INSTRUMENTATION AND METHOD ADAPTED FOR OPTICAL MEASUREMENT OF AN AMPLIFIED LUMINESCENT PROXIMITY HOMOGENEOUS ASSAY

Publication Classification

Abstract
The present invention relates generally to the field of biochemical laboratory instrumentation for different applications of measuring properties of samples on microtiteration plates and corresponding sample supports. An optical measurement instrumentation is provided, a sample is activated and the emission is detected, wherein between the activation and detection phases of measuring the sample, a shift is made in the relative position between the sample and elements directing the activation radiation to the sample as well as in the relative position between the sample and the elements receiving the emission radiation from the sample. This can be implemented e.g. by moving the sample assay plate and/or a measuring head between the activation and emission phases of a sample. The invention allows a simultaneous activation of a first sample and detecting emission from a second sample thus enhancing efficiency of the measurement.
FIG. 1
PRIOR ART
START

SET FIRST ROW FOR MEASUREMENT

SET N = 1

EXCITATION OF SAMPLE "N" IF AVAILABLE
DETECTION OF SAMPLE "N-2" IF AVAILABLE

INCREASE N BY 1

N = (Nmax + 2)?

ALL ROWS MEASURED?

SET NEXT ROW FOR MEASUREMENT

FIG. 6
INSTRUMENTATION AND METHOD ADAPTED FOR OPTICAL MEASUREMENT OF AN AMPLIFIED LUMINESCENT PROXIMITY HOMOGENEOUS ASSAY

BACKGROUND OF THE INVENTION

[0001] The present invention relates generally to the field of biochemical laboratory instrumentation for different applications of measuring properties of samples on e.g. microtitration plates and corresponding sample supports. More particularly the invention relates to more efficient, instrumental features of equipment used as e.g. fluorometers, photometers and luminometers. The applications may be e.g. clinical or research applications.

[0002] The routine work and also the research work in analytical biochemical laboratories and in clinical laboratories is often based on different tags or labels coupled on macromolecules under inspection. The typical labels used are different radioactive isotopes, enzymes, different fluorescent molecules and e.g. fluorescent chelates of rare earth metals.

[0003] The detection of enzyme labels can be performed by utilizing its natural biochemical function, i.e. to alter the physical properties of molecules. In enzyme immunoassays colourless substances are catalysed by enzyme into colourful substances or non-fluorescent substances to fluorescent substances.

[0004] The colourful substances are measured with absorption, i.e. photometric measurement. In the photometric measurement the intensity of filtered and stabilized beam is first measured without any sample and then the sample inside one plate is measured. The absorbance i.e. the absorption values are then calculated.

[0005] The fluorescent measurement is generally used for measuring quantities of fluorescent label substance in a sample. The most photoluminescence labels are based on molecular photoluminescence process. In this process optical radiation is absorbed by the ground state of a molecule. Due to the absorption of energy the quantum molecule rises into higher excited state. After the fast vibrational relaxation the molecule returns back to its ground state and the excess energy is released as an optical quantum. Due to losses in this process the average absorbed energies are higher than the average emitted energies. In the following, "activation" is used as a term including excitation of photoluminescence as well as other types of activation by radiation as is described below.

[0006] A further measurement method is chemiluminescence measurement where emission of a substance is measured from a sample without activation by illumination. Thus a photoluminometer can also be used as a chemiluminometer.

[0007] Further, there is an analysing method called Amplified Luminescent Proximity Homogeneous Assay or AlphaScreen™. The function of the AlphaScreen method is based on the use of small beads that attach to the molecules under study. There are two types of beads that are coated with a material acting either as a donor or acceptor of singlet-state oxygen. The measurement starts, when the liquid sample is illuminated by light with wavelength of 680 nm. After this the material in the donor bead converts ambient oxygen into singlet-state oxygen. The single-state molecules have a short lifetime and they can reach only about a 200 nm distance by diffusion in the liquid. If the chemical reaction in question has taken place, both the donor and acceptor beads are bound to the same molecule and so they are close to each other. In this case the singlet-state oxygen may reach the acceptor bead where a series of reactions is started. As the last phase of the reaction the coating material in the acceptor beads emits photons in the 500-700 nm range. If the chemical reaction has not taken place the singlet-state oxygen cannot reach the acceptor bead and the emission light is not detected. By measuring the intensity of light it is possible to conclude the efficiency of the chemical reaction.

