wo 2011/160205 A1]I 00T OO A A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization /’@T‘?’i‘\
International Bureau v{ ’0
&)
(43) International Publication Date N\

29 December 2011 (29.12.2011)

(10) International Publication Number

WO 2011/160205 A1

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
(73)

International Patent Classification:
HO4L 12/28 (2006.01) GO6F 17/30 (2006.01)

International Application Number:

PCT/CA2011/000719 (81)

International Filing Date:
22 June 2011 (22.06.2011)

Filing Language: English
Publication Language: English
Priority Data:

61/357,509 22 June 2010 (22.06.2010) US
61/498,899 20 June 2011 (20.06.2011) US

Applicant (for all designated States except US): PRI-
MAL FUSION INC. [CA/CA]; 7 -258 King Street
North, Waterloo, Ontario N2J 2Y9 (CA).

Inventor; and

Inventor/Applicant (for US only): SWEENEY, Peter,
Joseph [CA/CA]; 56 Kilbirnie Court, Kitchener, Ontario
N2R 1B8 (CA).

84)

(74) Agent: DE FAZEKAS, Anthony; MILLER THOMSON

LLP, 40 King Street West, Scotia Plaza, Suite 5800,
Toronto, Ontario M5H 381 (CA).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on next page]

(54) Title: SYSTEMS OF COMPUTERIZED AGENTS AND USER-DIRECTED SEMANTIC NETWORKING

Semantic -
USER » Network
20 Builcer | 10
““““ Editor/ N
Interface
60 i ;:ﬂ
) - n
q
S) 40
300 00
D o
v w0 ¢
Agent Agent
50, 50
FIG. 1

(57) Abstract: A system, method and computer program
product in which semi-autonomous agents interact with a
semantic network. In a basic embodiment of the system, a
data structure providing a semantic network is provided in
a non-transitory, computer-readable medium within a com-
puter network. A plurality of computer-implemented agents
are deployed within the computer network and interactive
with the semantic network. A user interface is provided and
configured to permit a user to create and/or modify the se-
mantic network. The agents are configured to read and
modify the semantic network without receiving explicit in-
structions from a user after their initial deployment, where-
by the agents operate as assistants to support the uset's use
of the network.

WO 2011/160205 A1 I 0000) A0 0O

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Published:

GW, ML, MR, NE, SN, TD, TG). — with international search report (Art. 21(3))

10

15

20

25

WO 2011/160205 PCT/CA2011/000719

SYSTEMS OF COMPUTERIZED AGENTS AND USER-DIRECTED
SEMANTIC NETWORKING

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No.
61/357,509, filed on June 22, 2010, titled “Systems of Computerized Agents and
Semantic Networks,” and U.S. Provisional Application No. 61/498,899, filed on June 20,
2011, titled “Method and Apparatus for Preference Guided Data Exploration,” the

entirety of which are incorporated herein by reference.
FIELD OF INVENTION

The teachings disclosed herein relate to deployment, in an information system
environment incorporating one or more user-directed semantic networks representing
knowledge domains, of multiple computer-implemented software agents capable of
autonomous action and of interaction with such networks to perform a variety of tasks.
In so doing, an autonomous or intelligent distributed information processing system
respective of user knowledge is formed, constituting another aspect of the teachings

presented herein.
BACKGROUND

The Internet is a global system of interconnected computer networks that store a
vast array of information. The World Wide Web (WWW) is an information sharing
model built on top of the Internet, in which a system of interlinked hypertext documents
are accessed using particular protocols (e.g., the Hypertext Transfer Protocol and its

variants).

Because of the enormous volume of information available via the WWW and the
Internet, and because the available information is distributed across an enormous number
of independently owned and operated networks and servers, locating and acting upon
desired content on the WWW and the Internet presents challenges. Similar challenges
exist when the information of interest is distributed across large private networks, as

well.

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

Various tools such as search engines have been developed to aid users in locating
desired content on the Internet and other networks, and software agents have been

developed to effectuate some desired user actions relative to such content.

A search engine is a computer program that receives a search query from a user
(e.g., in the form of a set of keywords) indicative of content desired by the user, and
returns information and/or hyperlinks to information that the search engine determines to

be relevant to the user’s search query.

Search engines typically work by retrieving a large amount of material satisfying
the search criteria specified in the search query (either exactly or within some
boundaries), such as a large number of WWW web pages and/or other content, using a
computer program called a web crawler that traverses the WWW in an automated
fashion (e.g., following every hyperlink that it comes across in each web page that it
finds). The retrieved web pages and/or content are analyzed and information about the
web pages or content is stored in an index. When a user issues a search query to the
search engine, the search engine uses the index to identify the web pages and/or content
that it determines to best match the user’s search query and returns a list of results with
the best-matching web pages and/or content. Frequently, this list is in the form of one or
more web pages that include a set of hyperlinks to the web pages and/or content

determined to best match the user’s query.

Software agents have been developed as proxies for their users, to perform
various tasks such as facilitating the execution of user-desired tasks relative to network
information. In the field of computer science, software agents are software entities
which execute on processors to perform a variety of functions, typically on behalf of
users who have deployed them. More precisely, the term "agent" is applied to a software
entity that is capable of acting with a certain degree of autonomy (agents have
capabilities of task selection, prioritization, goal-directed behavior, decision-making
without significant human intervention) in order to accomplish tasks on behalf of a user.
While software (i.e., computer program code) by itself is no more than inert information,
we assume when referring to a software agent that it is code actively executing on a
processor for only then can it be a functional element. Additionally, agents commonly
exhibit attributes such as persistence (code is not executed on demand but runs

2

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

continuously and decides for itself when it should perform some activity); social ability
(agents are able to engage other components through communication and they may
therefore, effectively, collaborate (i.e., act in concert) on a task); and reactivity (agents

perceive the context or environment in which they operate and react to it appropriately).

However, software agents require knowledge models that provide a domain from
which to operate. Conventional agents will often work from a single key word or phrase
provided by the user. Further, traditional agents work in isolation and do not evolve in
their function. Thus, making an agent that meets the multi-faceted needs of a user and,
adapts to meet the changing needs of the user, requires the construction and maintenance
of a knowledge model that is expensive and difficult to scale. The teachings disclosed

herein are directed at least partly towards better addressing user needs.

SUMMARY

For purposes of the current discourse, examples of the kind of functions which
may be performed by software agents include at least information harvesting (harvesting
agents), deep data analytical mining (data mining agents), information retrieval (search
agents), social networking and other personal tasks (social agents, also called personal
agents or user agents), e-commerce tasks (shopping agents, also called shopping bots or
buyer agents), and monitoring and surveillance.

Buyer agents “travel” or “crawl” around a network (e.g., the global internet) (i.e.,
they access different network addresses) retrieving information about goods and services,
such as the prices different vendors are charging. These agents, also known as 'shopping
bots', work efficiently for commodity products such as CDs, books, and electronic
components.

User agents, or personal agents, are intelligent agents that, on a user’s behalf, take
action other than one assigned to other types of agents. In this category belong those
intelligent agents that already perform, or will shortly perform, tasks such as checking e-
mail and sorting it according to the user's order of preference and alerting the user when
important emails arrive.

Harvesting agents may extract surface-level information, such as snippets of data

or chunks of content.

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

Data mining agents allow pattern extraction by performing deep analytics on
large data sets.

Search agents may find information on the subject of a user’s choice and monitor
for changes in the status of certain information.

This list of agent types and functions is not intended to be exhaustive and is only
exemplary, of course.

The use of agents is increasing in number and type, to provide expanding
automated functionality to a growing number of users. To effectuate such operation,
users must be able to interact with agents and agents must be able to interact with the
information content of the network. The user-agent interaction must occur
notwithstanding the goal of agent autonomy; ultimately, the tasks are directed to helping
users become more productive.

Additionally, software agents need to work together efficiently within such
environments. A shopping agent, for example, may be designed and configured to use
the results of a search performed by a search agent. Therefore, they must share
semantics of their data elements. This can be done by having computer systems publish
their metadata (defining data relationships and qualities) using shared ontologies for
representing knowledge. Within such a framework, an agent uses its access methods
(which need not be the same from one agent to the next) to go into local and remote
databases to forage for content. These access methods may include, but are not limited
to, setting up news stream delivery to the agent, or retrieval from bulletin boards, or
using a so-called spider program to traverse the Web. The content that is retrieved in this
way may already be partially filtered — by the selection of the newsfeed or the databases
that are searched. The agent next may use its detailed searching or language-processing
machinery to extract keywords or signatures from the body of the content that has been
received or retrieved. This abstracted content (or event) is then passed to the agent’s
reasoning or inferencing machinery in order to decide what to do with the new content.
This process combines the event content with the rule-based or knowledge content
provided by the user. If this process finds a good hit or match in the new content, the
agent may use another piece of its (i.e., code base) machinery to do a more detailed
search or analysis on the content. Finally, the agent may decide to take an action based

on the new content; for example, to notify the user that an important event has occurred.

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

This action may be verified by a security function and then given the authority of the
user. The agent makes use of a user-access method to deliver that message to the user.
If the user confirms that the event is important by acting quickly on the notification, the
agent may also employ its learning machinery to increase its weighting for this kind of
event.

Software agents thus may offer various benefits to their end users by automating
complex or repetitive tasks. However, there are several potential limitations and impacts
of this technology that need to be considered. For example, to provide an agent-based
system capable of many different tasks for many different people, a great deal of effort
must be directed to modeling the knowledge domain within which the agents and people
will interact. For example, to provide an effective agent-based system for making
restaurant reservations, knowledge of restaurants and how to book reservations must be
modeled in the system. This knowledge requirement also compounds the complexity
and sophisticated capabilities needed in the agents, reflected in the term, “intelligent”
agents. This requirement for intelligent agents slows the development and proliferation
of agent-based systems, and increases their development cost and the complexity of
agents. Thus, the available tools used for manufacturing agents seem to be producing
ever more capable, but ever more complex agents. As agents get more complicated, the
task of assuring their correct functioning under all circumstances becomes more
challenging and costly.

Further, agents rarely have a direct or detailed “insight” into the needs and
requirements of the people they are supporting. That is, while they may be designed for
autonomy, their range of potential action is limited to that which is pre-programmed,
they lack self-awareness and awareness of the objectives, needs and requirements of their
users. Thus, as those needs and requirements change, users must interact with their
agents to make known these changes by revising agent programming, requiring both
complicated interfaces and user attention. As a result, instead of the system adapting to
the user, if efficiency is to be maintained, the user must effectuate the adaptation. It may
be desirable, instead, for the behavior of an agent to adapt itself to a user’s changed
needs by responding to changes in the user’s behavior manifesting changes in the user’s

requirements, without explicit user instruction.

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

This is challenging, but consistent with an important design objective for agents —
that they be able to act autonomously — i.e., without significant human intervention.
Designing to this objective, though, is somewhat inconsistent with the notion of agents
that are responsive to user intentions. There is therefore a need for a middle ground
between manual human activities and fully autonomous software agents, agents that are

able to respond to their users without direct or explicit user direction.

Of course, the ability of agents to process information and derive meaningful
results therefrom is highly dependent on the knowledge models upon which the agents
operate (as both input and output). In general, the knowledge upon which such agents
act is an “ontology,” i.e. a formal, structured representation of the knowledge embodied
by a set of concepts within a “particular domain” and the relationships between those
concepts. An ontology allows agents to operate logically on the properties of that
domain ~ i.e., to “reason,” and may be used to describe the domain itself. Thus, an
ontology provides a shared vocabulary, which can be used to model a domain — that is,
the type of objects and/or concepts that exist, and their properties and relations.
Within computer science, an ontology is a model for describing the world (i.e., the
domain) that consists of a set of types, properties, and relationship types. Exactly what is
modeled varies. There is also generally an expectation that there be a close resemblance
between the real world and the features of the model in an ontology.

Contemporary ontologies share many structural similarities, regardless of the
language in which they are expressed. As mentioned above, most ontologies describe
individuals (instances), classes (concepts), attributes, and relations. There exist many
tools today for building ontologies and it is not necessary for purposes of this discussion
to single out any of them. Some employ standards-based ontology languages; some
employ proprietary ontology languages. Those skilled in the art will be able to select an
appropriate ontology building tool for use in practice of the inventive embodiments and

concepts described herein.

Since domain ontologies represent concepts in very specific and often varied
ways, they are often incompatible. A domain ontology (or domain-specific ontology)
models a specific domain, or part of the world. It represents the particular meanings of

terms as they apply to that domain. For example the word “card” has many different

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

meanings. An ontology about the domain of “poker” would model the “playing card”
meaning of the word, while an ontology about the domain of “computer hardware”
would model the “punched card” and “video card” meanings. Similarly, the word
“green” has different meanings, not only within different domains, but also from the
context of usage. It might be modeled primarily as a color in a domain about fashion,
while a domain about environmental issues might model it as having low environmental
impact or using little energy.” A domain about people might model “green” as a
surname or as a synonym to “inexperienced.” So the same term might even be modeled
as different parts of speech and as having different meanings in the same domain,
depending on the part of speech. In other words, a useful ontology must, relative to the
domain, disambiguate the meanings attributable to terms so that, among other things, the
actions of multiple agents relative to the ontology will be consistent, meaningful and
useful.

Changing the way computerized software agents, domain ontologies and users
interact can lead to several advantages. Among them, agents can be less complex,
allowing complex behaviors instead to emerge from the indirect interactions of multiple
simpler agents via changes to the user-directed knowledge model on which they operate.
Moreover, users can more intuitively and more simply express their intentions by
operating directly on the data in the knowledge model, as well, without having to re-

configure or reprogram or re-task their agents.

Accordingly, a first aspect of the invention is a computer system including, in a
non-transitory, computer-readable medium within a computer network, a data structure
providing a semantic network. (This medium need not be localized and may be
distributed, even involving multiple types of data storage.) A plurality of computer-
implemented agents are deployed within said computer network and are interactive with
the semantic network. The system further includes a user interface configured to permit
a user to at least modify the semantic network. The agents are configured to read and
modify the semantic network without receiving substantial explicit instructions from a
user. Modifying the semantic network may include changing, editing, altering,
augmenting, adding to or deleting from the semantic network. In some embodiments, the
agents may include at least one of a harvesting agent, data mining agent, search agent,

connecting agent, personal agent or shopping agent, among other possibilities. The

7

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

autonomous nature of agent operations allows at least two of the plurality of agents to
collaborate with each other, either explicitly through direct communication or implicitly
through indirect communication effected by interaction through the semantic network.
In some embodiments, at least one of the agents is configured to synthesize a concept to
the semantic network, and add a node, or to change a value or delete a node or edge of
the network from the data structure. In some embodiments, at least a second agent of the
plurality of agents acts upon or in response to the changed value, addition or deletion of

the entry.

According to a second aspect, a method comprises providing a semantic network
within a computer network; providing a plurality of computer-implemented agents
deployed within said computer network and interactive with the semantic network, the
agents being configured to read, edit or otherwise influence the semantic network
without receiving explicit instructions from a user; and providing a user interface

configured to permit a user to edit the semantic network.

A further aspect is a method to decouple user and agent actions with respect to a
semantic network. An information exchange platform is provided, comprising an
editable semantic network instantiated in a non-transitory, computer-readable medium
within a computer network. A plurality of computer-implemented agents are deployed
within the computer network and interactive with the semantic network, the agents being
configured to autonomously read and modify the semantic network. A provided user
interface is configured to permit a user to at least receive reports regarding or to modify

the semantic network.

According to still another aspect, a method comprises making available to users
of a computer network a semantic network building took and a plurality of computer-
implemented agents deployable within said computer network and interactive with a
semantic network constructed by the user with the tool, the agents being configured to
read and modify the semantic network without receiving explicit instructions from a
user. In some embodiments, the method further includes providing a user interface

configured to permit a user to modify the semantic network.

