A beverage container comprising a container body (10) with an opening (11) and closure means (12) to close the opening (11), the closure means comprising a first part (12A) for closing the opening (11) and a second part (12B) adapted to be connected to the first part (12A) so that the first and second parts (12A, 12B) are rotatable relative to each other between a first position in which they are held together and a second position in which the second part (12B) holds the first part (12A) in a sealing relationship with the container body (10).
PACKAGING ARTICLE

TECHNICAL FIELD
The present invention relates to beverage containers, and particularly relates to containers for supplying beverages to consumers. The invention has particular utility for the storage and supply of carbonated and other sparkling drinks, but is also suitable for use with other types of drinks.

BACKGROUND ART
For many years there has been a desire among drinks suppliers and container manufacturers to provide practical wide-mouth beverage supply containers which consumers may drink from comfortably in the same manner as from a drinks glass or other drinking vessel. Despite the tremendous advantages that such a beverage container would provide for drinks suppliers, container manufacturers and consumers alike, no successful beverage container that fulfils these aims has yet been produced. Consequently, bottles and ring-pull cans currently remain the main practical beverage supply containers for consumers. This is because there are significant technical problems associated with wide-mouth containers to overcome, and no practical solution to the problems has successfully been devised. The present invention aims to provide a practical beverage container.

SUMMARY OF INVENTION
The present invention provides a beverage container comprising a container body including an opening, and closure means to close the opening, the closure means comprising a first part for closing the opening and a second part which is adapted to be connected to the first part such that the first and second parts are rotatable relative to each other between at least a first position in which they are held together and a second position in which the second part holds the first part in a sealing relationship with the container body.
Sealing of the first part to the container may be by direct contact therebetween and/or via sealing means such as an O-ring or some other intermediate component or layer, such as a foil.

The second part is releasably securable to the first part preferably by means of a threaded engagement. The threaded engagement may comprise a bayonet-style engagement. Preferably, however, the threaded engagement is a screw-threaded engagement. The term “thread” as used herein includes (at least in the broadest aspects of the invention) continuous and discontinuous threads, (e.g. continuous and discontinuous screw threads), and bayonet-style threads, for example. Threads used in relation to the invention may, for example, comprise a plurality of segments (each thread segment comprising a said securement means), in which case the thread may either be discontinuous, or it may be substantially continuous because the effect is that of a substantially continuous thread pattern.

The opening of the container body preferably is a wide-mouth opening. By a “wide-mouth opening” is meant (at least in its broadest sense) an opening of a size suitable for a person to drink from the container in the same manner as from a drinks glass or similar drinking vessel. That is, in its broadest sense, the wide-mouth opening of the container (for embodiments of the invention having a wide-mouth opening) generally renders the container suitable as a drinking vessel from which a beverage supplied in the container may be conveniently drunk (in contrast to conventional narrow-necked bottles and ring-pull cans which generally are not regarded as comfortable drinking vessels). In practice, this requirement means that the diameter of the wide-mouth opening of the container will normally need to be at least 40mm, preferably at least 45mm, and more preferably at least 50mm. Additionally, an excessively wide opening is generally difficult for the consumer to drink from, and thus the wide-mouth opening preferably has a diameter no greater than 150mm, more preferably no greater than 100mm, and especially no greater than 80mm. A particularly preferred diameter range for the wide-mouth opening is 50 to 80mm, and examples of particular preferred diameters included 53mm and 63mm.
A similar form of closure may, however, also be provided on a narrow mouth container, e.g. having an opening with a diameter of less than 40mm, e.g. a conventional standard bottle mouth of 28mm or 38mm diameter.

Preferably, the container body is shaped to resemble a conventional drinking vessel such as a beer glass.

The container body preferably has no thread or thread segments on its exterior. Consequently, the container body preferably is comfortable for a consumer to drink directly therefrom.

The closure means is preferably in the form of a cap.