[0008] The typical instruments in analytical chemical research laboratories are the different spectroscopic instruments. Many of them are utilizing optical region of electromagnetic spectrum. The two common types of instruments are spectrophotometers and the spectrophorimeters. These instruments comprise usually one or two wavelength dispersion devices, like monochromators. The dispersion devices make them capable to perform photometric, photoluminescence and chemiluminescence measurements throughout the optical spectrum.

[0009] Patent document U.S. Pat. No. 6,538,735 describes a prior art device for detecting emission from samples. The principle of the device is illustrated in FIG. 1. In the device 10 the sample is illuminated by high intensity light produced by a light source 12 such as a laser diode. The light transmitted via a fibre bundle 20 activates the sample, which converts the activation light into emission light upon biomolecular binding occurrence. The emitted light is transmitted via a fibre bundle 24 to a detector 41, such as a photomultiplier tube, which detects and measures the amount of light after activation ceases. The fibre bundles that transmit light at the activation and emission wavelength bands are combined such that the common end of the bundle directly above the well includes both fibre types. The fibres may be combined e.g. coaxially. The system can also include a band-pass filter 36 on the emission side, which eliminates extraneous light, including light corresponding to the activation wavelength band. The system can be used in assays based on Amplified Luminescent Proximity Homogeneous Assay technique. The amount of light produced by the sample is proportional to the concentration of an analyte in the sample.

[0010] The activation wavelength is between 670 to 690 nm. The light can be generated by employing a high-intensity laser as the activation source, emitting in the preferred wavelength region. The light emitted from the sample has a wavelength band between about 520 nm and 620 nm. This range is at a shorter wavelength than that of the activation wavelength band. The device may include a shutter that prevents light from entering the detector while the laser diode is active, and a filter may prevent light outside the emitted wavelength band from entering the detector.

[0011] The emitted signal of the AlphaScreen measurement is weak, and the measurement is sensitive to changes in the environment. Therefore it is difficult to achieve an efficient and accurate apparatus for the AlphaScreen measurement. Therefore there are certain problems related to the
prior art arrangements, especially if several types of measurements are performed with same equipment.

[0012] The described prior art arrangement of FIG. 1 uses a coaxial optical cable for transmission and detection. When the cross-section of the cable is used for separate optical wires for activation and detection the usable cross section area is very limited. Therefore both the activation light pulse and the emission light are much attenuated. The attenuation of the activation and emission radiation naturally degrades the efficiency and accuracy of the measurements. The attenuation also causes that the instrument needs more calibration.

[0013] One solution could be using a dichroic mirror for separating the optical paths of activation and detection beams as is often used photoluminescence measurements. A prior art arrangement for providing photoluminescence measurements is described e.g. in patent document U.S. Pat. No. 6,071,748. However, there would be further problems if photoluminescence measurement equipment would be used also for AlphaScreen measurement. Firstly, if a part of the confocal optics is same for illumination and detection, it can be optimised for only one of these purposes. When a sensitive measurement like AlphaScreen is performed it would be important that the optics would be optimised for both illumination and detection. Secondly, different type illumination sources are used in AlphaScreen and photoluminescence measurements, and therefore it would be necessary to have optical switches for switching the optical route between two light sources. However, optical switches and the related optics attenuate radiation and therefore decrease the efficiency of the measurements. Good quality optical switches also tend to increase the manufacturing costs of the instrument.

[0014] A further significant problem relates to the efficiency of the prior art solutions. In the AlphaScreen measurement it is advantageous to use relatively long emission and detection times for each sample. Therefore it takes a long period of time to provide measurements for a whole sample well plate that has a large number of samples. And if several types of measurements are made for the same samples length of the measurement time increases further. The long measurement time naturally means that the throughput of the measurement equipment is not very high. And it also brings a problem that it may be difficult to keep the environmental conditions, such as temperature, sufficiently stable during the measurement of a whole sample assay.

