wo 2009/150024 A1 |]I} 00O 0O 0 Y R

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

oL, TN
(19) World Intellectual Property Organization- /25 |]| HINIHND 00O W00 0O 0 0
A 5 (10) International Publication Number
(43) International Publication Date Vs
17 December 2009 (17.12.2009) WO 2009/150024 Al
(51) International Patent Classification: (72) Inventors; and
GO6F 9/50 (2006.01) (75) Inventors/Applicants (for US only): ROSAS, Morgan

Jeffrey [US/US]; 11501, Burnet Road, Austin, Texas

(21) International Application Number: 78758-3400 (US). VALLABHANENI, Vasu [IN/USI;

PCT/EP2009/056218 11501, Burnet Road, Austin, Texas 78758-3400 (US).

(22) International Filing Date: PATWARI, Veena [US/US]; 11501, Burnet Road,

22 May 2009 (22.05.2009) Austin, Texas 78758-3400 (US). PAFUMI, James
US/US]; 11501, B t Road, Austin, T 78758-3400

(25) Filing Language: English EUS). ! utnet Road, Austin, toxas

(26) Publication Language: English (74 Agent: ROBERTS, Scott; IBM United Kingdom Limit-

(30) Priority Data: ed, Intellectual Property Law, Hursley Park, Winchester
12/135,468 9 June 2008 (09.06.2008) Us Hampshire SO21 2JN (GB).

(71) Applicant (for all designated States except US): INTER- (81) Designated States (unless otherwise indicated, for every
NATIONAL BUSINESS MACHINES CORPORA- kind of national protection available): AE, AG, AL, AM,
TION [US/US]; New Orchard Road, Armonk, New York AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
10504 (US). CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,

. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,

(71) Applicant (for MG ornly): IBM UNITED KINGDOM HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
LIMITED [GB/GB]; PO Box 41, North Harbour, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
Portsmouth Hampshire PO6 3AU (GB). MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,

[Continued on next page]

(54) Title: SYSTEMS AND METHODS FOR ENTITLEMENT OF VIRTUAL REAL MEMORY FOR APPLICATIONS
(57) Abstract: Systems, methods and media for dynamic re-

116 /l v8 104 106 allocation of memory to an application, the memory from a
- 7 / / pool of virtual real memory allocated to a virtual client that
SERVER ['ymnory / / executes the application are disclosed. In one embodiment, a
107 SERVER BIOS 08 CODE virtual cliem is allocat.ed a pool of Virtue}l real memory. A
MANAGEMENT CODE subset of this pool of virtual real memory is a block of mem-
| 109 " ory allocated for use by an application. Thjc allocation may
‘ be stated as a range of allocated memory with an upper and
e N—— T loyver }imit. The applicatiog calls a kernel service when it
S~ PROCESSOR thinks it needs a new allocation of memory. The new alloca-
- P 190 tion is established by a power hypervisor connected to the
LU CACHE I/ virtual client. Memory is exported by way of a Paging Space
L2 CACHE - 130 Ppartition
" | INSTRUCTEON
FETCHER
102 160
CONTROL
CIRCUITRY
A — £50
EXECUTION UNITS
110 i T
INPUT/OUTPUT
INTERFACE
< =
114 f t
\ 112
STORAGE Tm— NETWGRK
AREA O
NETWORK

WO 2009/150024 A1 W00 O 0T T A A0

84)

NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US,UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARTPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

SYSTEMS AND METHODS FOR ENTITLEMENT OF VIRTUAL REAL
MEMORY FOR APPLICATIONS

BACKGROUND

This written description is in the field of access to physical memory in a server. More
particularly, the description relates to virtual memory allocation for an application running

on the server.

Many different types of computing systems have attained widespread use around the world.
These computing systems include personal computers, servers, mainframes and a wide
variety of stand-alone and embedded computing devices. Sprawling client-server systems
exist, with applications and information spread across many PC networks, mainframes and
minicomputers. In a distributed system connected by networks, a user may access many
application programs, databases, network systems, operating systems and mainframe
applications. Computers provide individuals and businesses with a host of software
applications including word processing, spreadsheet, and accounting. Further, networks
enable high speed communication between people in diverse locations by way of e-mail,

websites, instant messaging, and web-conferencing.

A common architecture for high performance, single-chip microprocessors is the reduced
instruction set computer (RISC) architecture characterized by a small simplified set of
frequently used instructions for rapid execution. Thus, in a RISC architecture, a complex
instruction comprises a small set of simple instructions that are executed in steps very
rapidly. These steps are performed in execution units adapted to execute specific simple
instructions. In a superscalar architecture, these execution units typically comprise
load/store units, integer Arithmetic/Logic Units, floating point Arithmetic/Logic Units, and
Graphical Logic Units that operate in parallel. In a processor architecture, an operating
system controls operation of the processor and components peripheral to the processor.
Executable application programs are stored in a computer’s hard drive. The computer’s

processor causes application programs to run in response to user inputs.

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

Thus, in a modern system, a plurality of computers — including servers — are connected
together through a network. Each computer may run application programs for performing
certain functions. These application programs may include word-processing, e-mail,
graphics, document viewing and mark-up, spreadsheet, database, music player, internet
browser, photo-shop, games, anti-virus, as well as a host of other application programs too

numerous to mention.