A wide variety of thread forms for connecting the first and second parts of the closure means are possible. As indicated at the beginning of this specification, at least some embodiments of the invention are intended for the storage and supply of carbonated and other sparkling drinks, for example beers, ciders, sparkling wines (including champagne), other fizzy alcoholic beverages, and non-alcoholic fizzy and sparkling beverages, including sparkling water and carbonated soft drinks. For such beverages, it is preferred for the engagement between the cap and the body to include provision for gas venting upon partial removal of the cap from the container body, to prevent so-called “missiling” of the cap whereby the cap is violently ejected from the container body as the container is opened, by the gas pressure of the contents of the container.

Advantageously, therefore, the first and or second parts of the cap may include means, preferably engageable elements, to block or restrict removal of the cap beyond an intermediate position (between fully secured and fully released) when the cap is under an axial pressure in a direction emerging from the container body.
Preferably the cap, and or the container body are constructed and arranged to provide a vent for venting gas from the container body at least when the cap is in an intermediate position (between fully secured and fully released), with the first and second components thereof still secured to each other.

According to another aspect of the invention, there is provided a beverage container comprising a container body including an opening, and closure means to close the opening, the closure means comprising at least two parts, a first part for sealing to the container body and a second part which is adapted to be connected to the first part such that the first and second parts are rotatable relative to each other between at least a first position in which the closure means seals said opening and a second position in which the closure means allows venting of the container whilst still being secured thereto.

Such venting may occur via an opening in the closure means smaller than the container opening.

The first and second components are preferably arranged to remain secured together upon opening of the container so they can be removed as a single item.

In some embodiments of the invention, the cap may include tamper-evident means (e.g. a tamper-evident band). Preferably the tamper-evident means is removed from the cap by the act of removal of the cap from the container body. Advantageously, the tamper-evident means may include means to prevent the cap from accidentally unscrewing from the collar under the influence of pressurization within the container (e.g. due to a pressurized beverage held in the container).

The container and its components may be made from any suitable material, including metal and/or glass and/or polymer material. However, polymer materials are generally preferred, at least for the first and second parts of the cap and, in some cases the container. The container may be formed, of polyolefin, for example polyethylene terephthalate (PET); and the first and
second parts of the cap either polyethylene (PE) or polypropylene (PP). The polymeric components preferably are formed by moulding, especially injection moulding and/or blow moulding. In some embodiments, the container body is formed from glass and the cap from polymer material.

The invention also relates to closure means for use with a container as described herein, the closure means comprising first and second parts as described above.

Other preferred and optional features of the invention will be apparent from the following description and the subsidiary claims of the specification.

The invention will now be further described, merely by way of example, with reference to the accompanying drawings, in which:

Figure 1 shows a partial, exploded view of a first embodiment of a beverage container according to the present invention;

Figures 2A, 2B and 2C show similar views to Figure 1 of the container with part-sectional views of the closure means prior to assembly, in a sealed configuration and in a venting configuration, respectively;

Figure 3 is a perspective view of two of the beverage containers shown in Figure 1, one with closure means in place and the other with the closure means removed;

Figure 4 shows a partial, exploded view of a second embodiment of a beverage container according to the present invention;

Figures 5A, 5B and 5C show similar views to Figure 4 of the container with part-sectional views of the closures means prior to assembly, in a sealed configuration and in a venting configuration, respectively;
Figure 6 is a perspective view of two of the beverage containers shown in Figure 4, one with closure means in place and the other with the closure means removed;

Figure 7 shows a partial, partly-exploded view of a third embodiment of a beverage container according to the present invention;

Figure 8A, 8B and 8C show similar views to Figure 7 of the container with part-sectional views of the closure means prior to assembly, in a sealed configuration and in a venting configuration, respectively;

Figure 9A shows an exploded view of a fourth embodiment of a beverage container according to the present invention and Figure 9B shows a perspective view from beneath of a second part of the closure means thereof;