According to yet still another aspect, a non-transitory computer readable storage
medium is disclosed that stores processor executable instructions including software

8

10

15

20

25

WO 2011/160205 PCT/CA2011/000719

modules that may perform any of numerous tasks in accordance with some
embodiments. For example, the instructions include a semantic network module
configured to provide a data structure that includes a semantic network. The instructions
also include an agent-interface module configured to allow interaction between a
plurality of computer-implemented agents and the semantic network, and a user-editing
module configured to permit, through a user interface, modification of the semantic

network by a user.
BRIEF DESCRIPTION OF DRAWINGS
In the drawings,

FIG. 1 is a block diagram representing an embodiment of some aspects of the

invention;

FIG. 2 1s a block diagram further illustrating an agent ecosystem according to

some embodiments;

FIG. 3 is a diagrammatic illustration of an exemplary operation of a user editing a
semantic network (e.g., an ontology or knowledge model) according to some

embodiments;
FIG. 4 is an illustration of activities resulting from an ecosystem of agents;

FIG. § is an illustration of a system architecture within which agents can be

deployed;

FIG. 6 is a block diagram illustrating an exemplary computing system for use in

practicing some embodiments of the present invention;

FIG. 7 is a diagram of a “query, sort, then scan” data exploration model, in
accordance with prior art;

FIG. 8 1s a diagram illustrating a relation, in accordance with some embodiments;

FIG. 9 is a flowchart of an illustrative preference modeling process, in
accordance with some embodiments;

FIG. 10 1s a diagram illustrating scopes obtained from a relation, in accordance

with some embodiments;

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

FIG. 11 is a diagram illustrating scope comparators, in accordance with some
embodiments;

FIG. 12 is a diagram illustrating conjoint preferences, in accordance with some
embodiments;

FIG. 13 is a diagram of an illustrative mapping of a partial order to linear
extensions, in accordance with some embodiments;

FIG. 14 is a diagram of an illustrative preference graph, in accordance with some
embodiments;

FIG. 15 is a diagram of an illustrative computation of edge weights for different
types of second-order preferences, in accordance with some embodiments;

FIG. 16 is a diagram of an illustrative page-rank based matrix for prioritized
comparators, in accordance with some embodiments;

FIG. 17 is a diagram of an illustrative weighted preference graph and
tournaments derived from it, in accordance with some embodiments;

FIG. 18 is a flowchart for an illustrative process for interactively specifying
preferences, in accordance with some embodiments;

FIG. 19 illustrates a method for constructing knowledge representations using
knowledge representation rules, statistical graphical models, and user feedback; and

FIG. 20 illustrates a method of AKRM employing a preference ranking engine.

DETAILED DESCRIPTION

The methods, systems and products disclosed herein can be implemented using
existing agent creation tools and any of various available techniques for knowledge
representation, including ontology languages and ontology building tools, as well as
future agent and knowledge representation tools. While it is not intended that the
claimed invention be limited to specific knowledge representations, a preferred form is
the type of ontology referred to as a semantic network. Semantic networks are explained
in many sources, noteworthy among them being U.S. patent application no. 12/671,846,
titled Method, System, And Computer Program For User-Driven Dynamic Generation Of
Semantic Networks And Media Synthesis by Peter Sweeney et al, which is hereby
incorporated by reference.

Semantic networks may be used as forms of knowledge representation. A

semantic network may be represented as a directed graph consisting of vertices that
10

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

represent concepts, and edges that represent semantic relations between the concepts, and
encoded in a corresponding data structure in a computer-readable storage medium.
Semantic networks have a broad utility as a form of knowledge representation. As
machine-readable data, they can support a number of advanced technologies, such as
artificial intelligence, software automation and agents, expert systems, and knowledge
management. Additionally, they can be transformed into various forms of media (i.e.
other knowledge representations). In other words, the synthesis or creation of semantic
networks can support the synthesis of a broad swath of media to extract additional value
from the semantic network.

Thought networking, and semantic synthesis as made available, for example, by
Primal Fusion, Inc. of Waterloo, ON, Canada, www.primal.com, provides a good method
and system for generating user-directed semantic networks that represent a user’s
knowledge relative to a domain. Semantic synthesis constructs semantic networks that
encode such thoughts and intentions of the user. Encoded as data in organized data
structures, these thoughts and intentions are then available for computing purposes, for
example, in support of agent-based systems.

A thought network, also known as a knowledge network, refers to a type of user-
directed semantic network (to contrast with semantic networks that are composed by the
producers of information as opposed to the end-users). It represents users’ thoughts as
interconnected concepts. This lattice-like structure is how thoughts are represented as
data and made concrete. Ideally, however, users will remain unaware of this deep
structure as they interact with their thought networks.

As stated above, thought networking has previously been employed to capture
users’ thoughts and intentions. It is possible, however, also to use thought networking to
generate semantic networks that may be used as input to software agents. In turn, those
agents may output changes to those (or additional) semantic networks. If a domain
knowledge base is captured in a semantic network and both users and agents interact
with the semantic network, rather than interacting directly with each other, it is possible
to dispense with all or most of the need for a user to interact directly with its agents.
Agents can be simplified by reducing their functionality, by eliminating a direct user
interface, by reducing their need to duplicate functions, and by allowing behavior to

emerge from the collective actions of a number of agents of different types. Agent

11

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

functionality may even be reduced to a single function, provided a suitable collection of
agents of differing functions is made available, to accomplish a desired set of tasks.

The collection of interacting agents or groups of agents is referred to as an “agent
ecosystem.” Enabling people to affect changes directly to the semantic networking
environment lowers the costs and complexity associated with individual software agents
and software agent ecosystem development.

One might say that people (users) participate in such a system or systems by
constructing landscapes of their thoughts (in semantic data) while relatively simple
agents (possibly large numbers of them) can work over that landscape of user
intelligence to get work done. The agents may be analogous to ants roaming over the
landscapes, cooperating with each other within the environment imposed by the
architects of the landscapes (that is, the users). Further, if users and agents both can act
by altering the landscape, they can influence the operation of the agents without the users
having to directly control their agents. Decoupling the user interactions from the agent
interactions provides for new applications/design patterns. Different types of agents (for
example, search agents plus harvesting agents) may collaborate to accomplish tasks of
emergent complexity. That is, one type of agent may call upon other types of agents to
take actions, and the sophistication of the resultant action might eclipse, or go beyond to
achieve more than the capabilities of each individual agent. For example, one agent may
harvest information and decorate the semantic network with this information. A second
agent, operating autonomously, may simply compose a report of changes to the semantic
network. Each agent may respond to the environment of the knowledge landscape
without requiring any understanding of how the landscape is composed or the higher-
order behaviors that may emerge as agents and users interaction with the knowledge
landscape.

Referring to FIG. 1, illustrated are the components of a basic, exemplary system
implementing some of the above-discussed aspects. A semantic network (ontology)
building tool 10 is used by a user 20 to build a semantic network 30 in a computer
network-accessible memory 40, which may be local, remote or distributed memory such
as memory distributed across the Internet, for example. The semantic network building
tool may be any computer (hardware and software) which is suitably adapted and

configured (by software, for example) to generate a semantic network when a user

12

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

provides the necessary inputs. Software agents 50; - 50N, which may execute on
computers (not shown) anywhere that have access to the semantic network, interact with
the semantic network and perform their respective functions on the data in the network.
As illustrated, it is presumed that at least one agent, such as 50y, performs an output
function and provides output to user 20. However, the results of agent interactions need
not be output to the user in applications where the user merely wants tasks completed
and does not require reporting on those tasks.

Once the semantic network exists, the user 20 may use an interface tool 60 to
effectuate changes to the network. The interface tool may be any suitable editor which
can show the semantic network to the user (e.g., in a graphical user interface) and allow
the user to enter alterations to the network. Alterations may include changing data
values, as well as adding entries to or deleting entries from the semantic network. Tools
such as mind-mapping software or ontology-builders may be directed to these aspects of
user interactions.

Note that the user(s) need not interact directly with the agents once the agents
have been deployed (i.e., started). Naturally, someone has to deploy each agent, which
in turn requires identifying which agents in the system will participate.

An agent may be personal to a user or an agent may be agnostic as to user
identity. Thus, a shopping agent may be the personal agent of a specific user or a
shopping agent may be available to any user that needs it, as an example.

The semantic network landscape in which the software agents may operate,
enabling users to express themselves both by expressly editing the network and by
allowing agents to deduce user intentions from combinations of actions. Agents may be
plain and simple, with limited functionality. Manifestly, the user-network and agent-
network interactions do not make up a direct dialogue between users and the software
agents. This lack of direct dialogue is characteristic of the current system and method.
People participate by constructing landscapes of their thoughts (in semantic data) while
large numbers of these simple agents work over (i.e., interact with) that highly
personalized landscape to get work done. Different types of agents (for example, search
agents plus harvesting agents) may collaborate to accomplish tasks that, typically, no one

agent type would be able to provide.

13

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

A specific example of a simple semantic network 30’and its use herein is shown
in FIG. 2. Assume a user expresses a query to a semantic network synthesis tool (also
called a builder or engine) 10, having (or having access to) a knowledge base 12
appropriate to a domain of interest. One or more agents 50’ (e.g., search, filter and
reporting agents) act autonomously (and independently) over the network 30°. Outcomes
may be fed back to the user, as by modules 14, 16 and 18, or to the network (as indicated
at 19) . The modules 14, 16, and 18 may also allow a user to instruct the agents or
change their conditions, parameters, functions or status. Complex knowledge then may
emerge from simple interactions over the user’s landscape of knowledge as expressed in
the knowledge base.

FIG. 3 illustrates that a user 20 may edit the knowledge base 12 used by a
synthesis engine, also. For example, a visual editor 60 may be employed (it may be
either part of the engine, as shown, or external to the engine. Thus, results may emerge
from the combined actions of users and agents.

Selection of a synthesized term may allow for entity disambiguation or entity
resolution, for example. Thus the term “nutrient” may mean something different to a
botanist than it will to a fitness aficionado. Outcomes may be presented to a user, for
example, according to an intelligent ranking. Such a ranking may be in accordance with
the user’s preferences that can be determined with the teachings disclosed in
REFERENCE A, included below, entitled System and Method Directed Towards
Preference Guided Data Exploration. Further, the underlying semantic network 30’ may,
based on user preferences, weight some concepts or topics more heavily than others by
applying teachings as disclosed in REFERENCE B, included below, entitled System and
Method of Preference Guided Data Explorations Applied to Atomic Semantics. Agent
functioning may then be applied to a network focused on concepts more relevant to a
user. Such weighting and preferential ranking may be determined based on user-click
patterns, browser history, the selection of a synthesized concept, etc. that influence the
semantic network without the user’s explicit editing or amendment thereof.

One scenario where the teachings disclosed herein are illustrated may be where a
user is relocating his or her residence and, thus, is interested in a new location. Using
traditional user-agent methods, that user would have to modify all the agents that provide

location-based information such as hyper-local news for notification of nearby-events.

14

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

Leveraging a user-based semantic network with harvesting, search or other type of
agents instead allows the user to merely modify the knowledge base and thereby modify
the semantic network to reflect the updated city, country or any other locality of interest.
Each of the agents will then act upon this updated location information and more
accurately serve the user, eliminating the need for the user to determine which agents
require updated location information and without the user having to directly modify each
of those agents with such updated location information. The agents may further act to
modify the semantic network by adding related concepts to the new location of interest,
such as including the new location’s county, state or country in the case of an
international move.

As another example, user interested in physical fitness may have harvesting
agents deliver related content such as nutrition articles or training routines, or may have
shopping agents notify the user of relevant gym equipment. If that user injures his
shoulder, conventional approaches would require the user to modify each of those agents
directly. Using the teachings disclosed herein, the user may instead edit the semantic
network to reflect the new relevance to the user of rehabilitation or specific information
about the shoulder, allowing agents that are tailored accordingly to deliver articles,
routines and equipment of interest without direct user-agent interaction. Note that
modification of the semantic network to include concepts such as rehabilitation can occur
without the user’s explicit incorporation of such. The user may simply enter “injury,”
which the network can identify as a concept related to “rehabilitation” via use of a
reference corpus. Also, merely clicking on articles associated with injury or
rehabilitation may reveal a user interest in such content and result in modification of the
semantic network accordingly. The network can be dynamic, changing with time so as
to apply less weighting and a weaker preference towards injury or shoulder
rehabilitation-related concepts. This may occur as the frequency of the user’s selection
of such content decreases, suggesting the recovery of the user’s shoulder.

Further, traditional agents with instructions related to highly user-dependent
concepts require modification. For example, selection of “heroes” may mean comic
book characters to an 8-yr old child but may mean civil rights leaders to 65-yr old
citizen. Religion is another example of a concept that is highly user-dependent. The

concept “religion” and associated content will strongly vary from a seasoned priest to a

15

WO 2011/160205 PCT/CA2011/000719

10

15

20

25

30

young Buddhist. The traditional user-agent interaction requires every agent operating on
the concept of religion or heroes to be identified by the user and modified to reflect the
particular subjective views, experiences or interests of the user. Instead, augmenting the
“religion” or “hero” concept in one’s semantic network allows agents to act in
accordance with the user’s meaning. The result is a reduction in user-effort and agent
complexity.

Agents may act in tandem and leverage information from each other. An agent
that performs location-based information may do so based on content retrieved by a
search agent. An article retrieved by a search agent for shoulder rehabilitation may
suggest a particular type of yoga or hydro-therapy as treatment and modify the semantic
network accordingly; the location-based agent may determine that treatment is relevant
from the semantic network and identify facilities that perform such treatment in the
region. Alternatively, a shopping agent may identify available products that can be used
to perform the article’s prescribed treatment.

In all of the foregoing cases, employing traditional agents would require the user
to modify each agent serving that person, or a complicated agent would need to be
constructed to accurately serve the user and perform varying tasks. The teachings
disclosed herein can integrate general tasks such as searching, harvesting, organizing,
connecting, tracking, collaborating, or reporting with aspects related to personal
knowledge such as professional interests, personalized news, travel, finances, local
search, education, hobbies, or health issues, to serve the user in a vast number of ways,
such as those listed in FIG. 4.

FIG. 5 provides a non-limiting example embodiment of potential system
components in some implementations of an agent ecosystem as taught herein. A
“harvesting” interface can be provided on, for example, a tablet computer 70. Such a
user interface can utilize one or more “native” application programs provided on or for
the computer (e.g., conventional operating system and browser software) to support
agent tasking. For example, conventional browser software can be used to find and clip
words and phrases from sites of interest and add this material to a semantic network -
e.g., by adding nodes to an existing network data structure. (While the device illustrated
in FIG. 5 is a tablet computer 70, any suitable computing system such as a client PC,

laptop, mobile device, PDA or related computing system may be used.) A conventional

16

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

application, such as a browser or a word-processing program capable of supporting
graphics, may be used to display the results of the agent operations. Designer 80 is
shown as an optional supplemental application software tool to demonstrate the
extensibility of the agent system to allowing use of other software, as well, for agent
design, network design, and updating/alteration of either of them. User model 90
indicates that the net impact of a collection of agents is to capture user-interests and
intentions in such a way that the need for recursive user-interactions and querying is
greatly eliminated, the agents becoming a mechanism that provides the blueprint for
services the user desires.

Core agent tasks 100 operate over the internet content and services, and include
the aforementioned harvesting, connecting, reporting, etc. Content/service application

programming interfaces (APIs) 110 and crawlers act as interfaces to the Internet.

An individual agent, or a collection of agents (each having a dedicated function)
may function, and be thought of, as a user’s assistant(s). Such assistants may serve
multiple users. Indeed, when appropriate to their function, the assistant also may be
monetized by multiple users. For instance, consider a first user that may not be a
developer but may still like to create things using technology. The first user may create
an assistant using the agents framework disclosed herein. To do so, the user may launch
an assistant designer application, which performs the dual roles of designing individual
agents and assembling groups of agents around specific tasks, as well as allocating
resources to each type of agent. (Where allocating resources to an agent means defining
those data the agent may take as inputs and supply as output.) The user typically also
may be asked to specify the purpose of his or her assistant — i.e., its function.