Servers are provided to connect a plurality of computers to the Internet or an intranet. Each
server may be logically partitioned into a plurality of virtual clients which act and appear to
a computer connected to the server as if the virtual client is itself a server. Each virtual
client has access to memory external to the server such as in a Storage Area Network (SAN).
To provide this access a Power Hypervisor (PHYP) controls access of each virtual client to
the physical storage through a Virtual Input/Output Server (VIOS), which is itself a logical
partition.

Virtual Real Memory (VRM) allows the Operating System (OS) to treat memory on the
server as virtual memory. Systems can be enabled to use VRM and the firmware manages
read and write transactions to the system’s virtual memory and sends those requests to a
block storage device. Virtual Real Memory uses a specialized Virtual I/O Server (VIOS)
called a Paging Space Partition (PSP) to provide read and write services between firmware

and a block storage device.

Disks and optical devices attached to a physical adapter connected to the Virtual I/0O Server
logical partition can be shared by one or more client logical partitions. The Virtual I/O
Server may be a standard storage subsystem that provides standard Small Computer Service
Interface (SCSI)-compliant Logical Unit Numbers (LUN). The Virtual I/O Server is capable
of exporting a pool of heterogeneous physical storage as a homogeneous pool of block

storage in the form of SCSI disks.

On high end servers many customers are moving toward having all of their storage located
on the Storage Area Network (SAN). The SAN may include storage devices connected by
way of Fibre Channel or SCSI (Small Computer System Interface). These types of devices

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

may have a high latency dependent on the fabric or network they are on. In a conventional
configuration, the root volume group (rootvg) is on the SAN device and therefore the paging
space has a higher latency. Critical applications may need more memory or paging devices
with less latency. Moreover, applications are typically restricted to a single logical partition
(LPAR). If'the logical partition gets overloaded and decreases performance, other

applications running on the server will also see degradation of performance.

SUMMARY OF THE INVENTION

The present invention provides systems, methods and media for dynamic reallocation of
memory to an application from a pool of virtual real memory allocated to a virtual client that
executes the application. One embodiment is a system for allocation of memory to an
application associated with a virtual client logical partition in a server. The embodiment
comprises a power hypervisor to record and control memory access by a virtual client logical
partition of the server and to change an amount of virtual real memory allocated to the
application in response to a kernel service message. The embodiment further comprises a
paging space partition Virtual I/O Server (VIOS) to transmit data between the power
hypervisor and a physical storage device. The embodiment comprises a monitor to monitor
an amount of memory used by the application. A kernel service stored in the server as part
of an operating system of the server receives a request from an application for a change in
virtual real memory of the virtual client to be allocated to the application, and communicates
with the power hypervisor to cause the power hypervisor to change the virtual real memory

allocated to the application.

Another embodiment is a method to dynamically allocate memory to an application of a
virtual client in a server. The method comprises recording and controlling memory access
by a virtual client logical partition of the server. The method further comprises changing an
amount of virtual real memory allocated to the application in response to a kernel service
message. Data is transmitted between the power hypervisor and a physical storage device.
The memory required by the application or expected to be needed by the application is
monitored. The method further comprises determining from the monitoring if an amount of

memory allocated to the application is to change. The method further comprises

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

dynamically reallocating an amount of virtual real memory to the application in response to

a determination that an amount to be allocated is to change.

Another embodiment is a computer program product comprising a computer useable
medium having a computer readable program, wherein the computer readable program when
executed on a computer causes the computer to perform functions for dynamically
reallocating memory to an application associated with a virtual client on the server. The
operations include recording and controlling memory access by a virtual client logical
partition of the server and changing an amount of virtual real memory allocated to the
application in response to a kernel service message. The operations further comprise
emulating the virtual client and monitoring an amount of memory used by the application.
The operations comprise determining from the monitoring if an amount of memory allocated
to the application is to change; and dynamically reallocating an amount of virtual real
memory to the application in response to a determination that an amount to be allocated is to

change.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will now be described, by way of example
only, with reference to the following drawings in which:

FIGURE 1 depicts an embodiment of a server within a network; the server
can emulate virtual clients and VIOS;

FIGURE 2 depicts an embodiment of a system capable of dynamic
reallocation of memory;

FIGURE 3 depicts a flowchart of an embodiment for monitoring and
reallocating memory;

FIGURE 4 depicts a more detailed flowchart of an embodiment for
monitoring and reallocating memory;

FIGURE 5 depicts an embodiment of multiple systems with an application
running on a paging device connected to the multiple systems; and

FIGURE 6 depicts a flowchart of an embodiment for switching systems when

the application is running on a paging device connected to multiple systems.

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following is a detailed description of example embodiments depicted in the
accompanying drawings. The example embodiments are described in detail. However, the
amount of detail offered is not intended to limit the anticipated variations of embodiments;
but, on the contrary, the intention is to cover all modifications, equivalents, and alternatives
falling within the spirit and scope of the appended claims. The detailed description below is

designed to render various embodiments obvious to a person of ordinary skill in the art.