Figures 10A, 10B, and 10C show similar views to the upper part of Figure 9 of the container assembly, with part-sectional views of the closures means prior to assembly, partially assembled and in a sealed configuration, respectively;

Figure 11 is a perspective view of two of the beverage containers shown in Figure 10 one with closure means in place and the other with the closure means removed; and

Figure 12 shows a partial, exploded view of a fifth embodiment of a beverage container according to the present invention;

Figure 13 is a partial perspective view showing a first part of a closure means mounted on the container;

Figure 14 and 15 are cross-sectional views through part of the article shown in Figure 13 in first and second positions;
Figure 16 is a part-sectional, perspective view of the fifth embodiment showing the first and second parts of the closures means in a venting position; and

Figure 17 is a perspective view of two of the beverage containers shown in Figure 12, one with closure means in place and the other with closure means removed.

DESCRIPTION OF PREFERRED EMBODIMENTS

Figure 1 shown the upper part of a beverage container (the whole container is shown in Figure 3) comprising a container body 10 with a wide-mouth opening 11 at its upper end and closure means in the form of a lid 12 comprising a first part 12A for closing and sealing to the body 10 and a second part 12B adapted to be connected to the first part 12A.

In the embodiment shown, the first part 12A comprises a disc-shaped upper part 13 with a skirt 14 depending from the periphery thereof. The body 10 has a radially projecting rim 15 adjacent the wide-mouth opening 11 and the skirt 14 has an internal diameter such that it can be pressed down over the projecting rim 15. The radially outer surface of the skirt 14 is provided with a screw thread 16 and the second part 12B of the cap comprises an annular member with a screw thread 17 on its internal surface for engaging with the screw thread 16 of the first part 12A. The outer surface of the second part 12B is formed, e.g. with ribs 17A and grooves 17B, so as to facilitate the application of torque thereto by a user's hand to rotate the second part 12B relative to the first part 12A when threadably engaged therewith. The second part 12B is optionally provided with a disk-shaped member 18, e.g. to carry promotional material such as a trade mark used in relation to the beverage contained within the container 10. Alternatively, this may be provided on the upper surface of the upper part 13 of the first part 12A of the cap.

The free end of the skirt 12A is provid with an inclined flange 18 the function of which will be described below.
The skirt 14 and radial projection 15 are shaped so that the first part 12A of the cap is a loose, snap-fit onto the container, i.e. sufficient to retain the first part thereon but removeable upon application of a manual pulling force but not sufficiently tight to provide a fluid seal between the first part 12A and the container 10. In use, the second part 12B of the cap would typically be connected to the first part 12A by engaging the respective threads thereof in a first configuration. The cap comprising first and second parts 12A and 12B is then pressed onto the container so that the first part snaps over the radial projection 15 and engages an underside thereof. The skirt 14 and the underside of the radial projection 15 are preferably also provided with mutually engageably components 19A, 19B to limit rotational movement therebetween.

The second part 12B is then screwed further onto the first part 12A to a second configuration in which it biases the inclined flange 18 inwards. This secures the first part 12A more tightly under the radial projection 15 and creates a downward tension in the skirt 14 so the inner surface of the skirt 14 and/or the underside of upper part 13 of the first part 12A of the cap is sealed against the container 10. Optionally an O-ring seal 20 (see Figure 2A) may be provided between the inner surface of the first part 12A and the container 10 to facilitate the formation of a seal therebetween.

In another arrangement (not shown), the O-ring may be replaced by a foil, e.g. comprising an aluminium layer with a polymer layer on one or both faces thereof, which covers the wide-mouth opening 11. The foil 11 may be welded, e.g. by induction heating, to the container 10 and/or to the first part 12A. Preferably, the foil is arranged to remain attached to the first part 12A and be removed therewith when the container is opened. Such a foil may also be used with the other embodiments of the invention described below.

