data file type and into a plurality of string classes;

a second classifier that differentiates a master class for
ones of the plurality of string classes, wherein the master
class is differentiated against at least one selected from the
group consisting of a single biosequence master and a multiple
biosequence master;

a third classifier that classifies an at least one bio-
logical data object of the first data file, wherein the at
least one biological data object is multiple inherited to the
master class in accordance with at least one of the plurality
of rules, and in accordance with at least a partial sequence

of stored biodata compared by the third classifier against at

WO 2004/114191 PCT/EP2004/006620
48

least a partial sequence of at least one of the plurality of

string classes.

2. The biological data manipulation system of claim 1, fur-
ther comprising a plurality of methods applicable to the at

least one biological data object.

3. The biological data manipulation system of claim 1, fur-
ther comprising a plurality of methods applicable to the mas-

ter class.

4. The biological data manipulation system of claim 3,
wherein at least one of said plurality of methods provides for

a user manipulation of the first data file.

5. The bioclogical data manipulation system of claim 4,
wherein the user manipulation includes a calculation of mo-

lecular weight.

6. The biological data manipulation system of claim 5,
wherein the calculation of molecular weight comprises an asso-
ciation of a molecular counter number with each partial se-
quence of stored biodata, and, upon a match by said third
classifier, an addition of the molecular counter number to a
current one of the match by said third classifier to a previ-

ous molecular total number of previous ones of the matches by

WO 2004/114191 PCT/EP2004/006620
49

said third classifier, and a subtraction of a molecular weight

of a water molecule.

7. The biological data manipulation system of claim 4,
wherein at least one of said plurality of methods comprises an
application software external to the biological data manipula-
tor, and wherein a user request for the user manipulation

calls the application software.

8. The biological data manipulation system of claim 1,
wherein said third classifier comprises a comparator, and
wherein the at least partial sequence of biodata comprises at
least one selected from the group consisting of a DNA se-
quence, a genome, a gene, a cDNA sequence, an RNA sequence, an
mRNA sequence, a tRNA sequence, a plasmid, an EST, an SNP, and
an amino acid, and wherein the comparator compares the at
least one selected from the group against the partial sequence

of one of the string classes.

9. The biological data manipulation system of claim 8,
wherein a partial sequence of the string class comprises a se-

quence of codons.

10. The biological data manipulation system of claim 1,
wherein the single biosequence master class enables reading of

a single biosequence file format.

WO 2004/114191 PCT/EP2004/006620
50

11. The biological data manipulation system of claim 1,
wherein the multiple biosequence master class enables reading

of a multiple biosequence file format.

12. The biological data manipulation system of claim 11,
wherein the multiple biosequence master class comprises a

group of single biosequence master classes.

13. The biological data manipulation system of claim 1,

wherein the third classifier accesses a codon library.

14. The biological data manipulation system of claim 13,

wherein the third classifier compares codons within the codon
library to the at least a partial sequence of the plurality of
string classes until a codon match is obtained, over an entire

one of the string classes.

15. The biological data manipulation system of claim 14,

wherein the comparison of codons within the codon library com-
prises a software for-loop that iterates, three characters in
the strong class at a time, over the entire one of the string

class.

16. The bioclogical data manipulation system of claim 14, fur-

ther comprising a fourth classifier that comprises an amino

WO 2004/114191 PCT/EP2004/006620
51

acid library, wherein, upon location of a codon match by said
third classifier, said fourth classifier compares the codon
match against the amino acid library to obtain an amino acid

match.

17. The biological data manipulation system of claim 16,
wherein said fourth classifier returns a single letter code

indicative of the amino acid match.

18. The biological data manipulation system of claim 17,
wherein, over a series of iterations by said fourth classi-
fier, each returned single letter code is appended to a trans-

lated sequence string.

19. The biological data manipulation system of claim 18,
wherein a protein secondary structure is predicted from the
translated sequence by a comparison on the translated seqguence
to at least one amino acid propensity in an external applica-

tion software.

20. The biological data manipulation system of claim 17,
wherein each single letter code has associated therewith at
least a molecular weight, a molecular volume, a surface acces-
sibility, a secondary structure propensity, a number of atoms,

and hydrophobicity index.

WO 2004/114191 PCT/EP2004/006620
52

21. The biological data manipulation system of claim 1,
wherein the multiple inheritance comprises all third classi-
fier biological data objects having a first file type inher-
ited to a second classifier master class representing that

first file type.

22. The biological data manipulation system of claim 1,
wherein said third classifier differentiates between a protein

class and a nucleotide sequence class.

23. The biological data manipulation system of claim 1,
wherein said third classifier is scalable by addition of ones

of the at least one biological data object.

24. The biological data manipulation system of claim 1,
wherein said second classifier is scalable by addition of ones

of the master classes.

25. The biological data manipulation system of claim 1,
wherein said mater class comprises a base class for derived

sequence classes.