Systems, methods and media for dynamic reallocation of memory to an application, the
memory from a pool of virtual real memory allocated to a virtual client that executes the
application, are disclosed. In one embodiment, a virtual client is allocated a pool of virtual
real memory. A subset of this pool of virtual real memory is a block of memory allocated
for use by an application. The allocation may be stated as a range of allocated memory with
an upper and lower limit. The application calls a kernel service when it thinks it needs a new
allocation of memory. The new allocation is established by a power hypervisor connected to

the virtual client. Memory is exported by way of a Paging Space Partition.

FIGURE 1 shows a server 116 (herein sometimes referred to as a machine). Server 116
comprises at least one processor 100 that can operate according to BIOS (Basis Input/Output
System) Code 104 and Operating System (OS) Code 106. The BIOS and OS code is stored
in memory 108. The BIOS code is typically stored on Read-Only Memory (ROM) and the
OS code is typically stored on the hard drive of server 116. Digital system 116 comprises a
level 2 (L2) cache 102 located physically close to processor 100. Memory 108 also stores

other programs for execution by processor 100 and stores data 109.

In an embodiment, memory 108 stores server management code 107 to manage and control
access to physical memory storage, to maintain logical partitions, to implement the VIOS,
the PHYP, and other functions. In some embodiments, multiple virtual clients can be
emulated by a single processor. In some embodiments, more than one processor in the
server may emulate a single virtual client. Each virtual client may appear as a server to a

computer or other device connected to server 116. Each virtual client may execute

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

application programs. These application programs may comprise, for example, a database.
The database may then be accessed by a computer connected to a network served by the
server. In some embodiments, the application code itself may reside on a physical paging
device connected to the server. The physical paging device may be connected to multiple

SCIvers.

Processor 100 comprises an on-chip level one (L1) cache 190, an instruction fetcher 130,
control circuitry 160, and execution units 150. Level 1 cache 190 receives and stores
instructions that are near to time of execution. Instruction fetcher 130 fetches instructions
from memory. Execution units 150 perform the operations called for by the instructions. In
one embodiment, these instructions include instructions to identify a key set or key set group
named by an interface module. The instructions cause processor 100 to determine if the
requesting application program is authorized to receive the requested keys. The instructions
further cause processor 100 to retrieve the requested keys from a key store and to thereby

produce a map of the keys.

Execution units 150 may comprise load/store units, integer Arithmetic/Logic Units, floating
point Arithmetic/Logic Units, and Graphical Logic Units. Each execution unit comprises
stages to perform steps in the execution of the instructions fetched by instruction fetcher 130.
In a superscalar architecture, different execution units operate in parallel. Thus, execution
units 150 comprise a set of units of different types operating in parallel to execute

instructions to implement an encryption key management process.

Control circuitry 160 controls instruction fetcher 130 and execution units 150. Control
circuitry 160 also receives information relevant to control decisions from execution units
150. For example, control circuitry 160 is notified in the event of a data cache miss in the

execution pipeline to process a stall.

Server 116 also typically includes other components and subsystems not shown, such as: a
Trusted Platform Module, memory controllers, random access memory (RAM), peripheral
drivers, a system monitor, a keyboard, a color video monitor, one or more flexible diskette

drives, one or more removable non-volatile media drives such as a fixed disk hard drive, CD

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

and DVD drives, a pointing device such as a mouse, and a network interface adapter, etc.
Processor 100 may also communicate with a network 112 by way of Input/Output Device
110. The network connects server 116 with a storage area network of physical memory

storage devices 114. These devices may include tape drive storage or hard disk arrays or

other types of memory.

Thus, in one mode of operation of server 116, the L2 cache receives from memory 108 data
and instructions expected to be processed in the processor pipeline of processor 100. L2
cache 102 is fast memory located physically close to processor 100 to achieve greater speed.
The L2 cache receives from memory 108 the instructions for a plurality of instruction
threads. Such instructions may include load and store instructions, branch instructions,
arithmetic logic instructions, floating point instructions, etc. The L1 cache 190 is located in
the processor and contains data and instructions preferably received from L2 cache 102.
Ideally, as the time approaches for a program instruction to be executed, the instruction is
passed with its data, if any, first to the L2 cache, and then as execution time is near

imminent, to the L1 cache.

Execution units 150 execute the instructions received from the L1 cache 190. Each of the
units of execution units 150 may be adapted to execute a specific set of instructions.
Instructions can be submitted to different execution units for execution in parallel. Data
processed by execution units 150 are storable in and accessible from integer register files
and floating point register files (not shown.) Data stored in these register files can also come
from or be transferred to on-board L1 cache 190 or an external cache or memory. The
processor can load data from memory, such as L1 cache, to a register of the processor by
executing a load instruction. The processor can store data into memory from a register by

executing a store instruction.

A server 116 will have its own memory for storing its operating system, BIOS, and the code
for executing application program and encryption key processing code, as well as files and
data. The memory of a server comprises Read-Only-Memory (ROM), cache memory
implemented in DRAM and SRAM, a hard disk drive, CD drives and DVD drives. A server

also has its own memory and may control access to other memory such as tape drives and

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

hard disk arrays. Each server may store and execute its own application programs. Thus,
some application programs, such as databases, may reside in the server and these programs

may be available to computers in the network.

