

**(12) PATENT
(19) AUSTRALIAN PATENT OFFICE**

**(11) Application No. AU 199960272 B2
(10) Patent No. 764972**

(54) Title
Method and apparatus for increasing the sensitivity of a global positioning satellite receiver

(51) ⁶ International Patent Classification(s)
G01S 001/04

(21) Application No: 199960272 (22) Application Date: 1999.09.02

(87) WIPO No: WO00/14560

(30) Priority Data

(31) Number (32) Date (33) Country
09/149428 1998.09.08 US

(43) Publication Date : 2000.03.27

(43) Publication Journal Date : 2000.05.18

(44) Accepted Journal Date : 2003.09.04

(71) Applicant(s)
Qualcomm Incorporated

(72) Inventor(s)
Samir S Soliman; Serguei A. Glazko; Parag A. Agashe

(74) Agent/Attorney
MADDERNS, 1st Floor Wolf Blass House, 64 Hindmarsh Square, ADELAIDE SA 5000

(56) Related Art
WO 97/14057

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

60272/99

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7 : G01S 1/04		A1	(11) International Publication Number: WO 00/14560
			(43) International Publication Date: 16 March 2000 (16.03.00)
<p>(21) International Application Number: PCT/US99/20341</p> <p>(22) International Filing Date: 2 September 1999 (02.09.99)</p> <p>(30) Priority Data: 09/149,428 8 September 1998 (08.09.98) US</p> <p>(71) Applicant: QUALCOMM INCORPORATED [US/US]; 5775 Morehouse Drive, San Diego, CA 92121-1714 (US).</p> <p>(72) Inventors: SOLIMAN, Samir, S.; 11412 Cypress Canyon Park Drive, San Diego, CA 92131 (US). GLAZKO, Serguei, A.; 9538 Hito Court, San Diego, CA 92129 (US). AGASHE, Parag, A.; 10173 Camino Ruiz #94, San Diego, CA 92126 (US).</p> <p>(74) Agent: GREENHAUS, Bruce, W.; Qualcomm Incorporated, 5775 Morehouse Drive, San Diego, CA 92121-1714 (US).</p>		<p>(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</p>	
<p>(54) Title: METHOD AND APPARATUS FOR INCREASING THE SENSITIVITY OF A GLOBAL POSITIONING SATELLITE RECEIVER</p> <p>(57) Abstract</p> <p>Method and apparatus providing enhanced sensitivity for GPS receivers (400, 500, 600, 700) by allowing coherent integration of a correlation over several code periods of a GPS signal in one embodiment, and by performing a time to frequency domain conversion to the output from a correlation processor (507) in a second embodiment. In the case in which coherent integration is performed over several code periods, advantage is taken of the fact that CDMA cellular telephone base stations transmit information that allows the receiver to determine GPS time before beginning a GPS signal acquisition process. The integration can be expanded to include code periods from more than one bit period, if the GPS receiver (400, 500, 600, 700) takes advantage of the fact that known bit patterns are transmitted at particular times within the transmission from a GPS satellite. If no base station is within range, then the output from a correlator (507) that integrates a correlation over one code period is used to generate values that are input to a discrete time domain to frequency domain transform processor (511). The output from the transform processor (511) will indicate the presence of a signal from a particular satellite and the offset between locally generated signal and the received GPS signal.</p>			
<pre> graph TD A[Receive signal from GPS Satellite] --> B[Receive GPS timing Information from source other than GPS satellite] B --> C[Correlate the received signal with locally generated signal using GPS timing information to perform coherent integration over several code periods] C --> D[Determine presence of satellite signal from coherent integration] </pre> <p>STEP 801</p> <p>STEP 803</p> <p>STEP 805</p> <p>STEP 807</p>			

**METHOD AND APPARATUS FOR INCREASING THE
SENSITIVITY OF A GLOBAL POSITIONING SATELLITE
RECEIVER**

5

BACKGROUND OF INVENTION

Technical Field

10 This invention relates to a method and apparatus for determining the position of a device based on information broadcast from a satellite, and more specifically to a method and apparatus for increasing the sensitivity of a global positioning system receiver.

15 **Background Art**

 The use of a global positioning system (GPS) to determine the location of people and objects is becoming wide spread. Automobiles, wireless telephones and other devices are being designed to include global positioning system receivers. These receivers are used to receive signals from satellites. These received signals provide information that allows the receiver to determine the receiver's location on earth with relatively great accuracy. The signals that are received from the satellites are typically rather weak. Therefore, in order to determine the position of the receiver, the receiver must be sufficiently sensitive to receive these weak signals and interpret the information that is represented by them.

 In accordance with the format that is used for one such GPS, the signals transmitted by each satellite are encoded to distinguish the signals transmitted by one satellite from the signals transmitted by the other satellites in the system. The codes that are assigned to each satellite are selected such that the receiver can apply a received signal that includes a signal transmitted from a particular satellite and a particular code associated with the particular satellite to a "correlator" and have only the energy of the signal that is encoded with that particular code emerge from the correlator.

35 Figure 1 is an illustration of the timing of a portion of a signal 101 transmitted from a global positioning satellite, such as those in common use today. The transmitted signal 101 shown in Figure 1 is encoded with a particular code having a duration of 1 millisecond (i.e., the "code period").

The signal is modulated with the code (i.e., the code and the information signal to be transmitted are logically exclusively ORed) every code period. Initially, the receiver determines whether signal being transmitted from a particular satellite is being received. This is commonly referred to as

5 "acquiring" a satellite. This is done by attempting to "correlate" the received signal with the code associated with that particular satellite (i.e., inputting the received signal and the particular code to the correlator to see if any of the energy in the received signal was encoded with the particular code). In order for the input signal and the code to be correlated, the code

10 period of the signal being received and the code to which the received signal is being compared must be very closely aligned in time. Figure 1 shows three attempts to correlate the received signal 101 with a code associated with a particular satellite. In the first attempt, the code 102a starts after the beginning of the code period 103 of the received signal 101.

15 Therefore, this first attempt to correlate the received signal with the particular code will fail.

In a second attempt to correlate the received signal 101 with the particular code 102b (which has the same value as the code 102a, but is shifted in time), the code is shifted to a point later in time with respect to

20 the beginning of the code period 103. However, the beginning of the code period of the received signal and the beginning of the code 102 are still not aligned. Therefore, even though the correct code is being compared to the received signal, the timing is not aligned. Accordingly, the attempt to correlate the received signal with the particular code fails again.

