~

2/21341 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

14 March 2002 (14.03.2002) PCT WO 02/21341 A2
(51) International Patent Classification’: GO6F 17/30 (utility model), DK, DK (utility model), DM, DZ, EC, EE,

EE (utility model), ES, FI, FI (utility model), GB, GD, GE,
(21) International Application Number: PCT/US01/28270 GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KF, KR, KZ,

(22) International Filing Date:
10 September 2001 (10.09.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/658,162 8 September 2000 (08.09.2000) US

(71) Applicant: IMAGE2WEB, INC. [US/US]; 8144 Walnut
Hill, Suite 1050, Dallas, TX 75231 (US).

(72) Inventor: ZURAWSKI, John, C.; 1211 Wilshire Court,
Allen, TX 75002 (US).

(74) Agent: SHOWALTER, Barton, E.; Baker Botts LLP,
2001 Ross Avenue, Suite 600, Dallas, TX 75201-2980
(US).

(81) Designated States (national): AE, AG, AL, AM, AT, AT
(utility model), AU, AZ, BA, BB, BG, BR, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, CZ (utility model), DE, DE

LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN,
MW, MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SK (utility model), SL, TJ, TM, TR, TT, TZ, UA,
UG, UZ, VN, YU, ZA, ZW.
(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,
TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii)) for all designations

as to the applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: METHOD AND APPARATUS FOR SAVING A DEFINITION FOR AUTOMATED DATA PROCESSING

(57) Abstract: A number of items of data are obtained from a data source (12), and are processed and then stored in a data destination
= (16-17). The data items may each include image data, text data, numeric data or some other type of data, or a combination of
these different types of data. The processing of the data is controlled by a project definition (14, 71, 101), which includes several
modules selected from a variety of available modules (Tables 1-4). The modules have input and output ports that are interrelated by
binding information. Each project definition is expressed in a public communication protocol, one example of which is the eXtensible

Markup Language (XML) protocol.

WO 02/21341 PCT/US01/28270

METHOD AND APPARATUS FOR SAVING A
DEFINITION FOR AUTOMATED DATA PROCESSING

TECHNICAL FIELD OF THE INVENTION

This invention relates in general to automated
processing of wmultiple items of data and, more
particularly, to a method and apparatus for saving a

definition which controls such automated data processing.

10

i5

20

25

30

WO 02/21341 PCT/US01/28270

2

BACKGROUND OF THE INVENTION

There are a variety of situations in which automated
processing of a number of data items is desirable. One
specific example of such an application is product
catalogs. Product catalogs, whether in the form of a paper
catalog or an Internet "Web" site, frequently have numerous
pictures which each depict a respective one of the various
items that are available for sale. Many years ago, these
pictures were prepared using optical 'negatives and
photographs. Currently, however, the trend is to maintain
and process these pictures in the form of computer files
containing digital images.

A given paper or on-line catalog will usually include
products from a variety of different manufacturers, and it
is common for each manufacturer to provide its own digital
images. There will typically be variation between the form
of images provided by different manufacturers, for example
in terms of characteristics such as the size, shape,
resolution, tint, and so forth. It is even possible that
the images from a single given manufacturer may have
different forms. Accordingly, in order for the images
throughout a catalog to have a generally similar
appearance, the various images from various sources need to
be processed to adjust characteristics such as size, shape,
resolution, and/or‘tint, so as to bring them into general
conformity with each other.

A further consideration is that a manufacturer's
images do not represent a static situation, because
manufacturers are constantly adding new products with new
images, discontinuing existing products and associated
images, and providing updated images for existing products.
Moreover, there may be other reasons for adjusting images.
For example, with respect to a paper or on-line catalog

intended for use during the Christmas season, there may be

10

15

20

25

30

WO 02/21341 PCT/US01/28270

3

a desire to put a festive frame around each image, such as
a frame of holly leaves and berries. Moreover, stylistic
changes in the images are often desirable.

The traditional approach for carrying out these
various types of image processing tasks has involved manual
adjustments effected on an image-by-image basis, through
use of image processing software requiring extensive
operator interaction. However, this is extremely time
consuming and expensive. Many organizations currently
employ a number of graphic artists to do this work, at
great expense.

A less common approach has been the preparation of a
hard-coded software routine to process images, written in
line-by-line source code. However, these routines are
time-consuming and expensive to generate, are likely to
include errors or '"bugs", and have little flexibility
because they cannot be modified quickly and cheaply.
Moreover, they can only be prepared and executed by a
skilled programmer, rather than by a graphic artist who is
skilled in image processing but has limited computer
skills. It is difficult to find persons who have both
artistic and computer skills, and they comménd large
salaries.

Thus, while these traditional approaches have been
generally adequate for their intended purposes, they have
not been satisfactory in all respects. One specific aspect
of this, as mentioned above, is the fact that, to the
extent automated procedures have previously been developed
to process multiple items of déta, these procedures have
been expressed in the form of hard-coded source céde(An

associated problem is that this source code must be

separately compiled for <various different hardware

platforms on which it will be utilized, through use of

various different compiler programs.

10

15

20

25

WO 02/21341 PCT/US01/28270

SUMMARY OF THE INVENTION

From the foregoing, it may be appreciated that a need
has arisen for a method and apparatus for saving a
definition that controls automated data processing, in a
manner which is efficient and user friendly. According to
the present invention, a method and apparatus are provided
to address this need.

In particular, one form of the present invention
involves providing a set of predetermined function
definitions which are different, and preparing a project
definition expressed in a public communication protocol.
The project definition includes: a plurality of function
portions which each correspond to one of the function
definitions in the set, and which each define at least one
input port and at least one output port that are
functionally related according to the corresponding
function definition; a further portion which includes a
source portion identifying a data source and defining an
output port through which data from the data source can be
produced, and which includes a destination portion
identifying a data destination and défining an input port
through which data can be supplied to the data destination;
and binding information which includes binding definitions

that each associate a respective inpuﬁ port with one of the

-output ports.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

5

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention will
be realized from the detailed description which follows,
taken in conjunction with the accompanying drawings, in
which:

FIGURE 1 is a diagrammatic view of a configuration
which embodies the present invention, and which includes a
data source, two data destinations, and a project
definition;

FIGUREs 2-5 are each a diagrammatic view of a
respective different icon which can be wused to
diagrammatically represent a portion of a project
definition of the type shown in FIGURE 1;

FIGURE 6 is a diagrammatic view similar to FIGURE 1 of
a different project definition according to the present
invention;

FIGURE 7 is a diagrammatic view of a different way of
visually representing the project definition of FIGURE 6;

FIGURE 8 is a diagrammatic view similar to FIGURE 1 of
yet another project definition according to the present
invention;

FIGURE 9 is a block diagram of a system which embodies
the present invention, including the capability to create
and execute project definitions of the type shown in
FIGUREs 1 and 6-8; ‘

FIGUREs 10-12 are each a flowchart showing a
respective sequence of operations carried out by respective
portions of the software within the system of FIGURE 9;

FIGURE 13 is a diagrammatic view of a dialog box which
can be displayed by the system of FIGURE 9 during execution
of a project definition;

FIGURE 14 is a diagrammatic view of a screen which can

be displayed by the system of FIGURE 9 to permit a user to

10

15

WO 02/21341 PCT/US01/28270

6

carry out functions such as creation, modification and
execution of a project definition;

FIGURE 15 is a diagrammatic view of a different way in
which the project definition of FIGURE 8 can be visually
represented;

FIGURE 16 is a diagrammatic view of two modules of a
project definition, in conjunction with binding menus that
are used to define a relationship between the depicted
modules;

FIGURE 17 is a diagrammatic view of a further dialog
box, which can be displayed by ‘the system of FIGURE 9
during creation of a project definition; and

FIGURE 18 is a diagrammatic view of yet another dialog
box, which can be displayed by the system of FIGURE 9

during creation of a project definition.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

7

DETAILED DESCRIPTION OF THE INVENTION

FIGURE 1 is a block diagram of a configuration 10
which embodies features of the present invention, and which
includes a computer subdirectory 12 that serves as a data
gource and contains a plurality of files with images
therein, a project definition 14 that defines how data from
the files in the subdirectory 12 should be processed, and
two computer subdirectories 16 and 17 that serve as data
destinations into which files containing the processed data
will be stored. The project definition 14 is executed by
a computer, in a manner described in more detail later, and
successively obtains the files from the subdirectory 12,
processes each file 12 in a manner described below, and
then deposits the processed file in either the subdirectory
16 or the subdirectory 17. For purposes of the present
discussion, it is assumed that the files in the
subdirectory 12 contain image data, but they could
alternatively contain some other type of data. Also, the
terms directory, subdirectory, folder and subfolder are all
used here to refer to directories. |

The specific project definition 14 shown in FIGURE 1
has been designed to be relatively simple for purposes of
illustrating some basic concepts of the present invention,
and basically will do two things. First, it will take each

file obtained from the subdirectory 12, and evaluate the

. size of the file. With respect to size, it is important to

remember the distinction between the size of an image,
which is measured in pixels in each of the height and width
directions, and the size of the file containing the image,
which is typically measured in kilobytes (KB). Iﬁ FIGURE
1, files above a certain size are to be placed in the
subdirectory 16 after processing, whereas all other files
are to be placed in the subdirectory 17 after processing.

Second, the project definition 14 will take the name of

10

15

20

25

30

WO 02/21341 PCT/US01/28270

8

each file, and superimpose this name on top of the image in
the file. For example, if a given file is named "elephant"
and contains an image of an elephant, the word "elephant"
will be superimposed on top of the image of the elephant.

The subdirectory 12 is not itself a part of the
project definition 14. Subdirectory 12 may be local to the
computer executing the project definition 14, may be
disposed in another nearby computer accessible through a
local area network (LAN), may be disposed in a remote
computer many miles away which must be accessed through the
Internet, or may be accessed in some other manner. The
project definition 14 thus needs to know where to find the
subdirectory 12 and the data therein. Accordingly, the
project definition 14 includes a source module 21, which
includes a definition of where to locate the subdirectory
12, and how to access it. - The source module 21
successively obtains the files from the subdirectory 12.
Each time the source module 21 receives a file from the
subdirectory 12, it outputs the image data from the file
through a first output port, as indicated diagrammatically
at 22, and outputs a text string representing the file name
through a second output port, as indicated diagrammatically
at 23.

Lines of the type shown at 22 and 23 are referred to
herein as binding lines. For convenience, image data is
indicated by a wide double-line binding line, as shown in
22, whereas other types of data are indicated by a thin
single-line binding line, as shown at 23. Alternatively,
different types of binding lines could be distinguished in
some other manner, for example by presenting them in
different colors. Where an input port and an output port
are associated with each other by a binding line, they are

said to be bound to each other.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

9

In the embodiments disclosed herein, an image or other
data element obtained from a data source by a project
definition is processed to completion by the project
definition before the next successive image or data item
from that data‘ source 1is provided to the project
definition. However, it will be recognized that it would
alternatively be possible for a project definition to
simultaneously have several successive images or data
elements at wvarious 1levels of processing, for example
through the wuse of appropriate pipelining techniques.
Conceptually, one way to view the project definition 14 of
FIGURE 1 is that execution proceeds on a module-by-module
basis through the project definition along the double-line
image data binding lines, from the source module 21 to the
branch module 26, and then to either the action module 31
followed by the destination module 37, or alternatively to
the action module 32 followed by the destination module 38.
Another way to view the project definition 14 is that each
of the modules is ready at all times to carry out its
respective function, and does so as soon as all data needed
to carry out that function arrives at the input port(s) of
that module.

Image data that is output at 22 by the source module
21 flows to an input port of a branch module 26. The
branch module 26 checks the size of the file associated
with each image that arrives at its input port. If the
file size for a given image is above a predetermined size,
then the branch wmodule 26 outputs the image data at 27
through a first output port. Otherwise, it outputs the
image data at 28 through a second output port. Tﬁe image
data at 27 flows to an input port of an action module 31,
whereas the image data at 28 flows to an input port of an

action module 32.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

10

For the sake of simplicity, the action modules 31 and
32 in tﬁe example of FIGURE 1 have identical functions.
More specifically, each has a further input port which
receives the text string represented by binding line 23.
As mentioned above, this text string contains the name of
the file associated with the image data. The action
modules 31 and 32 each have the capability to take the text
string and superimpose it on the associated image data, and
then output the result at 33 or 34 through an output port.
The data at 33 flows to an input port of a destination
module 37, and data at 38 flows to an input port of a
destination module 38. Again, for simplicity, destination
modules 37 and 38 are functionally identical.

In this regard, and as was the case with the
subdirectory 12, the subdirectories 16 and 17 may each be
local or remote, and may be accessed in different ways.
Further, one or both of the subdirectories 16 and 17 may be
located in proximity to the subdirectory 12, or may be
remote from the subdirectory 12. Consequently, since the
subdirectories 16 and 17 are not part of the project
definition 14, the project definition 14 needs to know
where to find them and how to access them, so that it knows

where to deposit processed data. Accordingly, the

.destination modules 37 and 38 each include a definition of

where to find the associated subdirectory 16 or 17, and how
to access it. Thus, when the project definition 14 has
finished processing all of the files from the subdirectory
12, the subdirectory 16 will contain a processed version of
the files which are larger than a specified size, and the
subdirectory 17 will contain a processed version of the
remaining files. Further, each of the files in
subdirectories 16 and 17 will contain an image which has

the associated file name superimposed on it.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

11

A brief comment regarding the wuse of the terms
"process" and "sub-process" will help to avoid confusion.
A project definition of the general type shown at 14 in
FIGURE 1 may include two or more mutually exclusive sets of
modules, which are each referred to as a process. In the
particular example of FIGURE 1, for the sake of simplicity,
the project definition 14 includes only one process, which
contains all of the modules 21, 26, 31-32, and 37-38. This
process has two portions, which are respectively disposed
above and below the broken line 42 in FIGURE 1.

The modules 21, 23, 31 and 37 which are above the
broken line 42 are referred to herein as a main process,
and the modules 32 and 38 which are below the broken line
42 .are referred to as a sub-process. Technically, the main
process and the sub-process are each a respective sub-
process of the overall process. However, the first sub-
process in every process is mandatory, and is always the
starting point for execution of the process, and thus it is
referred to as the main "process" rather than as the main
"sub-procesgs", even though it is actually a sub-process of
the overall process. The presence of one or more
additional sub-processes is entirely optional, and
execution may or may not be transferred to each, depending
upon factors such as whether branch modules are present and
the particular data which is being processed.
Consequently,>they are referred to as sub-processes. An
input or output port of a given module can be bound to
ports of other modules within any of the sub-processes of

the same process, but cannot be directly bound to ports of

" modules in other processes of the same project definition.