The designer application may be set up to include certain agents in the assistant
by default, by choice or both. Default agents may include, for example, a connecting
agent to synthesize new connections across a domain (see below); a harvesting agent to
extracts terms from retrieved content nodes, such as a relevant abstract; and a reporting
agent to provide a status on the information available for a particular context (such as the
identification of a new restaurant, if that is the assistant’s purpose).

A "connecting agent" is simply the term used to reference an agent that can
augment a concept node from a semantic network with further concepts that are
identified from other domains. That is, it establishes a cross-domain connection, or

17

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

bridge, a link. The connection may be one that is ascertained from a reference corpus
(e.g., one or more websites, documents, etc.) or a reference semantic lexicon (e.g.,
graphical lexicons such as WordNet, thesauri, dictionaries, etc.; WordNet is a lexical
database for the English language, created and maintained at the Cognitive Science
Laboratory of Princeton University). The agent may operate by referencing the semantic
network and receiving a seed concept, following which it may then augment the seed
concept with semantically related terms that are of relevance from the reference
corpus/lexicon. The agent may analyze the concept node by identifying terms that
comprise the concept node, and analyze related domains for literal and semantically
related matches.

While both a connecting agent and a harvesting agent may augment a node of the
semantic network, a connecting agent does so by incorporation of a link or attachment to
another node, whereas a harvesting agent will, based on one or more nodes in the
semantic network, harvest information from a reference corpora and augment the one or
more nodes by attaching the harvesting information. The augmenting information to be
attached by a harvesting agent is typically a finite amount of information such as
typically would be characterized as a "snippet of data," "chunk of content," "paragraph"
abstract," etc.

Continuing with restaurant identification as an example context, using an agent
designer application (software tool) or other selection mechanism, the user may select
from among various pre-existing agents to include in an assistant. These may include,
for example, a review collection agent whose function is to retrieve restaurant reviews
from multiple sources using terms acquired from a context within an individual’s
semantic network; a web search agent that may search for terms from a context within an
individual’s semantic network and a text message mining agent that may retrieve
information from messaging accessible within an individual’s semantic network.

As a specific example, a restaurant agent may be configured to keep the user
informed of all restaurants in the user’s city that have been reviewed in some list of
publications, web sites, etc. in the last six months, that serve certain types of food, and
that were rated at least three stars our of five. When the agent identifies such a
restaurant, it may add that restaurants to the user’s semantic network at a node we may

call “new restaurants to try.” A reporting agent, noting the addition of a restaurant to the

18

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

network, may send a message (text, e-mail, or other service) or simply add to a “new
reports” queue the user checks from time to time, the fact of the restaurant’s addition to
the network. The user may try the restaurant and decide she does not like it. Another
agent may note that the restaurant was visited once by the user (e.g., by monitoring the
user’s credit card statement) and also note that a year has gone by and the user has not
returned to the restaurant, resulting in the agent either automatically purging the
restaurant from the user’s list of restaurants she likes, or the agent may ask the user
whether to retain or purge the restaurant.

These are but simple examples of the way agents may interact with a user, with a
semantic network and with each other, to act as a person’s assistants, relieving the person
of the otherwise time-consuming tasks the agents perform.

In some embodiments, a constructed assistant may be monetized. For instance, a
licensing mechanism may be set up to meter the re-use of agents, charge the re-user and
credit the original designer some amount in connection with the re-use. For example, a
fixed amount, such as $0.02, may be charged each time an individual tasks a specific
assistant to issue a status report. This charge may be partially credited to the constructor
of the assistant and partially credited to the host system supporting the agent ecosystem.
In some embodiments, the amount charged may be offset or be eliminated by the use of
other revenue sources, such as advertising, for example.

To facilitate the licensing and re-use of such agents, the ecosystem preferably
includes an agent-naming module that allows a creator to name the agents and assistants
he/she creates, and to label/designate them as publicly available (if so desired). (For
example, a public register of such agents may be maintained for this purpose and a
creator may then register her agent. Registration typically would involve identifying the
creator, the name of the agent, its function, its inputs and outputs, and any relevant
licensing terms such as the charge for using/copying/modifying the agent.) In addition to
a second user being licensed to re-use an agent or assistant, a second user also may be
granted permission (again, possibly for a fee), to clone and modify the assistant, such as
by altering the selection of agents as deemed advantageous by the second user. For
example, a second user may add a location-filtering agent to a restaurant assistant which
had included only an agent that identifies restaurants by type of cuisine. In some

embodiments, the second user may assign a charge per reporting task performed by the

19

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

newly modified assistant and register it also to be publicly available on that basis,
perhaps with the original designer sharing in the resulting revenue.

Thus it will be seen that there has been shown a new method and system for
combining user-directed semantic networking with computerized agents, typically large
numbers of simple agents, wherein both users and agents interact with a semantic
network without users having to control agents expressly and directly.

The above-described embodiments of the present invention can be implemented
in any of numerous ways. For example, the embodiments may be implemented using
hardware, software or a combination thereof. When an embodiment or element of an
embodiment is implemented in software, the software code can be executed on any
suitable processor or collection of processors, whether provided in a single computer or
distributed among multiple computers. It should be appreciated that any component or
collection of components that perform the functions described above can be generically
considered as one or more controllers that control the above-discussed functions. The
one or more controllers can be implemented in numerous ways, such as with dedicated
hardware, or with general purpose hardware (e.g., one or more processors) that is
programmed using microcode or software to perform the functions recited above.

In this respect, it should be appreciated that one implementation of various
embodiments of the present invention comprises at least one tangible, non-transitory
computer-readable storage medium (e.g., a computer memory, a floppy disk, a compact
disk, and optical disk, a magnetic tape, a flash memory, circuit configurations in Field
Programmable Gate Arrays or other semiconductor devices, etc.) encoded with one or
more computer programs (i.e., a plurality of instructions) that, when executed on one or
more computers or other processors, performs the above-discussed functions of various
embodiments of the present invention and elements thereof. The computer-readable
storage medium can be transportable such that the program(s) stored thereon can be
loaded onto any computer resource to implement various aspects of the present invention
discussed herein. In addition, it should be appreciated that the reference to a computer
program which, when executed, performs the above-discussed functions, is not limited to
an application program running on a host computer. Rather, the term computer program
is used herein in a generic sense to reference any type of computer code (e.g., software or

microcode) that can be employed to program a processor to implement the above-

20

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

discussed aspects of the present invention. The semantic network element of the
embodiments discussed herein may comprise one or more data structures in one or more
non-transitory computer-readable storage media, which may be the same or different
storage media encoded with the above-noted one or more computer programs.

End-use applications may occur on a client PC, laptop, tablet, mobile device,
PDA or related computing system. Further, some embodiments may leverage native
applications such as web browsers or apps on any of these computing systems.

FIG. 6 shows, schematically, an illustrative computer 1100 on which various
inventive aspects of the present disclosure may be implemented. The computer 1100
includes a processor or processing unit 1101 and a memory 1102 that may include
volatile and/or non-volatile memory. The computer 1100 may also include storage 1105
(e.g., one or more disk drives) in addition to the system memory 1102. The memory
1102 and/or storage 1105 may store one or more computer-executable instructions to
program the processing unit 1101 to perform any of the functions described herein. The
storage 1105 may optionally also store one or more data sets as needed.

References herein to a computer can include any device having a programmed
processor, including a rack-mounted computer, a desktop computer, a laptop computer, a
tablet computer or any of numerous devices that may not generally be regarded as a
computer, which include a programmed processor.

The exemplary computer 1100 may have one or more input devices and/or output
devices, such as devices 1106 and 1107 illustrated in FIG. 6. These devices may be
used, among other things, to present a user interface. Examples of output devices that
can be used to provide a user interface include printers or display screens for visual
presentation of output and speakers or other sound generating devices for audible
presentation of output. Examples of input devices that can be used for a user interface
include keyboards, and pointing devices, such as mice, touch pads, and digitizing tablets.
As another example, a computer may receive input information through speech
recognition or in other audibie format.

As shown in FIG. 6, the computer 1100 may also comprise one or more network
interfaces (e.g., the network interface 1110) to enable communication via various
networks (e.g., the network 1120). Examples of networks include a local area network or

a wide area network, such as an enterprise network or the Internet. Such networks may

21

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

be based on any suitable technology and may operate according to any suitable protocol

and may include wireless networks, wired networks or fiber optic networks.

REFERENCE A: METHOD AND APPARATUS FOR PREFERENCE GUIDED
DATA EXPLORATION

Data exploration systems, such as search engines and database management
systems, manage enormous volumes of information. As a result, locating information of
interest to a user in response to a search query (e.g., in the form of a set of keywords)
presents challenges.

Conventional approaches to search often shift the burden of finding the
information of interest to the user. For example, all potentially-relevant results may be
presented to the user in response to a search query. Subsequently, the user has to
manually explore and/or rank these results in order to find the information of greatest
interest. When the number of potentially-relevant results is large, which is often the case,
the user may be overwhelmed and may fail to locate the information for which he is
looking.

One conventional technique for addressing this problem is to integrate a user’s
preferences into the search process. By presenting search results in accordance with the
user’s preferences, the user may be helped to find the information he seeks. However,
conventional approaches to specifying user preferences severely limit the ways in which
user preferences may be specified.

Consider, for example, a data exploration model adopted by many search services
and illustrated in FIG. 7. Query interface 12 is used to collect query predicates in the
form of keywords and/or attribute values (e.g., “used Toyota” with price in [$2000-
$50007). Query results are then sorted (14) on the values of one or more attributes (e.g.,
order by Price then by Rating) in a major sort/minor sort fashion. The user then scans
(16) through the sorted query answers to locate items of interest, refines query
predicates, and repeats the exploration cycle (18). This “Query, Sort, then Scan” model
limits the flexibility of preference specification and imposes rigid data exploration

schemes as highlighted in the following example.

Example 1

22

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

Amy is searching online catalogs for a camera to buy. Amy is looking for
a reasonably-priced camera, whose color is preferably silver and less preferably
black or gray, and whose reviews contain the keywords “High Quality.” Amy is a
money saver, so her primary concern is satisfying her Price preferences followed

by her Color and Reviews preferences.

The data exploration model of FIG. 7 allows Amy to sort results in ascending
price order. Amy then needs to scan through the results comparing colors and inspecting
reviews to find the camera that she wants. The path followed by Amy to explore search
results is mainly dictated by her price preference, while other preferences are
incorporated in the exploration task through Amy’s effort, which can limit the possibility
of finding items that closely match her requirements.

Conventional approaches to specifying user preferences suffer from a number of
other drawbacks in addition to not simultaneously supporting different types of
preferences. For example, preference specifications may be inconsistent with one
another. A typical example is having cycles in preferences among first-order preferences
(preferences among attributes of items such as preferring one car to another car based on
the price or on brand), which implies non-transitivity of preferences. For instance, a user
may indicate that a Honda is preferred to a Toyota, Toyota is preferred to a Nissan and a
Nissan is preferred to a Honda. Even when first-order preferences are consistent, second
order preferences (preferences among the first order preferences such as brand
preferences are more important than price preferences) can result in further problems.
For example, prioritized composition of a set of partial orders does not generally
maintain the transitivity property in the resulting order. Conventional systems for data
exploration are unable to rank search results when preference specifications may be
inconsistent.

Inadequate incorporation of preferences in conventional data exploration systems
is due at least partly to the inability of these systems to integrate different types of
preferences. For instance, in the above-described example, preferences include an
ordering on all prices (a “total order” preference), an ordering between some colors (a

“partial order” preference), a Boolean predicate from the presence of the words “High

23

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

Quality” in the reviews, and an indication that price is more important than the other
preferences.

Another situation in which it may be useful to specify different types of
preferences may be a situation in which a user may have precise preferences for
information in one domain because the user may possess a large amount of knowledge
about the domain. Such precise preferences may be specified, for example, in the form of
one or more scoring functions. However, the same user may have imprecise preferences
for information in another domain because the user may not posses a large amount of
knowledge about the other domain. In this case, preferences may be specified, for
example, in the form of one or more partial orders on attribute values. There are many
instances in which the user may need to specify both types of preferences (i.e., using a

scoring function and using a partial order) as shown in Example 2 below.

Example 2

Alice is searching for a car to buy. Alice has specific preferences
regarding sport cars, and more relaxed preferences regarding SUVs. Alice
supplies the data exploration system with a scoring function to rank sport cars,
and a set of partial orders encoding SUVs preferences. Alice expects reported

results to be ranked according to her preferences.

A data exploration system capable of integrating different preference types and
ranking search results in response to a user query, in accordance with user-specified
preferences, may address some of the above-discussed drawbacks of conventional
approaches. However, not every embodiment addresses every one of these drawbacks,
and some embodiments may not address any of them. As such, it should be appreciated
that embodiments of the invention are not limited to addressing all or any of the above-
discussed drawbacks of these conventional approaches.

Accordingly, in some embodiments, a preference language is provided for
specifying different types of user preferences among items. A data exploration system
may assist a user to specify preferences using the preference language. The specified
preferences may be used to construct a general preference model that, in turn, may be

used to produce a ranking of items in accordance with any user preferences.

24

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

Items may be any suitable items about which a user may express preferences. In
some instances, an item may be any item that may be manufactured, sold and/or
purchased. For example, an item may be a car or an airplane ticket—a user (e.g., a
consumer) may have preferences for one car over another car and/or may prefer one
airplane ticket to another airplane ticket. In some instances, an item may comprise
information. Users may prefer one item over another item based at least in part on the
information that these items contain. For example, when searching for content (e.g.,
movie, music, images, webpages, text, sound, etc.) a user may prefer some content to
other content. For instance, a user may prefer to see a webpage that contains information
related to cars over a webpage that contains information related to bicycles.

An item may comprise, or have associated with it, one or more attributes. An
attribute of an item may be related to the item and may be a characteristic of the item. An
attribute of an item may be a characteristic descriptive of the item. For instance, if an
item is an item that may be purchased, an attribute of the item may be a price related to
the item. An attribute of an item may be a characteristic that may identify the item. For
example, a characteristic of an item may be an identifier (e.g., name, serial number, or
model number) of the item.

Attributes may be numerical attributes and may be categorical attributes.
Numerical attributes may comprise one or more values. For instance a numerical
attribute may comprise a single number (e.g., 5) or a range of numbers (e.g., 1-1000).
Categorical attributes may also comprise one or more values. For instance, a categorical
value for the category “Color” may comprise a single color (e.g., Red) or a set of colors
(e.g., {“Red”, “Green”}). Though, it should be recognized that attribute values are not
limited to being numbers and/or categories and may be any of numerous other types of
values. For instance, values may comprise alphabetic and alphanumeric strings.

An item may be represented by one or more tuples comprising values for one or
more attributes associated with the item. In some cases, a tuple representing an item may
comprise a value for each attribute associated with the item. In other cases, a tuple
representing an item may comprise a value for only a portion of the attributes associated
with the item.

FIG. 8 shows an illustrative example of a set of items, each item being

represented by a tuple comprising values for the attributes of the items. In the illustrative

25

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

example of FIG. 8, each item is a car and is associated with six attributes: “ID,” “Make,”
“Model,” “Color,” “Price,” and “Deposit.” Though in this example all items share the
same attributes, this is not a limitation of the present invention as different items may
have different attributes from one another and some attributes may have unknown
values. Each item is represented by a tuple (i.e., a set) of attribute values. Accordingly,
the first item has characteristics indicated by the first set of attribute values. For instance,
the first item is represented by the tuple in the first row of the table shown in FIG. 8. As
illustrated, this first item is an $1800 Red Honda Civic identified by identifier “t,”. A
deposit of $500 may be required to purchase this car.

A user may express preferences for one item over another item in a set of items.
User preferences may be of any suitable type and may be first-order user preferences,
second-order user preferences, and even further-order preferences.

First-order preferences are preferences associated with attributes of items. First-
order preferences may be based on values of attributes of items. For example, a first-
order preference may express a preference for an item over another item based on values
of one more attribute of the two items. For instance, a first-order preference may indicate
an item with a lower price (value of the attribute “price”) is preferred to an item with a
higher price. As another example, a first-order preference may indicate that a red (value
of the attribute “color”) item (e.g., car) is preferred to a blue item.