25 In the third attempt, the beginning of the code 102c is aligned with the beginning of a code period 103. The particular code is the same as the code with which the received signal was encoded and the code period 104 is aligned with the code 102c. Therefore, the correlation between the particular code and the received signal will be successful, assuming that the

30 signal that was encoded with the particular code is being received with sufficient strength to allow the correlation to be detected.

However, in many cases, the signal being transmitted from a satellite is not sufficiently strong. This may be due to the fact that the amount of interference is too great or the signal is attenuated by obstructions, such as

35 buildings, foliage, etc. Therefore, the correlation may not be detected, even when the timing is correct and the correct code is selected.

One way that has been proposed for improving the sensitivity of the receiver is to add the power that is transmitted in several code periods together and then attempt to correlate the sum of these code periods with the particular code of interest. In addition to the lack of sensitivity, the time 5 at which the code periods begin is not known. Therefore, the same searching function must be performed as was illustrated in Figure 1 and described in the accompanying text. This searching requires a relatively large amount of time.

One method that has been proposed for dealing with the amount of 10 time required to determine the alignment of the code periods requires that several samples be taken for a number of "code sample periods". A code sample period is a period of time that is equal in duration to the code period, but which may not be aligned to a code period. The same number of samples are taken for each code sample period (e.g., 1 millisecond). 15 Corresponding samples from each of these 1 millisecond code sample periods are then summed together to form a composite code sample period of 1 millisecond. Figure 3 is an illustration of four code periods 301, 302, 303, 304 that are sampled 15 times each. The 15 samples from each of the four code periods 301, 302, 303, 304 are summed to form a composite code 20 sample period 305. It should be understood that each such period 301, 302, 303, 304 must begin an integer number of code periods apart and preferably each such period is adjacent in time to one of the other such periods to form a contiguous stream of samples.

The composite code sample period is then transformed from the time 25 domain to the frequency domain. That is, a time domain to frequency domain transform, such as a Fourier transform, is performed on the samples that make up the composite code sample period. The frequency domain result is then multiplied by a frequency domain representation of the particular code to which the received signal is to be correlated. A 30 transform from the frequency domain to the time domain, such as an inverse Fourier transform is then performed on this product. The time domain result provides an indication as to relative time difference between the beginning of the code sample periods and the beginning of the actual code periods of the received signal, assuming that the received signal has 35 sufficient energy which has been encoded with the particular code.

One problem with this approach is that the information that is represented by the received signal, changes the state of the received signal

at regular intervals which are several times longer than the code period. For example, in the GPS system commonly used in the United States, the content of a signal transmitted from a satellite has a bit length of 20 code periods (i.e., 20 ms). This has the effect of potentially inverting the state of the energy that is represented by the codes every 20
5 milliseconds. Figure 2 illustrates the timing of a bit with respect to a code period. If energy in the signal received during a code period when the bit value is equal to a logical "one" is added to the energy received when the bit value is equal to a logical "zero", the total energy will be equal to zero. Therefore, "bit boundaries" 201 must be known in order to sum the energy of more than one code period. In addition, if the
10 clock (oscillator) that is used to determine when to take the samples from each code sample period is not extremely stable, then the correlation will not be very good in the frequency domain. This will result in a loss of sensitivity, since the composite code sample period will not correlate well with the particular code of interest.

15 The present invention provides a method and apparatus which increases the sensitivity of a GPS receiver with less need for an extremely stable clock than is required in the case in which composite code samples periods are generated. In addition, the present invention provides a method for determining the location of bit
20 boundaries within the received signal.

SUMMARY OF THE INVENTION

In a first aspect the present invention accordingly provides a method for improving the sensitivity of a Global Positioning System (GPS) receiver, the method including the steps of:
25 a) receiving a GPS signal from a GPS satellite;
b) determining whether the receiver has a source for synchronization to GPS
time other than the GPS satellite itself; and
c) if there is a source for synchronization to GPS time other than the GPS satellite
itself, then:
30 1) determining, from the synchronization source, the boundaries of a plurality of code periods in the received GPS signal;

2) determining the amount of power in the received GPS signal by applying a particular code associated with a particular satellite to the received GPS signal during each of the plurality of code periods;

3) summing the power received during each code period to determine a total integrated power over the sum of the plurality of code periods; and

5 4) processing the received GPS signal using information about the particular satellite if the total integrated power is greater than a threshold value.

In a second aspect the present invention accordingly provides an apparatus for
10 improving the sensitivity of a Global Positioning System (GPS) receiver, the apparatus including:

15 a) means for receiving a GPS signal from a GPS satellite;

b) means for determining whether the receiver has a source for synchronization to GPS time other than the GPS satellite itself;

c) means, responsive to a determination that there is a source for synchronization to GPS time other than the GPS satellite itself, for:

20 1) determining, from the synchronization source, the boundaries of a plurality of code periods in the received GPS signal;

2) determining the amount of power in the received GPS signal by applying a particular code associated with a particular satellite to the received GPS signal during each of the plurality of code periods;

25 3) summing the power received during each code period to determine a total integrated power over the sum of the plurality of code periods; and

4) processing the received GPS signal using information about the particular satellite if the total integrated power is greater than a threshold value.

30 In a third aspect the present invention accordingly provides a method for improving the sensitivity of a Global Positioning System (GPS) receiver, the method including the steps of:

a) receiving a GPS signal from a GPS satellite;

- b) providing the receiver with a source for synchronization to GPS time, other than the GPS satellite itself;
- c) determining, from the synchronization source, the boundaries of a plurality of code periods in the received GPS signal;
- 5 d) determining the amount of power in the received GPS signal by applying a particular code associated with a particular satellite to the received GPS signal during each of the plurality of code periods;
- e) summing the power received during each code period to determine a total integrated power over the sum of the plurality of code periods; and
- 10 f) processing the received GPS signal using information about the particular satellite if the total integrated power is greater than a threshold value.

15

In a forth aspect the present invention accordingly provides an apparatus for improving the sensitivity of a Global Positioning System (GPS) receiver, the apparatus including:

- a) means for receiving a GPS signal from a GPS satellite;
- b) means for providing the receiver with a source for synchronization to GPS time, other than the GPS satellite itself;
- c) means for determining, from the synchronization source, the boundaries of a plurality of code periods in the received GPS signal;
- 20 d) means for determining the amount of power in the received GPS signal by applying a particular code associated with a particular satellite to the received GPS signal during each of the plurality of code periods;
- e) means for summing the power received during each code period to determine a total integrated power over the sum of the plurality of code periods; and
- 25 f) means for processing the received GPS signal using information about the particular satellite if the total integrated power is greater than a threshold value.