Where a branch module in a main process is capable of
routing data to a sub-process, the data is always
transferred to the first module in that sub-process, rather

than to an intermediate module partway along the sub-

10

15

20

25

30

WO 02/21341 PCT/US01/28270

12

process. The same is true where a branch module in a sub-
process is capable of transférring data to a different sub-
process. A further characteristic in the disclosed
embodiments is that branch modules are allowed to route
data to a later sub-process, but never to an earlier sub-
process or the main process. Moreover, while one output
port of a branch wmodule can route data to the next
successive module in the current sub-process (which may be
the main process), the other output port is not permitted
to route data to a module in the current sub-process, but
must route data to a different sub-process. However, it
will be recognized that an alternative embodiment could
accommodate branch modules having the capability to route
data to an earlier sub-process (which may be the main
process), to a module partway along a different sub-process
(which may be the main process), or to two modules which
are both within the current sub-process. In fact, the
alternative embodiment need not conceptually organize
modules of an overall process into groups treated as
respective sub-processes.

As discussed above, the branch module 26 will route
each image either at 27 to the action module 31 or at 28 to
the action module 32. If the data is routed to action
module 31, then action module 31 and destination module 32
operate on the image data, while action module 32 and
destination module 38 remain idle. Alternatively, if an
image were instead to be routed at 28 to the action module
32, then action module 32 and destination module 38 would
operate on the image data, while action module 31 and
destination module 37 remained idle. Thus, in the example
of FIGURE 1, the branch module 26 determines whether
processing of each image will be carried out by continuing
along the main process, namely in action module 31 and

destination module 37, or will be carried out in the sub-

10

15

20

25

30

WO 02/21341 PCT/US01/28270

13

process, namely in action module 32 and destination module
38.

The project definition 14 in FIGURE 1 is a simple
example, but has been configured to show at least one

example of each of the four types of modules that are

' recognized in the disclosed embodiments of the present

invention. In other words, the disclosed embodiments of
the present invention recognize source modules, one example
of which appears at 21, branch modules, one example of
which appears at 26, action modules, two examples of which
appear at 31 and 32, and destination modules, two examples
of which aﬁpear at 37 and 38. As reflected by the brackets
along the bottom of FIGURE 1, branch modules and action
modules are sometimes referred to collectively herein as
function modules. Source modules deal with the question of
where to find the data to be processed, branch modules deal
with the question of which data should and should not be
processed in a specified manner, action modules deal with
the question of what processing should be performed on the
data, and destination modules deal with the question of
where to put the processed data.

In order to put the present invention into
perspective, it is helpful to understand one possible
application for a project definition of the type shown at
14 in FIGURE 1. Product catalogs, whether in the form of
a paper catalog or an Internet "Web" site, frequently have
numerous pictures each depicting a respective one of the
various items that are available for sale. Many years ago,
these pictures were prepared using optical negatives and
photographs. Currently, however, the trend is to maintain
and process these pictures in the form of computer files
containing digital images.

A given paper or on-line catalog will usually include

products from a variety of different manufacturers, and it

10

15

20

25

30

WO 02/21341 PCT/US01/28270

14

is common for each manufacturer to provide its own digital
images. There will typically be variation between the form
of images provided by different manufacturers, for example
in terms of characteristics such as the size, shape,
resolution, tint, and so forth. It is even possible that
the images from a given manufacturer may have different
forms. Accordingly, in order for the images throughout a
catalog to have a generally similar appearance, the various
images from various sources need to be processed to adjust
characteristics such as size, shape, resolution, and/or
tint, so as to bring them into general conformity with each
other. A further consideration is that a manufacturer's
images do not represent a static situation, because
manufacturers are constantly adding new products with new
images, discontinuing existing products and their images,
and providing updated images for existing products.
Moreover, there may be other reasons for adjusting images.
For example, with respect to a paper or on-line catalog
intended for use during the Christmas season, there may be
a desire to put a festive frame around each image, such as
a frame of holly leaves and berries. Moreover, stylistic
changes in the images are often desirable.

The traditional approach for carrying out these
various types of image processing tasks has involved manual
adjustments effected on an image-by-image basis, through
use of image processing software requiring extensive
operator interaction. However, this is extremely time
consuming and expensive. Many organizations employ a
number of graphic artists to do this work, at great
expense.

A less common approach has been preparation of a hard-
coded software routine to process images, written in line-
by-line source code. However, these routines are time-

consuming and expensive to generate, are likely to include

10

15

20

25

30

WO 02/21341 PCT/US01/28270

15

errors or "bugs", and have little flexibility because they
cannot be modified quickly and cheaply. Moreover, they can
only be prepared and executed by a skilled programmer,
rather than by a graphic artist who is skilled in image
processing but has limited computer skills. It is
difficult to find persons who have both artistic and
computer skills, and they command large salaries.

In contrast to these known approaches, a project
definition of the type shown at 14 in FIGURE 1 provides the
capability to automate image processing so that a large
number of images can be automatically and rapidly processed
in a defined manner, and at far less expense than would be
involved with the traditional and common approach of manual
processing. Further, and as described in more detail
later, the present invention provides a simple and user-
friendly approach for creating and wmodifying project
definitions of the type shown at 14 in’ FIGURE 1, thereby
permitting graphic artists who have limited computer skills
to easily and accurately create a project definition while
substantially avoiding the 1likelihood of bugs, with far
less overall time and expense than is involved with the
known approaches discussed above. The advantages of the
present invention over the known approaches will become
even more apparent as the present invention is discussed in
greater detail below. While the foregoing example of
catalog preparation focused on processing of image data,
and while the disclosed embodiments .involve primarily the
processing of image data, the present invention is also
advantageous for applications which involve processing of
other types of data. .

The foregoing discussion of FIGURE 1 described one
specific example of each of the source, branch, action and
destination categories of modules. The present invention

actually recognizes several types of modules in each

10

15

20

25

30

WO 02/21341 PCT/US01/28270

16

category. More specifically, TABLE 1 describes several
different types of source modules, TABLE 2 describes
several different types of branch modules, TABLE 3

describes several different types of action modules, and

"TABLE 4 describes several different types of destination

modules. Some of the module types set forth in TABLES 1-4
could be omitted, or additional module types could be
included, without departing from the present invention.
The module types set forth in TABLES 1-4 are referred to
herein as standard module types. As discussed later, the
present invention also provides for the creation of custom
module types, for example through modification of one of
the standard module types set forth in TABLEs 1-4. The
resulting custom module type can either be substituted for
the standard module type from which it was derived, using
the same name, or can be used to supplement the standard
module types, using a unique new name.

A few comments are appropriate regarding TABLEs 1-4.
First, the present invention permits the use of virtual
paths, where a table is provided to associate each virtual
path with an actual.path. Where a project definition uses
a virtual path term, each computer on which that project
definition may be executed would include a respective table
entry to associate that virtual path with a respective
actual path. Thus, the project definition can be executed
without change on each such computer, but will use a
different actual path on each computer wherever the virtual
path term appears, without any need to actually modify the
path information within the project definition itself.

A further consideration is that, in the disclosed
embodiments, project definitions recognize vafious types of
data, including image data, numeric data in a floating
point or "float" format, and string data in the form of a

series of text characters. In the discugsion which

10

15

20

25

30

WO 02/21341 PCT/US01/28270

17

follows, references to data types are typically preceded by
the prefix "em", such as ‘'"emImage", "emFloat", or
"emString". This is an arbitrary prefix, which has been
used to facilitate implementation of the disclosed
embodiments. For example, if data is received from an
external source with an indication that it includes data of
a type "emFloat", it can be assumed that it conforms to the
appropriate format. In contrast, if the data type is
merely indicated to be "float", it would be necessary to
evaluate the associated data in an attempt to determine
which of wvarious formats for floating point data it
conforms to, but even then it may not be possible to tell.

A feature of the present invention is that many of the
module definitions in TABLEs 2 through 4 have input ports
configured so that the input port will accept data in
various formats and, if that data ig not in the format
preferred by that input port, the input port will
automatically convert the data to its preferred format.
This feature is referred to as data matching. For example,
if a number in a floating point format is supplied to an
input port which expects data in a string format, the
floating point wvalue will be converted to a text string
which represents the number. Input ports which have this
capability are identified in TABLES 1-4 as having a data
type of "emVariant". This does not mean that actual data
can be formatted in the "emVariant" format. Instead,
"emVariant" refers only to the capability of the input port
to be bound to an output port that produces data conforming
to other valid data types, such as "emFloat" or "emString".

With respect to image data, it should be unaerstood
that data for a given image may include two or more objects
and/or layers. For example, an image may have two layers
which are each an object. Similarly, if a mask is created

for an image, the mask will be added to the image data in

10

15

20

25

WO 02/21341 PCT/US01/28270

18

the form of a separate layer. Also, if text is
superimposed onto an image, for example as discussed above
in association with the action modules 31-32 in FIGURE 1,
the text will be added as an object, separate from other
pre-existing objects of the image data. All the objects
associated with a given image can be combined into a single
object, through use of a "Flatten Image" definition which
is set forth in TABLE 3.

In .general, the definitions of source, branching,
action and destination modules in TABLEs 1-4 are believed
to be self-explanatory. However, there is one definition
as to which a supplementary comment may be helpful. In
this regard, the "Database Access" definition in TABLE 1 is
a source module which obtains data in a manner that
includes accessing a database. The database will include
a table that has a plurality of rows called records, which
each include a plurality of columns called fields. If the
data being retrieved is string data, it may be retrieved
directly from one of the fields in the table of the
database. On the other hand, if the data being retrieved
includes image data, the image data will typically be
stored separately from the database, for example within
files in a subdirectory, and one field in the table must

contain a string with a complete path to the image data.

10

15

20

25

WO 02/21341 PCT/US01/28270

19

TABLE 1 - SOURCE DEFINITIONS

DATABASE ACCESS

Uses a database table or query to identify data to
process. Unless processing strings, one field in the
table must contain a string with a complete path to the
image data. May optionally select one or more
additional fields that will be output separately (for
binding by subsequent functions). The database table
or query must already exist and be defined as an ObBC
(Open DataBase Connectivity) connection prior to using
this function.

Variable Name Port Type Degcription

ImageOut Output emImage Image data.

Specified Field Output emString Each selected field
is converted to
string output, and

retains field name.

FILE BROWSER

Adds one file at a time to a list of images to process.
The resulting list is saved, and is subsequently used
during execution to automatically retrieve the
specified images in sequence.

Variable Name Port Type Desqription

ImageOut Output emImage Image data.

WO 02/21341 PCT/US01/28270

20

INTERNET FILES
Collects all of the image files from a specified URL
(Universal Resource Locator) address. Optionally, the
function will continue to other pages to which the

5 specified site is linked (from one to five levels, as
specified by the Depth setting). By default, it only
follows links within the same domain name, but this can
optionally be disabled.

Variable Name Port Type Description

10 ImageOut Output emImage Image data.

LOCAL FILES
Indicates a folder or a virtual path to where images to
be processed are stored. Can select whether or not

subfolders (subdirectories) of the indicated folder

15 will be accessed.
Variable Name Port Type Description
ImageOut Output emImage Image data.
AltText Output emString Alternate text of

the image on that

20 page.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

21

TABLE 2 - BRANCHING DEFINITIONS

ALWAYS JUMP

Unconditionally forces execution from the current

process to the start of a specified sub-process.

Variable Name Port Type Description
Imageln Input emlmage Image data.
ImageOut Output emImage Image data.
COLOR TYPE

Restricts the processing of images in the current
process to only those color types specified. The
default setting is that all color types are processed.
For non-qualifying images, execution can optionally be

diverted to a sub-process.

Variable Name Port Type Description

ImagelIn Input emImage Image data.

ImageOutl Output emImage Image data (current
process) .

ImageOut2 Output emlmage Image data (sub-
process) .

FILE FORMAT

Restricts processing of image files in the current
process to only those file types specified. The
default setting is that all image file types are
processed. For non-gqualifying images, execution can

optionally be diverted to a sub-process.

Variable Name Port Type Description
ImageIn Input emImage Image data.
ImageOutl Output emlImage Image data (current
process) .
‘ImageOut2 Output emImage Image data (sub-

process) .

10

15

20

25

30

WO 02/21341 PCT/US01/28270

22

FILE SIZE

Restricts the processing of images in the current
process to only those files that fall within a
specified file size range. An upper limit and/or a
lower limit may be set. The default setting is that
all file sizes are processed. For non-qualifying

images, execution can optionally be diverted to a sub-

process.

Variable Name Port Type Description

ImageiIn Input emImage Image data.

ImageOutl Output emlImage Image data (current
process) .

ImageOut2 Output emImage Image data (sub-
process) .

INTERACTIVE

Pauses execution and causes display of a dialog box
which prompts a person for a decision on which branch
to take, if any. Allows a default directive to be
defined (which may be to continue the current process,
branch to a sub-process, or terminate all execution).
As each image is processed, the list of available
options is presented, with the default being applied if
an "OK" option is selected. Selecting a "Don't show me
this again" checkbox causes the currently selected
option to be automatically applied to each subsequent
image without interaction. For non-qualifying images,

execution can optionally be diverted to a sub-process.

Variable Name Port Type Description

ImageIn Input emImage Image. data.

ImageOutl Output emImage Image data (current
process) .

ImageOut2 Output emImage Image data (sub-

process) .

10

15

20

25

30

WO 02/21341 PCT/US01/28270

23

STRING FILTER

Restricts the processing of images in the current
process to only those files that include or exclude (as
specified) one or more specific string values. The
condition is met if any of the specified strings match
any part of string data in the image. Matching is not
case sensitive. For non-qualifying images, execution

can optionally be diverted to a sub-process.

Variable Name Port Type Description

Imageln Input emImage Image data.

ImageQutl Output emlImage Image data (current
process) .

ImageOut2 Output emImage Image data (sub-
process) .

Source Input emString Source of the string
input.

WIDTH HEIGHT

Restricts processing of images in the current process
to only those images that fall with specified height
and/or width parameters (és measured in pixels). The
default sefting is that there are no restrictions. To
set a range having an upper and lower limit, use two
successive Width Height functions. For non-qualifying

images, execution can optionally be diverted to a sub-

process.

Variable Name Port Type Description

ImageIn Input emImage Image data.

ImageOutl Output emImage Image data (current
process) .

ImageOut2 Output emImage Image data (sub-

process) .

10

15

WO 02/21341

24

PCT/US01/28270

WILDCARD

represent one or more characters.

process.