SUMMARY OF THE INVENTION

[0015] An object of the present invention is to provide an optical instrument for laboratory measurements, wherein the described disadvantages of the prior art are avoided or reduced. The object of the invention is therefore to achieve a measurement instrument with improved versatility, accuracy, reliability and/or efficiency for performing measurements from samples.

[0016] The object of the invention is achieved by providing an optical measurement instrumentation wherein a sample is activated and the emission is detected from the activated sample, and between the activation and detection phases in measuring the sample, a shift is made in the relative position between the sample and means directing the activation radiation to the sample as well as in the relative position between the sample and the means receiving the emission radiation from the sample. This can be implemented e.g. by moving the sample assay plate and/or a measuring head between the activation and emission phases. The invention allows a simultaneous activation of a first sample and detecting emission from a second sample.

[0017] The present invention has several advantages over prior art solutions. Since the activation beam and the emission beam have separate optical paths it is possible to optimise the optics for illumination and detection separately. Thus the accuracy and the efficiency of the measurement are enhanced. The efficiency of the measurement is also increased by the fact that the activation and the detection can be performed simultaneously. It is also possible to perform different types of measurements simultaneously, such as photoluminescence measurements and AlphaScreen measurements. This enhances the overall efficiency further. The accuracy of the measurement is also enhanced by the fact that a whole sample plate can be measured in minimal time, and the environmental conditions can thus be kept stable. As a further advantage, very few optical components are needed for performing sensitive AlphaScreen measurements and thus optical attenuation is small and manufacturing cost of the instrument is moderate.

[0018] An optical measurement instrument according to the invention for measuring samples, comprising

[0019] an illumination source and directing means for directing radiation from the illumination source to a sample for activation of the sample, and

[0020] receiving means for receiving emission radiation caused by said activation of the sample and a detector for measuring the received emission radiation from the sample,

is characterized in that it further comprises

[0021] first shifting means for changing relative position between the sample and the directing means between the phases of activation and receiving emission radiation of the sample, and

[0022] second shifting means for changing relative position between the sample and the receiving means between the phases of activation and receiving emission radiation of the sample,

wherein the first shifting means and second shifting means are same or different means.

[0023] A method according to the invention for optical measurement of samples, wherein

[0024] radiation is directed from an illumination source into a sample for activation of the sample, and

[0025] emission radiation caused by said activation of the sample is received and detected for measuring the received emission radiation from the sample,

is characterized in that in the method

[0026] relative position between the sample and radiation directing means is changed between the phases of activation and receiving emission radiation of the sample, and
The activation beam is then focused with a lens 213 to an end of a fibre optic guide 218, which guides it to an aperture 246 of an optical module. The fibre optic guide is preferably a bundle of fibres, such as 200 pieces of fibres with a diameter of 100 μm.

Said "activation means" may be e.g. a light guide such as a fibre optic guide, or it may be the illumination source or part of it. "Directing means" may be any means with a purpose for directing radiation to a sample. Said "receiving means" may be e.g. a window of a photomultiplier tube or any receiving means that receive emission radiation from a sample.

The activation beam is directed through the fibre optic guide 218 to a sample 281, where it passes through the dichroic mirror 241. The dichroic mirror is configured for a certain label so that it reflects the activation wavelength but transmits emission wavelengths. The activation beam is then divided into two beams by a second mirror 242. The mirror is preferably a dichroic mirror, which functions as a filter so that a beam with a wavelength of the first emission is transmitted through the mirror and focused through an aperture 244 to the first detector 231a. The beam with a wavelength of the second emission is reflected and guided through another aperture 245 to the second detector 231b. The second dichroic mirror is therefore designed for each label pair so that it transmits first emission wavelengths but reflects second emission wavelengths.