A server 116 may store computer code 107 to perform the various functions of the server,
including, forming logical partitions (LPAR), emulating virtual clients which may each
appear as a server to external devices such as computers in the network, emulating a Power
Hypervisor (PHYP), and a Virtual I/O Server (VIOS). FIGURE 2 shows a logical
representation of a server 200 emulating a plurality of virtual clients 202, a PHYP 214 and a
VIOS 204 to manage the allocation of memory to the virtual clients and to handle memory
transfer to or from the physical storage 226. Virtual Real Memory uses a specialized Virtual
I/O Server (VIOS) called a Paging Space Partition (PSP) to provide read and write services
between firmware and a block storage device. This Paging Space Partition contains a VASI,
Pager, and Virtual Block Storage Device drivers to communicate between firmware and the

block storage devices.

Thus, a virtual client 202 is a logical partition of server 200. Virtual client 202 performs its
functions by way of the execution of computer code by the processor of server 200. Thus,
the functions of an application 206 associated with virtual client 202 may be performed. For
example, virtual client 202 may comprise database functions so that it appears to be a
database accessible by a computer in the network. Virtual client 202 comprises real memory
108 that is in server 200, and comprises virtual real memory (VRM) 210 which is the

memory of external storage 226 allocated to virtual client 202.

Virtual Real Memory provides a mechanism to over-subscribe memory to specific Logical
Partitions (LPAR). For example, a Central Electronics Complex (CEC) with 4 Giga Bytes
(GB) of real memory may over-subscribe to LPARs allowing the total amount of memory
provided to all the LPARs to exceed 4 GB. This is done using the VIOS, which provides
page-in and page-out services for disks. The Power Hypervisor uses this service to page in
and page out memory as needed. With each application there is associated application
memory 212 that is part of VRM 210. As will be seen, the size of application memory 212

is dynamically allocated by a kernel service of the operating system of server 200.

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

VIOS 204 is software that is located in a logical partition of server 200. This software
facilitates the sharing of physical I/O resources between the client logical partitions 202
within server 200. VIOS 204 provides virtual Small Computer System Interface (SCSI)
target and Shared Ethernet Adapter capability to client logical partitions within the system,
allowing the client logical partitions to share SCSI devices and Ethernet adapters. VIOS 204
software requires that the logical partition be dedicated solely for its use. Disks and optical
devices attached to a physical adapter 224 connected to a Native Storage Device Driver

(NSDD) 222 of VIOS 204 can be shared by virtual clients 202.

The Virtual I/O Server provides standard SCSI-compliant Logical Unit Numbers (LUN).
The Virtual I/O Server is capable of exporting a pool of heterogeneous physical storage as a
homogeneous pool of block storage in the form of SCSI disks. Physical disks owned by the
Virtual I/0 Server can be either exported and assigned to a client logical partition as a whole
or can be partitioned into logical volumes. The logical volumes can then be assigned to

different partitions.

PHYP 214 is between the virtual clients 202 and VIOS 204. PHYP 214 acts as a memory
manager controlling access to memory and security functions to protect data in memory of a
first virtual client from being accessed by a second virtual client. PHYP 214 contains a
record of which memory of storage 226 is allocated to which virtual client 202 and what
memory is available to be allocated to a virtual client. PHYP 214 also controls time slicing,
management of all hardware interrupts, dynamic movement of resources across multiple

operating systems, and dispatching of logical partition workloads.

PHYP 214 is connected to a Virtual Asynchronous Interface (VASI) 216 through a
communication channel 215. VASI 216 is an interface especially adapted to communicate
with PHYP 214 and to receive and transmit data between the PHYP and VASI 216. VASI
216 communicates with a pager 218. Pager 218 communicates with a Virtual Block Storage
Device (VBSD) 220. VBSD 220 communicates with a Native Storage Device Driver
(NSDD) 222, which in turn communicates with Physical Adapter 224.

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

10

VASI 216 is the interface between the Command/Response Queue (CRQ) commands sent
by the Hypervisor 214 and the Common Data-Link Interface (CDLI) interface observed by
the Pager module 218. Pager module 218 receives I/O (Input/Output) commands in the
CDLI format and converts them into generic I/O requests understood by VBSD 220. VBSD
220 issues commands to the native 1/O stack of NSDD 222, PHYP 214 will send a request
for a read or a write to VASI 216 which will then pass that request on to Pager 218. Pager
218 will take the request, convert it into a command readable by VBSD 220, and
communicate that request to VBSD 220. VBSD 220 will then send the request to its block
storage device and then return the response to Pager 218. Pager 218 will then reply to the
VASI's request with the response given by VBSD 220. VASI 216 will then respond to
PHYP 214.

Embodiments provide a mechanism that enables an application program to dynamically
change the amount of application memory 212 within VRM 210 that is allocated to it. The
amount of memory allocated to the application is changed by calling a kernel service 203.
This allows an application to retrieve memory when needed even if there is no more physical
memory available on the system. The kernel service 203 may be implemented as part of the
operating system and stored on a hard drive of the server. To determine if more or less
memory is needed by the application, the application has a monitor subcomponent 207 to
monitor memory use by the application. Having more memory reduces the amount of page
faults that will be seen and, hence, there will be less use of paging services provided by a

rootvg (root volume group) of the operating system.