Second-order preferences are preferences across first-order preferences. Second-
order preferences may indicate which first-order preferences are more important to a
user. For example, first-order preference A may be based on values of one attribute (e.g.,
“price”) while first-order preference B may be based on values of another attribute (e.g.,
“color”). A second-order preference may indicate that first-order preference B is
preferred to first-order preference A (i.e., color may be more important than price).

There may be many different types of first-order and second-order preferences
and these types of preferences, along with other aspects of first-order and second-order
preferences are discussed in greater detail below in Sections II and III, respectively.

The data exploration system may be any system for exploring data, information
or knowledge. The data exploration system may allow one or more users to query the
system. For instance, a data exploration system may be a search engine such as an

Internet search engine or a domain-specific search engine (e.g., a search engine created

26

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

to search a particular information domain such as a company’s or institution’s intranet, or
a specific subject-matter information repository). In another example, a data exploration
system may be a database system that may allow user queries.

A query input by a user into a data exploration system may be any of numerous
types of queries. For instance, a query may comprise one or more keywords indicating
what the user is seeking. In some cases, a query may comprise user preferences. Though,
it should be appreciated that user preferences may be specified separately and/or
independently from any user query. For instance, a user may specify preferences that
may apply to multiple user queries. The specified preferences may comprise preferences
of any suitable type such as first-order and/or second-order user preferences.

Regardless of the types of preferences that a user may wish to specify, a data
exploration system may assist a user to specify preferences. A data exploration system
may assist a user to specify preferences using the preference language, for example.
Some example approaches to how a data exploration system may assist a user to specify
preferences are described in greater detail in Sections I and VI, below.

After user-specified preferences are obtained (e.g., from a user-specified query or
any other suitable source), a preference model may be constructed from these
preferences. The preference model may be constructed from different types of
preferences and may be constructed from first-order preferences of different types and/or
from second-order preferences of different types.

A preference model may be represented by a data structure encoding the

preference

model. The data structure may comprise any data necessary for representing the
preference model and, for example, may comprise any parameters associated with the
preference model.

A data structure encoding a preference model may be stored on any tangible
computer-readable storage medium. The computer-readable storage medium may be any
suitable computer-readable storage medium and may be accessed by any physical
computing device that may use the preference model encoded by the data structure.

In some embodiments, the preference model may be a graph-based preference
model and the data structure encoding the preference model may encode a graph, termed

a preference graph, characterizing the graph-based preference model. The preference

27

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

graph may comprise a set of nodes (vertices) and a set of edges connecting nodes in the
set of nodes. The edges may be directed edges or may be undirected edges. Accordingly,
the data structure encoding the preference graph may encode the preference graph by
encoding the graph’s vertices and edges. Any of numerous data structures for encoding
graphs, as are known in the art, may be used to encode the preference graph, as the
invention is not limited in this respect.

In some embodiments, nodes of the graph may be associated with items. For
instance, a node in the graph may be associated with a tuple that, in turn, represents an
item. The graph may represent items that are related with one or more keywords in a
query. For instance, a set of items may be selected in response to a user-provided query.

A first-order preference for one item over another item may be represented as an
edge in the graph, with the edge connecting nodes associated with the tuples associated
with the two items. A weight may be associated to each node in the graph to provide an
indication of a degree of preference for one of the nodes terminating the edge. The
weight may be computed based on first-order and/or second preferences. Aspects of a
graph-based preference model, including how such a preference model may be
constructed from user-specified preferences, are described in greater detail in Section IV,
below.

The preference model may be used to obtain a ranking of items in a set of items.
For instance, a graph-based preference model may be used to construct such a ranking. A
graph-based preference model may be used to construct such a ranking in any of
numerous ways. For instance, a complete directed graph may be obtained from the
graph-based preference model and a ranking of items may be obtained based on the
completed directed graph. As another example, a Markov-chain based algorithm may be
applied to the graph-based preference model to obtain a ranking of items. These and
other approaches to obtaining a ranking of items in a set of items are described in greater
detail in Section V, below.

It should be appreciated that though a preference graph may be a convenient
abstraction, which is helpful for reasoning about user preferences, in practice, a
preference graph may be implemented on a physical system via a data structure that may
encode the preference graph. Similarly, many constructs described below (e.g., relations,

scopes, scope comparators, and etc.) are convenient abstractions used in various fields

28

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

such as computer science, but each construct may be realized, in practice, by a data
structure representing data characterizing the construct and/or processor-executable
instructions for carrying out functions associated with the construct. Such data structures
and processor-executable instructions may be encoded on any suitable tangible compute-
readable storage medium.

Accordingly, for ease of reading, every reference to a construct (e.g., a graph, a
relation, scope, scope comparator, etc.) is a reference to a data structure encoding the
construct and/or processor-executable instructions that when executed by a processor
perform functions associated with the construct, since explicitly referring to such data
structures and processor-executable instructions for every reference to a construct is
tedious.

It should also be appreciated that the above-described embodiments of the present

invention, can be implemented in any of numerous ways. For example, the
embodiments may be implemented using hardware, software, or a combination thereof.
When implemented in software, the software code may be embodied as stored program
instructions that may be executed on any suitable processor or collection of processors
(e.g., a microprocessor or microprocessors), whether provided in a single computer or
distributed among multiple computers.

Software modules comprising program instructions may be provided to perform
any of numerous of tasks in accordance with some embodiments. For example, one or
multiple software modules for constructing a preference model may be provided. As
another example, software modules for obtaining a ranking for a set of items based on (a
data structure representing) the preference model may be provided. As another example,
software modules comprising instructions for implementing any of numerous functions
associated with a data exploration system may be provided. Though, it should be
recognized that the above examples are not limiting and software modules may be

provided to perform any functions in addition to or instead of the above examples.
I. Design Goals

In some embodiments, a data exploration system that utilizes user preference may

reflect some or all of the following design goals:

29

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

* . Guidance: The system may assist users to formulate their preferences. The system
may support interactive preference management. For instance, the system may
provide users with information to help users specify and/or modify preferences.
As a specific example, the system may provide users with information about how
to modify their preferences to widen or narrow the scope of their search. As
another specific example, the system may provide users with information about
how to modify their preferences such that the ranking of items presented to a user
is modified. Though, these are only examples and the system may aid the user to
formulate their preferences in any of numerous ways as described in greater detail
below, in Section VI.

* Flexibility: Specification of different types of preferences may be supported for
arbitrary subsets of items, sometimes referred to as “contexts.” The system may
accept natural descriptions of preferences and map these descriptions into
preference constructs.

® Provenance: The system may be able to provide justification of how search
results are generated and ranked by relating generated results to input

preferences.

FIG. 9 illustrates flowchart for an example process of modeling preferences that
reflects the above-mentioned design goals. As illustrated in FIG. 9, the data exploration
system may be a system that may receive a query from one or more users. For instance,
the system may be a database system or a search engine and the query may comprise one
or more keywords.

Toward the guidance goal, the system may assist a user to specify preferences. In
some embodiments, such support may be based on pre-computed summaries in the form
of facets that may be used for guiding data exploration. Each facet may be associated
with a number that may provide the user with an estimate on the expected number of
results. Accordingly, facets may allow a user to get a quick and dirty view of the
underlying set of items and/or domain, and how search results may be affected by tuning
preferences

For example, the system may comprise a memory configured to store a plurality

of tuples (recall that each tuple comprises one or more values for one or more attributes)

30

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

and may receive a range of desired values for an attribute from a user. In response the
system may output an integer indicative of a number of tuples comprising a value for the
attribute such that the value is in the range of values. As a specific example, for a
categorical attribute, a facet may comprise a possible attribute value (e.g., ‘Color =
Red’); while for a numerical attribute, a facet may comprise a range of possible values
(e.g., ‘Price in [$1000-$5000]"). Moreover, the user may be able to define custom facets
as Boolean conditions over multiple attributes (e.g., ‘Color=Red AND price < $5000°).
The system may associate a number to each of these facets, the number indicating an
expected number of tuples consistent with these facets.

Toward the flexibility goal, the system may adopt the concept of contextualized
preferences, where a user can assign different preference specifications to different
subsets (contexts) of items. A user may define a context by using predetermined facets or
by defining custom facets. As discussed below in Sections II and III, the user has the
flexibility of expressing first-order and second-order preferences within and across
contexts. Contextualized preferences may also part of a user’s profile, which may be
ascertained by any of the techniques disclosed herein as well as those disclosed in U.S.
Non-Provisional Application Serial No. 12/555,293, filed September 08, 2009, and titled
Synthesizing Messaging Using Context Provided By Consumers, which is hereby
incorporated by reference. This way, they may be loaded, saved, and/or refined upon the
user’s request.

Toward the provenance goal, the data exploration system illustrated in FIG. 9
may maintain information regarding which preferences among the input preferences,
affect the relative order of each pair of items in the final results ranking. This feature
may be useful for the analysis and refinement of preferences in different scenarios.
Examples include finding preference constructs that have dominating effect on results’
ranking, decreasing/increasing the influence of some preference constructs, and
understanding the effect of removing a certain preference construct.

Additional ways in which a data exploration system may assist a user to input

preferences are discussed below in Section VI.

11. First-Order Preferences

31

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

In some embodiments, the preference language may be based on capturing
pairwise preferences on different granularity levels. An items’ description may follow a
relational model, where each item may be represented as a tuple. Preferences may be cast
against a relation R with a known schema.

Our first construct is used to define a context for expressing first-order

preferences.

Definition 1 [Scope]: 4 scope R; is an arbitrary non-empty subset of tuples in R.

A scope defines a Boolean membership property that restricts the space of all
possible tuples to a subset of tuples that are interesting for building preference relations.
Such a membership property may be defined using a SQL query posed against R. For
example, FIG. 10 shows six different scopes R;... R in the relation “Car” illustrated in
FIG. 8, where scopes are defined using SQL queries. Though, it should be recognized
that such a membership property may be defined using any of numerous other ways. As
one example, a database query language other than SQL may be used to define such a
membership property. As another example, the membership property may be defined
using a set of variables and a database language may not be needed.

As shown in the illustrative diagram of FIG. 10, scopes may intersect. Thus, a
tuple in the relation R may belong to zero, one or two or more scopes. Tuples that do not
belong to any scopes may be non-interesting with respect to a preference specification.
Thus, for clarity, all subsequent discussion is with respect to tuples that belong to at least

one scope.

Definition 2 [Scope Comparator]|: Let R; and R; be two scopes in R. The scope
comparator fi; is a function that takes a pair of distinct tuples (one is from R; and the
other is from R;), and returns a first value such as 1 (e.g., if the tuple from R; is
preferred), a second value such as -1 (e.g., the tuple from R; is preferred), or a null value

“_ " (e.g., if there is no preference).

A scope comparator is a preference language construct for defining first-order
preferences. In some instances, the scope comparator may be user-defined. Though, in

other instances, a scope comparator may be defined, automatically, by a computer. Still,

32

10

15

20

25

WO 2011/160205 PCT/CA2011/000719

in other embodiments a scope comparator may be defined by a combination of manual
and automatic techniques.

A generic interface to a scope comparator may accept two tuples and return either
a preference of one tuple over the other,‘or no preference can be made. Whenever a tuple
t; is preferred to a tuple #; , we say that #; dominates ¢, denoted as ti = TJ‘.

FIG. 11 shows illustrates 5 different scope comparators defined on the scopes
shown in FIG. 10. In FIG. 11, the scope comparators f; ; and f; 5 are unconditional (i.e.,
they produce first-order preferences without testing any conditions beyond the conditions
captured by scope definition). On the other hand, the scope comparators f; 5, f5.4, f5.2 are

conditional (i.e., they produce preference relations conditioned on some logic).

Algorithm 1 Score-based Preferences

E

SCORE-PREFS if;: tuple, ¢ ;2 wple. 5 scoring function)
oS = Sitn
then return |
else 0512, = Sig
then return -1
else return L

L o R

Conditional scope comparators allow defining composite preferences that span
multiple attributes given in scope definition and/or comparator logic (e.g., f;, defines a
composite preference on Price and Make attributes).

The generality of scope definitions and preference comparators allow encoding
different types of preferences, with different semantics. In the following we give
templates for encoding different types of preferences using the above-described language
constructs.

Template 1 [Score-based Preferences]. Preferences are defined using a scoring
Junction S, where tuples achieving better scores are preferred. Without loss of generality
and without limitation, assume that higher scores are better, then score-based
preferences can be specified using the template given by Algorithm 1.

A total order on a scope R; (which can be the whole relation R) may be encoded
by defining a comparator f;;, using the template in Algorithm 1, where f;; operates on

pairs of distinct tuples belonging to R;.

33

WO 2011/160205 PCT/CA2011/000719

Template 2 [Partial Order Preferences]. For an attribute x, let P, be a partial
order defined on the domain of x. The partial order can be expressed as a set Py = {(v; >

vy} for values v; and v; in the domain of x, such that P, is:
o irreflexive (ie., (v; = v,) & P,
o asymmetric (Le., (0; > ;) = Py= (¢; > 00 & Dyl

o rransitive (Le., 1oy > v (e = epdt S0 = (0 ey = P
11 i/ 7 by E

5 Partial order-based preferences may be encoded using the template given by
Algorithm 2.

Template 3 [Skyline Preferences]. Given a set of attributes A, a tuple ¢ is

preferred to tuple ¢ if there exists a non-empty subset X 2 A whereve € X it

1s preferred to ¢, while for any other attribute ot A - X, no preference can be made

10 between 1" and t;.07, Skyline preferences may be encoded as shown in the template

given by Algorithm 3.

34

10

WO 2011/160205 PCT/CA2011/000719

Algorithm 2 Pantial Order Preferences

PARTIAL ORDER-PREFS (7 ctuple .t ;2 wple, P2 partial order on attribute v |

Vot et e Py

2 then return |

3 else (e, 0> e Py
4 then return -1

5 else return L

Algorithm 3 Skvline Preferences

SKYLINE-PREFS (1, wple, { ;:tuple. A subset of attributes)

I opo— 0

2 op;—0

3 forallrs A

4 to

3 it it, 15 preferred to £}

6 then p; — p + 1

7 else ifif, v is preferred o 4.0
b then p; «— py + 1

9 itip, = GAND p; =1
10 then return L

ity =W

12 then return |

13 else ilip; =i

14 then return -1

Template 4 [Conjoint Analysis Preferences|. Given a set of atiributes A,
conjoint analysis encodes preferences among attribute values in A when taken conjointly.
This can be expressed as a function C, that maps each combination of values in 4 to a
unique rank. The function C4 is partial on the domains of all possible combinations of
values in A. Hence, there can be combinations of values in A that are not mapped to
ranks under C,. Conjoint analysis preferences based on C4 may be expressed using the

template given by Algorithm 4.

The next example is an example for specifying and managing conjoint analysis

preferences.

Example 3:
35

10

15

20

25

WO 2011/160205 PCT/CA2011/000719

Alice’s preferences regarding cars may be expressed conjointly
over the attribute pairs (Make, Color), and (Make, Price), as shown in
FIG. 12. The value in each cell is the rank assigned to each combination

of attribute values.

Conjoint analysis may be based on an additive utility model in which ranks,
assigned to combinations of attribute values, may be used to derive a utility (part-worth)
of each attribute value. The objective is that the utility summation of attribute values
reconstructs the given ranking. In FIG. 12, for example, ‘Honda’ is assigned utility value
40, while ‘Red’ is assigned utility value 50. Hence, the score of ‘Honda, Red’ is 90,
which matches the assigned rank 1 in the given Make-Color preferences. Utility values
may be computed using regression. For instance, they may be computed using linear
regression. Note the mapping between combinations of attribute values and ranks is
modeled.

III. Second-Order Preferences

Our main language construct for defining second-order preferences is a
preferences order (POrder), defined as follows:

Definition 3 [POrder]: given a set of scope comparators F, a POrder is a
permutation of comparators in F.

A POrder represents an ordering of scope comparators based on their relative
importance. A POrder may quantify the strength of different first-order preferences based
on the semantics of second-order preferences, as discussed in greater detail below in
Section IV.