The activation beam received from the aperture of the optical module is collimated with a lens 233a and directed through an interference filter 233b in order to prevent light with a wavelength outside the first emission from passing to the first detector. The second emission beam is then focused with lens 235a to the first detector 231a. The second emission beam received from another aperture of the optical module is reflected with a mirror 238 to a lens 233b where the beam is collimated and directed through a second interference filter 234b in order to prevent light with a wavelength outside the second emission from passing to the second detector. The second emission beam is then focused with lens 235b to the first detector 231a. The signals received from the detectors are then amplified and processed to achieve a value for the intensities of the first and second emissions. The instrument may also comprise a bottom measurement head for measuring radiation below the sample, via lens 263.

The instrument comprises an illumination source 211 for the activation of a sample in a photoluminescence measurement. The radiation from the lamp 211 is collimated with lens 215 and directed through an interference filter 214. Different filters can be selected for different wavelengths.

The activation beam is directed through the optical module and reflected by a dichroic mirror 241 inside the optical module 240. The activation beam is further directed into the sample 281 through an aperture of the optical module and a lens system 223. A part of the illumination light is reflected by a beam splitter mirror 243 and guided through an aperture into a reference detector 219 in order to give reference information on the actual illumination intensity. A beam splitter mirror can be produced e.g. by forming reflective coating for the mirror to be e.g. stripes or dots, which cover only a part of the mirror surface.
diameter than the sample, a lens system can be used at the end of the fibre optic guide to adjust the diameter of the activation light beam to illuminate the whole sample.

[0044] The instrument comprises a detector 291 for AlphaScreen measurements. In this embodiment the detector is a photo-multiplier tube. The photo-multiplier may preferably be also used for chemiluminescence measurements. The photo-multiplier tube is in this example in a slightly tilted orientation. This may be necessary in order to perform simultaneously different types of measurements from samples that are near to each other on a sample plate.

[0045] The detector receives the radiation from the sample 283 via an aperture of a disk 290. The radiation reaches the window 293 of the photo-multiplier tube, and after penetrating through the window the radiation reaches the active surface of the photo-multiplier tube. The block 292 includes the preamplifier and other related electronics for the photomultiplier tube for measuring the intensity of the received radiation.

[0046] It is advantageous in the AlphaScreen measurement that the detector is near to the sample, and the radiation has a clear, direct path from the sample to the detector. Thus the attenuation of the emission radiation is negligible. It is also possible to achieve low attenuation for measuring chemiluminescence emission beam the described instrumentation. The advantages of the invention become more apparent in the following more complete example of an optical instrument according to the invention.

[0047] The present invention is implemented by e.g. first activating a certain sample and then shifting the position of the sample plate in relation to the illumination directing means 218AS and photo-multiplier tube 291, 293 in order to measure the emission. There is a processor-controlled motor 299 for performing the shifting of the sample plate between illumination and detection phases of each sample.

[0048] It would also be possible to include more than one illumination source and detector for the measurement according to the invention. Using several illumination source-detector pairs would naturally increase the measurement efficiency further as simultaneous activation and detection of several samples would be possible. It would also be possible to have two or more adjacent detectors for detecting sequentially emission of same samples. Thus a sample would be first activated, and after shifting the sample plate/measurement head the emission would be first detected with a first detector, and after further shifting the sample plate/measurement head the emission of the same sample would be detected with a second detector etc. This way a more accurate measurement result would be achieved.

[0049] FIG. 3 illustrates in more detail an exemplary optical instrument according to the invention. Especially, an implementation of an instrument for several alternative measurement modes is illustrated in more detail. This shows how the present invention allows an effective combination of measurement modes in a single equipment.

[0050] The instrument of FIG. 3 has a top measurement head 320, which includes components for providing an activation beam and for detecting emissions from above the sample. The instrument has also an optional bottom measurement head 360, which includes components for providing an activation beam and for detecting emissions from below the sample. The means according to the present invention for directing activation and/or detection to samples can be included in the top and/or bottom measurement head. The instrument further comprises a sample platform 380, which has means for moving a sample tray 389 in order to position successive samples 381 into the measurement locations. There may also be means provided for adjusting the vertical position of the sample platform relative to the top and bottom measurement heads.