Variable Name Port Tvpe
Imageln Input emlImage
ImageOutl Output emImage
ImageOut2 Output emImage

Specifies the images to include or exclude from
processing in the current process, based on the file
name. Standard wildcards may be used to define the
condition, including a question mark (?) to represent
any single character, and/or an asterisk (*) to

For non-qualifying

images, execution can optionally be diverted to a sub-

Description
Image data.

Image data (current
process) .

Image data (sub-

process) .

WO 02/21341 PCT/US01/28270

25

TABLE 3 - ACTION DEFINITIONS

AUTO SELECT

Attempts to mask the background (or foreground) of an

5 image. It looks at eight points (the four image
corners, and the center of each side). If three or
more points have substantially the same color, it is
assumed to be the background color. The resulting mask
corresponds to points throughout the image that match
10 the background color, within a "Tolerance" setting.
Small matching patches within the non-background
portion may be ignored by enabling a "Remove Holes"
option. Successful mask creation causes execution to

continue in the current process. Otherwise, execution

15 can optionally continue for the image in a sub-process.
Variable Name Port Type Description
Imageln : Input emImage ‘ Image data.
ImageOutl Output emImage Image data (current
process) .
20 ImageOut2 Output emImage Image data (sub-

process) .

10

15

20

25

WO 02/21341 PCT/US01/28270

26

BEVELER .

Produces a three-dimensional effect by adjusting the
border of the image so that it appears to be beveled.
In addition, it allows setting the apparent direction
of a light source to produce a shadow effect in regard
to the bevel. Parameters include: the percentage of
the image to be beveled; the smoothness of the edge of
the bevel; the intensity of the light effect overall;
the intensity of the light effect along the bevel edge
closest to the light source; and the apparent depth of
the bevel. A sample image is displayed to show an
example of the effect that the current parameters will

have on an image.

Variable Name Port Type Description
ImageIn Input emlmage Image data.
ImageOut Output emImage Image data.
BLUR IMAGE

Blurs a specified image or imagé object to a selected
degree, using a selected one of a "General Blur" or
"Gaussian Blur" technique. The "General Blur" may be
configured to blur only hard edges, soft edges, or
both. A "Lightness" setting can be enabled to smooth
the image without affecting the colors. The "Gaussian
Blur" has less versatility, but can have a much more
pronounced blur effect. A sample image is displayed to

show how the current setting would affect an image.

Variable Name Port = Type Description
Imageln Input emlImage Image data.

ImageOut Output emImage Image data.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

27

CALCULATED EXPAND

Expands the shortest side of the image to match the
longest side of the image. The resulting image will be
square, with the original image centered in it. The

added area will be filled with aASpecified color.

Variable Name Port Type Degcription
Imageln Input emImage Image data.
ImageOut Output emImage Image data.
CALCULATOR

Image data passes through this function unchanged.

This function performs one or more mathematical
computations defined by specified equations, and
outputs the results. Before being converted to a
string, output is in the form of a floating point‘
format unless a "Fix" or "Int" option is selected.
"Fix" rounds a negative number up to the nearest whole
number, while "Int" rounds a negative number down.

Both treat positive numbers the same, by rounding down
to the nearest whole number. Equations may be entered
manually in an eguation workspace, or by clicking
calculator controls. Variables can be statically
defined at design time, dynamically obtained at input
ports, or both. Integers and numeric strings from
input ports are automatically converted to floating
point values. There are eight temporary variables
which can store the value of an interim computation for
use in a subsequent equation. It is possible to
perform a conditional statement that effects branching,
where execution for each image continues in either the

current process or a sub-process, depending on the

condition.
Variable Name Port Type Description
Imageln Input emlImage Image data.

ImageOutl Output emlmage Image data (current

10

15

20

25

WO 02/21341 PCT/US01/28270

28
_ process) .
ImageOut2 Output emImage Image data (sub-
process) .
Invall(2,...8) Input emFloat Any integer,
floating point or
numeric string
value.
Outvali(2,...8) Output emString Calculated value
Templ (2, ...8) --- emFloat Used internally for

temporary storage.

CROP

Trims away undesired portions of an image. The
"Specified Size" method indicates in pixels how much of
the image should remain after processing. The
"Specified Border" method indicates how much of one or

more borders is to be trimmed away.

Variable Name Port Type Description
ImageIn Input emImage Image data.
ImageOut Output emImage Image data.

CROP TO MASK

Trims an image to a predefined mask, such as may exist

for certain TIF images. There are no user defined

parameters.
Variable Name Port Type Description
ImageIn Input emImage Image data.

ImageOut Output emImage Image data.

WO 02/21341 PCT/US01/28270
29

MISSING AT THE TIME OF THE PUBLICATION

WO 02/21341 PCT/US01/28270

30

application, and then returns the processed image from
that application. Only commands that do not prompt the

user for input may be used.

Variable Name Port Type Description
5 ImageIn Input emImage Image data.
ImageOut Output emImage Image data.

FEATHER MASK

Produces a transitional feathering effect between the
mask and the image. Which way the feathering occurs
10 depends on a "Direction" setting. Feathering
directions may be "Inside", "Outside", or "Center",
from the perspective of the mask. The "Edge" setting
for the mask determines how abrupt a transition is
made, and may be "Normal", "Hard", of "goft". The

15 *Amount® of feathering is measured by the length in
pixels needed to make the transition. The larger the

"Amount", the smoother the transition.

Variable Name Port Type Degcription
ImagelIn Input emImage Image data.

20 ImageOut Output emImage Image data.

10

15

20

25

WO 02/21341 PCT/US01/28270

31

FILE PATH INFO

Image data passes through this function unchanged.
This function supplies several output ports with
information derived from path information associated

with the image.

Variable Name Port Type Description
ImageIn Input emImage Image data.
ImageOut Output emImage Image data.
DriveOrMachine Output emString The path information

up to the first
single backslash.
WholePath Output emString Path information
' from after the first
single backslash to
before the last
backslash.
PathLevell (2...) Output emString A respective path
level name, each of
which is information
from between two

single backslashes.

Filename Output emString Filename without the
extension.

Extension Output emString File name extension.

FILL

Fills the active object with a selected color.

Variable Name Port Type Description
Imageln Input emImage Image data.

ImageOut Output emImage Image data.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

32

FLATTEN IMAGE

Combines multiple objects into one image. An image
mask is one example of a separate object or layer.
Separate objects or layers are also created by
functions such as Text Stamper, Image Stamper, Drop
Shadow, and Image Watermarking. Unless multiple
objects are flattened together, certain subsequent
functions affect only the last active object rather
than all objects. For example, if no Flatten Image
function is used, a Drop Shadow function applied after
a Text Stamper function will apply the shadow only to

the stamped text, and not to the image.

Variable Name Port Type Description
ImageIn Input emImage Image data.
ImageOut Output emImage Image data.
FLIP

Provides a mirror image of an image, either vertically

and/or horizontally.

Variable Name Port Type Description
Imageln Input emImage Image data.
ImageOut Output emImage Image data.

IMAGE EDGES

Places a frame around an image. The color and style of
the frame can be specified. Some frames have a

separate inset edge as well. Selecting a frame with an
inset edge results in an automatic prompt for selection

of a color for the inset edge.

Variable Name Port Type Desgcription
Imageln Input emImage Image data.

ImageOut Output emImage Image data.

WO 02/21341 PCT/US01/28270

33

IMAGE INFO

Image data passes through this function unchanged.
This function outputs information regarding the image.
If a subsequent function modifies the image, a new

5 Image Info function must be executed in order to
provide accurate information. This function has no

user defined settings.

Variable Name Port Type Description
ImagelIn Input emImage Image data.

10 ImageOut Output emImage Image data.
ImageName Output emString File name of image

with the extension.
ImagePathAndName Output emString Complete path and

file name.

15 ImageW Output emString Width of image in
pixels.
ImageH Output emString Height of image in
pixels.
ImageRes Output emString Image resolution in

20 dpi.

10

15

20

25

WO 02/21341 PCT/US01/28270

34

IMAGE OBJECTS

Image data passes through this function unchanged.
This function outputs objects which are respective
parts of the image data. This function has no user

defined settings.

Variable Name Port Type Description
ImageIn Input emImage Image data.
ImageOut Output emImage Image data.
Layerl (2, 3...) Output emImage Each image layer is

supplied to a

respective output.

Mask Output emImage A mask object (if
present) .
ImageName Output emString File name of image

with the extension.

IMAGE STAMPER

Places the image being processed onto a selected
background image. The image size, image position,
merge mode, transparency, and feathering effect can be
specified. A preview window shows where the image is
placed on the background. If Image Stamper is applied
to a mask object, the mask object is deleted and the

added image object becomes the active object.

Variable Name Port Type Description
Imageln Input emImage Image data.

ImageOut Output emlImage Image data.

WO 02/21341 PCT/US01/28270

35

IMAGE TINT
Applies a tint effect to the image. The hue and
saturation can be specified. A preview window shows

the effect of the specified parameters on a sample

5 image. .
Variable Name Port Type Description
ImageIn Input emImage Image data.
ImageOut Output emImage Image data.

IMAGE WATERMARKING

10 Superimposes a selected image over the image being
processed. By adjusting the transparency level, this
can have the effect of stamping each image with a
background watermark. If the preceding layer added to
the image is a mask layer, then the added watermark is

15 subject to the mask.

Variable Name Port Type Description
Imageln Input emImage Image data.
ImageOut Output emImage Image data.
INVERT

20 Produces a color negative of an image. There are no

user settings for this function.

Variable Name Port Type Degcription
ImageIn Input emImage Image data.

ImageOut Output emImage Image data.

10

i5

20

25

30

WO 02/21341 PCT/US01/28270

36

NUMERIC FORMAT

Image data passes through this function unchanged.
This function reformats a numeric string into one of
several common formats (such as those provided in a
program available under the tradename VisualBasic from
Microsoft Corporation of Redmond, Washington) .
Available formats include "Currency", "Fixed",

"Yes/No", and "True/False".

Variable Name Port Type Description

ImageIn Input emlImage Image data.

ImageOut “ Output emImage Image data.

InValue Input emString Numeric string to
format.

OutValue Output em8tring The formatted
string.

OBJECT ATTRIBUTES

Adjusts how the last added object blends with the
image, such as objects added by the Image Stamper,
Image Watermarking, and Text Stamper functions. The
merge mode, transparency, and feather of the object can
be specified (which overrides pre-existing values for

these settings).

Variable Name Port Type Description
ImageIn Input emlImage Image data.
ImageOut Output emImage Image data.
RESOLUTION

Modifies the resolution of the image, in pixels per

inch.
Variable Name Port Type Description
Imageln Input emImage Image data.

ImageOut Output emImage Image data.

10

15

20

25

WO 02/21341 PCT/US01/28270

37

ROTATE
Rotates the image by the specified number of degrees
(based upon a 360 degree circle) in a specified

direction (clockwise or counter-clockwise).

Variable Name Port Type Description
Imageln Input emImage Image data.
ImageOut Output emlImage Image data.
SEND EMATIIL

Image data passes through this function unchanged. If
a’specified condition is met, a specified message is
sent to a specified email address. The specified
condition may be selected from‘one of several options.
For example, the condition may be met when a specified

number of images have been processed.

Variable Name Port Type Description
Imageln Input emImage Image data.
ImageOut Output emImage Image data.
SIZE

Adjusts the width and/or height of the image in pixels.
If "Proportional Sizing" is enabled, the width and

height aspect ratio is maintained.

Variable Name Port Type Description
Imageln Input emImage Image data.
ImageOut Output emlImage Image data.
TempString Input emString Any available text

string.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

38

STRING BUILDER

Image data passes through this function unchanged.

This function outputs one or more strings which are
each a combination of strings that are either
internally pre-defined or obtained from input ports.
Combining occurs according to a selected one of several
predefined definitions, or according to a custom (user-
specified) definition. One of the internally defined
strings can effect sequencing. Definitions for
combining strings use the following syntax: Enclose
variables and formulas in curly braces: "{MyVariable}".
Any characters outside curly braces are placed in the
resulting string as literals. Keywords are indicated
by brackets, and must also be within a set of braces

"{ [Keyword] }". Available keywords include ImageName,
ImageWidth, ImageHeight, and Seq. ImageName,
ImageWidth, and ImageHeight work the same as their
counterparts from Image Info, without any need for
prior execution of the Image Info function. The Seqg
keyword defines a sequence that increments for each
image processed. An example is Basename{ [Seq.], X, Y,
Z}, where X indicates the numeral/character to start
from (e.g. "1" or "A"), Y indicates the increment step
(e.g. "1"), and Z defines the number of characters in

the sequence portion (e.g. "3").

Variable Name Port Type Description

Imageln Input emImagg/_ Image data.

ImageOut Output emImage Image data.

StrInl (2,...) Input emString Any available text
string.

Stroutl (2,...) Output emString A resulting output

string from the

String. Builder.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

39

TEXTSTAMPER

Applies a text object onto an image. The text can be
defined in the function itself, or obtained through an
input port. TextStamper provides control over the
font, size, color, rotation, transparency, and position
of the text. Text Stamper adds only one line of text;
to add multiple lines use successive Text Stamper
functions. If the preceding layer added to the image
is a mask layer, then the added text is subject to the

mask.

Variable Name - Port Type Description
ImageIn Input emImage Image data.
ImageOut Output emImage Image data.

TextIn Input emString Any available text

string.

THUMB MAKER

Produces a thumbnail version of the image picture. The
size can be sgselected to be one of three common pre-

defined thumbnail sizes, or a custom defined size.

Variable Name Port Type Description
ImagelIn Input emImage Image data.
ImageOut Output emImage Image datacx

UNSHARP MASK

Sharpens an image, to an extent determined by three

parameters: Radius, Strength, and Threshold.

Variable Name Port Type Description
ImagelIn Input emImage Image data.
ImageOut Output emImage Image data.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

40

TABLE 4 - DESTINATION DEFINITIONS

DATABASE OUTPUT

Uses a database table or query to identify where to
deposit processed data. Unless depositing only
strings, one field in the table must contain a string
with a complete path to the destination for the image
data. May optionally select one or more additional
fields in which separate string input will be
deposited. The database table or query must already
exist and be defined as an ODBC (Open DataBase
Connectivity) connection prior to using this function.

Variable Name Port Type Description

ImageIn Input emImage Image data.

Specified Field Input emString Each selected field
is filled with a
respective string
from an input port
with the field name.