1The kernel service 203 calls into PHYP 214 and interfaces with the existing VRM interface
to dynamically change entitled memory for the application that calls kernel service 203. The
Paging Service Partition (PSP) 204 provides the allocated storage information to PHYP 214.
To address latency, the PSP will only use low latency storage, such as internal or Serial
Attached SCSI (SAS) attached storage devices. This allocated internal storage is used by
PHYP 214 and will have less latency than the paging device on the SAN. Internal storage is
typically very limited, so reserving it solely for use by the PSP helps provide those low

latency devices to the partitions that need them.

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

11

FIGURE 3 shows an embodiment of a flow chart 300 for dynamic reallocation of memory
by a kernel service. Initially, an amount of the VRM 210 allocated to the application’s use is
specified prior to using the application program 206 (element 302). This initial amount of
application memory 212 is a subset of the VRM 210 assigned to the virtual client partition
202. In one embodiment, the amount of memory allocated is a range of memory allocated
to the application, the range specifying an upper limit and lower limit. During subsequent
use of the application 206, the application monitors its use of the VRM assigned to the

virtual client (element 304).

In one embodiment, current usage is compared to the current memory allocation (element
306). In another embodiment, expected usage is compared to the current memory allocation
(element 306). In either embodiment, the comparison is evaluated to determine if a new
allocation of application memory is needed (element 308). If not, the monitoring process
(element 304) continues. If a new allocation of application memory is needed, the
application calls a kernel service 203 of the operating system of the server (element 310).
The kernel service 203 communicates with PHYP 214 to change how much memory is

allocated to this application (element 312). Then the monitoring process continues (element

304).

FIGURE 4 shows a flow chart 400 that depicts more detail of the monitoring and
comparison process for determining if a new allocation of memory is needed. During
execution of the application, the application monitors its use of memory (element 402) to
ensure that memory usage is within the allocated range. The system determines if monitored
memory usage is near the upper limit of the allocated range (element 404). Thus, a threshold
may be specified that is below but close to the upper limit of the allocated range. If memory
needed by the application is above this threshold, the system increases the upper limit of the

allocated range (element 406).

In some embodiments, the system also checks to make sure the increase in allocation of
memory does not exceed the limit of VRM allocated to the virtual client. If the memory
usage is not near the upper limit (element 404), then the system checks if the memory usage

is near or below the lower limit of the previous range of VRM allocated to the application

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

12

(element 408). Thus, if memory use is lower than originally anticipated, the memory

allocated to the application is reduced (element 410).

In FIGURE 2, the application is shown stored with the virtual client indicating that the
memory for storing the executable application program (as distinguished from the memory
used by the application during execution) is local to the virtual client. FIGURE 5 shows an
embodiment wherein the application is itself stored not in the server but in a paging device
such as a SAN disk. Thus, in one embodiment the application to be run by a virtual client
504 or 510 is located in a paging device 516. The paging device can be attached to multiple
systems, as shown, each system having its own virtual clients 504, 510, VIOS 506, 512, and
PHYP 508, 514.

The paging device is seen by the LPAR as memory. The LPAR has no idea that the memory
is actually stored on a remote storage device (i.e. a SAN disk). Attaching the paging device
to multiple systems allows multiple systems access to that memory space. The memory
space now has the ability to move from one system to another. The application is installed
and run on that paging device (similar to a RAM Disk) and since the paging device can

migrate from one system to another so can the application.

For example an application like gvim (a common text editing program) can be installed and
run on the paging device and be associated with a source LPAR. Since the application is

actually running on the paging device, which can be a SAN disk, another LPAR can access
that same paging space device. A user specified event could cause the source LPAR to stop
using the application and then have the destination LPAR using that same application. This

allows the application to move from running on the source LPAR to the desination LPAR.

Thus, for example, a virtual client 504 of system 1, (502), may be “running” the application
518 when, for some reason it is necessary to bring system 1 out of service. In this case, a
virtual client 510 of system 2, (504), may be called to run the application 518. Since
application 518 is on a paging device 516 connected to both system 1 and system 2, the
application can be run by either system. Thus, in one embodiment, PHYP 508 will control

access to memory by virtual clients of system 1 and PHYP 514 will control access to

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

13

memory by virtual clients of system 2. In another embodiment, one power hypervisor may

control access to memory by both system 1 and system 2.

FIGURE 6 shows a flowchart 600 for an embodiment that provides the application in a
paging device to be accessed by multiple systems. Initially, the application is stored on a
fast paging device connected to multiple systems (element 602). Then, the application is
associated with a virtual client of a first system (element 604). That is, the virtual client of
the first system executes the application (element 606). During execution, an event may
occur that warrants the application to be switched from being run by system 1 to being run
by system 2 (element 608). For example, it might be time to shut down system 1 for
maintenance. In this event, the application is associated with a virtual client of system 2

(element 610), and the application is then executed by system 2 (element 612).