[0051] The instrument comprises a laser source 312AS for e.g. AlphaScreen measurements. The laser source is advantageous due to its high efficiency on a narrow range of wavelengths. However, also other illumination sources are applicable, such as Xenon or halogen lamp used with a filter. The light of the laser source 312AS is guided in an optical guide 318AS directly to the sample. According to the present invention the relative position between the sample tray and the measurement head is changed between the illumination and detection phases of samples.

[0052] The instrument comprises a detector 391 for detecting the emission signal in AlphaScreen measurements. The detector may also be used for chemiluminescence measurements. In this embodiment the detector is a photo-multiplier tube. The detector receives the radiation from the sample via an aperture of a disk 390. The AlphaScreen detector is in front of the photoluminescence components, and thus the AlphaScreen measurement is made from a sample which is more on the front, whereas the photoluminescence measurement is made from a sample which is more on the back in FIG. 3. The fibre optic guide providing the laser activation is located between the photomultiplier tube 391 and the optics for the photoluminescence measurement. Thus a photoluminescence measurement and an AlphaScreen/chemiluminescence measurement can be performed simultaneously from different samples.

[0053] The detector 391 can be used in analogue mode or digital mode, or if the properties of the photo-multiplier tube allow, both modes may be used simultaneously. The preamplifier and other related electronics for the photomultiplier tube are located in a housing 392 above the photomultiplier tube.

[0054] The aperture discs may be changeable so that different size apertures can be used with different sample plates. They may preferably be equipped with machine readable codes, such as bar codes, so that the processor of the equipment can check with a code reader, which type of aperture disc is installed. This way it can be certified that a correct type of aperture disc is used for each measurement. The bar code reader or related electronics are not shown in FIG. 3.

[0055] The instrument may also comprise a thermo plate 390 for keeping the temperature of the samples constant during the AlphaScreen measurements. The upper measurement head 320 or the sample platform 380 may be vertically shifted in order to have the thermo plate tightly between the assay and the upper measurement head.

[0056] Next the components for performing other types of measurements are shortly described. The instrument according to FIG. 3 has another illumination source 312a for providing activation in photoluminescence measurements. The illumination source 312a includes a pulse lamp, and the
optical energy of each pulse is preferably equal. The activation beam generated by the pulse lamp is collimated with a lens 315 and directed through an interference filter 314. The filter is placed on a filter slide, so that the activation filter to be used in a measurement can be selected from several filters. The activation beam is then focused to an end of a fibre optic guide 318, which mixes the activation beam and guides it to an aperture of an optical module 340a, which is located behind the photo-multiplier tube. The optical module 340 and the lens system 323 directs the activation beam into the sample 381.

[0057] The equipment may also include a further pulse lamp 312a, 311b, which may be a low power lamp, e.g., for simultaneous photometric measurements. The instrument has an optical fibre guide 312a for guiding the light from the second lamp. The light can be distributed for the photometric measurement into three detectors 314a, 314j and 314k with fibre branches 377a, 377j and 377k. After filtering, the beams are collimated into ends of three optical fibre cables 378, which are led to the bottom measurement head for the photometric measurement. The light beams from the optical cables 378 are focused to three samples 384 with a lens system 379 including lenses for each three beams. After transmitting through the samples the beams are measured with three detectors 322a, 322c and 322d, which are e.g., a photo diodes. The three ends of the fibre optic cables, three lenses, three simultaneously measured samples and three detectors are in this case located in a row perpendicular to the plane of the drawing and thus only one of them can be seen in the drawing.

[0058] It is also possible to use an instrument with same pulse lamp for photometrics and photoluminescence measurements. For example, an optical switch 317 may have an output for an optical fibre 379a, which leads light from the lamp 312a to the photometrics measurement optics 379. It is then possible to control the optical switch either to guide the light for providing activation for an emission measurement or to guide the light for a photometric measurement.