26. The biological data manipulation system of claim 25,
wherein the at least one biological data object comprises the

derived sequence classes.

WO 2004/114191 PCT/EP2004/006620
53

27. The biological data manipulation system of claim 1,
wherein said third classifier further comprises a residue data
class, wherein unclassified ones of the partial sequences of
the plurality of string classes are classified by said third

classifier to the residue data class.

28. The biological data manipulation system of claim 1,
wherein said second classifier employs dynamic memory alloca-

tion.

29. The biological data manipulation system of claim 1,
wherein the at least a partial sequence of stored biodata com-

prises at least one flat file formatted database.

30. The biological data manipulation system of claim 29,
wherein the at least one flat file formatted database com-
prises at least one data item selected from the group consist-

ing of biosequence information and biostructure information.

31. The biological data manipulation system of claim 30,

wherein the at least one flat file formatted database further
comprises at least one data item selected from the group con-
sisting of literature references, sequence functions, coding
regions, mutations, crystallographic information, and secon-

dary structure information.

WO 2004/114191 PCT/EP2004/006620
54

32. The biological data manipulation system of claim 31,
wherein each of the selected data items is organized into a

field, and wherein each field has an identifier.

33. A computer-readable medium carrying one or more sequences
of instructions for manipulating biodata, wherein execution of
the one or more sequences of instructions by one or more proc-
essors causes the one or more processors to perform the steps
of:

receiving a first data file comprising data indicative of
a first data file type and data indicative of at least one
biological data object;

applying a plurality of rules to the first data file to
parse the first data file into a first data file type and into
a plurality of string classes;

differentiating a master class for ones of the plurality
of string classes, wherein the master class is differentiated
against at least one selected from the group consisting of a
single biosequence master and a multiple biosequence master;

classifying an at least one biological data object of the
first data file;

multiple inheriting the at least one biological data ob-
ject to the master class in accordance with at least one of
the plurality of rules, and in accordance with comparing at

least a partial sequence of stored biodata against at least a

WO 2004/114191 PCT/EP2004/006620
55

partial sequence of at least one of the plurality of string

classes.

34. The computer-readable medium of claim 33, further compris-
ing applying a plurality of methods to the at least one bio-

logical data object.

35. The computer-readable medium of claim 33, further compris-

ing applying a plurality of methods to the master class.

36. The computer-readable medium of claim 35, further compris-
ing applying a plurality of methods to at least one of the
master class and the at least one biological data object in
accordance with a user manipulation request for the first data

file.

37. The computer-readable medium of claim 36, wherein said ap-
plying a plurality of methods to at least one of the master
class and the at least one biological data object comprises
applying an external application software, and further com-
prising calling the external application software in accor-

dance with the user manipulation request.

38. The computer-readable medium of claim 33, wherein the at
least partial sequence of biodata comprises at least one se-

lected from the group consisting of a DNA sequence, a genome,

WO 2004/114191 PCT/EP2004/006620
56

a gene, a cDNA sequence, an RNA sequence, an mRNA sequence, a
tRNA sequence, a plasmid, an EST, an SNP, and an amino acid,
and wherein said comparing at least a partial sequence of
stored biodata comprises comparing the at least one selected
from the group against the partial sequence of one of the

string classes.

39. The computer-readable medium of claim 33, wherein a par-
tial sequence of the string class comprises a sequence of

codons.

40. The computer-readable medium of claim 33, wherein said

classifying comprises accessing a codon library.

41. The computer-readable medium of claim 40, wherein said
classifying comprises comparing codons within the codon 1i-
brary to the at least a partial sequence of the plurality of
string classes, until a codon match is obtained, over an en-

tire one of the string classes.

42. The computer-readable medium of claim 41, wherein said
comparing codons within the codon library comprises iterating
a for-loop, three characters in the strong class at a time,

over the entire one of the string class.

WO 2004/114191 PCT/EP2004/006620
57

43. The computer-readable medium of claim 33, wherein the
stored biodata comprises a codon library, and wherein said
classifying comprises comparing the codon library match to the
at least a partial sequence of at least one of the plurality
of string classes to an amino acid library to obtain an amino

acid match.

44, The computer-readable medium of claim 43, further compris~-
ing associating with each amino acid match at least a molecu-
lar weight, a molecular volume, a surface accessibility, a
secondary structure propensity, a number of atoms, and hydro-

phobicity index.

45. The computer-readable medium of claim 33, wherein said
differentiating differentiates between a protein class and a

nucleotide sequence class.

46. The computer-readable medium of claim 33, wherein said
differentiating comprises dynamically allocating a memory as-

sociated with at least one of the one or more processors.