Figure 2B shows the cap with the first and second parts 12A and 12B in the second configuration, i.e. in which the second part holds the first part in a secured, sealing relationship with the container 10 as described above.
When it is desired to open the container, the second part 12B is partially unscrewed from the first part 12A so it is moved out of said second configuration. The second part 12B and/or any O-ring 20 used therewith is thus no longer held in sealing engagement with the container. Pressurised gas within the container can thus be vented between the container 10 and the first part 12A of the cap. The first part 12A of the cap is, however, prevented from being blown off the container 10 due to engagement of its skirt 14 under the projection 15. In some cases, this may be a relatively loose engagement, e.g. as formed when the cap is first snapped onto the body 10 as described above, or the second part 12B may still be in a position relative to the first part 12A in which it deflects the flange 18 inwards to tighten the engagement of the skirt 14 under the projection 15.

The second part 12B is also prevented from blowing off by means of its screw threaded engagement with the first part and/or engagement of a hook-like projection 17C at a bottom edge thereof with a lower part of the skirt 14 or flange 18.

After venting has taken place, the cap (with the first and second parts 12A, 12B connected together) can be manually pulled off the container 10 by overcoming the loose snap-fit between the first part 12A and the projection 15. If necessary, the second part 12B may be unscrewed further to loosen this engagement prior to pulling the cap off the container.

The second part 12B could, if desired, be unscrewed completely and detached from the first part 12A prior to pulling off the first part 12B but, preferably, they are designed to be pulled off together whilst they are still connected to each other. Indeed, the second part 12B may be designed such that, once connected to the first part 12A, it cannot be detached therefrom, e.g. by means of a ratchet associated with the screw thread attachment therebetween.

The second embodiment shown in Figures 4-6 is similar to the first embodiment shown in Figures 1-3 except that the screw threaded engagement between the
first and second parts 21A and 21b of the cap 21 is via a thread 22A on the external surface of a relatively small diameter neck portion 22 projecting from the first part 21A and a thread 23A on the internal surface of a relatively small diameter skirt portion 23 depending from the second part 21B.

The neck portion 22, the skirt portion 23 and the threads thereon may, for example, be of similar form to those used on conventional plastic bottles, e.g. for container carbonated beverages, such as those having a 28mm diameter neck.

The first part 21A of the cap comprises an annular skirt 24 and a dished part 25 connecting the perimeter of the upper portion of the skirt 24 to the perimeter of the lower part of the neck portion 22. In this embodiment, the neck portion 22 is thus recessed within the first part 21A so the upper part thereof is substantially co-planar with the perimeter of the upper part of the skirt 24.

The skirt 24 is designed to be a loose snap-fit over a radial project 26 provided adjacent the opening of a wide-mouth container 27 as in the first embodiment. The second part 21B of the cap is designed to be connected to the first part 21A by screwing the two parts together and as the second part 21B is screwed further on to the first part 21A it causes the first part 21A to be brought into a secured and sealing relationship with the container 27 in a similar manner to that described above in relation to the first embodiment.

In the second embodiment, venting occurs between the container 27 and the first part 21A when the second part 21B is partially unscrewed as shown in Figure 5B. Alternatively, or additionally, venting may occur through the narrow neck portion 22, e.g. via channels or apertures in the thread form thereof and/or of the thread form of the narrow skirt portion 23, as in a conventional carbonated beverage container with a narrow neck.
In a preferred arrangement, the relatively narrow screw-thread connection between the first and second parts 21A, 21B of the cap may be arranged such that the second part 21B, once installed, is prevented from being detached from the first part 21A of the cap, i.e. so it cannot be completely unscrewed or detached therefrom. Alternatively, or additionally, the narrow neck portion 22 may be sealed, e.g. by having a circular part integrally formed across the upper end thereof to seal off the passageway through the narrow neck portion 22. In another arrangement, the narrow neck portion 22 may be closed by a perforated part which allows the passage of gasses therethrough, e.g. for venting, but is unsuitable for the passage of liquid therethrough.