[0059] An optical fibre 318t is used for guiding the activation beam from the optical switch 317 to the optical module 340 of the top measurement head. An optical fibre 318s is used for guiding the activation beam from the optical switch 317 to the optical module 350 of the bottom measurement head. The instrument may also have a further lamp so that different lamps can be selected for providing the activation beam of the top head and the bottom head. In this case, a more versatile optical switch system is required.

[0060] The emission beam from the sample 381 is directed with the lens system 323 into the optical module 340 where the emission beam is divided into two beams. A dichroic mirror in the optical module preferably functions as a filter so that a beam with a wavelength of the first emission is transmitted through the to the first detector 331a, and a beam with a wavelength of the second emission is reflected to the second detector 331b. When the equipment includes two detectors they may be of different types and there may be alternative detection modes for a photoluminescence measurement.

[0061] The first emission beam is collimated with a lens 333a and directed through an interference filter 334j in order to prevent light with a wavelength outside the first emission from passing to the first detector. The first emission beam is then focused with lens 335a to the first detector 331a. The second emission beam is reflected with a mirror 338 to a lens 333b where the beam is collimated and directed through a second interference filter 334k in order to prevent light with a wavelength outside the second emission from passing to the second detector. The second emission beam is then focused with lens 335b to the first detector 331a. The filters 334j and 334k are located on same filter slide or they may be located on different filter slides. The filter slide(s) is movable so that the filters used in the measurement can be selected from a number of filters with different pass-band wavelengths.

[0062] In an instrument also comprising a bottom measurement head there are optical switches 337a and 337b for selecting the detected emission beam from the top or bottom measurement head. An optical fibre 338b is used for guiding the first emission beam from the optical module 350 of the bottom measurement head 360 to the optical switch 337a. Another optical fibre 338c is used for guiding the second emission beam from the optical module 350 of the bottom measurement head 360 to the optical switch 337b.

[0063] The signals received from the detectors are amplified and processed to achieve a measurement value for the intensities of the emissions. Measurement signals and reference signals are amplified and read after each activation pulse and signal corrections are calculated. Basic references are determined with standard solvents after the analyzer has been assembled. Several emission signals from a same sample may be digitally integrated. Thus the instrument is also equipped with electronics for amplifying and processing the signals from the detectors, as well as electronics for driving the lamp(s). There is also control electronics provided for controlling the measurements, such as selecting filter(s), selecting the optical module(s), controlling optical switch(es), controlling the position of the sample tray 389 according to the invention for selecting the sample to be measured, and controlling the positions of the measurement heads 320 and 360 relative to the sample platform 380. The main electronics is not shown in FIG. 3, as the required electronics can be designed by a skilled person in the art using the teachings of the present invention.

[0064] The photo-multiplier tube and its electronics as well as the light sources are shown reduced in size compared to other components in FIG. 3. On the other hand, the optical modules are shown essentially enlarged in FIG. 3 in order to better illustrate the optical paths in the instruments. FIG. 4 illustrates the sizes in a more correct relation.

[0065] FIG. 4 illustrates a front view of an exemplary top measurement head according to the invention. The measurement head comprises optics 423 for photoluminescence measurements. It also comprises a photo-multiplier tube 491 with associated amplifier 492 for receiving and detecting emissions in AlphaScreen and chemiluminescence measurements. Between the photoluminescence optics 423 and photo-multiplier tube 491 there is located a fibre optic guide 418A for guiding activation light from a laser source 412A to a sample in e.g. AlphaScreen measurements.

[0066] Next an example of a measurement method according to the invention is described referring to FIGS. 5 and 6. FIG. 5 illustrates a top view of a sample assay plate 589. It has sample wells in a 16x24 matrix with 16 rows A-Q and 24 lines (N). Fibre optic guide 518A for providing activation
light for AlphaScreen measurements is above sample well G-4 in the Figure. The detector 591 for detecting Alphascreen and chemiluminescence emission is above sample well G-2. Due to the dimensions of the detector there is one sample well G-3 between the activation fibre and the detector. However, if dimensions allow, the activation fibre and detector may also be located above adjacent sample wells. FIG. 5 also shows the position of optics 523 for performing photoluminescence measurements.