25

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is an illustration of the timing of a portion of a signal transmitted from a global positioning satellite, such as those in common use today.

5 Figure 2 illustrates the timing of a bit with respect to a code period.

Figure 3 is an illustration of four code periods that are sampled 15 times each.

Figure 4 is a simplified block diagram of one embodiment of the disclosed apparatus.

10 Figure 5 is a simplified block diagram of another embodiment of the disclosed apparatus.

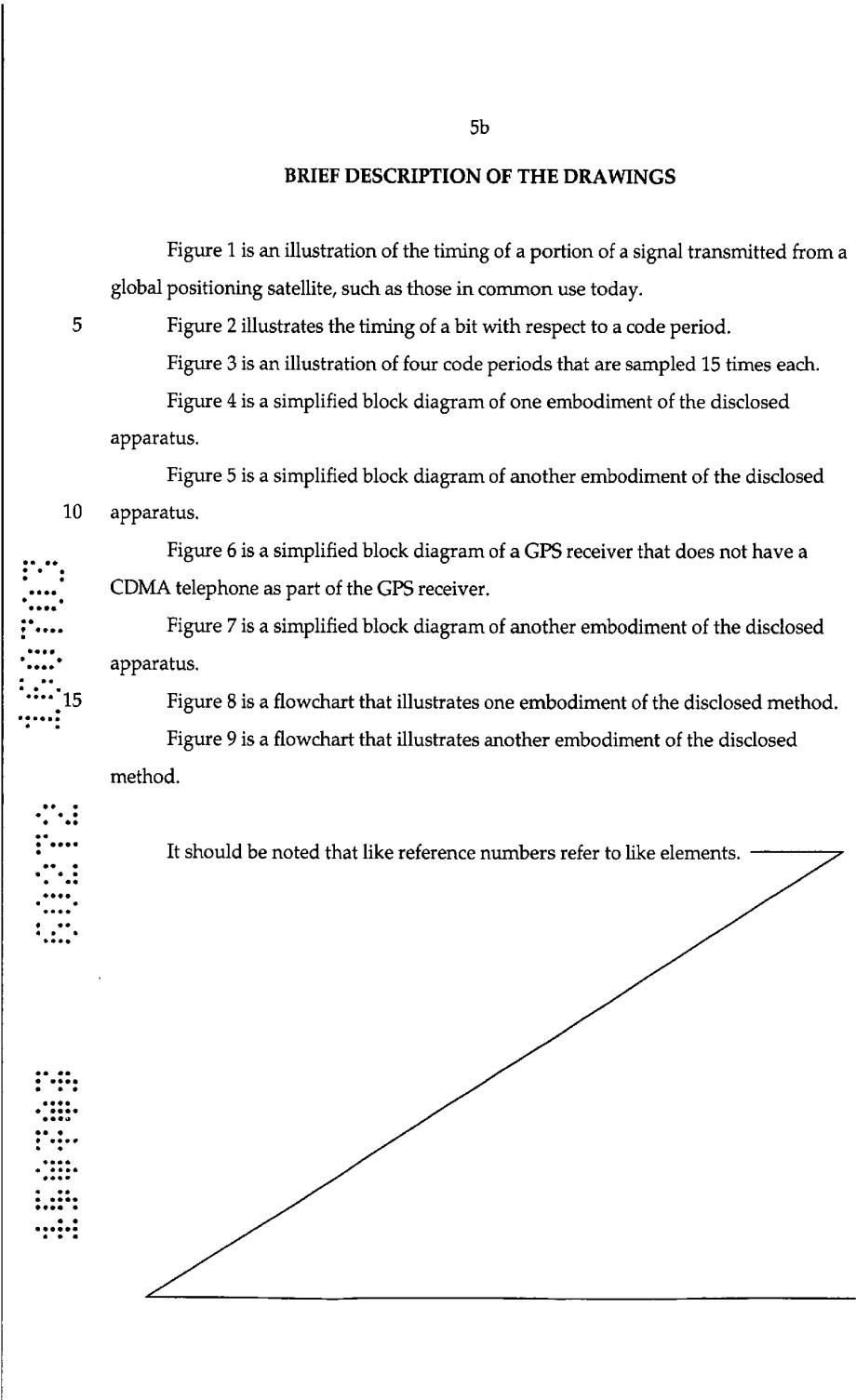

Figure 6 is a simplified block diagram of a GPS receiver that does not have a CDMA telephone as part of the GPS receiver.

Figure 7 is a simplified block diagram of another embodiment of the disclosed apparatus.

15 Figure 8 is a flowchart that illustrates one embodiment of the disclosed method.

Figure 9 is a flowchart that illustrates another embodiment of the disclosed method.

It should be noted that like reference numbers refer to like elements.

DETAILED DESCRIPTION

Figure 4 is a simplified block diagram of one embodiment of the disclosed apparatus. The embodiment disclosed in Figure 4 represents a global positioning system (GPS) receiver 400. The GPS receiver 400 includes a code division multiple access (CDMA) cellular telephone 401, a processor 403, a global positioning system (GPS) front end 405, a correlator 407, and memory 409.

10 In accordance with the embodiment of the disclosed method and apparatus shown in Figure 4, a GPS signal is received by the GPS front end 405 from a GPS satellite (not shown). The output from the GPS front end 405 is an IF spread-spectrum signal. Alternatively, the output from the GPS front end 405 is a baseband spread-spectrum signal. Such GPS front ends 15 are well known in the art. The output from the GPS front end 405 is coupled to the correlator 407.

20 The correlator 407 performs a correlation function to determine the amount of correlation between the output from the GPS front end 405 and a predetermined locally generated signal that is encoded with a predetermined code associated with one of the satellites in the GPS system. It will be understood by those skilled in the art that a strong correlation between the output from the GPS front end 405 and the locally generated signal will indicate that the receiver 400 is receiving a signal from a satellite. The particular satellite will be known by the code with which the locally 25 generated signal is encoded.

20 Furthermore, a strong correlation will only occur if the locally generated signal is "aligned" with the received GPS signal. That is, as shown in Figure 2, the GPS signal comprises a series of code periods 202. Each code period starts at the time the previous code period ends. 30 Likewise, the locally generated signal is encoded with the code associated with one of the satellites in the GPS system, such that the code period of the locally generated signal is equal in length to the code period of the signal transmitted by the satellite associated with that code. When the code periods of the locally generated signal and the signal received from a 35 satellite associated with that code start at the same time with respect to one another, then the two signals are said to be aligned.