DESTINATION FOLDER

Specifies where an image is to be placed when it is
saved as output. If the source of the image (see
TABLE 1) included sub-folders, mirroring of'the sub-
folder structure may optionally be enabled. If a
specified folder does not currently exist, it is
created automatically. If a project uses virtual
paths, the destination may be specified here as a
virtual path. This function must precede the File
Saver function in every project, unless the intent is

simply to preview images without saving them.

Variable Name Port Type Description
ImageIn Input emImage Image data.

ImageOut Output emImage Image data.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

41

FILE NAMER

Associates a file name with a processed image, where
the file name is based on a string received through an
input data port. Alternatively, the file name may be
based on several strings received through multiple
input ports, where these strings are concatenated with

a specified separator character.

Variable Name Port Type Description
Imageln Input emlmage Image data.
ImageOut Output emImage Image data.
Inputl(2,3,etc.) Input emString Any available

emString output

ports.

FILE SAVER

Saves the current image, including selection of a file
format in which the image is to be saved. This may be
different from the original format of the image,
allowing conversion of file types. If the selected
file type has options, an "Options" button is enabled,
and may be clicked so that the additional settings can
be adjusted to other than default settings. If no
Destination Folder function precedes this function,
data is saved in the same directory as the source file,
and overwrites the original file if no change was made

to the file name.

Variable Name Port Type Description
Imageln Input emImage Image data.
FTP SAVE

Saves the current image through a network to a
specified location, including selection of a file
format in which the image is to be saved. This may be
different from the original format of the image,

allowing conversion of file types. If the selected

10

15

20

25

30

WO 02/21341 PCT/US01/28270

42

file type has options, an "Options" button is enabled,
and may be clicked so that the additional settings can
be adjusted to other than default settings. The
transfer through the network is made according to the
File Transfer Protocol (FTP).

Variable Name Port Type Description

ImageIn Input emImage Image data.

IMAGE SEQUENCER

Uses a specified base name to give sequenced names to

successive files processed, in a manner similar to the

"Seq" option of the String Builder function.

Variable Name Port Type Description
Imageln Input emImage Image data.

ImageOut Output emImage Image data.

In FIGURE 1, the modules within the project definition
14 are each shown as a rectangﬁlar box with a respective
label of "source", "branch", "action", or "destination".
Alternatively, however, within the scope of the present
invention, these module types may each be visually
represented by a respective icon. For example, FIGUREs 2-5
show icons respectively representing a source module, a
branch module, an action module, and a destination module.
The particular icons shown in FIGUREs 2-5 are exemplary
icons used in the disclosed embodiments, and it will be-
recognized that a variety of other icons could
alternatively be used.

FIGURE 6 is a block diagram of a very simple project
definition 71, which will be used to demonstrate the format
in which project definitions are stored for purposes of the
disclosed embodiments of the present invention. The
project definition 71 includes one source module 72, and
two action modules 73 and 74. The binding lines for image

data are indicated at 77 and 78, and a binding line for

10

15

20

25

30

WO 02/21341 PCT/US01/28270

43

string data is indicated at 79. In order to keep the
example simple, the project definition 71 does not include
any branching or destination modules. It can be considered
to be a project definition which is in the process of being
created, but is not yet complete.

In the project definition 71, the source module 72 is
a Database Access module. This particular Database Access
module obtains image data by effecting a predefined query
to a table in a database, and by obtaining from respective
fields in each record of the table a first string which
defines the path to the actual location of a file
containing a respective image, and a second string which
represents a corresponding price. The Database Access
module 72 then uses each first string to retrieve the
corresponding image, which is output at 77, while
outputting at 79 for each image the corresponding second
string which represents a price. Thus, the module 72
successively outputs a number of images and associated
prices.

The action module 73 is a Fill module, which adds
color to an active object of the image, and then outputs at
78 the modified image data. The action module 74 is a Text
Stamper module, which superimposes onto the image data
received at 78 the text string received at 79. As noted
above, this text string represents a price. The text will
be added as a new and further object in the image data,
which thereafter becomes the active objectl

The project definition 71 of FIGURE 6 can be
represented visually in other ways. For example, FIGURE 7
is a diagrammatic view showing the same project definition
71, but with a different visual appearance. In FIGURE 7,
there are three pipe sections 82-84 arranged end-to-end, so
as to collectively give the appearance of a pipeline

through which image data and/or other data can flow. The

10

15

20

25

30

WO 02/21341 PCT/US01/28270

44

pipe section 82 represents the Database Access module, the
pipe section 83 represents the Fill module, and the pipe
section 84 represents the Text Stamper module. With
respect to the binding lines 77-78 in FIGURE 6, which
represent image data, there are no corresponding binding
lines in FIGURE 7, because the end-to-end relationship of
the pipe sections is representative of the flow of image
data from module to module. With respect to the binding
line 79 of FIGURE 6, which represents text string data, it
has been arbitrarily omitted in FIGURE 7, in order to
emphasize that this type of binding line can optionally be

included or excluded from a view such as that shown in

FIGURE 7. Where the binding line is excluded, the text

string data may be considered to be flowing through the
pipeline with the image data. The modules 82-84 of FIGURE
7 each have in the middle thereof an icon which is
different from the icons shown in FIGUREs 2, 4 and 6, in
order to make the point that the invention permits the use
of various different icons.

One feature of the present invention is that each
project definition, such as those shown at 14 and 71 in
FIGUREs 1 and 6, is stored in a form which is expressed in
a public communication protocol. The public communication
protocol wused in the disclosed embodiments is the
eXtensible Markup Language (XML) protocol, which is well
known in the industry. However, some other public
communication protocol could alternatively be used.
Referring to TABLE 5, the right column shows how the
project definition 71 of FIGURE 6 would be expressed in the
XML protocol, according to the disclosed embodimenté of the
invention. For convenience, various levels of indentation
have been provided in order to make the XML information
more readable, but the indentation is not intended to

suggest that the actual XML file includes characters to

10

15

20

25

30

WO 02/21341 PCT/US01/28270

45

effect such indentation. The line numbers presented in the
left colﬁmn of TABLE 5 are not part of the XML expression
of the project definition, but instead have been added to
sequentially number the lines of the XML definition, in
order to facilitate an explanation of the XML information,
which is set forth below. For readability and convenience,
some single lines of the XML file are shown as two or more
lines in TABLE 5, and the line numbers added in the left
column help show where this has occurred. Much of TABLE 5
is believed to be generally self-explanatory. Accordingly,
the following discussion does not address every line in
TABLE 5, but instead offers comments regarding only
selected lines, as appropriate. ‘

‘In this regard, 1line 1 shows that the project
definition 71 has been arbitrarily given the name "Project
Name". Line 2 refers to a group name, but the concept of
groups has been included for a future purpose which is not
relevant to an understanding of the present invention, and
groups are therefore not discussed here.

Line 3 indicates that the process name has arbitrarily
been set to be "First Procegs". In an XML definition of
the type shown in FIGURE 5, one process is defined first in
its entirety, and then any other processes are each defined
in their entirety, in a sequence. Within each process, the

sub-processes are defined in seqguence, with the wmain

process being defined first in its entirety, after which

the sub-processes (if any) are each being defined in their
entirety, in sequence. 1In the simple project definition 71
shown in FIGURE 6, of course, the project definition
includes only one process, which in turn includes only one
sub-process, namely the main process. |

Line 4 of TABLE 5 identifies the beginning of a module
1ist,‘which is a sequential listing of all modules in the

main process portion of the process. As shown in FIGURE 6,

10

15

20

25

30

WO 02/21341 PCT/US01/28270

46

the main process of the project definition 71 has only the
three modules 72-74. The Database Access module 72 is
defined in lines 5-30 of TABLE 5, the Fill module 73 is
defined in lines 31-43 of TABLE 5, and the Text Stamper
module 74 is defined in lines 44-108 of TABLE 5. Line 109
identifies the end of the modules for the main process.
Line 110 is a heading which identifies where other sub-
processes would be defined, if this process included any
gub-processes other than the main process. Line 111
identifies the end of the first process. Lines 112-115 are
headers which identify where one or more other processes of
the project definition would be defined, if the project
definition included more than one process. Lines 116-117
of TABLE 5 identify the end of the project definition.

Turning in more detail to lines 5-30 of TABLE 5, which
define the Database Access module 72, line 5 includes an
"Id" of "com.image2web.databaseaccess" which, in the
disclosed embodiments, is an internal code ident;fying a
segment of'object code that implements the functionality of
the Database Access module. The next portion of line 5
refers to an "Instance", which in this example is set to
the numeral "1'. This indicates that this is the first
occurrence of the Database Access type of module in the
project definition 71. If the project definition 71
included two or more Database Access modules, they would be
respectively identified by successive integer instance
numbers, corresponding to the order in which they appear in
the XML file.

Lines 13-14 in TABLE 5 identify the database which
should be accessed in order to retrieve image daté, which
in this case is a database named "photography". As noted
in the explanation in TABLE 1 of the Database Access
definition, the connection for this database must already

exist and be defined as an Open DataBase Connectivity

10

15

20

25

30

WO 02/21341 PCT/US01/28270

47

(ODBC) connection. This permits the Database Access module
to easily interact with pre-existing databases through the
use of public communication protocols, without any need to
make any change to the databases. In the specific example
of TABLE 5, the word "photography" in line 14 provides a
unique link to an existing ODBC connection, which in turn
provides the link to and query for the specified database.
Lines 10-12 of TABLE 5 define the particular table within
the database which is to be accessed. In this particular
example, the 'photography" database has several tables
which are each named after a respective photographer, and
that each relate to photographs taken by that particular
photographer. Each table has a name which corresponds to
the name of the associated photographer, which in this
example is "Robert Shutterbug". Lines 7-9 and lines 20-22
of TABLE 5 each define a respective field within the
indicated table, the contents of which are to be obtained
by and output from the Database Access module 72.

Lines 25-29 of TABLE 5 define the various output ports
of the Database Access module 72. In particular, line 28
defines an output port for the image data, which is
associated with the binding line 77 in FIGURE 6. Line 28
in TABLE 5 defines an output port for a string which
represents a price, and which is associated with binding
line 79 in FIGURE 6. Line 27 defines an output port for
the filename of the image, but this output port is not used
in FIGURE 6.

Turning to the Fill module 73, line 38 in TABLE 5
defines an input port for image data, and includes a term
"BoundTo", which effectively defines the binding line 77 of
FIGURE 6, by identifying the output port of the module 72
to which the input port of the module 73 is bound.

Turning to the Text Stamper module 74 of FIGURE 6, its
definition in TABLE 5 appears at lines 44-108. Within this

10

15

20

25

30

WO 02/21341 PCT/US01/28270

48

definition, lines 46-99 define a number of parameters,
which are collectively referred to herein as control
information, and which may be specified by a user in order
to define the particular operational characteristics which
this particular instance of the Text Stamper module is to
have. For example, to the extent that the Text Stamper
module 74 is superimposing onto an image some text which
represents a price, the parameters define characteristics
of that text, such as its location, font, size, color, and
so forth. Line 103 of TABLE 5 defines the input port of
the text stamper module at which it receives the image
data, and includes a "BoundTo" term which defines its
association with an output: port of the Fill module 73. 1In
other words, the "BoundTo" term defines the binding line 78
of FIGURE 6. Similarly, line 102 of TABLE 5 defines for
the Text Stamper module 74 an input port for text, which in
this case represents a price. Line 102 also includes a
"BoundTo" term which defines the association of this input
port with an output port of the data access module 72, or

in other words the binding line 79.

TABLE 5 - PROJECT DEFINITION IN XML

1 | <Project Name="Project Name" Desc=""
Version="1.0">

2 <Group Name="Project Name" Desc="">

3 <Process Name="First Process" Desc="">

4 <ModulelList>

5 <Module Name="Database_ Access"
Id="com.image2web.databaseaccess"
Instance="1">

6 <Properties>

7 <Property Name="Output-ImageFilename"

DataType="emVariant">
8 <Values>ImageFilename</Value>

i0

15

20

25

30

WO 02/21341

PCT/US01/28270

49
9 </Property>

10 <Property Name="Table"
DataType="emVariant">

11 <Values>Robert Shutterbug</Values>

12 </Property>

i3 <Property Name="DSN"
DataType="emVariant">

14 <Valuesphotography</Value>

15 </Property>

16 <Property Name="Input-Field"
DataType="emVariant">

17 <Desc>Image Path</Desc>

18 <Value>ImageFilename</Value>

19 </Property>

20 <Property Name="Output-Price"
DataType="emVariant">

21 <Value>Price</Value>

22 </Property>

23 </Properties>

24 <Inputs/>

25 <Outputs>

26 <Property Name="Price"
DataType="emVariant"/>

27 <Property Name="ImageFilename"
DataType="emVariant"/>

28 <Property Name="ImageOut"
DataType="emImage"/>

29 </Outputs>

30 </Module>

31 <Module Name="Fill"

Id="com. image2web.fill" Instance="1">

32 <Properties>

33 <Property Name="FillColor"
DataType="emVariant">

10

15

20

25

30

WO 02/21341

PCT/US01/28270

50

34
35
36
37
38

39
40
41

42
43
44

45
46

47
48
49

50
51
52

53
54
55

56
57

<Value>1973978</Value>
</Propertys>
</Propertiess>
<Inputs>
<Property Name="ImageIn"
DataType="emImage"
BoundTo="com. image2web.database
access.l.0utput.ImageOut"/>
</Inputs>
<Qutputs>
<Property Name="ImageOut"
DataType="emImage"/>
</Outputss>
</Module>
<Module Name="Text_ Stamper"
Id="com.image2web.textstamper"
Instance="1">
<Properties>
<Property -Name="PageColor"
DataType="emVariant">
<Value>16777215</Value>
</Propertys>
<Property Name="LiteralXPosition"
DataType="emVariant">
<Value>0</Value>
</Property>
<Property Name="Bold"
DataType="emVariant">
<Value>0</Value>
</Propertys>
<Property Name="Transparency"
DataType="emVariant">
<Value>100</Value>
</Propertys

10

15

20

25

30

WO 02/21341

PCT/US01/28270

51

58

59
60
61

62
63
64

65
66
67

68
69
70

71
72
73

74
75
76

77
78
79

80
81
82

<Property Name="FontSize"
DataType="emVariant">
<Values>24</Value>

</Property>

<Property Name="Bound"
DataType="emVariant">
<Value>-1</Value>

</Property>

<Property Name="BorderText"
DataType="emVariant">
<Value>0</Value>

</Property>

<Property Name="MergeMode"
DataType="emVariant">

~ <Value>Normal</Value>

</Property>

<Property'Name="Underline"
DataType="emVariant">
<Value>0</Value>

</Property>

<Property Name="BoundName"
DataType="emVariant">
<Value>Price</Value>

</Property> ‘

<Property Name="ExpandToFit"
DataType="emVariant">
<Values>-1</Value>

</Property>

<Property Name="Color"
DataType="emVariant">
<Value>0</Value>

</Property>

<Property Name="TextPosition"

DataType="emVariant">

10

15

20

25

30

WO 02/21341

PCT/US01/28270

52

83
84
85

86
87
88

89
90
91

92
93
94

95
96
97

98
99
100
101
102

103

104
105

<Value>CenterCenter</Values
</Propertys
<Property Name="LiteralYPosition"
DataType="emVariant">
<Value>0</Value>
</Property>
<Property Name="Angle"
DataType="emVariant">
<Value>0</Value>
</Property>
<Property Name="Font"
DataType="emVariant">
<Values>Arial</Value>
</Property>
<Property Name="UseLiteralPosition"
DataType="emVariant">
<Value>0</Value>
</Propertys>
<Property Name="Italic"
DataType="emVariant">
<Value>0</Value>
</Propertys>
</Propertiess
<Inputs>
<Property Name="TextLine"
DataType="emVariant"
BoundTo="com. image2web.database
access.1l.0Output.ImageFilename"/>
<Property Name="ImageIn"
DataType="emImage"
BoundTo="com. image2web.fill.1.
Output . ImageOut"/>
</Inputs>
<Qutputs/>

10

15

20

25

30

WO 02/21341 PCT/US01/28270

53
106 <Property Name="ImageOut"
DataType="emImage" />
107 </Outputs>
108 </Module>
109 </ModuleList>
110 <SubProcessList/>
111 </Process>
112 <Process Name="Second Process" Desc="">
113 <ModulelList/>
114 <SubProcessList/>
115 </Process>
116 </Group>
117 | </Project>

The project definitions discussed above in association
with FIGUREs 1 and 6-7 are relatively simple. FIGURE 8 is
a diagrammatic view of a further project definition 101,
which is more sophisticated. It includes a single process
which is shown in its entirety in FIGURE 8, and which
includes three sub-processes 102-104, namely a main process
102, and two further sub-processes 103 and 104. It also
includes a feature which has not previously been discussed,
which is a global portion 107 having a plurality of global
ports 111-114.