The third embodiment shown in Figures 7-9 is similar to the second embodiment described above except that, rather than being recessed within the first part 31A, the relatively narrow screw-thread connection 32 between the first and second parts 31A, 31B projects upwards from the first part 31A.

The first part comprises an annular skirt 33 and a small diameter neck portion 34, the upper perimeter of the skirt 33 being connected to the lower perimeter of the neck portion 34 by a dished part 35 which slopes upwardly from the skirt 33 to the neck portion 34, i.e. in the opposite direction to the dished part 25 of the second embodiment. As above, the smaller diameter neck portion 34 may resemble a conventional 28mm neck as used on conventional carbonated beverage bottles, although, as described above, the arrangement may be such that the second part 31B cannot be completely unscrewed or detached from the first part 31A and/or the neck portion 34 may be sealed or adapted to provide ready passage for gasses but not for liquids. In Figure 7 the first part 31A is shown already connected to the wide-mouth container 36 (rather than separate therefrom as shown in Figures 1 and 4).

The second part 31B of the cap comprises a skirt portion 37 similar to that of the second part of the second embodiment described above and a relatively narrow diameter, internally screw-threaded portion 38 upstanding from the second part, the upper perimeter of the skirt being joined to the lower perimeter of the
screw-threaded portion by an upwardly inclined dished portion 39. The screw-threaded portion 38 may, as shown, be designed to resemble a conventional 28mm diameter bottle cap although it is integrally formed with the dished portion 39 and the skirt 37.

The operation of the cap 31 of the third embodiment is the same as in the second embodiment and the interaction between the skirt 37 of the second part and that 33 of the first part, and the interaction between the first part 31A and the container body 36 is also the same as in the second embodiment. The main difference between the two embodiments is that one has a large diameter screw threaded connection between the first and second parts around the exterior of the container opening whereas the other has a screw threaded connection between the first and second parts of a diameter smaller than the diameter of the container opening.

In a further arrangement, the skirt 37 may connect to the first part 31A by a screw thread (as in the first embodiment) in addition to or in place of the screw-threaded portion 38.

Figures 9-11 show a fourth embodiment of a beverage container according to the invention. Again, this comprises a container body 40 and a cap 41 which comprises a first part 41A and a second part 41B. The upper part of the container 40 is inclined inwardly to form an internal bulge or projection 40A and then flare outwardly to form an outwardly projecting lip 40B at the wide-mouth opening of the container 40 (as best seen in the sectional views in Figure 10A-10C).

The first part 41A of the cap 41 comprises a skirt portion 42 which fits within the wide-mouth opening with an annular flange 42A at the upper end of the skirt portion 42 which sits on the lip of the container and has an external overhanging portion 42B. The internal surface of the overhanging potion 42B is shaped to be a loose snap-fit over the outwardly projecting lip 40B and the external surface of the skirt portion 42 is shaped to be a loose snap-fit over the internal bulge 40A
of the container 40. When the first part 41A of the cap is fitted to the container 40, it thus snap-fits over both the internal and external projections adjacent the upper end of the container.

The first part 41A of the cap is also provided with a recessed, relatively narrow, externally-threaded portion 43 somewhat similar to that of the second embodiment except that its lower perimeter is connected to the lower perimeter of skirt portion 42 by a connecting portion 43A.

The second part 41B of the cap comprises an upper part 44 with gripping means 44A projecting upwardly therefrom in a cross-shaped pattern. A skirt having an inner skin 45A and an outer skin 45B depends from the upper part 44. The inner skin 45A is internally threaded to engage with the externally-threaded portion 43 of the first part 41A of the cap and the outer skin 45A is shaped to fit within the recess formed by the inner surface of the skirt portion 42 of the first part 41A of the cap.