In accordance with one embodiment of the disclosed method and apparatus, the CDMA cellular telephone 401 is used to receive information

from a CDMA base station (not shown) which is part of a CDMA wireless cellular telephone network. The CDMA base station transmits information that indicates "CDMA system time", which is related to "GPS time". Therefore, the received information is processed by the processor 403 to 5 determine the timing of the signals transmitted from each GPS satellite. The processor receives information that indicates CDMA system time. However, to accurately determine GPS time, the processor 403 must adjust the CDMA system time received from the base station to remove an offset that is added by the delay in the transmission of the GPS time from the base 10 station to the GPS receiver 400. This adjustment is made by measuring the round trip delay for a signal being transmitted from the GPS receiver to the base station and back. When the GPS receiver 400 is attempting to receive signals from a particular satellite, the correlator 407 receives information from the processor 403. The information indicates to the correlator 407 15 which code the locally generated signal should be encoded with, and what the timing of the locally generated signal should be in order to aligned the locally generated signal with the signal being transmitted from the desired satellite. Since the timing of the signal being transmitted from the desired satellite is known, the output of the correlator can be integrated over several 20 code periods. That is, as long as the processor 403 knows the timing of the signal being transmitted from the satellite, the correlator can coherently integrate the results of the correlation function over several code periods (i.e., up to 20 in the currently implemented GPS system). Furthermore, the times at which bit boundaries 201 (see Figure 2) occur in the information 25 bits of the signal being transmitted by the satellite transition (i.e., change logical state) can also be determined by the processor 403 from the information that is received from the CDMA cellular telephone 401. Therefore, the number of code periods that can be coherently integrated is equal to the number of code periods in one "bit time". A bit time is equal to 30 the length of a bit. Figure 2 shows a bit time that is equal to 20 code periods.

Even more advantageously, if there is a bit pattern which is known 35 to occur in the signal that is transmitted from the satellite, then the bit values can be taken into account in the process of coherently integrating the output from the correlator 407. Thus, coherent integration can occur over more than one bit period. For example, in the GPS system that is in common use in the U.S., an 8-bit preamble in the telemetry word in each

subframe is a good candidate. The value of these 8 bits is known and therefore, may be stored in the memory 413 for access by the processor 403. Similarly, other such patterns could be used.

Figure 5 is a simplified block diagram of another embodiment of the disclosed apparatus. The embodiment disclosed in Figure 5 represents a GPS receiver 500. The GPS receiver 500 includes a CDMA cellular telephone 501, a processor 503, a GPS front end 505, a correlator 507, memory 509, and a time to frequency domain transform processor 511.

The embodiment of the apparatus illustrated in Figure 5 operates essentially as described above in connection with the embodiment of the apparatus disclosed in Figure 4. However, in the embodiment of the apparatus illustrated in Figure 5, the output from the correlator 507 is coupled to a time domain to frequency domain transform processor 511. The output from the correlator 507 is used to form a vector of values. The size of the vector, N , is equal to the number of code periods used to produce the correlator output. An N point discrete Fourier transform of the vector is taken using a fast Fourier transform or by software post-processing, as is well known in the art. Any other method for performing a time to frequency domain transformation would be equally useful. The output from the transform processor 511 indicates how strongly the received signal correlates with the locally generated signal. In addition, the particular frequency at which the peak value occurs indicates the offset in frequency of the locally generated signal from the signal that is received from the satellite of interest (i.e., the satellite associated with the code with which the locally generated signal was encoded). The process provides a processing gain nearly equal to N .

In addition, in the embodiment of the disclosed apparatus shown in Figure 5, the frequency offset that is determined by the frequency at which the peak energy is detected at the output of the transform processor 511 can be used to adjust the oscillator which determines the frequency of the locally generated signal.

In addition, the use of a time to frequency domain transform processor provides a strong indication of correlation even when a bit transition occurs such that some of the code periods correlate during a first logical state, and others correlate during a second logical state. In fact, the use of the time to frequency domain processor provides an indication as to when a bit transition occurred within the N code periods that are correlated.

That is, the particular pattern of side lobes which form around the peak at the output from the transform processor 511 provide information as to when the bit transition took place. Note that if the bit transition took place after exactly half the code periods were correlated, such that one half of the 5 code periods were correlated with a logical one as the information bit logical state, and the other half of the code periods were correlated with a logical zero as the information bit logical state, then the output from the correlator would essentially be a square wave. Accordingly, the output from the transform processor would have side lobes at odd harmonics, as is 10 characteristic of the frequency domain representation of a square wave with 50% duty cycle.

A transform processor can be useful regardless of whether GPS time is available to provide alignment of the locally generated signal with the desired GPS signal. In fact, the transform processor is particularly useful 15 when GPS time is not available. For example, Figure 6 is a simplified block diagram of a GPS receiver 600 that does not have a CDMA telephone as part of the GPS receiver 600. The GPS receiver 600 includes a processor 603, memory 609, GPS front end 605, correlator 607, and time to frequency domain transform processor 611.

20 Since the GPS receiver 600 does not have a CDMA telephone, the GPS receiver 600 cannot determine GPS time prior to acquiring the signals (i.e., determining the timing of the signals) from the GPS satellites. However, use of the transform processor 611 makes it unnecessary to align 25 the locally generated signal and the received satellite signal. This is because there is an assumption that there will be at least some frequency difference between the locally generated signal and the signal received from a GPS satellite. This difference will cause the locally generated signal to "beat" in and out of alignment with the signal received from the satellite at a rate that is equal to the offset between the two signals. It is this offset frequency that 30 will be detected by the transform processor output. In addition, as noted before, the fact that the bit boundaries are not known does not greatly complicate the detection of the received GPS signal, since the relative location of the bit boundaries can be determined from the output of the transform processor 611. However, due to the presence of bit transitions, 35 the technique may suffer at most a 2-dB degradation compared to the coherent integration that occurs when the timing is known from the CDMA telephone in the other embodiments.