Definition 4 [POrder Projection]: Let A be a POrder defined on the set of

comparators F. For F'" 2 I we denote with 1 i) 4 total order of comparators in

F' ordered according to A. It follows that pd =A

36

WO 2011/160205 PCT/CA2011/000719

Algorithm 4 Conjoint Analvsis Preferences

CONJOINT ANALYSIS-PREFS (1 tuple. £ tuple. A: subset of attributes. (°,: conjoint
analysis map)
Vil it = A s undetimed
OR 'y {{t,0 0= ALiis undefined)

then return L

else 0O, ({1t e)< Oyt e AD

then return |
else return -1

LV I EN P S

For example, for the POrder 1 = {fi- f2. f3) and the subset of comparators

P =

{f1. 13}, wehave A = (f1. f3)

Given a POrder projection -1 , we say that (Ti = 1) under A" if for a scope
comparator f. = A’ we have faltity) = 1, and there is no other scope comparator
Jo = A where fu = faaccording to Aland fit; 1)) = 1

Different types second-order preferences may be encoded using POrders.

¢ Prioritized Preference Composition. In this case, second-order preferences are

defined as a total order of comparators (! = {f1 = fo = - > fm?, which
expresses the requirement that the first-order preferences corresponding to f; are
more important than the first-order preferences corresponding to f;;. Prioritized
composition of preferences is formulated as a single POrder with the same
comparators order given by O.

e Partially Ordered Preferences. A partial order PO on the set of scope
comparators may encode partial information on the relative importance of
different scope comparators. Let {2 be a set of comparator orderings consistent

with PO, where an ordering .’ is consistent with PO if the relative order of any

two scope comparators in ' does not contradict with PO. The set ¢ ? is called the
set of linear extensions of PO. For example, FIG. 13 shows a partial order
defined on four comparators and the corresponding set of linear extensions. The
set of linear extensions may be obtained using a simple recursive algorithm on
the PO graph. Partially-ordered preferences may be formulated as the set of

POrders given by €2,
37

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

e Pairwise Preferences: A set 'V = {(fi - [i)lof pairwise second-order
preferences on scope comparators. The pairwise second-order preference
em 13 expresses the requirement that the first-order preferences corresponding
to f; are more important than the first-order preferences corresponding to f;.
Pairwise second-order preferences PW may be formulated as the set of POrders
{Ufi fi (i) € PWTY

e Pareto Preference Composition: The importance of all scope comparators is
equal. The first-order preference !/¢ = /;)is produced if and only if at least one
scope comparator states that !+ 7! and no other scope comparator states that
(1; = ;). Pareto preference composition is formulated as a set of singleton
POrders, where each POrder is composed of a single comparator.

e Preferences Aggregation: The scope comparators act as voters on preference
relations. The first-order preference /i *~ ;) is produced if and only if at least one
scope comparator states that (/i >~ /i) Preferences aggregation may be
formulated as a set of singleton POrders, where each POrder may be composed of
a single comparator.

IV. Compilation

Given a set of scopes and scope comparators, a graph-based representation of the
preferences, termed a preference graph, may be obtained. In this Section, an algorithm
for “compiling” the given set of scope and scope comparators (first-order preferences) is
described. A preference graph may be formally defined as follows:

Definition 5 [Preference Graph]: A directed graph (V,E), where V is the set of

tuples in R and an edge e;; < E connects tuple t; to tuple tj if there exists at least one

comparator applicable to \1i- !)and returning 1, or applicable to (5 ti)and returning
-1. The label of edge e;, denoted I(e;;) is the set of comparators inducing preference of t;
over t;.

The compilation algorithm is described in Algorithm 5. The algorithm constructs
the set of vertices also termed nodes of the preference graph using the union of tuples
involved in all input scopes. In other words, each node in the preference graph is
associated with a tuple. Accordingly, each node in the preference graph may represent an
item. For each pair of distinct tuples, the set of applicable scope comparators may be

found and used to compute graph edges and their labels. Accordingly, an edge in the
38

10

15

20

WO 2011/160205 PCT/CA2011/000719

preference graph may correspond to a first-order preference, which may indicate a user
preference for one of the two items represented by the nodes terminating the edge.

Edges of the preference graph may be directed edges and may be directed to the
node associated with a preferred data item as indicated by the first-order preference
associated with the edge. Though, in some embodiments, edges may be undirected and
an indication of which of nodes terminating the edge is preferred may be provided
differently. For instance, such an indication may be provided by using a signed weight,
with a negative weight indicating a preference for one node and a positive weight
indicating a preference for the other node.

FIG. 14 illustrates example for the output of the compilation algorithm. In

particular, FIG. 14 shows the preference graph obtained from the set of scope

comparators iz faa fse fo2- fis) described with reference to FIG. 10. Each edge

is labeled with a set of supporting comparators. For example, for the edge e, we have

[

(26) = {J12-fo2 }, since the tuple ¢, is preferred over the tuple ¢5 according to the
scope comparators f; > and fs,,.

Since scopes may intersect and arbitrary scope comparator logic may be allowed,
the induced preference graph may be a cyclic graph. For example, in FIG. a fr =t
cycle exists since ¢; is preferred over f; according to fs,, while #4 is preferred over ¢;
according to f; ;. Construction of a preference graph according to Algorithm 5 does not
guarantee transitivity of graph edges. For example, in FIG. 14, the existence of the edges

ez ¢and e ; does not imply the existence of the edge e, ;.

39

10

WO 2011/160205 PCT/CA2011/000719

Algorithm 3 Preferences Compilation

COMPILE-PREFS (57 a set of scopes, F: a set of comparators)
Ve U, oottt € 5,1 {tind the union of all scopes)

£« 1} linitialize set of graph edges as empty }
foraltir, + e (Ve Vit =t

4 do
3

LS I O R

3 forall f = I

6 do

I it (f 15 applicable to (¢,.1, 1)

then

9 g fltit

10 itip=1

i1 then

12 0 = 1

13 append [to (e, ;i

14 i, ¢ B

13 thenadd e to £

16 else Hip= 1

17 then

18 01

19 append fto /e 41
20 i, & F)

21 thenadd e to B
22 rveturn (VR {return Preferences Graph)

The computational complexity of constructing and processing a preference graph
is quadratic in the number of tuples. There is a tradeoff between a preference graph’s
expressiveness and the scalability of its implementation. Though in some embodiments,
preferences may be highly “selective” and, consequently, the preference graph may be
sparse.

Scalability issues due to the size of the preference graph may be addressed in any
of numerous ways. One approach is to use distributed processing in a cloud environment,
where storing and managing the preference graph is distributed over multiple nodes in
the cloud. For example, a ranking algorithm described below in Section V.A may be
casily adapted to function in a cloud environment. Other approaches include sacrificing
the precision of preference query results by conducting approximate processing, or
thresholding managed preferences to prune weak preferences early, to reduce the size of

the preference graph.

40

10

15

20

25

WO 2011/160205 PCT/CA2011/000719

A preference graph allows heterogeneous user preferences to be encoded using a
unified graphical representation. Though, in some embodiments, computing a ranking of
query results using such representation may require additional quantification of
preference strength. Preference strength may be quantified based on the semantics of
first-order and second-order preferences, while preserving the preference information
encoded by the preference graph. Preference strength may be represented by weights on
edges of the preference graph.

Given a preference graph G(V,E), the set of graph edges E may represent
pairwise first-order preferences. Specifically, an edge e;; may express the preference for
tuple ¢; over tuple ¢ according to one or more scope comparator(s). In some instances, a
weight w;; may be associated with an edge e;;. The weight w;; may be a weight indicative
of a degree of preference for the first node over the second node. Stronger preferences
may be indicated by higher weights. In some instances, the weight may be a weight
between 0 and 1, inclusive and the sum of the weights w;; and w;; may equal 1.
Disconnected vertices in the preference graph indicate that their corresponding tuples are
indifferent with respect to each other.

In some embodiments, computing the weight may comprise dividing the number
of first-order preferences for item A relative to item B by the number of all first-order
preferences indicating any preference (either for or not for) item A.

For instance, let F' be the set of all scope comparators associated with the
preference graph. Let 4 be the set of POrders of F according to the chosen semantics of

second-order preferences. Let Fij = ey o) That 1s, Fj; is the set of scope

comparators that state a preference relationship between tuples ¢; and f; . Let A;; be the

+ =
multiset of nonempty projections of POrders in 4 based on Fj; . Let AT = A be the

set of POrder projections under which /+ “~ /., and similarly let A7y =4

f

.1 be the

set of POrder projections under which i = i it follows that i = 47, A7 , and

1?1 A

that Yigis empty. The weight w;; may be computed as follows:

"‘!-)".j - .v_l;' . 1.1!!; (li\

That 1s, w;; corresponds the proportion of POrder projections, under which

'+ »= 1 among the set of POrder projections computed based on comparators relevant

41

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

to the edge (%, ¢). The weight w;; may be similarly defined using the set A5 1t follows

that 10 = Mo = L For the case of Pareto composition, at most one of the two edges
e;; and e;; can exist in the preference graph, since otherwise # and ¢ would be
incomparable. Hence, under Pareto composition, we remove any graph edge ¢;; whenever
an edge e;; exists.

We next give an example illustrating how to compute preference weights under

different semantics of second-order preferences.

Example 4
FIG. 15 shows three weighted preference graphs, corresponding to the
preference graph in FIG. 14, produced under different semantics of second-order
preferences. The different semantics of second-order preferences result in
different edge weights and/or the removal of some edges in the original
preference graph:
e Under prioritized comparators, e, is removed since, based on the shown
comparator priorities, it may be determined that (ts > ti).
o Under partially-ordered comparators, we have that wa3=ws;=.5, since for the
relevant (t,t3) set of comparators is {fse, fis} and the given partial order

induces four POrder projections
{hs faer Uns foe . Use Jiss Jo6. 1150} where (th »t;) under the
two POrder projections s frsi s] 1,50 while (t; »t;) under the

s foer (fra. fse)

other two POrder projections
e Under pairwise preferences, wss = 0:33 since (5 = tg) based on sz, which is
one out of three POrder projections {sei-foar (foe }
V. Ranking
The graph-based preference model described in Section IV may be used to obtain
a ranking (a total order) of items in a set of items. This may be done in any of numerous
ways. One approach described in Section V.A obtains a ranking based on authority-based

ranking algorithms. Another approach described in Section V.B is a probabilistic

algorithm based on inducing a set of complete directed graphs called tournaments from

42

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

the graph-based preference model and computing a ranking for at least one tournament
from the set.

A. Importance Flow Ranking

A total order of items (or, equivalently, tuples representing these items) may be
obtained by estimating an importance measure for each tuple using the preference
weights encoded by the weighted preference graph. Techniques related to the PageRank
importance flow model may be used to compute such importance measures. Under the
PageRank model, scores may be assigned to Web pages based on the frequency with
which they are visited by a random surfer. Pages are then ranked according to these
scores. Intuitively, pages pointed to by many important pages are also important.

The PageRank importance flow model lends itself naturally to problems that
require computing a ranking based on binary relationships among items. In the context of
preferences, the model may be applied based on the notion that an item may be important
if is preferred over many other important items.

Let G = (V, E) be a dominance graph (i.€., a directed graph in which an edge ¢;;
means ‘7 "~), and let L(v) and U(v) be the set of nodes dominated by and dominating

v, respectively. Let ' = [0 1] be a real number called a damping factor. The PageRank

algorithm, as known in the art, computes the PageRank score of node v;, denoted i,

according to:

| 3 ¥
Y= e it g 2)
R 2 T |

3

The PageRank score of a node v is determined by summing PageRank scores of

all nodes ' dominated by v, normalized by the number of nodes dominating . It is
well Z el = | known that when Equation 2 corresponds to a
stationary distribution of a Markov chain, and that a unique stationary distribution exists
if the chain is irreducible (i.e., the dominance graph is strongly connected), and
aperiodic. Nodes that have no incoming edges (i.e., nodes that are not dominated by any
other nodes) lead to sinks in the Markov chain, which makes the chain irreducible. This
problem may be handled by adding self loops at sink nodes, or (uniform) transitions from

sink states to all other states in the Markov chain. The damping factor « captures the

requirement that each node is reachable from every other node. The value of « is the

43

10

15

20

25

30

35

WO 2011/160205 PCT/CA2011/000719

probability that we stop following the graph edges, and start the Markov chain from a
new random node. This may help to avoid getting trapped in cycles between nodes that
have no edges to the rest of the graph.

Accordingly, in some embodiments a pagerank-based algorithm may be used to
calculate a total order of items from the weighted preference graph. Herein, a pagerank-
based algorithm refers to any algorithm based on calculating a value from a graph based
on characteristics of a Markov chain defined with respect to the graph. Note that a
difference between the above-described weighted preference graph and the graphs that
the PageRank algorithm to which is conventionally applied is that the weighted
preference graph has preference weights associated to edges. The preference weights bias
the probability of transition (flow) from one state to another, according to weight value,
in contrast to the conventional case in which transitions are uniformly defined.

A pagerank-based algorithm may proceed as follows. Given a starting tuple ¢,
(node) in the weighted preference graph, assume a random surfer that jumps to a next
tuple ¢;, among the set of tuples dominating ¢, biased by the edge weights. Intuitively,
this corresponds to a process where a tuple is constantly replaced by a more desired tuple
(with respect to given preferences). Note that visiting tuples takes place in the opposite
direction of edges (jumps are from a dominated tuple to a dominating tuple). Hence, it
follows that tuples that are visited more frequently, according to this process, are more
likely to be desirable than tuples that are visited less frequently. Ranking tuples based on
their visit frequency (pagerank-based scores) defines an ordering that corresponds to
their global desirability.

The weighted preference graph may be represented using a square matrix M,
where each tuple may corresponds to one row and one column in M. Let E; be the set of

incoming edges to tuple # in the weighted preference graph. The entry M [i, j] may be

computed as follows:

Hence, the sum of all entries in each column in M is 1.0 unless the tuple
corresponding to that column has no incoming edges. Matrices in which all the entries

are nonnegative and the sum of the entries in every column is 1.0 are called column

44

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

stochastic matrices. A stochastic matrix defines a Markov chain whose stationary
distribution is the set of importance measures we need for ranking. In order to maintain
the irreducibility of the chain, we need to eliminate sinks (nodes with no incoming edges
in the preference graph). We handle the problem of sinks by adding a self loop, with
weight 1.0, at each sink node.

Let 1’ be the pagerank scores vector. Then, based on the previous matrix

representation, the pagerank scores are given by solving the equationr = M- T,
which is the same as finding the eigenvector of M corresponding to eigenvalue 1. The
solution that has been used in practice for computing pagerank scores is using the
iterative power method, where 1 is computed by first choosing an initial vector! ", and

then producing a next vectorl ' = A - I'". The process is repeated to generate a

T

. . . T — . . : :
vector , at iteration T, using the vectorl i, generated at 1terat10nT - i. For

convergence, at each iteration 7, entries in I'Tare normalized so that they sum to 1.0. In
practice, the number of iterations needed for the power method to converge may be any
suitable of iterations. For instance, tens or hundreds of iterations may be used.

FIG. 16 illustrates the pagerank matrix for the weighted preference graph with
prioritized comparators illustrated in FIG. 15. Note that #, is a sink node with no
incoming edges (i.€., t; has no other dominating tuples). Hence, we add a self loop with
weight 1.0 to ¢, represented by the matrix entry M[4, 4]. A typical value of the damping
factor o may be a value such as 0.15, but may be any value between 0 and 0.5.

B. Probabilistic Ranking

A total order of items (or top-ranked items) may be obtained from a complete
directed graph derived from the preference model. Computing a total order of items from
a complete directed graph (also known as a tournament) is termed finding a tournament
solution. This problem may be stated as follows. Given an irreflexive, asymmetric, and
complete binary relation over a set, find the set of maximal elements of this set. Example
methods for finding tournament solutions are computing Kendall scores, and finding a
Condorcet winner.