If the AlphaScreen measurement starts at the position according to FIG. 5, the sample G-4 is first activated. Then the sample plate is shifted by one step in the right direction, or alternatively the measurement head is shifted by one step to the left direction. After this shifting the sample G-5 is activated. Next the sample plate or measurement head is again shifted by one step. After this, the sample G-6 is activated and emission from the sample G-4 is detected. The activation and detection are preferably simultaneous. This procedure of shifting, activation and detection is continuing until the last sample in the row (Nmax=24) is activated and detected. Then samples in other rows A-Q may be measured. Said “shift by one step” preferably means a shift of a distance between two adjacent samples. In some cases the shift may also be a multiple of said distance.

FIG. 6 illustrates a flow diagram of an exemplary method according to the invention for performing an AlphaScreen measurement of a sample assay plate. When measurement of a sample assay plate starts, 60, the sample plate and measurement head are positioned for activating a sample in a first row and first sample N=1 in the row is to be activated, 61, 62. The sample N=1 is then activated, 63. There is no sample at the position of the detector (N=2), so detection 64 is not performed at this phase. In phase 65 it is checked whether all samples of the row are measured. If not, the sample plate or measurement head is shifted by one step i.e. “N” is increased by one. Then sample 2 in the row is activated, 63, and N is again increased by one. When N has value 3 there is an activated sample at the position N=2=1 below the detector. Thus it is possible to perform simultaneously activation of sample N=3, 63, and detection of emission from sample N=2=1, 64. Thus the procedure continues by increasing the value of “N” in steps of one, 66, and performing simultaneous activation of sample N and detection of emission from sample N-2. When two last samples in the row are detected, there is no sample at the position of the laser optic guide, so activation is not performed in phase 63.

When all samples in a row are measured, it is checked whether all rows are measured, 67. If not, the measurement continues at the next sample row, 68. When all sample rows have been measured, 67, the measurement procedure is ended, 69.

In the above examples there is one sample well between the two samples to be simultaneously activated and detected. However, it would also be possible to have other number of sample wells between the two samples, starting from zero.

In this patent specification the structure of the components in an optical measurement instrument is not described in more detail as they can be implemented using the description above and the general knowledge of a person skilled in the art.

As mentioned above, an optical instrument includes control means for performing the optical measurement process. The control of the measuring process in an optical measurement instrument generally takes place in an arrangement of processing capacity in the form of microprocessor(s) and memory in the form of memory circuits. Such arrangements are known as such from the technology of analyzers and related equipment. To convert a known optical instrument into an equipment according to the invention it may be necessary, in addition to the hardware modifications, to store into the memory means a set of machine-readable instructions that instruct the microprocessor(s) to perform the operations described above. Composing and storing into memory of such instructions involves known technology which, when combined with the teachings of this patent application, is within the capabilities of a person skilled in the art.

Above, an embodiment of the solution according to the invention has been described. The principle according to the invention can naturally be modified within the frame of the scope defined by the claims, for example, by modification of the details of the implementation and ranges of use.

For example, the invention is described as applied to AlphaScreen measurements. However, even if the invention has special advantages when applied to such measurements, the invention can as well be applied in other types of measurements, in which the length of life time relating to emission is long, such as >0.5 s, compared to the time required for shifting the sample plate. On the other hand, although the invention is described above as applied to a versatile instrument for performing several types of measurements, the invention can also be applied in more simple instrumentation for e.g. only one type of measurement, such as AlphaScreen measurement.

The present invention offers a possibility to perform activation and detection of separate samples simultaneously and thus achieve increased effectiveness of the measurements. However, the present invention is applicable also in measurements with sequential activation and detection.

In the above embodiments laser source has been mentioned as an illumination source in the inventive arrangement. However, also other illumination sources are applicable, such as xenon or halogen pulse lamps together with an optical filter. The above embodiments have included a photo-multiplier tube as a detector. However, many other types of detectors are also applicable. The detector may be e.g. a Charge Coupled Device (CCD) detector or camera. It is possible to achieve a high efficiency/sensitivity with a cooled CCD.