The ports 111-114 of the global portion 107 can be
accessed by modules within the main process 102 or by
modules within either df the sub-processes 103-104. The
ports 111-114 can each act as an input port and/or an
output port, depending on the particular operational
configuration. More specifically, the ports 111-114 can
each act as a form of register or memory location, in which
one module can store information, and from which another

module can later read it. The data in the port can thus

10

15

20

25

30

WO 02/21341 PCT/US01/28270

54

change dynamically during project execution. The port 112
in FIGURE 8 is configured to operate in this manner, and
thus acts as both an input port and an output port.
Further, the ports 111-114 can each be initialized to a
predetermined value. If no module changes the initial
value stored in that port, then that initial wvalue serves
as a form of data constant which does not change, and which
can be accessed by any module throughout execution of the
project definition. In FIGURE 8, the port 114 is
configured to act in this manner, and thus acts as an
output port. In more detail, the port 114 is initialized
to a string value which is superimposed onto images, as
explained later.

If, in addition to the process defined by the main
process 102 and the sub-processes 103-104, the project
definition 101 included an additional process, then each
process would have its own global portion 107. The ports
of each global portion 107 would be global to the
associated process, but not the other process. In addition
to the two global portions 107, a further global portion
would appear in FIGURE 8 adjacent the global portion 107.
The ports of the further global portion would be global to
both processes, or in other words the entire project
definition. The ports of the further global portion could
be referred to as project level ports, and the ports of
each of the global portions 107 could be referred to as
process level ports.

The various types of modules which make up the project
definition 101 of FIGURE 8 are each described in TABLES 1-
4. However, for purposes of clarity and completeneés, each
is also briefly discussed below. More specifically, the
main process 102 includes a Database Access module 121,
which obtains and outputs a plurality of successive images

from a not-illustrated database, in a manner similar to

10

15

20

25

30

WO 02/21341 PCT/US01/28270

55

that discussed above in association with the Database
Access module 72 of FIGURE 6. These images are supplied at
122 to an Image Info module 126.

The Image Info module 126 does not change the image
data, but does output certain information about the image
data, including the height of the image at 127 and the
width of the image at 128. The height and width are each
output in the form of a string representation of a numeric
value which is the number of pixels in the height or width.
The height is supplied‘at 127 to the port 112 of the global
portion 107, and is saved there for later use. The width
is output at 128. The binding line 128 is a special type
of binding line known as a conditional binding, which is
explained later. The module 126 outputs the unchanged
image data at 129, where it flows to a Send Email module
131.

The module 131 does not change the image data, but
sends an email (electronic mail message) in response to the
occurrence of a predefined condition, where the email is a
predefined text message that is sent to a predefined email
address. In the Send Email module 131 of the project
definition 101, the condition that causes the module 131 to
send an email is met when the last image produced by the
Database Access module 121 is being processed. There are
various ways in which this could be detected, for example
by counting images if the number of images to be processed
is known in advance, or by detecting a predetermined file
name assigned to the last image. Alternatively, as a
process completes, an "execution finished" message could be
provided to all modules of the process, or at least to each
Send Email module in the process, thereby causing each Send
Email module to proceed to send its email. The text of the

email might notify a person that all of the image data in

10

15

20

25

30

WO 02/21341 PCT/US01/28270

56

question has been processed by the project definition 101,
and is available for use.

The unchanged image data from the module 131 flows at
132 to a String Builder module 136, which does not change
the image data. As explained in TABLE 3, the String
Builder module 136 can generate a sequence of names, where
each name in the sequence is generated when a respective
one of the images passes through the module 136. In the
project definition 101, the module 136 is configured to
generate a sequence of names whiéh are "Image0Ol" "ImageO2",
"ITmage03", and so forth. These sequential names are
successively supplied through an output port of the String
Builder module 136, which is associated with a binding line
137.

The unchanged image data from the Stringer Builder
module 136 flows at 138 to a File Size module 141. The
module 141 does not change the image data. It outputs the
image data at either 142 or 143, depending on the size of
the file which contains the image data, in a manner already
discussed above. Image data that is oufput at 143 flows to
the sub-process 103, as discussed later. Image data that
is output at 142 flows to an Interactive module 146 of the
main process 102.

The Interactive module 146 does not change the image
data. It does pause execution of the project definition
101, while requesting that a person manually specify where
the current image is to be sent. In particular, the person
can specify that the current image is to be sent at 148 to
the sub-process 104, or that the image can continue at 147
along the main process 102. 1In view of the fact ﬁhat the
Interactive module 147 has the effect of pausing execution
for each image processed by the project definition 101, and
in view of the fact that an important application of the

present invention is automated processing of data, modules

10

15

20

25

30

WO 02/21341 PCT/US01/28270

57

of the Interactive type would typically be omitted from
most proﬁect definitions. However, the Interactive module
146 has been included in the exemplary project definition
101 of FIGURE 8 in orxder to facilitate a better
understanding of this feature of the present invention.
With reference to TABLE 2, and as discussed in more detail
later, the Interactive module 146 provides a user with the
capability to manually and interactively specify whether
data is to be directed to 147 or 148. In addition, it
provides the user with the capability to specify that the
Interactive module 146 should automatically take a
specified action for all subsequent images which are
processed during the current execution of the project
definition 101. Assuming that, in response to a query from
the Interactive module 146, a person indicates that image
data from the module 146 is to continue along the main
process 102, the module 146 causes the unchanged image data
to flow at 147 to a Text Stamper module 151.

The Text Stamper module 151 has an additional input
port, which is associated by the binding line 128 with the
image width output from the Image Info module 126, and also
with the port 112 of the global portion 107. As mentioned
above, the binding line 128 is a conditional binding. This
means that the binding 128 can selectively supply data to
the input port of the Text Stamper module 151 from either
of two different output ports, which in FIGURE 8 are the
image width output of the module 126, and the port 112 of
the global portion 107. Conceptually, the condition should.
be viewed as an internal part 6f the binding 128 itself,
rather than as a part of the global portion 107, the module
126, or the module 151. Considered this way, it will be
recognized that the condition can be based on data which is
available to the binding 128 from either of the associated

output ports, which in FIGURE 8 include the image height

10

15

20

25

30

WO 02/21341 PCT/US01/28270

58

information and image width information that it
respectively receives from the output ports of the global
portion 107 and the module 126. For example, the condition
might be set to specify that the binding 128 is to compare
the height and width values, and to supply the larger of
the two values to the Text Stamper module 151.

The Text Stamper module 151 takes the height or width
value received £from the conditional binding 128, and
superimposes it on the image received at 147. The height
or width information becomes a separate object which is
part of the overall image data. All of the objects of the
image data are supplied at 152 to a File Namer module 156.

The module 156 associates with the image data a file
name, under which the image data will eventually be stored.
For this purpose, the File Namer module 156 has an input
port coupled through the binding 137 to module 136. As
discussed above, the module 136 generates a unique
sequenced name as each respective image 1is processed.
Accordingly, module 156 associates the unique name from
binding 137 with the image currently passing through the
module 156, and then forwards the image data and newly
associated name at 157 to a Destination Folder module 161.
Aside from associating a name with the image data, the file
namer module 156 does not change the image data itself.

The Destination Folder module 161 defines the name of
a folder or subdirectory into which images processed by the
main process 102 are to be deposited. In essence, the File
Namer module 156 associates with the image data a file
name, and the Destination Folder module 161 associates with
the image data a path to a subdirectory. The module 161
does not change the image data itself. The image data with
its associated information is supplied at 162 to a File

Saver module 166.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

59

The File Saver module 166 is responsible for actually
saving the data, and can also specify which of several
common image formats the image data is to be saved in. The
File Saver module 166 saves the image data in the folder or
subdirectory specified by module 161, under the file name
specified by module 156, and in the format specified by the
File Saver module 166 itself. The File Saver module 166 is
configured to save the data locally with respect to the
computer which is executing the project defiﬁition 101, for
example within the context of an intranet or LAN, but not
to a remote location that can only be accessed through a
non-local network such as the Internet. ‘

Returning to the File Size module 141, it was
explained above that, depending on file size, certain
images would be routed at 143 to the sub-process 103. In
particular, these images will be routed to an input port of
a Text Stamper module 168. The module 168 superimposes on
each such image a non-changing text string, which it
obtains through an input port from the output port 114 of
theé global portion 107. This superimposed text is added to
the image data in the form of an additional object, which
becomes a part of the image data. All of the objects of
the image data are supplied at 169 to a File Namer module
171.

The File Namer module 171 operates in the same manner
as described above for the File Namer module 156, and then
supplies the image data and associated information at 172
to a Destination Folder wmodule 176. The module 172
operates in the same manner as the Destination Folder
module 161, except that it uses a different name for the
destination folder. The image data and associated
information are then supplied at 177 to an FTP Save module
181.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

60

The FTP Save module 181 wuses the File Transfer
Protocol (FTP) to transfer the processed image data and
associated information through a network to a specified
destination, where it is saved in a folder having the name
specified by the Destination Folder module 176, under a
name specified by the File Namer 171, and in a format
specified by the FTP Save module 181. The module 181 is
capable of saving data to a remote location, for example
through the Internet.

Returning to the Interactive module 146, it was
explained above that a user can selectively specify that a
current image is to continue at 147 along the main process
102, or is to be routed at 148 to the sub-process 104. 1In
the sub-process 104, this image is received at an input
port of an External Action module 186. The module 186 is
designed to cooperate with a separately and independently
executing application program, which in the disclosed
embodiments is an image processing program, such as the
program that is commercially available under the tradename
PHOTOSHOP from Adobe Systems Incorporated of San Jose,
Califofnia. It is to be understood that this separate
application program is operative only when accessed through
an External Action module. Thus, for example, where this
application program is an image processing program, it only
performs image processing functions initiated through an
External Action module. The image processing functions
implemented by other modules are implemented by other
software, as discussed in more detail later.

The External Action module 186 includes a command
which was specified by the person who created the-project
definition 101, and which is a command that the separate
image processing program is capable of executing. The
module 186 supplies the current image and also the command

to the image processing program, which then executes the

10

15

20

25

30

WO 02/21341 PCT/US01/28270

61

command while processing the image in the manner specified
by the cémmand. The image processing program then returns
the processed image to the External Action module 186,
which supplies the processed image at 187 to a File Namer
module 191.

The File Namer module 191 operates in the same manner
as described above for the modules 156 and 171, and then
outputs image data and an associated name at 192 to a
Database Output module 196. The Database Output module 196
operates in a manner similar to the Database Access module
121, except that it saves data rather than reading data.
The data is saved under the file name specified by module
191.

FIGURE 9 is a block diagram of a system 201 which
implements the present invention. The configuration of the
system 201 is exemplary, and a wide variety of changes
could be made to this system 'while maintaining
compatibility with implementation of the present invention.
The system 201 includes an intranet 206, such as a local
area network (LAN), which is coupled through a "Web" server
207 to a wide area network (WAN), such as the Internet 208.
The intranet 206 is coupled to a workstation 211, a process
server 212, a file server 216, an auxiliary server 217, and
three imaging servers 221-223. The Internet 208 is coupled
to a. workstation 226, a database 227, a File Transfer
Protocol (FTP) site 231, and an enterprise resource
management (ERM) program 232. The ERM program provides
support in areas such as human resources and financial
matters. The ERM program 232 may, for example, be the
program commercially available wunder the tradename
PEOPLESOFT from PeopleSoft, Inc. of Pleasanton, California.
It will be recognized that the devices coupled to the
Internet 208 in FIGURE 9 could alternatively be coupled to
the intranet 206, and that the devicés coupled to the

10

15

20

25

30

WO 02/21341 PCT/US01/28270

62

intranet 206 could alternatively be coupled to the
Internet 208.

The computers and related hardware shown in FIGURE 9
are all of a type known in the art. For purposes of
explaining the present invention, the following discussion
will focus on the manner in which these known hardware
components are configured into a system , and the various
software programs which are executed by the various
computers of FIGURE 9.

The file éerver 216 can receive data files from
portable media such as a standard floppy disk 236, or a
standard compact disk 237, and can store this data at 238,
for example in a hard disk drive. Conversely, some or all
of the data stored at 238 can be offloaded onto a floppy
disk 236 and/or a read/write compact disk 237. The data
stored on the floppy disk 236 or the compact disk 237 will
typically be in a compressed format, which conforms to an
industry-standard compression technique. Consequently, the
file server 216 has the capability to uncompress data that
is read from the floppy disk 236 or the compact disk 237,
before that data is stored at 238. Similarly, the file
server 216 has the capability to compress data obtained
from 238 before writing it to the floppy disk 236 or the
compact disk 237.