It should be noted that the apparatus illustrated in Figure 5 may determine whether GPS time can be attained from a CDMA base station. If signals from a CDMA base station are not available, then the time to frequency transform processor 511 may be used. However, if the GPS 5 receiver 500 can receive CDMA signals and thus, can determine GPS time, then the output from the correlator may be used directly without the need to perform a time to frequency transform, since the GPS receiver 500 will be able to align the received GPS signals with the locally generated signals using GPS time. Nonetheless, the use of the transform processor 511 allows 10 for correction of frequency uncertainty. That is, when the frequency of the locally generated signal differs from the frequency of the received GPS signal, the correlation over several code periods will degrade for the later code periods. By determining the offset between the frequency of the locally generated signal and the signal received from the GPS satellites, this 15 can be corrected, either by controlling the frequency of the locally generated signal, or by periodic corrections within the correlator.

In another embodiment of a GPS receiver 700, shown in Figure 7, a CDMA pilot channel, sync channel, and paging channel receiver 701 are used to detect CDMA signals which indicate the identity of a base station 20 from which such signals originate. This embodiment also includes a processor 703, a GPS front end 705, a correlator 707, memory 709, and a time to frequency domain transform processor 711.

By knowing the identity of the base station from which such signals received by the GPS receiver 700 were transmitted, the location of a base 25 station can be determined by a look-up table within the GPS receiver 700. The location of the GPS receiver is then known to within a distance equal to the distance from which the GPS receiver 700 can receive signals transmitted by the base station.

It should be noted that CDMA system time can be determined from 30 the signals received from the base station. However, GPS time cannot be determined accurately because of the offset in time that is imposed by the propagation of the signal from the base station to the GPS receiver. It should be noted that this offset is accounted for in the embodiment in which the GPS receiver includes a CDMA telephone by measuring the 35 round trip delay. However, without a transmitter in the GPS receiver 700, the round trip delay between the base station and the CDMA receiver cannot be measured. Nonetheless, the offset in time created by the

propagation of that information from the base station to the GPS receiver is relatively small with respect. Therefore, by receiving CDMA system time and the location of the nearest CDMA base station that can be received, the GPS receiver 700 can check a stored almanac. The information in the 5 almanac can then be used to determine which satellites are likely to be in view (i.e., from which satellites the GPS receiver 700 is likely to be able to receive signals). Determining which satellites are in view can greatly reduce the amount of search time required to acquire a GPS satellite.

Figure 8 is a flowchart which illustrates one embodiment of the 10 disclosed method. A signal is received from a GPS satellite by the GPS receiver 400 (STEP 801). In addition, GPS timing information is received from a source other than the GPS satellite (i.e., a "non-GPS source", such as a CDMA base station (STEP 803). In the case in which the GPS timing information is received from a CDMA base station, the information is 15 received by a CDMA cellular telephone 401. The received GPS signal received from the satellite by the GPS receiver 400 is correlated with a locally generated signal (STEP 805). The timing information that is received from the non-GPS source is used to establish the timing of the correlation between the locally generated signal and the received GPS signal. Once the 20 timing of the GPS signal is known, establishing the timing between the local signal and the received GPS signal is well known in the art. Since the timing of the received GPS signal is known prior to acquiring the GPS satellite, coherent integration of the correlation can be performed over several code periods. That is, the correlation of each code period can be 25 added to the correlation of other code periods to provide a greater correlation value for the collection of code periods over which the coherent integration is performed.

By detecting the correlation of the locally generated signal to the 30 received GPS signal using a coherent integration over several code periods, a determination can be made as to whether there is a correlation between the locally generated signal and the received GPS signal. If so, a determination is made that a signal transmitted from a satellite associated with the particular code used to encode the locally generated signal is present in the received GPS signal (STEP 807).

35 Figure 9 is a flowchart which illustrates another embodiment of the disclosed method. A signal is received from a GPS satellite by the GPS receiver 600 (STEP 901). The received GPS signal is correlated with a locally

generated signal for one code period (STEP 903). This process is repeated for a predetermined number of code periods (STEP 905). The output from the correlation process is either stored or passed directly to a time to frequency domain transform processor, such as a digital signal processor capable of performing a fast Fourier

5 transform. The time to frequency domain transform processor performs a time domain to frequency domain transform, such as a discrete Fourier transform on the output values which are the result of each of the correlation processes (STEP 907). Accordingly, a frequency domain representation of the output from the correlator is generated. This frequency domain output is then analyzed to determine whether a signal transmitted

10 from the satellite associated with the particular code used to encode the locally generated signal is present in the received GPS signal (STEP 909).

15
16
17
18
19
20
21
22
23
24
25

Industrial Application

This invention is capable of exploitation in industry, and can be made and used, whenever it is desired to increase the sensitivity of a global positioning system receiver. The individual components of the apparatus and method shown herein, taken separate and apart from one another, may be entirely conventional, it being their combination which we claim as our invention.

While we have described various modes of apparatus and method, the true spirit and scope of our invention is not limited thereto, but is limited only by the following claims and their equivalents, and we claim such as our invention.

It will be understood that the term "comprise" and any of its derivatives (eg. comprises, comprising) as used in this specification is to be taken to be inclusive of features to which it refers, and is not meant to exclude the presence of any additional features unless otherwise stated or implied.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:

1. A method for improving the sensitivity of a Global Positioning System (GPS) receiver, the method including the steps of:
 - 5 a) receiving a GPS signal from a GPS satellite;
 - b) determining whether the receiver has a source for synchronization to GPS time other than the GPS satellite itself; and
 - c) if there is a source for synchronization to GPS time other than the GPS satellite itself, then:
 - 10 1) determining, from the synchronization source, the boundaries of a plurality of code periods in the received GPS signal;
 - 2) determining the amount of power in the received GPS signal by applying a particular code associated with a particular satellite to the received GPS signal during each of the plurality of code periods;
 - 15 3) summing the power received during each code period to determine a total integrated power over the sum of the plurality of code periods; and
 - 4) processing the received GPS signal using information about the particular satellite if the total integrated power is greater than a threshold value.
- 20 2. The method of claim 1, wherein the source for synchronization to GPS time includes a signal from a Code Division Multiple Access (CDMA) base station.
- 25 3. The method of claim 2, wherein the signal from the CDMA base station includes information based on the round trip delay from the GPS receiver to the bases station and back to adjust the offset between CDMA system time and GPS time.
- 30 4. The method of claim 1, further including the step of:
 - d) if there is no source for synchronization to GPS time other than the GPS satellite itself, then:

1) performing a time to frequency domain transform on the power in the received GPS signal encoded with the particular code associated with the particular satellite during each of the plurality of code periods; and

2) processing the received GPS signal using information about the particular satellite if the amount of power in any one of the frequencies in the frequency domain is greater than a predetermined threshold.