It should be appreciated, however, that the preference graph described in Section
IV is not necessarily a tournament. In particular, the preference graph may be symmetric

and incomplete:

e Symmetry: both edges ¢;; and ¢;; may exist in the preference graph,
45

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

o Incompleteness: both edges e;; and e;; may be missing from the preference graph.
The symmetry problem implies that some pairwise preferences may go either
way with possibly different weights, while incompleteness implies that some pairwise

preferences may be unknown.

In some embodiments, a probabilistic approach to obtaining a ranking from the
preference graph may be used. Such an approach may rely on deriving one or more
tournaments from the preference graph. Each tournament may be associated with a
probability. As such, a weighted preference graph may be viewed as a compact
representation of a space of possible tournaments, wherein each tournament is obtained
by repairing the preference graph to obtain an asymmetric and complete digraph. In order
to construct a tournament, two repair operations may be applied to the preference graph:

e Remove an edge. Applying this operation eliminates a 2-length cycle by
removing one of the involved edges.

e Add an edge. Applying this operation augments the graph by adding a missing
edge.

As discussed earlier, the value of the weight w;; represents the probability of
selecting a POrder, among the set of all POrders relevant to (¢, t), under which
(f; = 1;] We thus interpret w;; as the probability with which tuple ¢ is preferred to
tuple #. We further assume the independence of w;; values of different tuple pairs. For
each tuple pair (¢, ¢), if both w;;> 0 and w;; > 0 (i.e., #; and ¢ are involved in a 2-length
cycle), the operation remove edge removes the edge e;; with probability w;; and removes
the edge e;; otherwise. Alternatively, if w;;= 0 and w;; = 0 (i.e., f; and ¢; are disconnected
vertices), the operation add edge adds one of the edges e;; or e¢;; with the same
probability 0.5.

Based on the probabilistic process described above, repairing the weighted
Preference graph generates a tournament (irreflexive, asymmetric, and complete digraph)
whose probability is given by the product of the probabilities of all remaining graph
edges. Let ¢ be the number of 2-length cycles in the Preference graph, and d be the

number of disconnected tuple pairs. Then, the number of possible tournaments is 2.

46

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

FIG. 17 illustrates a weighted preference graph, and the corresponding set of
possible tournaments{/t----- I}, The illustrated preference graph has two 2-length
cycles (/1 — 2 and 72 — 13} and one pair of disconnected tuples (¢, 1), and hence the
number of possible tournaments is 8. The probability of each tournament is given by the
product of the probabilities associated with its edges. For example, the probability of T
is 0.09, which is the product of 0.3, 0.6, and 0.5 representing w;;, w23, and wy,,
respectively.

Given a tournament T and a total order of tuples O, we say that O violates 7, with

!j under O, while '/ = ' under T. The

respect to the relative order of (#; #), if ti -
problem of computing a total order of tuples with a minimum number of violations to
tournament is known to be NP-hard. Multiple heuristics have been proposed to compute
a total order from a tournament. We focus on using Kendall score for computing a total
order. The Kendall score of tuple t is the number of tuples dominated by t according to
the tournament.

The space of possible tournaments allows computing a total order of tuples under
any of numerous probabilistic ranking measures. Two specific measures are described
below.

o Most probable tournament ranking. Compute a total order of tuples based on the
tournament with the highest probability.

o Expected ranking. Compute a total order of tuples based on the expected ranking
in the space of all the possible tournaments.

Finding the most probable tournament is done by maintaining the edge with the
higher weight for each 2-length cycle in the preference graph, and adding an arbitrary
edge for each pair of disconnected tuples. According to this method, there may be
multiple tournaments with the highest probability among all possible tournaments. The
computed total order under any of these tournaments is the required ranking. In the

illustrative example of FIG. 17, tournaments 7, and 7y are the most probable

tournaments, each with probability 0.21. A total order of tuples in 7, using Kendall

scores is ‘[1-14-72:73" \while a total order of tuples in Ty is-/1+/2- 13- 14 Let n be the
number of tuples in the preference graph, the complexity of the algorithm is On’), since

we need to visit all edges of the preference graph.

47

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

Finding the expected ranking may be done by computing the expected Kendall
score for each tuple using the space of possible tournaments. We model the score of tuple
t; as a random variable s; whose distribution is given by the space of possible

tournaments. In the illustrative example of FIG. 17, ¢; dominates one tuple in

T 1315 171 with probability summation 0.3, while #; dominates two tuples in
{1214 Ts. T} with probability summation 0.7. Hence, the random variable s; may take
the value 1 with probability 0.3, and takes the value 2 with probability 0.7. The expected
value of s; is thus 1*¥0.3+2*0.7=1.7.

Computing the exact expected score of each tuple requires materializing the
space of possible tournaments, which is infeasible due to the exponential number of
possible tournaments. We thus propose a sampling-based algorithm to approximate the
expected value of s; of each tuple #, and then rank tuples based on their estimated
expected scores. Let L(#;) be the set of tuples dominated by ¢ in the weighted preference
graph.

For a tuple #, a sample Z is generated by adding ¢, = L(t;) each tuple 0

Z with probability w;;. All samples may be generated independently. Hence, a score

sample from s; distribution is given by;Z . The expected value of s; is estimated as the
mean of the generated score samples. It is well known that sample mean, computed from
a sufficiently large set of independent samples, is an unbiased estimate of the true
distribution mean. Let n be the number of tuples in the preference graph, and m be the
number of drawn samples for each tuple, the complexity of the algorithm is O((nm)?),

since we access the dominated set of each tuple m times to generate m score samples.

VI. Interactive Preference Specification

A data exploration system may help a user to specify preferences. In some
embodiments, preferences may be specified interactively. A system may interact with a
user through a series of prompts, displays, and/or indications of the type of input a user
may provide the system. The system may provide the user with information that may
assist the user in specifying preferences.

A data exploration system may assist a user to query the system. To this end, the
data exploration system may assist the user to specify preferences and may output query

results, to the user, ranked in accordance with the specified preferences.

48

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

FIG. 18 shows a flowchart of an illustrative process 1200 for assisting a user to
query a data exploration system. Process 1200 may be used to assist a user specify user
preferences in conjunction with a query, and may assist a user specify preferences
associated with attributes related to one or more keywords in a query.

Process 1200 begins in act 1202 when a user query may be inputted. The inputted
query may be any suitable query and may be a text query. The inputted query may be a
multimedia query, for example, received through an audio input device that may be
translated into text using any appropriate speech-recognition/speech-to-text software.
The inputted query may comprise one or more keywords. The query may be, for
example, a query for an item to purchase and/or may be a query for an item comprising
information desired by a user. For instance, the query may be a query containing the
keyword “car” and may indicate that a user may be interested in looking at items related
to cars. As another example, the user may input a query “television” into an Internet
search engine, which may indicate that a user may be interested in looking at any
webpages containing information about television. Though a query may be any suitable
query, as known in the art.

In response to receiving a user query, one or more attributes related to the query
may be identified, in act 1204 of process 1200. Attributes may be related to one or more
keywords contained in the query. For instance, attributes may be a characteristic of a
keyword in the query. Attributes may be of any suitable type. For instance, attributes
may be categorical attributes or numerical attributes. For instance, if a query for a “car”
were inputted in act 1202, then attributes related to car may be the attributes “Make,”
“Color,” “Price,” and any other attributes of car such as the attributes illustrated in FIG.
8. Attributes related to one or more keywords contained in a query may be identified in
any suitable way as known in the art. They may be identified automatically by a
computer or may be manually specified.

Regardless of the way in which attributes are identified, in act 1204, a user may

be

presented with these attributes, in act 1206. The user may be shown these
attributes visually using a display screen that contains these attributes. The display screen
may be any suitable screen containing a representation of the attributes, such as a text

representation of the attributes.

49

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

The user may be prompted to select one or more of the presented attributes such
that the system may assist the user to specify preferences associated with the selected
attributes. For instance, a user may be presented with a list of previously-mentioned
attributes associated with the keyword “car” and may select the attributes “Price” and
“Color.” In act 1208, attributes selected by the user may be received.

In response to receiving the selected attributes, the user may be prompted to
specify first-order preferences associated with one or more selected attributes, in act
1210. For each attribute, the user may specify a first-order preference of any suitable
type. For instance, the user may specify score-based preferences, partial order
preferences, skyline preferences, and/or conjoint analysis preferences as discussed with
reference to Section I1.

The user may be assisted in specifying any of the above-mentioned first-order
preferences in any of numerous ways. In some embodiments, a graphical user interface
may be used. The graphical user interface may allow the user to graphically represent the
first-order preferences (e.g., by drawing preferences). In some embodiments, the user
may be provided with a series of prompts designed to obtain information required to
specify first-order preferences.

In response to receiving first-order preferences, the user may be prompted to
specify a second-order preference among the received first-order preferences, in act
1212. The user may specify a second-order preference of any suitable type. For instance,
the user may specify prioritized preference composition preferences, partial order
preferences, pairwise preferences, and/or Pareto preference composition preferences as
discussed with reference to Section III.

Similar to the case of first-order preferences, a user may be assisted in specifying
any of the above-mentioned second-order preferences in any of numerous ways. In some
embodiments, a graphical user interface may be used. The graphical user interface may
allow the user to graphically represent the second-order preferences. In some
embodiments, the user may be provided with a series of prompts designed to obtain
information required to specify second-order preferences. After first-order and second-
order preferences have been specified, process 1200 completes.

The above-described embodiments of the present invention can be implemented

in any of numerous ways. For example, the embodiments may be implemented using

50

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

hardware, software or a combination thereof. When implemented in software, the
software code may be embodied as stored program instructions that may be executed on
any suitable processor or collection of processors (e.g., a microprocessor or
microprocessors), whether provided in a single computer or distributed among multiple
computers.

It should be appreciated that a computer may be embodied in any of numerous
forms, such as a rack-mounted computer, a desktop computer, a laptop computer, or a
tablet computer. Additionally, a computer may be embodied in a device not generally
regarded as a computer, but with suitable processing capabilities, including a Personal
Digital Assistant (PDA), a smart phone, a tablet, a reader, or any other suitable portable
or fixed electronic device.

Also, a computer may have one or more input and output devices. These devices
may be used, among other things, to present a user interface. Examples of output devices
that may be used to provide a user interface include printers or display screens for visual
presentation of output, and speakers or other sound generating devices for audible
presentation of output. Examples of input devices that may be used for a user interface
include keyboards, microphones, and pointing devices, such as mice, touch pads, and
digitizing tablets.

Such computers may be interconnected by one or more networks in any suitable
form, including networks such as a local area network (LAN) or a wide area network
(WAN), such as an enterprise network, an intelligent network (IN) or the Internet. Such
networks may be based on any suitable technology and may operate according to any
suitable protocol and may include wireless networks, wired networks, and/or fiber optic
networks.

Thus, in an embodiment, there is provided a method for querying a data
exploration system managing a plurality of items, the method comprising: querying the
data exploration system with a query comprising a plurality of first-order user
preferences indicative of a user’s preferences among items in the plurality of items, and a
second-order user preference indicative of the user’s preferences among first-order user
preferences in the plurality of first-order user preferences; calculating, with a processor, a
ranking of an item in the plurality of items based at least in part on a data structure

encoding a preference graph that represents the plurality of first-order user preferences

51

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

and the second-order user preference; and outputting at least a subset of the plurality of
items to the user, in accordance with the ranking.

In an embodiment, calculating the ranking comprises: applying a pagerank-based
algorithm to the data structure encoding the preference graph to calculate the ranking.

In another embodiment, the preference graph comprises a plurality of nodes,
wherein each node represents an item, and calculating the ranking comprises:
calculating a pagerank score of a node in the plurality of nodes.

In another embodiment, calculating the ranking comprises: computing a total
order of nodes in a complete directed graph derived from the preference graph, wherein
each node represents an item.

In another embodiment, computing the total order comprises calculating a
Kendall score for a node in the complete directed graph.

In another embodiment, the preference graph comprises: a plurality of nodes,
wherein each node corresponds to an item in the plurality of items; and a plurality of
edges, wherein each edge corresponds to a first-order preference in the plurality of first-
order preferences, the first-order preference indicating a user preference for one of the
two items represented by nodes terminating the edge.

In another embodiment, each edge is a directed edge, directed to a node
associated with a preferred item as indicated by the corresponding first-order preference.

In another embodiment, a weight is associated to an edge between a first node
and a second node in the preference graph, the weight being indicative of a degree of
preference for the first node over the second node.

In another embodiment, each item in the plurality of items is represented as a
tuple, the tuple comprising a plurality of attributes of the item.

In another aspect, there is provided a computer-readable storage medium article
storing a data structure encoding a preference graph and a plurality of processor-
executable instructions that when executed by a processor, cause the processor to
perform the acts of: receiving a plurality of first-order user preferences indicative of user
preferences among a plurality of items; receiving a second-order user preference
indicative of user preferences among the first-order preferences in the plurality of first-
order user preferences; computing a weight for an edge of the preference graph based on

the plurality of first-order user preferences and the second-order user preference,

52

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

wherein: the edge connects a first node associated with a first item and a second node
associated with a second item, and the weight is indicative of a degree of preference for
the first item over the second item; and outputting at least two of the plurality of items
according to the preference graph.

In an embodiment, the preference graph comprises a node for each item in the
plurality of items and an edge for every pair of nodes associated with items related by a
first-order preference in the plurality of first-order preferences.

In another embodiment, the computing the weight comprises: computing a first
number of first-order user preferences in the plurality of first-order user preferences
indicating a user’s preference for the first item relative to the second item; computing a
second number of all first-order user preferences in the plurality of first-order user
preferences indicating any preference associated with the first item; and setting the
weight based on the first number divided by the second number.

In another embodiment, receiving the plurality of first-order user preferences
comprises receiving a first-order preference from a user.

In another embodiment, each item in the plurality of data items is represented as a
tuple, the tuple comprising values of a plurality of attributes; and each first-order user
preference in the plurality of first-order user preferences indicates a user preference of
one item over another item based at least in part on a value of an attribute of a first tuple,
representing the one item, and a value of an attribute of a second tuple representing the
other item.

In another embodiment, the plurality of first-order user preferences comprises at
least two types of first-order preferences selected from the group comprising score-based
preferences, partial order preferences, skyline preferences, and conjoint analysis
preferences.

In another embodiment, the second-order user preference comprises a plurality of
second-order user preference relations that comprises at least two types of second-order
preferences selected from the group comprising prioritized preference composition,
partial order preferences, pairwise preferences, and Pareto preference composition.

In another aspect, there is provided a database system comprising: a memory
configured to store a plurality of tuples, a data structure encoding a preference graph to

represent user preferences, wherein the user preferences comprise a plurality of first-

53

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

order preferences representing user preferences among tuples and a second-order user
preference representing user preferences among first-order preferences in the plurality of
first-order preferences; and a processor configured to access contents of the memory and
compute a ranking of a tuple in the plurality of tuples based on the data structure
encoding the preference graph.

In another aspect, there is provided a system for interactive preference
management, the system comprising: a memory configured to store a plurality of tuples,
each tuple comprising a value for at least one of a plurality of attributes; at least one
processor configured to receive a range of values for an attribute in the plurality of
attributes from a user, output an integer indicative of a number of tuples comprising a
value for the attribute such that the value is in the range of values.

In another aspect, there is provided a computer-implemented method for
interactive preference management, the method comprising: receiving, with a processor,
a query from a user, the query comprising a keyword; prompting the user to provide a
plurality of first-order preferences associated with one or more attributes related to the
keyword; and in response to receiving the plurality of first-order preferences, prompting
the user to provide a second-order preference among the first-order preferences in the
plurality of first-order preferences.

[n an embodiment, prompting the user to provide a plurality of first-order
preferences comprises: presenting a list of attributes related to the keyword to the user;
receiving a selection of attributes in the list of attributes from the user; and prompting the

user to specify a first-order preference associated with the selected attribute.

REFERENCE B: SYSTEM AND METHOD OF PREFERENCE GUIDED DATA
EXPLORATIONS APPLIED TO ATOMIC SEMANTICS

Broadly, knowledge representation is the activity of making abstract knowledge
explicit, as concrete data structures, to support machine-based storage, management, and
reasoning systems. Conventional methods and systems exist for utilizing knowledge
representations (KRs) constructed in accordance with various types of knowledge
representation models, including structured controlled vocabularies such as taxonomies,
thesauri and faceted classifications; formal specifications such as semantic networks and

ontologies; and unstructured forms such as documents based in natural language.