Thus, in some embodiments, virtual real memory of a virtual client may be dynamically
reallocated to the application even though the application itself physically resides on
physical storage exterior to the server where the virtual client resides. That is, a virtual
client may execute an application that is stored in physical storage rather than the server.
The memory required by the application during its execution is taken from a pool of virtual

real memory allocated to the virtual client.

Some embodiments can take the form of an entirely hardware embodiment, an entirely
software embodiment or an embodiment containing both hardware and software elements.
Some embodiments are thus implemented in software, which includes but is not limited to
firmware, resident software, microcode, etc. Furthermore, embodiments can take the form
of a computer program product accessible from a machine accessible readable medium
providing program code for use by or in connection with a server such as shown in FIGURE
1, or any instruction execution system. For the purposes of this description, a machine
accessible or computer-usable or computer readable medium can be any apparatus that can
contain, store, communicate, propagate, or transport the program for use by or in connection
with the instruction execution system, apparatus, or device. The medium can be an
electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or

apparatus or device) or a propagation medium. Examples of a machine accessible medium

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

14

include a semiconductor or solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic
disk and an optical disk. Current examples of optical disks include compact disk — read only

memory (CD-ROM), compact disk — read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or executing program code will include at
least one processor coupled directly or indirectly to memory elements through a system bus.
The memory elements can include local memory 108 employed during actual execution of
the program code, bulk storage, and cache memories 102, 190, which provide temporary
storage of at least some program code in order to reduce the number of times code must be
retrieved from bulk storage during execution. Input/output or I/O devices (including but not
limited to keyboards, displays, pointing devices, etc.) can be coupled to the system either
directly or through intervening 1/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become coupled to other data processing
systems or remote printers or storage devices through intervening private or public networks.
Modems, cable modem and Ethernet cards are just a few of the currently available types of

network adapters.

Thus, another embodiment of the invention provides a computer program product containing
instructions effective, when executing in a data processing system, to cause the system to
perform a series of operations for dynamically allocating virtual real memory to an
application. The series of operations generally include recording and controlling memory
access by a virtual client logical partition of the server. The operations also include
changing an amount of virtual real memory allocated to the application in response to a
kernel service message. The operations include emulating the virtual client. The computer
is also caused to monitor an amount of memory used by the application. The computer also
determines from the monitoring if an amount of memory allocated to the application is to
change. The operations also include dynamically reallocating an amount of virtual real
memory to the application in response to a determination that an amount to be allocated is to

change.

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

15

In some embodiments, determining if an amount of memory allocated to the application is to
change comprises comparing an actual memory use of the application to an upper limit.
Also, in some embodiments, determining if an amount of memory allocated to the
application is to change comprises comparing an actual memory use of the application to a
lower limit. Or the comparison may be made of expected memory usage and allocated
memory. In one embodiment, changing an amount of virtual real memory allocated to an

application is initiated by a kernel service of an operating system of the server.

Although embodiments of the present invention and some of its advantages have been
described in detail, it should be understood that various changes, substitutions and alterations
can be made. Although an embodiment of the invention may achieve multiple objectives,
not every embodiment falling within the scope of the attached claims will achieve every
objective. Moreover, embodiments of the present invention are not limited to the those of
the process, machine, manufacture, composition of matter, means, methods and steps
described in the specification. As one of ordinary skill in the art will readily appreciate from
the disclosure of the present invention, processes, machines, manufacture, compositions of
matter, means, methods, or steps, presently existing or later to be developed that perform
substantially the same function or achieve substantially the same result as the corresponding
embodiments described herein may be utilized according to the present invention.
Accordingly, the appended claims are intended to include within their scope such processes,

machines, manufacture, compositions of matter, means, methods, or steps.

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

16

CLAIMS

1. A system for allocation of memory to an application associated with a virtual client
logical partition in a server, comprising:

a power hypervisor to record and control memory access by a virtual client logical
partition of the server and to change an amount of virtual real memory allocated to the
application in response to a kernel service message;

a paging space partition Virtual I/O Server (VIOS) to transmit data between the
power hypervisor and a physical storage device;

a monitor to monitor an amount of memory used by the application; and

a kernel service stored in the server as part of an operating system of the server to
receive a request from an application for a change in virtual real memory of the virtual client
to be allocated to the application, and to communicate with the power hypervisor to cause

the power hypervisor to change the virtual real memory allocated to the application.

2. The system of claim 1, further comprising a comparator within the monitor to

compare actual memory use to an upper limit of memory use.

3. The system of claim 1, further comprising a comparator within the monitor to

compare actual memory use to a lower limit of memory use.

4. The system of claim 1, further comprising a comparator within the monitor to

compare expected memory use to an upper limit of memory use.

5. The system of claim 1, further comprising a comparator within the monitor to

compare expected memory use to a lower limit of memory use.

6. The system of claim 1, wherein the kernel service is stored in a hard drive of the
server.
7. The system of claim 1, wherein the kernel service runs from within the virtual client

logical partition.