The imaging servers 221-223 are all effectively
identical, and therefore only the imaging server 221 is
illustrated and described here in detail. The imaging
server 221 includes a processor 241 and a memory 242. The
processor 241 runs an operating system 246, which in the
disclosed embodiments is one of the versions- of an
operating system that is commercially available under the
tradename WINDOWS from Microsoft Corporation of Redmond,
Washington. However, it could be some other operating

system. Running on the operating system 246 within the

10

15

20

25

30

WO 02/21341 PCT/US01/28270

63

processor 241 is a program which is an imaging server
module 247. The memory 242 stores two tasks 251 and 252,
which each include a project definition 256, selected
executables 257, and data 258.

With respect to the imaging server 221, as well as
other servers and workstations discussed later, it wiil be
recognized that the dividing line between what is in the
processor in FIGURE 9 and what is in the memory has been
drawn sdmewhat arbitrarily. For example, programs such as
the operating system 246 and the imaging server module 247
are each depicted in the processor, but also use a certain
amount of the memory 242. Conversely, the memory 242 is
depicted as containing some executable code at 257, but the
actual execution of this code will ultimately occur within
the processor 241. Nevertheless, it is believed that those
skilled in the art will readily comprehend these
distinctions, and the breakdown shown in FIGURE 9 has been
selected to facilitate a clear understanding of the present
invention.

In the imaging server 221, the imaging server module
247 executes project definitions of the type discussed
above with respect to FIGUREs 1 and 6-8. In particular, it
obtains data through the intranet 206 and/or the Internet
208, processes the data in the manner specified by the
project definition, and then deposits the processed data to
a data destination through the intranet 206 and/or the
Internet 208. If the data arrives at the imaging server
221 in a compressed format, the imaging server can
uncompress the data before processing it. Similarly, where
appropriate, the imaging server 221 can compress data
before saving it to a data destination. Transmission of
data from data sources and to data destinations through the
networks is effected according to an appropriate public

communication protocol, such as the FTP protocol, the XML

10

15

20

25

30

WO 02/21341 PCT/US01/28270

64

protocol, the HyperText Transport Protocol (HTTP), or some
other suitable protocol. FIGURE 9 shows several examples
of devices that the imaging server module 247 can write
data to and/or read data from. These include the FTP site
231, the database 227, the ERM 232, and the file server
216.

In general, and as discussed later, the information
contained in tasks 251 and 252 is a copy of information
that is also present elsewhere in the system 201. The copy
of this information is supplied to the memory 242 of the
server 221 on a temporary basis, for purposes of permitting
the server 221 to execute a project definition associated
with each such task. In more detail, the project
definition 256 in each of the tasks 251 and 252 is a
respective project definition of the general type discussed
above in association with FIGUREs 1 and 6-8, and is stored
in an XML format consistent with the example shown in TARLE
5. The data 258 represents temporary storage for data that
is being processed by the associated project definition
256. One example of such data is images that have been
obtained from a source such as the FTP site 231, and that
will be returned to a destination such as the FIP site 231
after they have been processed. The selected executables
257 are selected object code files, which may or may not be
present in a given task 251 or 252. Whether or not there
are executables stored at 257 is a function of the above-
mentioned capability for creating custom modules.

In this regard, the imaging server module 247 knows
how to execute definitions for standard modules, including
those set forth in TABLEs 1-4. However, it cannot
inherently know how to execute definitions for custom
modules. Accordingly, if a given project definition 256
happens to include one or more custom modules, then object

code files that are capable of implementing those custom

10

15

20

25

30

WO 02/21341 PCT/US01/28270

65

modules are included at 257 in the task 251 or 251 for that
project definition, so that the imaging server module 247
will have the additional intelligence that it needs to
execute the custom modules in the project definition.

Although the tasks 251 and 252 in the disclosed
embodiments each include a project definition at 256 and
selected executables at 257, it would alternatively be
possible to use pointers rather than the actual data. That
is, the tasks 251 and 252 could include at 256 a pointer to
the pertinent project definition as stored in the process
server 212, and could include at 257 one or more pointers
to the selected executables as stored within the process
server 212. The imaging server 221 could then use the
pointers to download from the process server 212 only the
information which it needed.

Although FIGURE 9 shows that the imaging server 221
has been supplied with two tasks 251 and 252, which each
correspond to a respective project definition, the number
of tasks being handled by the imaging server 221 at any
given point in time could be higher or Ilower. In
particular, the imaging server 221 might be handling only
one task, or might be handling several tasks. In general,
to the extent that the imaging server 221 has two or more
task at any given point in time, it will be executing the
tasks in parallel, for example by supplying slices of
processor time to each task in a manner which keeps each
task moving along as efficiently as possible. In this
regard, if one of the tasks is processing image data
obtained from the FTP site 231 through the Internet 208 and
intranet 206, there are likely to be times when that task

is essentially idle, because it is waiting for more image

‘data, and thus .the processor can be concentrating on

execution of one or more other tasks. The same is true

when any other task becomes idle for some reason, because

10

15

20

25

30

WO 02/21341 PCT/US01/28270

66

the processor will concentrate on remaining tasks which are
currently active. If the set of tasks assigned to a given
processor are not cumulatively keeping the processor busy
almost all of the time, still another task can be assigned
to the processor, in a manner described later.

In the embodiment of FIGURE 9, a single instance of
the imaging server module 247 is used in each of the
imaging servers 221-223, and can execute multiple project

definitions. However, it would alternatively be possible

"for each imaging server 221-223 to execute two or more

instances of the project server module 247, where each such
instance was responsible for executing a respective one of
the project definitions.

The auxiliary server 217 executes an operating system
271, which in the disclosed embodiments is a version of the
operating system available under the trade name WINDOWS.
Running on the operating system 271 within the auxiliary
server 217 is an image processing application program 272,
which in the disclosed embodiments is a program
commercially available under the tradename PHOTOSHOP from
Adobe Systems Incorporated of San Jose, California.
However, some other image processing application program,
or some other type of application program, could
alternatively be used. Moreover, even though the
embodiment of FIGURE 9 has the application program 272
running on a computer 217 which is physically separate from
other computers in the system 201, it would alternatively
be possible for the application program 272 to run on one
of the other computers in the system 201, such as the
process server 212 or one of the imaging servers 251—223.

If one of the imaging servers 221-223 is executing a
project definition which includes an External Action
module, then in order to execute that External Action

module, the imaging server passes the current image and a

10

i5

20

25

30

WO 02/21341 PCT/US01/28270

67

specified command through the intranet.206 to the auxiliary
server 2117. The image processing application 272 in the
auxiliary server 217 then executes the command so as to
effect the specified processing of the image, and then
returns the processed image through the intranet 206 to the
imaging server. When the system 201 is operational, the
auxiliary server 217 and the image processing application
272 normally run all of the time, and are thus typically
ready and waiting when an image and associated. command
arrive through the intranet 206. As noted above, the
application program 272 is effective only as to functions
initiated through an External Action module, such as the
External Action wmodule shown at 186 in FIGURE 8. Thus,
where the application program 272 is an image processing
program, it implements only image processing functions
initiated by an External Action module. Image processing
functions initiated by all other types of modules are
implemented by other software, such as the imaging server
program 247 that runs on each imaging server 221-223.

The process server 212, which may alternatively be
referred to as a load balancing server, is responsible for
monitoring the imaging servers 221-223, and allocating
tasks to the imaging servers 221-223 in dependence on
factors such as their current level of efficiency, which
reflects their availability to take on execution of
additional project definitions. The manner in which this
occurs is described below. The various software programs
that run on the process server 212 may be referred to
collectively as a process server framework.

The process server 212 includes a processor 277 and a
memory 278. The memory stores a number of sets of user
data, which are each associated with a particular person.
For the sake of example, four sets of such user data are

shown at 281-284, but in practice the process server 212

10

15

20

25

30

WO 02/21341 PCT/US01/28270

68

will store a much larger number of sets of user data. Each
set of user data includes one or more project definitions
286, and one or more custom definitions 287. it is
possible for a user, for example at one of the workstations
211 or 226, to store a project definition in his or her
portion 286 of the memory 278. This can also be referred
to as "publishing" the project definition to the process
server 212. Whenever a project definition is published to
the process server 212, the object code for any custom
modules used in that project definition will automatically
and simultaneously be published with it, and in particular
will be stored in that user's custom definition portion 287
of the memory 278. Further, when a project definition is
published to the process server 212, the local copy of the
project definition in the workstation 211 will be
automatically deleted, wunless the wuser specifically
indicates that it should be saved.

Although a user has access to his or her own project
definitions 286 and any associated custom definitions 287,
others will not have access to them, except to the extent
that the user elects to give them access. In this regard,
the user data 281-284 in FIGURE 9 is organized into two
groups 291 and 292, where the group 291 includes the user
data 281 and 282, and the group 292 includes the user data
283 and 284. 1In this disclosed embodiment, the groups 291
and 292 each correspond to a respective different entity.
For example, the group 291 may correspond to a first
corporation, where the user data 291 and the user data 292
respectively correspond to two different employees of that
corporation, and the group 292 may correspond to é second
corporation, where the user data 293 and the user data 294
respectively correspond to two different employees of the

second corporation.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

69

When a user publishes project definitions and any
associatéd custom definitions to the process server 212, it
is possible to do so in a manner so that other users within
the same organization or entity can have access to
specified project definitions and/or custom definitions.
Thus, for example, the user associated with the data 282
may be given access to some or all of the project
definitions at 281, which will automatically include access
to any custom definitions wused by those project
definitions. Also, the user aséociated with data 282 may
separately be given access to some or all of the custom
definitions at 281, even if the user has not been given
access to any of the project definitions at 281. The
disclosed embodiment contemplates that this cross access to
project definitions and custom definitions will be limited
to users within a given entity, such as the entity 291 or
the entity 292, and that users in one entity such as the
entity 291 will not be able to have access to data of users
in another entity such as the entity 292. However, in an
alternative embodiment, cross access to user data could
occur between users in two different entities.

A user at one of the workstations 211 or 226 may
upload to that workstation any project definition from the
process server 212 to which that user has access. In doing
so, the user may either make a copy of the project
definition, such that the original in the imaging server
remains available to anyone that has access to it.
Alternatively, the user may upload a project definition
through a "check out" procedure which makes the project
definition in the process server unavailable to everyone
until the user checks the copy back in (along with any
changes that the user may have made to the copy).

The memory 278 also stores a request queue 296.

Execution of one of the project definitions 286 is

10

15

20

25

30

WO 02/21341 PCT/US01/28270

70

initiated in response to receipt by the process server 212
of a request. Such a request may arrive through the
intranet 206 and/or Internet 208, for example'from a user
at one of the workstations 211 and 226. When the request
arrives, the request is temporarily placed in the queue
296, which implements a first-in, first-out stack.
Typically, the request will identify one of the project
definitions stored at 286 in one of the sets of user data
281-284. Alternatively, however, the request may be
accompanied by a project definition and any custom
definitions used by that project definition, which are then
temporarily stored in the user data 281 for that user,
until execution of that project definition has been
completed.

Requests for the queue 296 may also originate in some
other manner. For example, assume that a given project
definition stored in one of the portions 286 of the memory
278 processes data from the database 227. The database 227
may include a script or other intelligence which, in
response to a change to the pertinent source data in the
database 227, automatically generates and sends to the
process server 212 a request for execution of the given
project definition, so that the modified data will be
automatically processed. According to a feature of the
invention, each request sent from any source to the process
server 212 is expressed in a public communication protocol,
which in the disclosed embodiments is the XML protocol.
The manner in which the process server 212 handles the
requests in the queue 296 will be discussed later.

The processor 277 of the process server 212 executes
an operating system 301 which, in the disclosed
embodiments, is one of the versions of the operating system
available under the tradename WINDOWS. Running on the

operating system 301 are three watchdog programs 306-308,

10

15

20

25

30

WO 02/21341 PCT/US01/28270

71

which each serve as an interface to a respective one of the
imaging servers 221-223, and which each have the additional
responsibility of monitoring operation of the associated
imaging server 221-223, as discussed in more detail later.

Also running on the operating system 301 is a load
balancing module program 309, which monitors the workloads
and efficiency of each of the imaging servers 221-223. The
load balancing module 309 allocates execution of project
definitions among the servers 221-223 on the basis of their
workloads and efficiency, in a manner described below. The
load balancing module 309 is interfaced to the intranet 206
by a network interface program 312, by an email program
313, and by a Web site program 314. It will be recognized
that- the functions of the programs 312-314 are
interrelated, in that they each implement capability to
communicate through the intranet 206. Thus, they could
conceivably be implemented as respective portions of a
single program. However, they are shown separately in
FIGURE 9 for purposes of clarity in presenting the present
invention.

The Web site program 314 implements one or more
Internet Web sites, which can be accessed through the
intranet 206 and/or Internet 208, for example by a network
browser program running on either of the workstations 211
or 226. The purpose of the Web site program 314 is
discussed in more detail later. The email program 313
provides the load balancing module 309 with the capability
to send and receive emails. For example, if one of the
imaging servers 221-223 is executing a project definition
which includes a Send Email module (TABLE 3), that imaging
server will seﬁd appropriate information from this module
across the intranet 206 and through the associated watchdog
306-308 to the load balancing module 309, which will then

cause the email program 313 to transmit the email. It will

10

15

20

25

30

WO 02/21341 PCT/US01/28270

72

be recognized that this email capability could
alternatively be provided directly in each of the imaging
server modules 247, so that imaging servers 221-223 can
directly send such emails. The network interface program
312 is used to facilitate other types of communication
through the intranet 206 and/or Internet 208 by the process
server 212 with respect to other systems on the network,
such as one of the workstations 211 and 226.

Certain aspects of the operation of the process server
212 will now be described with reference to FIGUREs 10-12,
each of which is a flowchart. More specifically, FIGURE 10
is a flowchart showing what happens when the process server
212 receives a request, for example through one of the
network interface program 312, email program 313 and Web
site 314. Receipt of the request at 351 causes control to
proceed to block 352, where the request is put into the
queue 296. Control then returns to whatever was in
progress at the time the request was received.

FIGURE 11 is a flowchart showing a portion of the
operation of the load balancing module 309, and in
particular deals with how tasks corresponding to the
requests in the queue 296 are allocated among the imaging
servers 221-223. At block 361, the processor 277 checks to
see whether the queue 296 is empty. If it is empty, then
the processor waits at block 361 until there is at least
one request in the queue. Of course, the activity depicted
in FIGURE 11 will typically be carried out on a time sliced
basis, such that the processor 277 will be simultaneously
executing other routines in parallel with the loop shown in
FIGURE 11, including the routine shown in FIGURE 10.