54

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

The above-mentioned knowledge representation models, and knowledge
representations in general, are tools for modeling human knowledge in terms of explicit
concepts and the relationships among those concepts, and for making that knowledge
accessible to machines such as computers for performing various knowledge-requiring
tasks. As such, human users and software developers conventionally construct KR data
structures using their human knowledge, and manually encode the completed KR data
structures into machine-readable form to be stored in machine memory and accessed by
various machine-executed functions.

It has been recognized that the conventional non-automated approaches to
constructing knowledge representations lead to a number of problems including the
inability to scale with increasing size of data, inability to deal with complex and large
data structures, dependence on domain experts, cost of large-scale data storage and
processing, and integration and interoperability challenges.

It has been recognized that methods for automated construction of knowledge
representations are required in order to address the above-mentioned shortcomings of
conventional approaches. Accordingly, some embodiments in accordance with the
present disclosure provide a system that encodes knowledge creation rules to automate
the process of creating knowledge representations, and employs probabilistic methods to
check the semantic coherence of the data structures that result from the application of
knowledge creation rules.

Many approaches for using knowledge creation rules to automate the creation of
knowledge representations are possible. For instance, methods for automating the
creation of knowledge representations based on knowledge creation rules were disclosed
in U.S. Provisional Application No. 61/357,266, filed 06/22/2010, and entitled “Systems
and Methods for Analyzing and Synthesizing Complex Knowledge Representations.”

Some embodiments of the above-mentioned approach combine a compressed
(atomic) data set with a set of generative rules that encode the underlying knowledge
creation, instead of modeling all the knowledge in the domain as explicit data. Such rules
may be applied by the system in some embodiments when needed or desired to create
new knowledge and express it explicitly as data. A benefit of such techniques may be, in

at least some situations, to substantially reduce the amount of stored data in the system

55

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

by more efficiently representing the stored data, as well as to provide new capabilities
and applications for machine-based creation (synthesis) of new knowledge.

By incorporating an underlying set of rules of knowledge creation within the KR,
the amount of data in the system may be reduced, providing a more economical system
of data management, and providing entirely new applications for knowledge
management. Thus, in some embodiments, the cost of production and maintenance of
KR systems may be lowered by reducing data scalability burdens, with data not created
unless it is needed. Once created, the data structures that model the complex knowledge
in some embodiments are comparatively smaller than in conventional systems, in that
they need not store the data that is not relevant to the task at hand. This in turn may
reduce the costs of downstream applications such as inference engines or data mining
tools that work over these knowledge models.

It has been recognized that methods are needed for checking the semantic
coherence for the knowledge representation data structures resulting from application of
knowledge creation rules. For instance, in some embodiments evidence may be gathered
as to whether the resulting data structures present in existing knowledge models. These
existing knowledge models may be internal to the system (as complex knowledge
representation data structures) or external (such as knowledge models encoded on the
Semantic Web). In some embodiments, a search engine may be used to investigate
whether terms (symbols or labels) associated with concepts of the resulting data
structures present in external knowledge representations (such as documents). The term-
document frequency (e.g., number of search engine hits) may provide one exemplary
metric for the semantic coherence of the resulting knowledge representation data
structures.

It has been further recognized that probabilistic methods for synthesis of semantic
networks may be used for checking the semantic coherence for the knowledge
representation data structures resulting from application of knowledge creation rules.

A semantic network is a type of knowledge representation, and it comprises a
directed graph consisting of vertices, which represent concepts, and edges, which
represent semantic relationships between concepts. Semantic networking is a process of
developing these graphs, and provides a way to model and store knowledge so that a

computer-implemented program may process and use it. A key part of developing

56

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

semantic graphs is the provisioning of concept definitions and concept relationships
based on existing knowledge representations such as documents and unstructured text.

It has been recognized that semantic coherence among a set concepts in a
knowledge representation may be ascertained by constructing a semantic network that
comprises these concepts and indicates the degree of uncertainty pertaining to the
existence of a relationship (edge) between any two concepts (vertices) in the semantic
network. It has been recognized that statistical graphical models and associated methods
are uniquely suited to provide this probabilistic representation of semantic networks,
especially because the computational complexity of associated inference methods scales
favorably with the size of the semantic network, in turn, yielding computationally-
efficient methods and systems. It has also been recognized that statistical inference
methods for graphical models may be used to determine whether a relationship exists
between any set of concepts and to quantify the uncertainty associated to each such
relationship.

In some embodiments, statistical inference techniques may be used to efficiently
compute the joint probability distribution of all the concepts in the graph, while taking
into account any a priori assumptions about the dependence structure among concepts.
For instance, it may be known that certain concepts are independent, or it may be known
that some concepts are strongly correlated. The joint probability distribution of all the
concepts in the graph may be used to answer any queries about relationships among any
concepts included in the graph. For example, the extent to which any two concepts are
related, semantically coherent, or whether one concept is relevant to another, may be
obtained by computing the appropriate marginal posterior probabilities.

In some embodiments, knowledge representations constructed through the
application of knowledge creation rules (i.e., elemental semantics) and a probabilistic
method for evaluating semantic coherence among concepts, may be further refined by
user feedback.

Embodiments of the present disclosure may be further appreciated through an
illustrative knowledge representation construction system illustrated in FIG. 19. An
inputting unit (1) of the KR construction system may be configured to receive a first
complex knowledge representation. The first complex knowledge representation may

comprise complex vocabularies. Complex vocabularies may include lexicons, and upper

57

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

ontologies. An analysis engine (2) may decompose the inputted knowledge
representation into atomic level semantic units using knowledge generation rules. The
resultant atomic level semantic units may be stored for subsequent use in synthesis
operations in an atomic semantics database (3).

A rules database (4) may store knowledge generation rules for composition
(synthesis) and decomposition (analysis) of complex semantics. Statistical graphical
models that may provide statistical evidence of coherence between atomic concepts in
the formation of more complex semantics are stored as an atomic semantic kernel in the
statistical model database (5). The statistical graphical models may be constructed by
sampling reference corpora within knowledge domains.

A synthesis engine (6) may compose a second complex knowledge representation
by applying knowledge generation rules to atomic level semantic units in view of
statistical evidence of coherence among atomic level semantic units as provided by a
statistical graphical model. The composed knowledge representation may be outputted in
any suitable knowledge representation format and may be stored as user models (7) for
subsequent use. For instance, the composed knowledge representation may be outputted
to a user interface such as a monitor, a screen on a mobile device, or any otherwise
suitable interface. A feedback engine (8) may be configured for facilitating maintenance
and quality improvements of constructed complex knowledge representations using a
complex-adaptive feedback loop, wherein output complex semantics are returned for re-
analysis and refinement.

Another aspect involves the incorporation of preference ranking engine (9) as
shown in FIG. 20. The preference ranking engine (9) is described in “PrefEx: Preference
Guided Data Exploration” by lhab F. Ilyas and Mohamed A. Soliman. Generally,
preference ranking engine (9) allows for integration of a user’s preference relating to
attributes. In the context of AKRM shown in FIG. 20, user-intent based on input is
ranked. User-intent can be the user’s preferences with respect to attributes, or stated
another way, what the user intends to find on varying levels of importance to the user.

A query received by the user, that can include and be described as labels, is
translated into a semantic representation (as concepts and concept relationships) within
the system. This is also known as label-to-concept translation or LCT. The preference

ranking engine (9) employs its user-preference approaches to assign weights to the

58

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

concepts from LCT. This weighting can then be used as the basis for synthesis
operations, influencing the resultant topology and timing of the semantic representation.
(For example, a more heavily weighted concept will have more additional concepts
synthesized around it than a less heavily weighted concepts. Also, a more heavily
weighted concept can have concepts synthesized before a less heavily weighted concept,
thus providing temporal priority.)

The preference ranking engine (9) can also add aspects to the ordering of the
output. The synthesis engine composes and outputs complex semantic representations,
or stated another way outputs synthesized concepts and concept relationships. These
semantic representations can, instead of being directly displayed to the user or user-
model, fed into preference ranking engine (9). Based on the ability of preference ranking
engine (9) to order objects based on a user’s preference of attributes, the synthesized
semantic representation fed into preference ranking engine can be ordered based on user-
preferences. The resultant ordered concepts and concept relationships can then be
delivered or outputted to the user or semantic user model (7).

Thus, in an aspect, there is provided a system, the system comprising: preference
ranking component configured to establish attribute preferences based on user-intent; a
synthesis engine configured to assign weights to semantic representations retrieved based
on queries; wherein the assigned weights are based on the attribute preferences user
intent; wherein the preference ranking component structures outputted synthesized
semantic representations according to a rank based on the user-intent; and wherein the
outputted synthesized semantic representations are delivered to a user-interface or a user
model.

In an embodiment, a larger number of additional concepts are synthesized around
a more heavily weighted concept.

In another embodiment, additional concepts are synthesized earlier around a more
heavily weighted concept.

In another embodiment, method is implemented in software executing on at least

one hardware processor of at least one computer.

59

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

Various aspects of the present invention may be used alone, in combination, or in
a variety of arrangements not specifically discussed in the embodiments described in the
foregoing and are therefore not limited in their application to the details and arrangement
of components set forth in the foregoing description or illustrated in the drawings. For
example, aspects described in one embodiment may be combined in any manner with

aspects described in other embodiments.

All definitions, as defined and used herein, should be understood to control over
dictionary definitions, definitions in documents incorporated by reference, and/or

ordinary meanings of the defined terms.

The phraseology and terminology used herein is for the purpose of description
and should not be regarded as limiting. The use of "including," "comprising," "having,"
“containing”, “involving”, and variations thereof, is meant to encompass the items listed
thereafter and additional items.

Also, embodiments of the invention may be implemented as one or more
methods, of which an example has been provided. The acts performed as part of the
method(s) may be ordered in any suitable way. Accordingly, embodiments may be
constructed in which acts are performed in an order different than illustrated, which may
include performing some acts simultaneously, even though shown as sequential acts in
illustrative embodiments.

Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to
modify a claim element does not by itself connote any priority, precedence, or order of
one claim element over another or the temporal order in which acts of a method are
performed. Such terms are used merely as labels to distinguish one claim element
having a certain name from another element having a same name (but for use of the

ordinal term).

The indefinite articles “a” and “an,” as used herein, unless clearly indicated to the

contrary, should be understood to mean “at least one.”

As used herein, the phrase “at least one,” in reference to a list of one or more
elements, should be understood to mean at least one element selected from any one or

more of the elements in the list of elements, but not necessarily including at least one of

60

10

15

20

25

30

WO 2011/160205 PCT/CA2011/000719

each and every element specifically listed within the list of elements and not excluding
any combinations of elements in the list of elements. This definition also allows that
elements may optionally be present other than the elements specifically identified within
the list of elements to which the phrase “at least one” refers, whether related or unrelated
to those elements specifically identified. Thus, as a non-limiting example, “at least one
of A and B” (or, equivalently, “at least one of A or B,” or, equivalently “at least one of A
and/or B”) can refer, in one embodiment, to at least one, optionally including more than
one, A, with no B present (and optionally including elements other than B); in another
embodiment, to at least one, optionally including more than one, B, with no A present
(and optionally including elements other than A); in yet another embodiment, to at least
one, optionally including more than one, A, and at least one, optionally including more

than one, B (and optionally including other elements); etc.

The phrase “and/or,” as used herein, should be understood to mean “either or
both” of the elements so conjoined, i.e., elements that are conjunctively present in some
cases and disjunctively present in other cases. Multiple elements listed with “and/or”
should be construed in the same fashion, i.c., “one or more” of the elements so
conjoined. Other elements may optionally be present other than the elements specifically
identified by the “and/or” clause, whether related or unrelated to those elements
specifically identified. Thus, as a non-limiting example, a reference to “A and/or B”,
when used in conjunction with open-ended language such as “comprising” can refer, in
one embodiment, to A only (optionally including elements other than B); in another
embodiment, to B only (optionally including elements other than A); in yet another

embodiment, to both A and B (optionally including other elements); etc.

As used herein, “or” should be understood to have the same meaning as “and/or”
as defined above. For example, when separating items in a list, “or” or “and/or” shall be
interpreted as being inclusive, i.e., the inclusion of at least one, but also including more
than one, of a number or list of elements, and, optionally, additional unlisted items.

Having described several embodiments of the invention in detail, various
modifications and improvements will readily occur to those skilled in the art. Such
modifications and improvements are intended to be within the spirit and scope of the

invention. Accordingly, the foregoing description is by way of example only, and is not

61

WO 2011/160205 PCT/CA2011/000719

intended as limiting. The invention is limited only as defined by the following claims

and the equivalents thereto.

62

10

15

20

25

WO 2011/160205 PCT/CA2011/000719

CLAIMS:

1. A computer network implemented system employing a semantic network, the
system including a computer network of one or more networked computer devices with a

processor and a memory and comprising:

a) at least one computer device storing a data structure providing a semantic
network;
b) a plurality of computer-implemented agents deployed within said

computer network, executing on one or more processors within the computer network,

and interactive with the semantic network; and

) a user interface configured to permit a user to at least create or modify the

semantic network;

d) wherein the agents are configured to read and modify the semantic

network without receiving explicit instructions from a user after their initial deployment.

2. The system of claim 1, wherein modifying the semantic network includes

changing, editing, altering, augmenting, adding to or deleting from the semantic network.

3. The system of claim 1, wherein the agents include at least one of a harvesting
agent, data mining agent, search agent, connecting agent, personal agent or shopping

agent.

4. The system of claim 1, wherein at least two of the plurality of agents collaborate

with each other, explicitly or implicitly.

5. The system of claim 1, wherein the system is configured to allow at least one of

the plurality of agents to be selected by the user.
6. The system of claim 1, wherein the user interface is a graphical user interface.

7. The system of claim 6, wherein the user interface further includes mind-mapping

software or ontology-building software.

63

10

15

20

25

WO 2011/160205 PCT/CA2011/000719

8. The system of claim 6, wherein the user-interface presents values for the user to

change, the option to add entries or the option to delete entries.

9. The system of claim 8, wherein the values or entries are modifiable by user-

selection with a cursor, mouse-pointer or keyboard.

10. The system of claim 9, wherein the option to add entries includes a synthesized

concept presented to the user for adding to the semantic network.

11. The system of claim 1, wherein at least one of the agents synthesizes a concept to

the semantic network.

12. The system of claim 1, wherein the semantic network includes at least two nodes
that each represent a distinct concept and at least one edge that represents a semantic

relationship between two distinct concepts.
13. The system of claim 12, wherein:
at least one of the concepts is weighted based on preferences of a user;

at least one of the edges is weighted based on the strength of the semantic

relationship; or

at least one of the results is delivered to the user in an order based on preferences

of the user.

14. The system of claim 1, wherein at least one of the agents of the plurality of agents

changes a value, adds or deletes an entry in the semantic network.

15. The system of claim 14, wherein at least a second agent of the plurality of agents

acts upon or in response to the changed value, addition or deletion of the entry.

16. The system of claim 1, wherein a fee is charged when a user assigns a reporting

task to at least one of the agents created by another user.

17. A method comprising:

providing a semantic network in a non-transitory, computer-readable medium

within a computer network;
64

10

15

20

25

WO 2011/160205 PCT/CA2011/000719

providing a plurality of computer-implemented agents deployed within said
computer network and interactive with the semantic network, the agents being
configured, collectively, to read and modify the semantic network without receiving

explicit instructions from a user; and

providing a user interface configured to permit a user to modify the semantic

network.

18. A method to decouple user and agent actions with respect to a semantic network,

comprising:

providing an information exchange platform comprising an editable semantic
network instantiated in a non-transitory, computer-readable medium within a computer

network;

providing a plurality of computer-implemented agents deployed within said
computer network and interactive with the semantic network, the agents collectively

being configured to autonomously read and modify the semantic network; and

providing a user interface configured to permit a user to at least receive reports

regarding or to modify the semantic network.
19. A method comprising:

making available to users of a computer network a semantic network building
tool and a plurality of computer-implemented agents deployable within said computer
network and interactive with a semantic network constructed by the user with the tool,
the agents collectively being configured to read and modify the semantic network

without receiving explicit instructions from a user.