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

17

8. A method to dynamically allocate memory to an application of a virtual client in a
server, comprising:

recording and controlling memory access by a virtual client logical partition of the
server and changing an amount of virtual real memory allocated to the application in
response to a kernel service message;

transmitting data between the power hypervisor and a physical storage device;

monitoring an amount of memory used by the application;

determining from the monitoring if an amount of memory allocated to the application
is to change; and

dynamically reallocating an amount of virtual real memory to the application in

response to a determination that an amount to be allocated is to change.

9. The method of claim 8, wherein determining if an amount of memory allocated to the
application is to change comprises comparing an expected memory use of the application to

an upper limit.

10. The method of claim 9, wherein if the comparison determines that the expected
memory use is at least a specified amount, the amount of memory reallocated to the

application is increased.

11. The method of claim 8, wherein determining if an amount of memory allocated to the
application is to change comprises comparing an expected memory use of the application to

a lower limit.

12. The method of claim 11, wherein if the comparison determines that the expected
memory use is less than a specified amount, the amount of memory reallocated to the

application is decreased.

13. The method of claim 8, wherein changing an amount of virtual real memory
allocated to an application is initiated by a kernel service of an operating system of the

SCrver.

10

15

20

25

30

WO 2009/150024 PCT/EP2009/056218

18
14. The method of claim 13, wherein the kernel service runs within the virtual client.
15. A computer program product comprising a computer useable medium having a

computer readable program, wherein the computer readable program when executed on a
computer causes the computer to:

recording and controlling memory access by a virtual client logical partition of the
server and changing an amount of virtual real memory allocated to the application in
response to a kernel service message;

emulating the virtual client;

monitoring an amount of memory used by the application;

determining from the monitoring if an amount of memory allocated to the application
is to change; and

dynamically reallocating an amount of virtual real memory to the application in

response to a determination that an amount to be allocated is to change.

16. The computer program product of claim 15, wherein determining if an amount of
memory allocated to the application is to change comprises comparing an actual memory use

of the application to an upper limit.

17. The computer program product of claim 15, wherein determining if an amount of
memory allocated to the application is to change comprises comparing an actual memory use

of the application to a lower limit.

18. The computer program product of claim 15, wherein determining if an amount of
memory allocated to the application is to change comprises comparing an expected memory

use of the application to an upper limit.

19. The computer program product of claim 15, wherein determining if an amount of
memory allocated to the application is to change comprises comparing an expected memory

use of the application to a lower limit.

WO 2009/150024 PCT/EP2009/056218
19

20. The computer program product of claim 15, wherein changing an amount of virtual
real memory allocated to an application is initiated by a kernel service of an operating

system of the server.

WO 2009/150024 PCT/EP2009/056218
116 104 106
‘ [
SERVER | oniomy / //
107 ~~_| SERVER BIOS 08 CODE
MANAGEMENT CODE
12 [Data

1

L2 CACHE

/

102

™| PROCESSOR

L1 CACHE

INSTRUCTION
| FETCHER

s

CONTROL
CIRCUITRY

EXECUTION UNITS | |+

T

\\ INPUT/QUTPUT

INTERFACE

114

A

STORAGE |
AREA Q,

NETWORK

FIG 1

4L

| NETWORK *|

WO 2009/150024 PCT/EP2009/056218

2/6
SERVER, 200
| VIRTUAL CLIENT VIOS
202 204
KERNEL, 203
APPLICATION
206
MONITOR
R /
218 :) ‘
~] PAGER [*—* VBSD
RM VRM a5
o ‘ 9 <
208 210 s 3 4
AM] 216] | VASI NSDD
Fy 'y \
& \ .’3"32
¥ k. ST
PHYP COMMUNICATION
214 «—» CHANNEL
215
5y
PHYSICAL
ADAPTER
224

FIG. 2

WO 2009/150024 PCT/EP2009/056218
3/6

300

ALLOCATE VRM TO 302

¥ 304
MONITOR MEMORY
USE BY APPLICATION
s)

COMPARE TO 306
CURRENT

08
NO

IS NEW ALLOCATION~_

YES

CALL KERNEL SERVICE | 310

4
ALLOCATE NEW 312
MEMORY RANGE TO
APPLICATION

F1G. 3

WO 2009/150024 PCT/EP2009/056218
4/6

400

N . - 402
i MONITOR MEMORY USE

BY APPLICATION
l 404

NEAR UPPER
T LIMIT?

Rty e
\\\//
J' YES L 408

o

406 ~
INCREASE ; NO
MEMORY

ALLOCATION | {MR LIMIT?

YES

&

410

y
DECREASE MEMORY
ALLOCATION

FIG. 4

WO 2009/150024

SYSTEM 1
502
Ve VIOS |
504 506
PHYP, 508

PCT/EP2009/056218
5/6
SYSTEM 2
504
vC VIOS
510 512
PHYP, 514
PAGING DEVICE,
316
APPLICATION,
518

FiG. §

WO 2009/150024 PCT/EP2009/056218
6/6

600

STORE APPLICATION | 602
ON A FAST PAGING
DEVICE ACCESSIBLE
BY MULTIPLE
SYSTEMS

¥
ASSOCIATE 604
APPLICATION WITH
A VIRTUAL CLIENT
OF SYSTEM 1|

h 4
EXECUTE 606
APPLICATION BY
SYSTEM 1

F

608
S |
L S~ NO
SWITCH SYSTEMS ™
\EVE‘NT? =

-

\\ C

ASSOCIATE 610
APPLICATION WITH
A VIRTUAL CLIENT
OF SYSTEM 2

h
EXBCUTE 612
APPLICATION BY
SYSTEM 2

FIG 6

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2009/056218

A
INV.