When it is determined at block 261 that the queue 296
includes at least one request, then control proceeds from
block 361 to block 362. In block 362, the processor 277

retrieves from the queue 296 the request which has been in

10

15

20

25

30

WO 02/21341 PCT/US01/28270

73.

the gqueue the longest. Then, at block 363, the load
balanciné module 309 in the processor 277 interacts with
the imaging servers 221-223 through the watchdogs 306-308
and the intranet 206, in order to determine the extent to
which each has available capacity for additional work. If
none of them has any significant amount of available
capacity, then at block 366 control is returned to block
363, in order to continue to evaluate availability of the
processors in the imaging servers, until it is determined
at block 366 that at least one of the imaging servers 221-
223 has some available processing capability.

Control then proceeds from block 366 to block 367,
where the load balancing module 309 evaluates the project
definition 286 associated with the request. which was
retrieved from the queue at block 362. This evaluation may
include inspection not only of the project definition
itself, but also some of the data which is slated to be
processed by that project definition. The evaluated
characteristics may include the complexity of the project
definition, and also the type and amount of data which that
project definition is slated to process. For example, in
the case of image data, the amount of image data depends on
both the number of images and also the size of the images.

Control then proceeds to block 368, where the
evaluations made in block 363 and 367 are used to determine
whether it is possible to launch execution the project
definition which is identified by the request drawn from.
the queue at 362. In this regard, there are several
different ways in which a given project definition can be
launched. First, if one of the imaging servers 221-223 has
a level of availability which will permit it to take on
execution of the project definition in gquestion, execution
of the project definition can be launched on that imaging

server alone. However, if the project definition itself is

10

15

20

25

30

WO 02/21341 PCT/US01/28270

74

relatively complex, and/or if there is a relatively large
amount of data which it must process, two or more instances
of the project definition may be launched, each configured
to process a respective mutually exclusive portion of the
specified data. A decision needs to be made as to whether
to launch them on the same processor br on different
processors.

In more detail, where it appears that two or more
instances of the same project definition should be
launched, the load balancing server must also factor in the
available capacity of the imaging sexvers 221-223.
Assuming that there is a satisfactory level of capacity in
the imaging servers, each instance of the given project
definition will typically be launched on a respective
different one of the imaging servers 221-223. However,
where one of the imaging servers 221-223 has significant
capacity, it is possible that two or more instances of the
same project definition could be Ilaunched on the same
processor, if it appeared that the project definition and
associated data were such that both instances could be
efficiently processed at the same time. In this regard,
and as noted above, there will be points in time when the
execution of a project definition is temporarily idle, for
example because it is waiting for data to arrive through a
network, or because it includes an Interactive module
(TABLE 2) and is waiting for a user response. When one
instance of the project definition is idle, the other
instance(s) can be active, as a result of which it is
possible for a single processor to more quickly execute two
instances of the same project definition handling
respective portion of the data than to execute a single
instance handling all the data.

If it is determined at block 368 that there is an

appropriate way to launch the project definition in

10

15

20

25

30

WO 02/21341 PCT/US01/28270

75

question, control proceeds from block 368 to block 371,
where thé project definition is launched in the form of one
or more instances on one or more imaging servers. Each
such instance is launched by having the load balancing
module 309 configure a task of the type shown at 251 or 252
(FIGURE 9), including the project definition at 256, and
including at 257 any executables that correspond to any
custom definitions which are wused in that project
definition. Control then proceeds from block 371 to block
372, where the load balancing module 309 provides to one or
more of the watchdogs 306-308, as appropriate, information
regarding the instance(s) of the project definition which
have just been launched, and which the watchdog(s) will
need to monitor. In this regard, the watchdogs 306-308
will already be running, but are initialized with
information specific to the new project definition, so that
each watchdog monitoring an imaging server that is
executing an instance of the project definition will be
fully aware of all project definitions that are being
executed by that imaging server. From block 372, control
returns to block 361, to handle the next successive request
in the queue.

As evident from the foregoing discussion, the
embodiment of FIGURE 9 has the imaging server modules 247
located 1in respective processors 241 which are each
separate from the processor 277 that executes the load
balancing module 309. Alternatively, however, it would be
possible for the system 201 fo include an additional
imaging server module 247 which is executed by the
processor 277. In other words, the processor 277 would
simultaneously execute both the load balancing module 309
and an imaging server module 247.

In order to understand the watchdog programs 306-308,

it is helpful to first understand certain characteristics

10

15

20

25

30

WO 02/21341 PCT/US01/28270

76

of the imaging server module 247 in each of the imaging
servers 221-223. Many computer programs are developed for
gituations in which the execution of the program is
terminated at the end of each workday, and is then re-
started at the beginning of the next workday. Minor
problems may sometimes slowly develop as such a program is
executed, but then disappear when execution is terminated
and restarted. This type of problem is typically due to a
minor error which is not noticeable when the program is
restarted frequently, for example on a daily basis, and
which has thus not previously been identified and fixed.
However, if the same program is shifted to a different
operational situation where it is run for long periods of
time, such as Weeks or months, then these errors can create
serious problems.

For example, when the application program is done with
a segment of memory and attempts to turn it back over to
the operating system, the handoff back to the operating
system may not be fully completed, such that each program
thinks the other currently has control of the memory
segment. This is one example of what is commonly known as
memory leakage. It does not affect proper operation of
either program, but does result in a progressively
decreasing quantity of memory that is available for active
use by executing programs. Where the system is powered
down and re-started on a daily basis, the "lost" memory is
recovered during the rebooting process, and may never
become large enough during the course of a single day to
noticeably affect the efficiency of the system. However,
if the same system is run continuously for many monﬁhs, the
amount of lost memory could slowly and progressively
increase over the course of several weeks to the point
where the system was running very inefficiently, because it

was being choked by a lack of sufficient memory.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

77

Another type of problem which can occur is that, on
rare occésion, something may take place that can cause the
application program to lock up and/or cause the operating
system to experience a "crash". Still another type of
problem involves a situation where there is a degradation
in performance characteristics or activity response of the
imaging server, for example where a project definition is
executing and there is a progressive increase in the
average amount of time needed to process successive images.
The average time for the project definition to process an
image might, for example, initially be one second per image
but slowly degrade to ten seconds per image. Writing a
program which can run for months at a time while reliably
avoiding these types of problems can be very time consuming
and extremely expensive.

In the disclosed embodiments, the imaging server
modules 247 are expected to run continuously for many
months at a time. In order to deal effectively and
efficiently with potential problems of the type Jjust
discussed, the disclosed embodiments provide the watchdog
programs 306-308 with the capability to monitor the imaging
server modules 247 for various problems, such as a memory
leakage problem similar to that discussed above. Each of
the watchdog programs 306-308 has the capability to respond
to detection of such a problem by automatically taking
appropriate remedial action, as discussed below. The
watchdog programs 306-308 are somewhat simpler than the
imaging server modules 247, and it is much less expensive
to write the watchdogs to meet a desired 1level of
dependability and accuracy than to do so with the imaging
server modules 247.

FIGURE 12 is a flowchart showing a portion of the
operations carried out by each of the watchdog programs

306-308. In more detail, each watchdog program checks at

10

15

20

25

30

WO 02/21341 PCT/US01/28270

78

382 to determine whether the associated imaging server has
entered some abnormal state of execution, for example where
its imaging server module 247 has locked up or its
operating system 246 has crashed. This type of condition
is to be distinguished from situations such as inefficient
use of memory, where the imaging server continues operating
properly, but progressively more slowly. If it 1is
determined that execution is abnormal, then control
proceeds from block 382 to block 383, where the watchdog
program begins queuing incoming information. This is a
gueue within the associated watchdog program‘306-308, which
is separate from the queue 296. This internal queue
ensures that incoming information for the problematic
imaging server is not inadvertently lost while rémedial
action is being taken, which in this case will involve
restarting the imaging server. Next, at block 386,
execution of the imaging server module 247 and/or operating
system 246 is terminated. Thereafter, at block 387, each
project definition which is under execution but which has
not been fully completea is evaluated, including
identification of the last item of data which was processed
to completion and saved through a destination module.

Thereafter, at block 388, programs within the imaging
server are each restarted, including the operating system
246 and the imaging server module 247. Further, the task
251 or 252 for each project definition is reconfigured to
the extent necessary to ensure that execution oﬁ the
project definition will continue with the first data item
after the one that was identified in block 387. Then,
after the imaging server and its imaging server module 247
are up and running again, the queuéd input information is
supplied at block 391 to the imaging server module 247.
Control then returns from block 391 to block 381.

10

15

20

25

30

WO 02/21341 PCT/US01/28270

79

Returning to block 382, if the result of the
determinétion here is that the monitored imaging server has
not entered an abnormal state of execution, then control
proceeds from block 382 to block 401, where the watchdog
program evaluates the efficiency of memory use by the
imaging server that it monitors. If it determines that the
efficiency of memory use is within acceptable bounds, then
at block 402 control is routed back to block 381.
Otherwise, control proceeds from block 402 to block 403,
where the watchdog program determines whether it can wait
for normal completion of the project definitions which are
currently being executed by the monitored imaging server.
If so, then the watchdog waits at 406 for execution of all
such project definitions to end. Otherwise, or in due
course, control will proceed from block 403 to biock 407,
where the watch dog program will initiate queuing of
incoming information. If the imaging server was allowed to
complete execution of all assigned project definitions at
block 403, then there will typically be 1little or no
incoming information to be queued. On the other hand, if
it was necessary to take action prior to completion of a
project definition, then there may be incoming information
which needs to be queued.

Next, at block 407, the watchdog program interrupts
execution of any project definitions that have not been
completed. Then, at 411, the watchdog cooperates with the
associated imaging server 221-223, in a manner which
effects a reorganization of memory use. (If the memory use
has Dbecome extremely inefficient, then it may be
appropriate to restart the imaging server in a manner
similar to that discussed above in association with blocks
383, 386-388 and 391, but this option is not expressly
illustrated in the flowchart of FIGURE 12). After memory

use has been reorganized in block 411, the imaging server

10

15

20

25

30

WO 02/21341 PCT/US01/28270

80

is instructed by the watchdog at block 412 to continue
execution of interrupted project definitions from where
each was interrupted. Then, at block 413, the queued input
information is supplied to the imaging server. Control
then returns to block 381. .

Although the disclosed embodiments provide the
watchdogs 306-308 with the capability to queue incoming
information, for example as discussed above in association
with blocks 383, 391, 407 and 413 of FIGURE 12, an
alternative approach could be used. In particular, if
incoming information could not be immediately delivered to
the appropriate imaging server 221-223, then the associated
watchdog could return that information to its source, along
with a message indicating that the imaging server was
currently busy or unavailable.

Returning to FIGURE 9, and as mentioned above, the Web
server 207 interfaces the intranet 206 to the Internet 208.
The Web server 207 executes an operating system 441, which
in the disclosed embodiments is one of the versions of the
operating system available under the trade name WINDOWS.
Running on the operating system 441 is a Web interface
module program 442, which effects the appropriate interface
between the intranet 206 and the Internet 208, in a known
manner.

In the embodiment of FIGURE 9, the workstations 211
and 226 are effec;ively identical, except for the fact that
the workstation 211 is a local workstation coupled to the
intranet 206, whereas the workstation 226 is at a remote
location and is coupled to the intranet 206 through the
Internet 208. Although only two workstations 211.and 226
are shown: in FIGURE 9, it will be recognized that the
system 201 of FIGURE 9 could include a large number of

similar workstations. Since the illustrated workstations

10

15

20

25

30

WO 02/21341 PCT/US01/28270

81

211 and 226 are equivalent, only the workstation 211 is
described below in detail.

The workstation 211 provides the capability for a

person to create project definitions, to upload or
"publish" project definitions and/or custom definitions to
the process server 212, to download project definitions
and/or custom definitions from the process server 212, and
to effect execution of project definitions within the
workstation or within one of the imaging servers 221-223
under control of the process server 212. The workstation
211 includes a processor 451 and a memory 452. The
processor 451 is coupled to a cathode ray tube (CRT)
display 456, in order to permit the workstation 211 to
present information to a person. A keyboard 457 and a
pointing device such as a mouse 458 are each coupled to the
processor 451, to permit a person to provide input to the
workstation 211.
‘ Stored within the memory 452 are a plurality of
standard definitions 461, including all of the definitions
set forth in TABLEs 1-4. The standard definitions at 461
include not only the executable object code for each
definition, but also a separate file which contains the
corresponding source code. In the disclosed embodiments,
the source code for each standard definition is expressed
in a language known as VISUAL BASIC, which was developed by
Microsoft Corporation of Redmond, Washington.

As mentioned above, the present invention does not
restrict the user to the standard definitions shown in
TABLEs 1-4, but instead gives the user the capability to
create additional definitions called custom definitions.
To the extent that any custom definitions have been created
locally within the workstation 211, or have been uploaded
to the workstation 211 from the process server 212, they

are stored at 462 in the wmemory 452. The custom

10

15

20

25

30

WO 02/21341 PCT/US01/28270

82

definitions stored at 462 include not only objéct code
files, but also corresponding source code files for custom
definitions that were created locally. One convenient
technique for creating a custom definition is to take
source code for one of the standard definitions 461, modify
the source code as appropriate, compile the modified source
code to create a corresponding object code file, and then
store the modified source code file and associated object
code file at 462.

As mentioned above, the workstation 211 can be used to
create project definitions, which are then stored at 463 in
the memory 452, and can optionally be uploaded to the
process server 212, along with any associated custom
definitions. Project definitions from the process server
212 can be downloaded and stored at 463, with any
associated custom definitions being simultaneously
downloaded and stored at 462. Further, the workstation 211
can be used to modify existing project definitions that are
stored locally at 463, whether they were created locally or
downloaded from the process server 212. The manner in
which project definitions and/or custom definitions and be
created and/or modified are discussed below.

In this regard, the processor 451 executes an
operating system 471, which in the disclosed embodiments is
one of the versions of the 6perating system available under
the tradename WINDOWS. A user at the workstation 211 may
optionally use the operating system 471 to run a program
development environment 472, which in the disclosed
embodiments is a program commercially available under the
trade name VISUAL BASIC from Microsoft Corporatioh. The
development environment 472 is used to create custom
definitions, typically by retrieving the source code for a
standard definition from 461, making desired modifications

to this source code within the development environment,

10

15

20

25

30

WO 02/21341 PCT/US01/28270

83

storing the modified source code at 462, compiling the
modified-source code within the development environment,
and then storing at 462 the object code which results from
the compilation. The program 472 does not interact with
any other application program within the workstation 211,
or with programs in other parts of the system. Thus, in
the disclosed embodiments, creation of a custom definition
using the program 472 is effectively an offline procedure.