20. The method of claim 19, further including providing a user interface configured

to permit a user to modify the semantic network.

21. A method comprising:

providing an on-line facility configured to permit a user to deploy a plurality of

computer-implemented agents within a computer network in which a semantic network

65

10

15

20

25

WO 2011/160205 PCT/CA2011/000719

is embodied in a non-transitory, computer-readable medium, at least one agent being
configured to read the semantic network and at least one agent being configured to

modify the semantic network, without receiving explicit instructions from a user.

22. The method of claim 21, further including providing a user interface configured

to permit a user to modify the semantic network.

23. The method of claim 22, wherein one or more agents communicate results to the
user.

24. A method to decouple user and agent actions with respect to a semantic network,
comprising:

providing an information exchange platform comprising an editable semantic
network instantiated in a non-transitory, computer-readable medium within a computer
network, or a tool permitting a user to create an editable semantic network instantiated in

a non-transitory, computer-readable medium within a computer network; and

providing a facility configured to allow a user to deploy a plurality of computer-
implemented agents within said computer network and interactive with the semantic
network, the agents collectively being configured to autonomously read and modify the

semantic network.

25. The method of claim 24, further including providing a user interface configured

to permit a user to at least receive reports regarding, or to modify, the semantic network.

26. The method of any of claims 17-25, wherein at least one of said agents is
configured to, selectively, augment the semantic network with a connection to another

semantic network or with information from a source external to the network.

27. The method of claim 26, wherein the source external to the network is another

semantic network.

28. At least one non-transitory computer-readable storage medium encoded with a

plurality of computer-executable instructions that includes:

66

WO 2011/160205 PCT/CA2011/000719

a semantic network module configured to provide a data structure that includes a

semantic network;

an agent-interface module configured to allow interaction between a plurality of

computer-implemented agents and the semantic network; and

a user-editing module configured to permit, through a user interface, modification

of the semantic network by a user.

29. The at least one computer-readable storage medium according to claim 21,
wherein the instructions, when executed, further perform outputting to data to the user,

wherein said outputting is based on a function of one of the plurality of agents.

67

WO 2011/160205

USER
20

‘ .
¥

Editor/
Interface
60

PCT/CA2011/000719

1/20

~ Semantic
» Network
Builcer | 10

40

FIG. 1

WO 2011/160205

2/20

19—

Feedbark

PCT/CA2011/000719

L Agem
Functlons of:

Search

Filter

ypan events (search filter)
Do report (events}

Ozl repost

nput resaits
Do filter {results}

Ouatpat terms

20
\'\
iy »
| Kuowleds
User | Base
g
!
12
Terms :
{roncepts} | *
Ve
i
14 e
6T
1§

nput remm
Do search frerm)

Jutpus resulrs

Report
L
" |
Wit
B e

FIG. 2

WO 2011/160205 PCT/CA2011/000719

3120

| : i
S S CVisual -
i Editor-.| o

I - 3

I
|
I
I
j " -
H T | {Results for £ars) :
H ' ’ -

o Haer | - Cazs, Vehicles, Auto :
; Auto mc:fi’v-:-‘ fl'x'anspv:\ rration |
" \ .. I
} X Communication, Telephone |
§ Vireless I
I
i T |
| 12 I
14 “““‘: I
I
I — |

i Teymne
{runrepis] |
| [
e S N

4,
¥ ~ LY
'ss }I. ‘/ 307
oo 5
3 [} 8 4

PCT/CA2011/000719

WO 2011/160205

4/20

swauyng ¥ o) owew g Buloang

D5L0dRg
04 IN0GE pseq abpoouy g Buineng

drasB ncd 1 avsqen e Bugrieus

suwpd ey vo spuas i SugecgeoD
DNESE ENY B I00E SKou Bunionly
SUMUND0P pue seisqam efue; Bururwawng
spss Apease uonuaaul ok g Buuasoosi)
OIS puR e g suodes Supa

O INoM § SjusnIess BupuswoDoYy

LS BEY [RLDRIN SO SRty

o

¥ 'Ol

SRUES R eaH
SRA0H Sanpoday
UDHBINDH Bugriogegor
YHEES R Buning |
SDnUBULY Bundeuuon
OARE Suwrnsefig
SO PAZERUOSIAG Suanamy
SRR RO PO S Bunmiesg

S]URISISSY |BUOSI8d J0)

SBIlAIOY JO WalsAsoog ue Buipjing

WO 2011/160205

5/20

Tablet Ul

Designer

Agent Configuration

Core Tasks

Content and
Service
Connectors

PCT/CA2011/000719

90

. 100

. 110

WO 2011/160205 PCT/CA2011/000719
1100
1102 1101
Volatile Memory |~ s
. Processing Unit
Non-Volatile
Memory
1105
//
Storage
Executable
Instructions Data Sets
1166
Output Devices
1110
1107 e
i Network Interface
Input Devices

FIG. 6

1120
/"

Communication
Network

PCT/CA2011/000719

WO 2011/160205

7/20

AR B

AR

e opg

R T

i

S AT o

S e e G

TR

RIS

smy dersens

fCreasataco)

CHPREARG

T
SN

B

G N e g

s

PRI T R e ey

Rt g 4R

g
REET T bR R e

TR

"¢ D
WA

0 65 M8BL

1oy e

U]

g g

|
e

BEpas 5 push

L 9l

S e aqnb Jofy went sk Joy
SR paiapay

[ERTRE2A

Jaios 519163 HQEUSRP Al A UCESITURE | MR WHNY
S £ € e D0 RN 'S DHTIG ANES pT RPN
i) uspas pustizq g STl T FERE)

9 2 puleEy
SR ._wmm__“wuu g e Mm_,_ ¥ M«uvf_—:‘“mm
ey i+

Pios) e UHRCEAT R

#0701 B - s0eay
iy 6y w0 - abRapy 5
yhis o3 w07 - @14

59755 aheapy

666'C$:

w%m!mhg;a ,

e S e

-

SR U I

12 1o pul4

SUBSTITUTE SHEET (RULE 26)

WO 2011/160205

8/20

ILLUSTRATIVE RELATION CAR

PCT/CA2011/000719

Honda Civic Red
Honda Odyssey Blue
Liberty Black
Wrangler Red
Focus Black
Mustang White

Jeep
Jeep
Ford

Ford

FIG. 8

1800
1500
5200
5000
5100
1700

500
300
700
600
600
400

WO 2011/160205 PCT/CA2011/000719

9/20

2
Results Ranking and Refinement]
~
Preference Modeling
J
~N

Preference Specification

(Context;) @ L Contexty))

~
Contextuahzatlon
(Facets) Users
Profiles)

™

Domain Understanding and Query Formulation

\

[

Metadata Summaries Histograms Indexes)
\—

™

.)

FIG. 9

SUBSTITUTE SHEET (RULE 26)

WO 2011/160205 PCT/CA2011/000719

10/20

ILLUSTRATIVE SCOPES OBTAINED FROM RELATION CAR

R: Seleet * from R where Make="Honda' g’f;f_ »‘3%‘/ e\
R.: Select from R where Make="Ford’ R1 2 t-‘»»—w _{G Rz
R;: Select * from R where Color="Red’ W ”1/ ¥ ST
R,: Select * from R where Color="Black’ R [7 1 I; \\! fR
Rs: Select # from R where Price > 2000 % (N I
R¢: Select * from R where Price < 2000 s Ry e

FIG. 10

WO 2011/160205 PCT/CA2011/000719
ILLUSTRATIVE SCOPE COMPARATORS
f1,2 f34
if (t1.Price <to.Price) return 1
return 1
else if (t1.Price > t.Price) f
return -1 6,2
else if (t..Make = ‘Honda')
return - return 1
else if (ts.Price < tp.Price)
f return -1
56 else
if (ts.Color = ‘Red" * t.Color = ‘Blue’) return -
return 1
else if (ts.Make = ‘Ford’) f
return -1 1.5
else return -1
return L

FIG. 11

SUBSTITUTE SHEET (RULE 26)

WO 2011/160205 PCT/CA2011/000719

12/20

CONJOINT PREFERENCES EXAMPLE

Color Price
Red | Blue <=2000 | >2000
% Honda | 1 3 %’ Honda | 1 3
= | Toyota | 2 4 = | Toyota | 2 4
Make-Color preferences Make-Price preferences
Color Price
Red | Blue <=2000 | >2000
(50} | (35) (30) (10)
Honda (40) | 1 3 Honda (40} 1 3
@ {90) | (75) % (70) (50)
g Toyota {30} | 2 4 = | Toyota (30) | 2 4
(80} | {B5) {60) (40)
Make-Color utilities Make-Price utilities

FIG. 12

WO 2011/160205 PCT/CA2011/000719

13/20

ILLUSTRATIVE MAPPING OF A PARTIAL ORDER TO LINEAR
EXTENSIONS

WO 2011/160205 PCT/CA2011/000719

14/20

ILLUSTRATIVE REFERENCE GRAPH

SUBSTITUTE SHEET (RULE 26)

WO 2011/160205 PCT/CA2011/000719

15/20

ILLUSTRATIVE COMPUTATION OF EDGE
WEIGHTS FOR DIFFERENT TYPES OF

Prioritized Comparators {5 SECOND-ORDER PREFERENCES

(f1.2>13.4 5,67 f62>115)

Partial Order
Ji2 Jss
~a Y

Pairwise Preferences t

(f5.47056), (f1.22F56), (f6.2>11.5)
S

N

FIG. 15

SUBSTITUTE SHEET (RULE 26)

WO 2011/160205 PCT/CA2011/000719

16/20

ILLUSTRATIVE PAGERANK-BASED MATRIX FOR PRIORITIZED

COMPARATORS
AT (00 025 0 025 0y [y 1/6)
v, 0 0 025 0 025 05| |y, 1/6
2 00 0 0 0 0|y |ue
k = (1] A _ B +{}“GC) -
v, |03 10 025 10 025 03] |y, 1/6
v, 0 0 0 0 0 0|y 1/6
v 05 0 025 0 025 0] ly, 1/6

FIG. 16

WO 2011/160205 PCT/CA2011/000719

17120

ILLUSTRATIVE WEIGHTED PREFRENCE GRAPH AND DERIVED
TOURNAMENTS

WO 2011/160205

18/20

PCT/CA2011/000719

ILLUSTRATIVE PROCESS FOR INTERACTIVE PREFERENCE

BEGIN

SPECIFICATION

h 4

Input User Query

1202

y

Identify One or More
Attributes Related To Query
1204

¥

Present Attributes to User
1206

'

Receive Selected Attributes
1208

3

Prompt User for First-Order
Preferences
1210

y

Prompt User for Second-Order
Preferences
1212

y

1200

FIG. 18

WO 2011/160205 PCT/CA2011/000719

19720

Primal's AKRM Technology

[————

Context/query from
end-users/apps

syn\hesis
Rules

" Outputcomplex
semantics

Knowledge Generation
Rules

Sample complex semantics

FIG. 19

WO 2011/160205 PCT/CA2011/000719

20/20

rimal’'s AKRM Technology

Reference corpora

. w

i Complex 3 5
£ vacabularies $

H

3 i ! g."“"ﬁ‘

i i

£ ; o
[

Sample

complex

sersantics

2

Coentextiquery
o fr(tm T
SRTS APPS

’;z«jm Gyt
. Rasiga

zomplex
SEMANLICS

Samgple covmplex semantics

FIG. 20

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CA2011/000719

A. CLASSIFICATION OF SUBJECT MATTER

IPC: HO4L 12/28 (2006.01) . GO6F 17/30 (2006.01)

According to International Patent Classitication (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC (2006.01): HO4L 12/28, GOGF 17/30

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database(s) consulted during the mternational search (name of database(s) and, where practicable, search terms used)
Databases: EPOQUE (EPODOC); Canadian Patent Database. Google: IEEE

Kevwords: semantic; network; agent, automatic, autonomous; ontolog; interfac; search; edge;, weight; fee; processor; memor; exchang;
perfer: order. data: structure: thought: web: harvest: mund: concept; svnthesi: monetiz. primal fusion: sweeney

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Categorv* | Citation of document, with mdication, where appropriate, of the relevant passages Relevant to claim No.
X WO02009132442 Al (Sweeney et al.) 05 November 2009 (05-11-2009) 1-3, 5-14, 16-25, 28 and 29
Y *Figs. 1, 5and 7 4, 15,26 and 27

* page 2 lines 5-11

* page 3 line 22-page 4 line 30

* page 6 lines 26-28

* page 7 line 19-page 8§ line 2

* page 9 line 1-page 10 line 13

* page 26 lines 3-8

* page 28 line 24-page 30 line 2
* page 35 line 10-page 36 line 26
* page 41 line 22-page 42 line 12

Y US20080154906 Al (McDavid et al.) 26 June 2008 (26-06-2008)

*Fig. |
* paragraphs [0012, 0021, 0028, 0038]

4, 15,26 and 27

[X] Further documents are listed in the continuation of Box

[X] See patent family annex.

* Special categories of cited documents

“AY document detining the general state of the art which 1s not considered
to be of particular relevance

“E” earlier application or patent but published on or atter the mternational
tiling date

“L” document which may throw doubts on priority clam(s) or which 1s
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than
the priority date claimed

T later document published after the mternational tiling date or priority
date and not in conflict with the aln]l)llgatlon but cited to understand
the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be
congidered novel or cannot be congidered to involve an inventive
step when the document is taken alone

“Y" document of particular relevance; the claimed invention cannot be
considered to mvolve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent tamily

Date of the actual completion of the international search

19 September 2011 (19-09-2011)

Date of mailing of the international search report

28 September 2011 (28-09-2011)

Name and mailing address of the ISA/CA
Canadian Intellectual Property Office

Place du Portage I, C114 - 1st Floor, Box PCT
50 Victoria Street

Gatineau, Quebec K1A 0C9

Facsimile No.: 001-819-953-2476

Authorized officer

Leslie Yeow (819) 934-0345

Form PCT/ISA/210 (second sheet) (July 2009)

Page 2 of 4

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages |Relevant to claim No.

A CA2734756 Al (Sweeney et al.) 04 March 2010 (04-03-2010)
* pages 1-8

A Payne et al. (June 2002) Calendar Agents on the Semantic Web. /EEFE
Intelligent Systems. Vol. 17 (3)
* pages 84-86

Form PCT/ISA/210 (continuation of second sheet) (July 2009)

Page 3 of 4

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/CA2011/000719
Patent Document Publication Patent Family Publication
Cited in Search Report Date Member(s) Date

WO2009132442A1

05 November 2009 (05-11-2009) CA2723179A1

CN102016887A
EP2300966A1
I1L208603D0
JP2011521325A
US2010235307A1

05 November 2009 (05-11-2009)
13 April 2011 (13-04-2011)

30 March 2011 (30-03-2011)

30 December 2010 (30-12-2010)
21 July 2011 (21-07-2011)

16 September 2010 (16-09-2010)

US2008154906A1 26 June 2008 (26-06-2008)

US2008154906A1
US2008177870A1

26 June 2008 (26-06-2008)
24 July 2008 (24-07-2008)

CA2734756A1 04 March 2010 (04-03-2010)

CA2734756A1
CN102177514A
EP2329406A1
1L211242D0
US2010057664A1

W02010022505A1

04 March 2010 (04-03-2010)
07 September 2011 (07-09-2011)
08 June 2011 (08-06-2011)

28 April 2011 (28-04-2011)

04 March 2010 (04-03-2010)

04 March 2010 (04-03-2010)

Form PCT/ISA/210 (patent family annex) (July 2009)

Page 4 of 4

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - claims
	Page 66 - claims
	Page 67 - claims
	Page 68 - claims
	Page 69 - claims
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - wo-search-report
	Page 91 - wo-search-report
	Page 92 - wo-search-report