5. The method of claim 4, wherein the source for synchronization to GPS time includes a signal from a Code Division Multiple Access (CDMA) base station.

10

6. The method of claim 5, wherein the signal from the CDMA base station includes information based on the round trip delay from the GPS receiver to the base station and back to adjust the offset between CDMA system time and GPS time.

15

7. Apparatus for improving the sensitivity of a Global Positioning System (GPS) receiver, the apparatus including:

- a) means for receiving a GPS signal from a GPS satellite;
- b) means for determining whether the receiver has a source for synchronization to GPS time other than the GPS satellite itself;
- 20 c) means, responsive to a determination that there is a source for synchronization to GPS time other than the GPS satellite itself, for:
 - 1) determining, from the synchronization source, the boundaries of a plurality of code periods in the received GPS signal;
 - 2) determining the amount of power in the received GPS signal by applying a particular code associated with a particular satellite to the received GPS signal during each of the plurality of code periods;
 - 25 3) summing the power received during each code period to determine a total integrated power over the sum of the plurality of code periods; and
 - 4) processing the received GPS signal using information about the particular satellite if the total integrated power is greater than a threshold value.

30

8. The apparatus of claim 7, wherein the means for determining whether the receiver has a source for synchronization to GPS time, other than the GPS satellite itself, is constructed to respond to a signal from a Code Division Multiple Access (CDMA) base station.

5

9. The apparatus of claim 8, wherein the means for determining whether the receiver has a source for synchronization to GPS time, other than the GPS satellite itself, is constructed:

- 10 a) to respond to information, included in the signal from the CDMA base station, based on the round trip delay from the GPS receiver to the bases station and back; and
- b) to thereby adjust the offset between CDMA system time and GPS time.

15

10. The apparatus of claim 7, further including means, responsive to a determination that there is no source for synchronization to GPS time other than the GPS satellite itself, for:

- a) performing a time to frequency domain transform on the power in the received GPS signal encoded with the particular code associated with the particular satellite during each of the plurality of code periods; and
- b) processing the received GPS signal using information about the particular satellite if the amount of power in any one of the frequencies in the frequency domain is greater than a predetermined threshold.

11. The apparatus of claim 10, wherein the means for determining whether the receiver has a source for synchronization to GPS time, other than the GPS satellite itself, is constructed to respond to a signal from a Code Division Multiple Access (CDMA) base station.

12. The apparatus of claim 11, wherein the means for determining whether the receiver has a source for synchronization to GPS time, other than the GPS satellite itself, is constructed:

30

a) to respond to information, included in the signal from the CDMA base station, based on the round trip delay from the GPS receiver to the base station and back; and

b) to thereby adjust the offset between CDMA system time and GPS time.

5 13. A method for improving the sensitivity of a Global Positioning System (GPS) receiver, the method including the steps of:

a) receiving a GPS signal from a GPS satellite;

b) providing the receiver with a source for synchronization to GPS time, other than the GPS satellite itself;

10 c) determining, from the synchronization source, the boundaries of a plurality of code periods in the received GPS signal;

d) determining the amount of power in the received GPS signal by applying a particular code associated with a particular satellite to the received GPS signal during each of the plurality of code periods;

15 e) summing the power received during each code period to determine a total integrated power over the sum of the plurality of code periods; and

f) processing the received GPS signal using information about the particular satellite if the total integrated power is greater than a threshold value.

20 14. The method of claim 13, wherein the source for synchronization to GPS time comprises a signal from a Code Division Multiple Access (CDMA) base station.

25 15. The method of claim 14, wherein the signal from the CDMA base station includes information based on the round trip delay from the GPS receiver to the base station and back to adjust the offset between CDMA system time and GPS time.

16. Apparatus for improving the sensitivity of a Global Positioning System (GPS) receiver, the apparatus including:

a) means for receiving a GPS signal from a GPS satellite;

- b) means for providing the receiver with a source for synchronization to GPS time, other than the GPS satellite itself;
- c) means for determining, from the synchronization source, the boundaries of a plurality of code periods in the received GPS signal;
- 5 d) means for determining the amount of power in the received GPS signal by applying a particular code associated with a particular satellite to the received GPS signal during each of the plurality of code periods;
- e) means for summing the power received during each code period to determine a total integrated power over the sum of the plurality of code periods; and
- 10 f) means for processing the received GPS signal using information about the particular satellite if the total integrated power is greater than a threshold value.

15

17. The apparatus of claim 16, wherein the means for determining whether the receiver has a source for synchronization to GPS time, other than the GPS satellite itself, is constructed to respond to a signal from a Code Division Multiple Access (CDMA) base station.

20

18. The apparatus of claim 17, wherein the means for determining whether the receiver has a source for synchronization to GPS time, other than the GPS satellite itself, is constructed:

- a) to respond to information, included in the signal from the CDMA base station, based on the round trip delay from the GPS receiver to the base station and back; and
- b) to thereby adjust the offset between CDMA system time and GPS time.

25

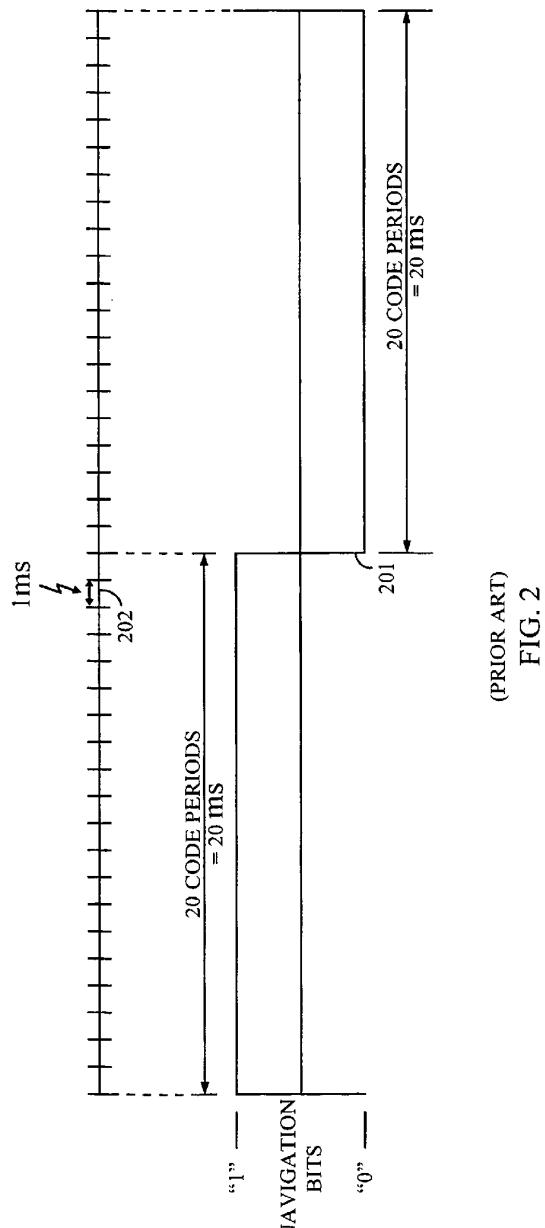
19. A method as claimed in claim 1, substantially as herein described with reference to the accompanying drawings.