Figure 10B shows the second part 41B of the cap partially screwed onto the screw-threaded portion 43 of the first part of the cap. As the second part 41B is screwed down further, it engages an internal projection 42C provided on the internal surface of the skirt portion 42 of the first part 41A of the cap and biases this radially outwards so that the skirt portion 42 engages securely under the internal bulge 40A of the container 40. This puts the skirt portion 42 under tension so it and/or the flange 42A are biased into a sealing engagement with the container 40.

When the second part 41B is screwed down to the position shown in figure 11C, ratchet teeth 46A of a tamper-evident band 46 projecting radially outwards from the perimeter of upper part 44 engage with internal teeth 42D provided in the upper surface of flange 42A.

When the container is to be opened, the user grasps the gripping means 44A to rotate the second part 41A relative to the second a part 41B to start unscrewing
it. In doing so, frangible connections between the tamper-evident band 46 and the second part 41B are broken. As the second part 41B is unscrewed, the tension in the skirt 42 is released so the seal between the container 40 and the first part 41A is broken whereby venting can occur therebetween. This stage is reached before the second part 41B is unscrewed to a position corresponding to that shown in figure 11B. The cap is thus prevented from blowing off as the outward projection of skirt 42 is still held beneath the bulge 40A by the outer skin 45B of the skirt of the second part 41B.

Alternatively, or additionally, venting may take place via the relatively small diameter screw-threaded part 43 and 45A of the first and second parts 41A, 41B of the cap as described above for the earlier embodiments.

Figures 12-17 show a fifth embodiment of the invention comprising a container body 50, and closure means 51 comprising a first part 51A and a second part 51B. First part 51A is generally annular with a recessed closure 51B therein and has cam members 52 and retaining members 53 arranged alternately around its circumference each of which is arranged to be snap-fit over a lip 50A of the container.

Figure 13 shows the first part 51A with the cam members 52 snap-fitted over the lip 50A. As in the embodiments described above, four abutments 50E are provided on the exterior of the container 50 beneath the lip 50A thereof. These engage with the cam members 52 and/or the retaining members 53 to limit rotation of the closure means 51 relative to the container 50.

Figure 14 is a cross-sectional view through one of the cam members 52 in the position shown in Figure 13. As can be seen from this Figure, each cam member 52 is connected to the first part 51A by a living hinge 52A so as to be rotatable about this hinge as will be described further below.

The second part 51B is generally annular with a thread form 55A on its internal surface and gripping means 55B on its external surface. The thread form 53A of
the second part engages with thread forms 53A provided on the external surfaces of the retaining members 53 and as it is screwed onto the first part 51A its lower edge engages outwardly projecting parts 52B of the cam members 52. This causes the cam members 52 to rotate about their hinges 52A so the first part 51A is drawn down to the position shown in Figure 15. In this position, both the cam members 52 and retaining members 53 are located beneath the lip 50A and the cam members 52 are secured in this position by the engagement of the second part 51B with the projecting parts 52B (the second part 51B is omitted from Figure 15 for clarity).

Figures 14 and 15 also show a first sealing means in the form of a flexible fin 56 on the underside of the first part 51A, which fits within the mouth of the container 50. Second sealing means 57 are provided on the underside of the closure 51C to engage with a bulge 50B formed on the internal wall of the container.

Alternatively, or additionally, a foil may be secured to the upper surface of the bulge 50B to seal the container 50. Similar sealing means may be used in the embodiments described above.

When the container is to be opened, the second part 51B is partially unscrewed from the first part so the closure means is able to rise to the position shown in Figure 16 In this position, the first part 51A is in the position shown in Figures 13 and 14 and the engagement of cam members 52 with the underside of the lip 50A prevents the closure means being blown off the container. The retaining members 53 have, however, ridden up over the lip 50A as shown in Figure 16. As shown, clearance 55C is provided in the thread form 55B of the second part 51B to enable the retaining members 53 to flex outwardly a sufficient distance so they can disengage from the underside of the lip 50A.