. CLASSIEIS%TION OF SUBJECT MATTER

F9/50

According to Inlernationat Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classflcanon system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of_document, with indication, where appropriate, of the relevant passages Relevant 1o claim ﬁo.
X US 2008/126579 A1 (CORNELI KARYN T'[US] ET 1-20
AL CORNELI KARYN T [US] ET AL)
29 May 2008 (2008-05-29) :
paragraph [0002] - paragraph [0003]
paragraph [0007]
paragraph [0019]
paragraph [0023] - paragraph [0024]
X US 2005/262505 A1 (ESFAHANY KOUROS H [US] 1-20
ET AL) 24 November 2005 (2005-11-24)
paragraph [0007] - paragraph [0008]
paragraph [0019]
paragraph [0024]
A US 2007/168299 Al (ENGBERSEN TON [CH] ET 1-20
AL) 19 July 2007 (2007-07-19)
the whole document
. _/__

m Further documents are listed in the continuation of Box C.

(z] See patent family annex.

* Special ca!ggories of cited documents :

A document defining the general state of the art which is not
considered to be of panticular relevance

citation or other special reason (as specified)
‘0* document referring to an oral disclosure, use, exhibition or

'T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theoty underlying the

invention
"E* earlier document but published on or after the -international 'X* document of paticular relevance; the claimed invention
- filing date cannot be considered novel or cannot be considered 1o
"L* document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the pubtication date of another *v* document of particular relevance; the claimed invention

cannot be considared to involve an inventive step when the
document is combined with one or more other such docu—

other means ments, such combination being obvious to a person skilled
'P* document published prior to the international filing date but in the art.
later than the priority date claimed *&" document member of the same patent famity

Date of the actual completion of the international search

8 September 2009

Date of mailing of the intemational search report

24/09/2009

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040,

Authorized officer

Fax: (+31-70) 340-3016 Dewyn, Torkild

Fom PCT/ISA/210 (second sheat) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2009/056218

C(Continuation).

DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of_ the relevant passages

Relevant to claim No.

A

US 2005/240932 A1 (BILLAU RONALD L [US] ET

- AL) 27 October 2005 (2005-10-27)

the who]e document

us 2007/168635 Al (ALLEN KENNETH R [US] ET
AL) 19 July 2007 (2007-07-19)

_ the whole document

US 2004/078532 A1l (TREMAINE ROBERT B [US])

22 April 2004 (2004-04-22)
the whole document

MARK COHEN: "AIX

MICROPARTITIONING"[Online] 2006,

XP002544571
Retrieved from the Internet:

URL:http://www.cmgitalia.it/PDF/aixm_icrop

artitioning.pdf> [retrieved on 2009-09-07]
the whole document

US 2003/158884 A1 (ALFORD JACK ALLEN [US]
ALFORD JR JACK ALLEN [US])

21 August 2003 (2003-08-21)

the whole document

WO 03/088046 A (BARSA CONSULTING GROUP LLC
[US]) 23 October 2003 (2003-10-23)

the whole document ‘

1-20

1-20

©1-20

1-20

1 1-20

1-20

Fom PCT/ISA/210 (continuation of sacond sheet) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2009/056218
Patent document Publication Patent family ‘ Publication

cited in search report date member(s) date
US 2008126579 AAl‘ 29-05-2008 CN 101118521 A 06-02-2008
JP 2008041093 A 21-02-2008

US 2005262505 Al 24-11-2005 NONE

US 2007168299 Al . 19-07-2007 CN 101361078 A 04-02-2009
EP 1974309 Al 01-10-2008
WO 2007082796 Al 26-07-2007
US 2005240932 Al 27-10-2005 CA 2576267 Al 03-11-2005
: . EP 1763749 A2 . 21-03-2007
WO 2005103890 A2 03-11-2005
US 2008301692 Al 04-12-2008
'US 2007168635 Al 19-07-2007 CN 101004695 A 25-07-2007
JP 2007193776 A 02-08-2007
US 2004078532 Al 22-04-2004 CN 1490728 A 21-04-2004
JP 3962368 B2 22-08-2007
JP 2004164607 A 10-06-2004
US 2003158884 Al 21-08-2003 AU 2003247381 Al 09-09-2003
‘ ’ ' CA 2471426 Al 28-08-2003
CN 1636191 A 06-07-2005
WO 103071424 A2 28-08-2003
MX PA04008080 A 26-11-2004
UsS 2008134192 Al 05-06-2008
WO 03088046 “A 23-10-2003 AU 2003230856 Al 27-10-2003

Fom PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - claims
	Page 19 - claims
	Page 20 - claims
	Page 21 - claims
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - wo-search-report
	Page 29 - wo-search-report
	Page 30 - wo-search-report