20

20. An apparatus as claimed in claim 7, substantially as herein described with reference to the accompanying drawings.

21. A method as claimed in claim 13, substantially as herein described with reference to the accompanying drawings.

22. An apparatus as claimed in claim 16, substantially as herein described with reference to the accompanying drawings.


5 23. A method substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings.

10 24. An apparatus substantially as herein described with reference to any one of the embodiments of the invention illustrated in the accompanying drawings.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
998
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850<br

FIG. 1

(PRIOR ART)
FIG. 2

FIG. 3

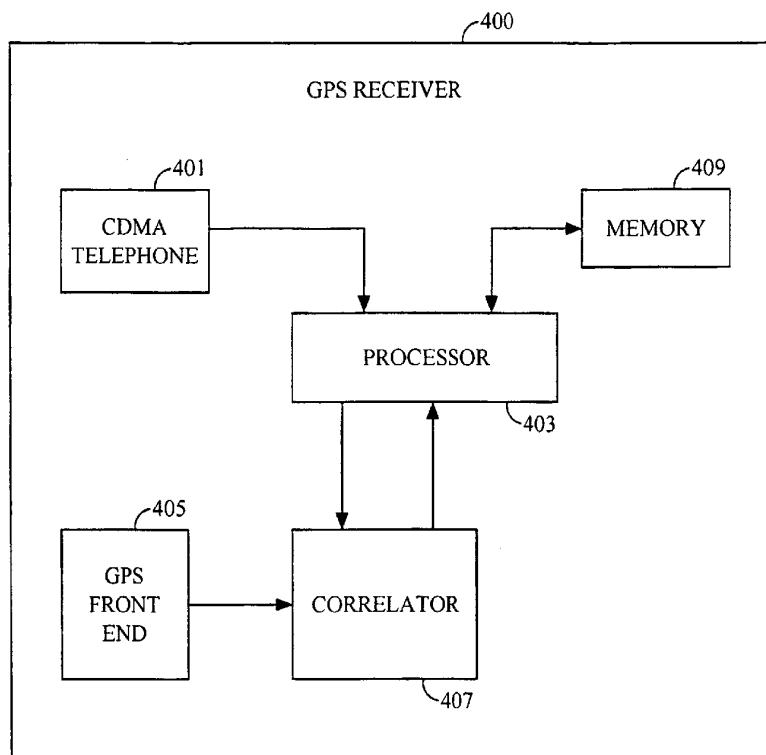


FIG. 4

SUBSTITUTE SHEET (RULE 26)

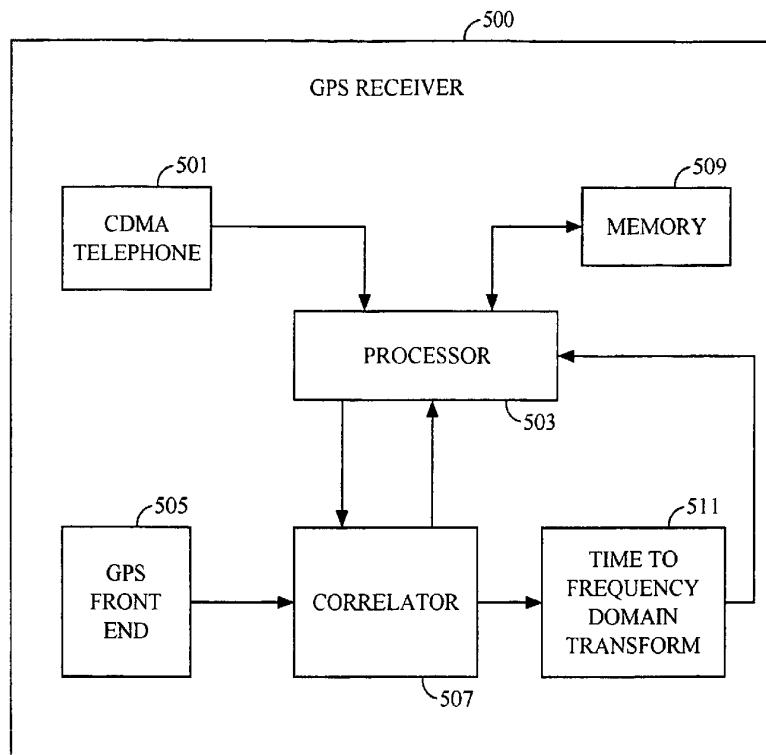


FIG. 5

SUBSTITUTE SHEET (RULE 26)

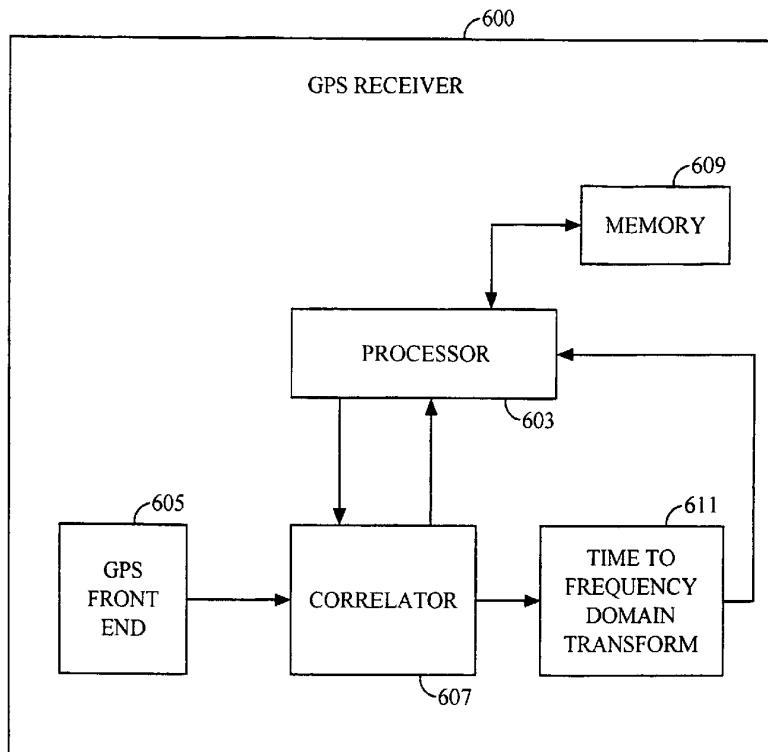


FIG. 6

SUBSTITUTE SHEET (RULE 26)