Figure 17 shows a perspective view of the container both with the closure means 51 fitted thereon and removed. Preferably, the diameter of the closure means 51, the base 50C of the container and an external bulge 50D therebetween are
substantially similar to facilitate storage of the containers in crates etc. in a manner which prevents the containers from tilting or rattling within compartments thereof.

It will be appreciated that the closure means used in the embodiments described herein do not connect directly with the container via a screw-thread but comprise first and second components which are connected together in a manner which brings the first component into secure, sealing engagement with the container.

The arrangement thus provides a beverage container comprising a container body including an opening which defines an axis passing there through, and closure means to close the opening, the closure means comprising at least two parts, adapted to be rotatably connected to each other so as to be movable in the direction of said axis relative to each other whereby at least one of the first and second parts is brought into secure and/or sealing engagement with the container.

The opening in the container typically defines a plane and the axis is normal thereto. The first and second parts may move towards or away from each other along said axis to bring one of them into sealing engagement with the container. Such engagement may be due to the change in the axial dimensions of the closure means and/or due to lateral expansion or contraction of one of the parts due to said relative movement. As described above, the first and second parts are preferably moveable relative to each other along said axis by means of a screw – thread connection therebetween.
CLAIMS

1. A beverage container comprising a container body including an opening, and closure means to close the opening, the closure means comprising a first part for closing the opening and a second part which is adapted to be connected to the first part such that the first and second parts are rotatable relative to each other between at least a first position in which they are held together and a second position in which the second part holds the first part in a sealing relationship with the container body.

2. A beverage container as claimed in claim 1 in which the second part is releasably secureable to the first part by means of a threaded engagement.

3. A beverage container as claimed in claim 2 in which the threaded engagement is at a diameter greater than that of the container opening.

4. A beverage container as claimed in claim 2 in which the threaded engagement is at a diameter smaller than that of the container opening.

5. A beverage container as claimed in any preceding claim in which the first part is in the form of a cap which fits about the exterior of the container opening.

6. A beverage container as claimed in any of claims 1-4 in which the first part is in the form of a cap which fits within the container opening.

7. A beverage container as claimed in any preceding claim in which movement of the second part from the first position to the second position reduces or increases the diameter of at least a portion of the first part so as to secure the first part to the container.
8. A beverage container as claimed in claim 7 in which movement of the second part from the first position to the second position creates tension or compression in the first part so as to sealingly engage the first part with the container.

9. A beverage container as claimed in any preceding claim in which the first and/or second parts of the cap include means to block or restrict removal of the cap beyond an intermediate position (between fully secured and fully released) when the cap is under an axial pressure in a direction emerging from the container body.

10. A beverage container as claimed in any preceding claim in which the cap and/or the container body are constructed and arranged to provide a vent for venting gas from the container body at least when the cap is in an intermediate position (between fully secured and fully released).

11. A beverage container as claimed in any preceding claim in which the closure means includes tamper-evident means.

12. A beverage container as claimed in claim 11 in which the tamper-evident means includes means to prevent the second part from accidentally separating from the first part under the influence of pressurization within the container (e.g. due to a pressurized beverage held in the container).

13. A beverage container as claimed in any preceding claim in which the container body has no thread or thread segment on its exterior so as to be comfortable to drink directly from.

14. A beverage container comprising a container body including an opening, and closure means to close the opening, the closure means comprising at least two parts, a first part for sealing to the container body and a second part which is adapted to be connected to the first part such that the first
and second parts are rotatable relative to each other between at least a
first position in which the closure means seals said opening and a second
position in which the closure means allows venting of the container whilst
still being secured thereto.

15. A beverage container as claimed in claim 14 in which venting means are
provided within the first part at a location at a diameter smaller than the
diameter of the container opening.

16. Closure means for use with a beverage container as claimed in any
preceding claim.