47. A method of providing for biodata manipulation, compris-
ing: 7
receiving a first data file comprising data indicative of

a first data file type and data indicative of at least one

biological data object;

WO 2004/114191 PCT/EP2004/006620
58

applying a plurality of rules to the first data file to
parse the first data file into a first data file type and into
a plurality of string classes;

differentiating a master class for ones of the plurality
of string classes, wherein the master class is differentiated
against at least one selected from the group consisting of a
single biosequence master and a multiple biosequence master;

classifying an at least one biological data object of the
first data file;

multiple inheriting the at least one biological data ob-
ject to the master class in accordance with at least one of
the plurality of rules, and in accordance with comparing at
least a partial seqﬁence of stored biodata against at least a
partial sequence of at least one of the plurality of string

classes.

48. ‘The method of claim 47, further comprising applying a plu-

rality of methods to the at least one biological data object.

49. The method of claim 47, further comprising applying a plu-

rality of methods to the master class.

50. The method of claim 49, further comprising applying a plu-
rality of methods to at least one of the master class and the
at least one biological data object in accordance with a user

manipulation request for the first data file.

WO 2004/114191 PCT/EP2004/006620
59

51. The method of claim 50, wherein said applying a plurality
of methods to at least one of the master class and the at
least one biological data object comprises applying an exter-
nal application software, and further comprising calling the
external application software in accordance with the user ma-

nipulation request.

52. The method of claim 47, wherein the at least partial se-
quence of biodata comprises at least one selected from the
group consisting of a DNA sequence, a genome, a gene, a cDNA
sequence, an RNA sequence, an mRNA sequence, a tRNA sequence,
a plasmid, an EST, an SNP, and an amino acid, and wherein said
comparing at least a partial sequence of stored biodata com-
prises comparing the at least one selected from the group

against the partial sequence of one of the string classes.

53. The method of claim 47, wherein said classifying comprises
comparing codons within a codon library to the at least a par-
tial sequence of the plurality of string classes, until a
codon match is obtained, over an entire one of the string

classes.

54. The method of claim 47, wherein the stored biodata com-
prises a codon library, and wherein said classifying comprises

comparing the codon library match to the at least a partial

WO 2004/114191 PCT/EP2004/006620
60

sequence of at least one of the plurality of string classes to

an amino acid library to obtain an amino acid match.

55. The method of claim 55, wherein said differentiating com-

prises dynamically allocating a memory.

56. A biodata programming system, comprising:
means for receiving a first data file comprising data indica-
tive of a first data file type and data indicative of at least
one biological data object;

means for applying a plurality of rules to the first data
file to parse the first data file into a first data file type
and into a plurality of string classes;

means for differentiating a master class for ones of the
plurality of string classes, wherein the master class is dif-
ferentiated against at least one selected from the group con-
sisting of a single biosequence master and a multiple biose-
qguence master;
means for classifying an at least one biological data object
of the first data file;

means for multiple inheriting the at least one biological
data object to the master class in accordance with at least
oﬁe of the plurality of rules, and in accordance with a com-
parison of at least a partial sequence of stored biodata
against at least a partial sequence of at least one of the

plurality of string classes.

WO 2004/114191 PCT/EP2004/006620
1/11

150

Structure
Domain

Algorithm
Domain

Sequence
Domain

Bio Platform|.

Visualization
Domain

File Format
Domain

Data Libraries

FIGURE 1

WO 2004/114191

2/11

104

PCT/EP2004/006620

_J
ME M|ORY
DNA PROTIEN CARB RNA
String String String String
String Formation
DNA PROTIEN CARB RNA
= = = =
102 102 102 102

FIGURE 1A

WO 2004/114191 PCT/EP2004/006620

3/11
f_%OO

BioSequence Class

RNA DNA PROTIENS CARB
= = = =
104 104 104 104

FIGURE 2

WO 2004/114191

4/11

PCT/EP2004/006620

Std. C++ String Class

N
—_
o

BioSequence

BioProtienSequence

BioDnaSequence

BioGenome

FIGURE 2A

N
o

WO 2004/114191 PCT/EP2004/006620
5/11

77/ BioMacromolecule

Bi_oChain

BioMonomer

NNNY BioAtom

BioPoint

N

FIGURE 2B

WO 2004/114191 PCT/EP2004/006620
6/11

N
(@)

BioMacromolecule

BioProtein BioDna BioCarbo

FIGURE 2C

WO 2004/114191 PCT/EP2004/006620
7/11

(O8]
o
(@)

302 302 302

BioAtom

BioPoint

FIGURE 3

WO 2004/114191

400

8/11

PCT/EP2004/006620

FIGURE 4

v

Classifier [~~-404

Classifier [~-404

Data Classifier |- 404

File - 402

Reciever i
A -

Classifier 404

WO 2004/114191 PCT/EP2004/006620
9/11

40

502 504 512

530

530

—> 412

520

|

Stored
Bio data

FIGURE 5

WO 2004/114191 PCT/EP2004/006620
10/11

BioMultipleSequences

BioClustal

BioMsf

BioMultipleFasta

BioMultipleGde

BioMultiplePir

BioMultipleGenBank

FIGURE 5A

WO 2004/114191 PCT/EP2004/006620
11/11
602
603 604 605
606 610 614

FIGURE 6

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