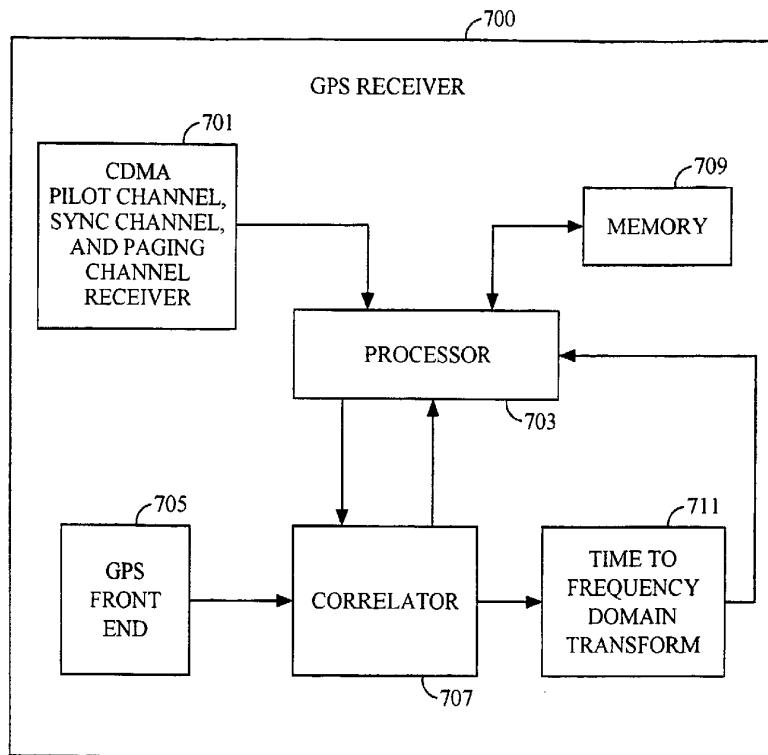


FIG. 7

SUBSTITUTE SHEET (RULE 26)

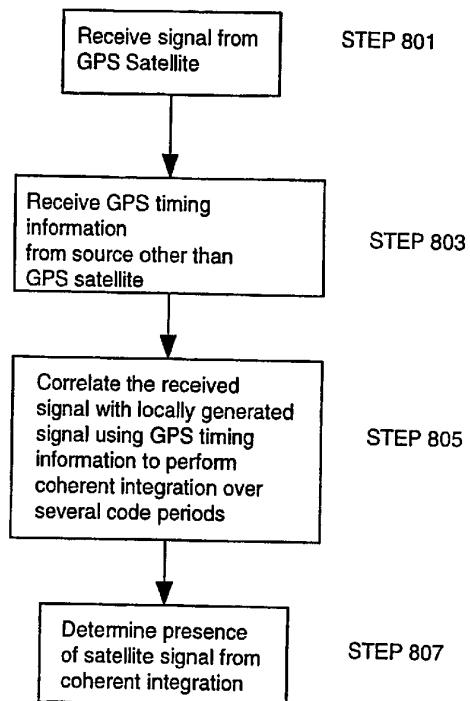


FIGURE 8

9/9

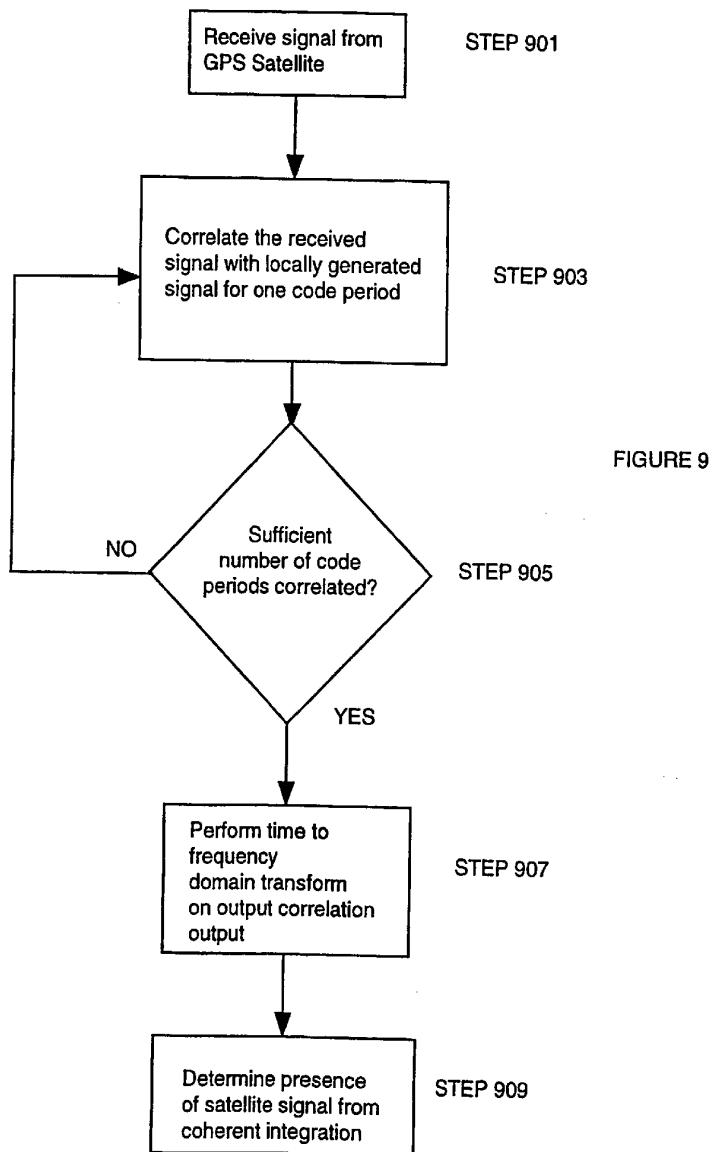


FIGURE 9