Also, although the invention has been described with reference to the various microtitration plates it is equally applicable to any form of sample arrangements like vials, discs or tubes. The samples may be, except liquids, also in other form, such as gels and filters.

Although the invention is described with an arrangement where light source and detector are located on the top measurement head, there is no reason why their location on the bottom measurement head should not work. It is also possible to use illumination from above and detection from below the sample or vice versa.
The present invention has advantages in a large number of applications, such as research and clinical applications.

1-18. (canceled)

19. An optical measurement instrument for measuring samples (281-285), the optical measurement instrument comprising:

- a first illumination source (211) disposed to produce first activation radiation into a first sample (281),
- a first detector (231a) disposed to measure first emission radiation from the first sample (281) when the first sample is radiated with the first activation radiation, shifting means (299) disposed to change a relative position between the samples (281-285) and the first illumination source and between the samples and the first detector,

characterized in that the optical measurement instrument further comprises a second illumination source (212AS) disposed to produce second activation radiation to a third sample (283), said shifting means being disposed to change a relative position between the samples (281-285) and the second illumination source.

20. An instrument according to claim 19, characterized in that the first illumination source (211) and the first detector (231a) are disposed to apply an Amplified Luminescent Proximity Homogeneous Assay-analysing method.

21. An instrument according to claim 19, characterized in that said first detector (231a) is disposed to measure photoluminescence radiation.

22. An instrument according to claim 19, characterized in that said second detector (291) is disposed to measure chemiluminescence radiation.

23. An instrument according to claim 19, characterized in that said first detector (231a) is disposed to measure both emission radiation according to an Amplified Luminescent Proximity Homogeneous Assay-analysis method and chemiluminescence radiation.

24. An instrument according to claim 19, characterized in that the second illumination source (212AS) is a laser light source.

25. An instrument according to claim 19, characterized in that the second detector (291) is one of the following: a photo-multiplier tube and Charge Coupled Device.

26. An instrument according to claim 19, characterized in that the first illumination source (211) and the second detector (291) are adapted to operate simultaneously, the first illumination source (211) producing the first activation radiation to the first sample (281) and the second detector (291) measuring the second emission radiation from the second sample (285).

27. An instrument according to claim 19, characterized in that the shifting means (299) are disposed to change the relative position between the samples and the first illumination source and between the samples and the first detector by a distance that equals to a distance between two adjacent samples or a multiple of said distance between two adjacent samples.

28. An instrument according to claim 19, characterized in that the shifting means (299) are disposed to change a relative position of the first sample (285) and the second detector (291) in such a way that the first emission radiation from the first sample is directed to the second detector.

29. A method for optical measurement of samples, the method comprising:

- directing (63) first activation radiation from a first illumination source into a first sample,
- measuring (64) emission radiation from a second sample, after the first sample has become activated changing (66) a relative position between the samples and the first illumination source in such a way that the first sample is no more activated by the first activation radiation, measuring (64) emission radiation from the first sample after the changing (66) the relative position,

characterized in that the method further comprises directing second activating radiation from a second illumination source into the first sample when measuring (64) the emission radiation from the first sample after the changing (66) the relative position.

30. A method according to claim 29, characterized in that the measuring emission radiation comprises using an Amplified Luminescent Proximity Homogeneous Assay-analysis method.

31. A method according to claim 29, characterized in that the measuring emission radiation comprises measuring photoluminescence.

32. A method according to claim 29, characterized in that the first activation radiation is laser light.

33. A method according to claim 29, characterized in that the emission radiation is measured using a photo-multiplier tube.

34. A method according to claim 29, characterized in that the directing (63) the first activation radiation into the first sample and the measuring (64) emission radiation from the second sample are performed simultaneously.

35. A method according to claim 29, characterized in that a change in the relative position equals to a distance between two adjacent samples or a multiple of said distance between two adjacent samples.

36. A method according to claim 29, characterized in that a first detector is used for the measuring emission radiation from the first sample when directing (63) the first activation radiation into the first sample and a second detector is used for the measuring (64) emission radiation from the first sample after the changing (66) the relative position.

* * * * *