The workstation 211 also executes a standard email
program 473, which has the capability to send and receive
emails in a known manner. Thus, for example, if a person
has used the workstation 211 to initiate execution of a
project definition within one of the imaging servers 221-
223, and if that project definition includes a Send Email
module (TABLE 3), execution of the Send Email module will
cause an email to be sent to the email program 473 in the
workstation 211. This can provide the wuser of the
workstation 211 with appropriate information, such as
notice that execution of a project definition has been
completed by one of the imaging servers 221-223.

A standard network browser program 473 also runs on
the operating system 471 in the processor 451. A person
using the workstation 211 may use the browser 476 to link
to a Web site provided by the Web site program 314 in the
process server 212, for example to present a request for
execution of one of the project definitions stored at 286
in the memory 278. Further, while that project definition
is being executed in one of the imaging servers 221-223,
the project definition may interact with the person at
workstation 211 through the Web site at 314 and the browser
476. Alternatively, through use of the browser program
476, the workstation 211 may request execution of a project
definition which was created at the other workstation 226

by another user, and which was then uploaded to the process

10

15

20

25

30

WO 02/21341 PCT/US01/28270

84

server with an indication that it would be accessible to
other users. The browser program 476 and the Web site 314
interact with each other using a public communication
protocol conforming to standards for the portion of the
Internet known as the World Wide Web (WWW), such as the XML
protocol or the HTTP protocol.

In particular, as one specific example, it was
explained above that the Interactive module 146 of FIGURE 8
pauses execution of the project definition 101 to request
user input. FIGURE 13 is a diagrammatic view of an example
of a window or dialog box-that might be configured as a Web
page in the Web site 314, and displayed on the display 456
of the workstation 211 through the browser 476. The dialog
box 491 includes a portion 492 which displays the image
that is currently in the interactive module of the project
definition. It also includes a list box 493 containing
several options. In FIGURE 13, the options include
"Continue", which would cause execution to continue along
the current main process or sub-process, "OnSale", which is
one sub-process to which a branch can be effected,
"OutOfStock", which is a second sub-process to which a
branch can be effected, and "End", which will completely
terminate execution of the project definition that contains
the Interactive module. Using the keyboard 457 and/or the
mouse 458, the user can select one of the itemg in the list
box 493, and then click an "OK" button 496 in order to
cause the selected option to be implemented. 1Instead of
clicking the "OK" button 496, the user could alternatively
click a "Cancel" button 497, which has the same effect as
clicking the "OK" button 496 while the "End" option is
selected in list box 493.

Before clicking the "OK" button 496, the user has the
option to click a "Don't show me this again" box 498, so as

to toggle a check mark on or off in the box 498. If the

10

15

20

25

30

WO 02/21341 PCT/US01/28270

85

check mark is present when the "OK" button is clicked, then
the project definition will not pause and display the
window 491 each time the Interactive module is thereafter
encountered duriné the current execution of the project
definition. Instead, the option in list box 493 which is
currently selected will thereafter be automatically used
for every =subsequent execution of that particular
Interactive module.

An author module program 477 and/or another program
478 may also be running on the operating system 471 in the
processor 451. The author module 477 is discussed in more
detail below, and may be used to create, wmodify, upload,
download, and execute project definitions. The other
application program 478 is shown in FIGURE 9 to emphasize
that some or all functions of the author module 477 could
alternatively be implemented by some other application
program. For example, the author module has the capability
to create a new project definition, which includes the
capability to express the project definition in an XML
format comparable to the example shown in TABLE 5.
However, it is possible that some other application
program, such as the program 478, could also prepare a
project definition in this XML format. Similarly, the
program 478 might have the capability to generate and send
a request for execution of one of the project definitions
286 stored in the memory 278, and may have the capability
to express this request in a public communication protocol
such as XML. The program 478 may communicate with the
process server 212 through the network interface program
312.

Turning now in more detail to the author module 477,
FIGURE 14 is a diagrammatic view of a typical screen which
the author module 477 might present on the display 456 in

order to permit a user to create or modify a project

10

i5

20

25

30

WO 02/21341 PCT/US01/28270

86

definition, or to perform related functions. At the left
side of the screen is a vertical column which includes a
projects area 513 and a modules area 514. The projects
area 513 includes a "design" icon 517, a "publish" icon
518, an "execute" icon 521, a "create" icon 522, and a
"delete" icon 523. The design icon 517 is used to initiate
modification of a project definition which is already open.
The publish icon 518 is used to transfer to the process
server 212 a selected project definition in an XML format
comparable to FIGURE 5, along with the object code for any
custom definitions that are wused by that project
definition.

The execute icon 521 permits the user to initiate
execution of a specified project definition. This may be
a project definition stored within the memoxry 278 of
process server 212, in which case the author module
generates and sends to the process server 212 a request for
execution of the project definition. In the disclosed
embodiments, the request 1is expressed in a public
communication protocol, such as the XML protocol. If the
project definition to be executed is stored locally, the
user can control whether that project definition is to be
executed locally within the workstation 211, or sent to the
process server 212 so that it can be executed in one of the
imaging servers 221-223. If it is to be sent to the
process server, then the author module generates and sends
a request in the same basic manner just described, except
that the XML definition of the project definition, along
with object code for any custom definitions used by that
project definition, are transmitted with the requeét.

With respect to 1local execution of a project
definition, the author module 477 has essentially the same
capabilities as the imaging servers 221-223, with one

exception. The author module 477 in the disclosed

10

15

20

25

30

WO 02/21341 PCT/US01/28270

87

embodiments has been developed with the expectation that it
may be distributed at a reduced price or even free of
charge, in order to encourage development of project
definitions through use of the author module 477. In
conjunction with this, the author module 477 in the
disclosed embodiments has been designed so that, during
each execution of any project definition, it will process
no more than five items of data, such as five images. This
permits a user to carry out limited execution for the
purpose of testing a new project definition, but does not
permit the user to process a large quantity of data. 1In
order to process a lafge quantity of data, the user is
expected to instruct the process server 212 to have an
imaging server 221-223 carry out the execution of the
project definition, for which the user will be charged a
fee by the process server 212.

The author module 477 could alternatively be
configured to have full capability in all respects to
execute project definitions, including the capability to
process any number of items of data. However, such a
version of the author module would likely be sold for a
much higher price, which could involve significantly
greater overall expense for some infrequent users.

In FIGURE 14, the create icon 522 is used to initiate
creation of a new project definition. This includes
creation of a new XML file of the type shown in TABLE 5,
which will be progressively expanded as the project
definition is created. The delete icon 523 permits a user
to delete a selected project definition which is stored
locally at 463. It does not permit the user to delete a
project definition which is stored in the process server
212.

The modules area 514 of the screen 501 includes a

"sources" icon 526, a "branches" 527, an "actions" icon 528

10

15

20

25

30

WO 02/21341 PCT/US01/28270

88

and a "destination" icon 529. It will be noted that these
four icons each correspond to a respective one of the types
of modules that were discussed above in association with
FIGURE 1. The purpose and operation of the icons 526-529
will be discussed later. "

To the right of the column containing areas 513 and
514 is a further column 536, which contains a list, in a
standard tree format 537, of available source, branch,
action and destination definitions. In this regard, the
tree 537 includes nodes 541-544 adjacent each category of
definitions. Each node 541-544 can be clicked to expand or
contract the amount of information shown for that category.
For example, in FIGURE 14 the U"sources" category is
expanded, and lists various specific source definitions
which are available for use 1in creating a project
definition. In contrast, the "actions" category is
contracted, and shows a subheading but does not
specifically list each of the action definitions which are
available. |

The previously-mentioned icons 526-529 in the area 514
of the‘screen 501 can be used to expedite the expansion and
contraction process. For example, if the sources icon 526
is clicked, the sources category of the tree 537 will be
expanded, while each of the other three categories will be
simultaneously contracted. Similarly, if the branches icon
527 is clicked, the branches category in the tree 537 will
be expanded, whereas the sources, actions and destination
categories will all be contracted. The actions icon 528
and the destinations icon 529 each operate in a comparable
manner.

In the center right portion of the screen 501 is a
process view area 561, where one process of a project
definition can be displayed. For the sake of .example, the

process view area 561 of FIGURE 14 is presenting the

10

15

20

25

30

WO 02/21341 PCT/US01/28270

89

project definition 101 that was discussed above in
association with FIGURE 8. If a process was so big that
the entire process could not be conveniently shown all at
once in the process view area 561, a portion could ‘be
shown, and standard scroll bars could be provided along the .
bottom and right sides of the area 561, so that the user
could scroll to other portions of the process. The process
view area 561 in FIGURE 14 includes broken lines defining
several horizontal strips that respectively contain the
global portion 107, the main process 102, the sub-process
103 and the sub-process 104. Although broken lines are
used in FIGURE 14, the horizontal strips could
alternatively be delimited by light solid lines and/or
lines of a selected color, or could be identified by the
use of a different background color for each strip.

In order to add a module to a process shown in the
process view area 562, a user can use a pointing device
such as the mouse 458 to select the desired type of module
in the tree 537. Then, the user can use the mouse to
indicate where to put the module in the process, for
example by clicking at the location where the new module is
to be inserted. Binding of the new module to other modules
can then be effected in a manner described later.

As discussed above, the main process 102 and the sub-
processes 103 and 104 collectively define a single overall
process. The title of the overall process appears in the
global process portion 107, and in this case is a default
title of "Untitled(0)", because the process has not vyet
been given a specific name. Within this process, the main
process 102 and sub-processes 103 and 104 may each be given
a unique name, and these names are displayed at the left
side of the project wview area 561. In the depicted
example, default titles are shown, which are "Untitled(0)",
"Sub(1)" and "Sub(2)".

i0

15

20

25

30

WO 02/21341 PCT/US01/28270

90

In the lower right portion of the screen 501 is a
binding view area 571. A user is permitted to select one
of the modules shown in the process view area 561. That
selected module will then be displayed in the binding view
area 571, along with each module to which it is bound, with
all of the binding 1lines which extend between the
illustrated modules. All other modules and binding lines
will be omitted. 1In the specific example shown in FIGURE
14, the user selected the File Namer module 156 in the
process view area 561. Consequently, the File Namer module
156 appears in the binding view area 571, along with each
of the binding lines 137, 152 and 157 relating to it, as
well as each of the other modules 136, 151 and 161 that are
associated with those binding lines. All other modules and
binding lines are omitted from the binding view area 571.

The author module 477 provides the user with the
capability to selectively display the project definition
101 in different forms within the process view area 561.
One such alternative form is shown in FIGURE 15, where it
will be noted that only the main process 102 is shown in
complete detail. Each of the sub-processes 103 and 104 is
represented by only a single block. In the case of a
relatively complex process, this permits a portion of
interest to be more easily viewed.

Another capability of the author module 477 is to
permit a user to create and modify binding definitions in
a graphical manner, for example through use of a pointing
device such as the mouse 458 (FIGURE 9). 1In this regard,
FIGURE 16 is a diagrammatic view of a portion of a process
as it might appear in the binding view area 571 of the
screen 501 of FIGURE 14. This example includes an Image
Info module 581, and a Text Stamper module 582. In order
to create two bindings between these two modules, a user

has brought up for each module a display of a respective

10

15

20

25

30

WO 02/21341 PCT/US01/28270

91

binding menu 586 or 587. The binding menu 586 lists each
of the oﬁtput ports of the Image Info module 581, and the
user has invoked its display by using the pointing device
to place the cursor over the right portion of the module
581, and by then right-clicking. The binding menu 587
lists the input ports of the text stamper module 582, and
its display has been invoked by using the pointing device
to place the cursor over the left portion of the module
582, and by then right clicking. '

Two binding lines 591 and 592 each extend between a
respective entry in the menu 586 and a respective entry in
the menu 587. The binding line 591 corresponds to image
data, and links the "ImageOut" output port of the Image
Info module 581 to the "ImageIn" input port of the Text
Stamper module 582. Similarly, the binding line 592 links
the "ImageName" output port of module 581 to the "TextIn"
input port of the module 582. Each of these binding line
was created by clicking on an output port in one menu and
then clicking on an input port in the other menu, or by
clicking on an input port and then an output port. One end
of a binding line may be changed from one output port to
another output port by clicking and dragging that end of
the binding line from its current output port to the new
output port, which may be in the same menu or in a
different menu. A binding line can be deleted by clicking
and dragging one end to a point spaced from any of the
binding menus. .

It will be recognized that, in general, a given module
cannot execute properly if an input port of that module has
been bound to an output port of another module which does
not have valid data at a time when the given module needs
to be executed. For example, it would not be appropriate
for the first module in a sub-process to have an input port

which is bound to an output port of another module that is

10

15

20

25

30

WO 02/21341 PCT/US01/28270

92

disposed later in the same sub-process. Consequently, the
author module 477 will reject such an invalid binding if a
user attempts to create one in a project definition, and
will display for the user a suitable explanatory message as
to why the binding cannot be accepted.

As discussed above, the development environment
program 472 is essentially used in an off-line manner with
respect to other programs shown in FIGURE 9, in that it is
executed separately and independently and does not interact
with any of the other programs. Alternatively, however,
the program 472 could be omitted in favor of a different
form of development environment program that could be
integrated into the author module 477, where its
functionality would always be readily available while the
author module was executing, without any need to separately
start it. One suitable example of such a development
environment program is a program that is commercially
available from Microsoft Corporation under the trade name
VISUAL BASIC FOR APPLICATIONS.

As discussed above in association with the binding
line 128 of FIGURE 8, the present invention contemplates
conditional binding lines, which can associate a given
input port with a selected one of two or more output ports,
based on a specified condition. Moreover, as also
discussed above, the condition is effectively associated
with the binding line, rather than with any of the specific
modules that have input and output ports associated by the
binding line. 1In order to define or change the condition
associated with a conditional binding, a dialog box is
presented to the user, for example by superimposing it on
a portion of the screen 501 of FIGURE 14. An example of
such a dialog box is shown at 601 in FIGURE 17. One way to
invoke the display of the dialog box 601 is to right click

10

15

20

25

30

WO 02/21341 PCT/US01/28270

93

on a conditional binding line in the binding view area 571
of the séreen 501.

In FIGURE 17, the dialog box 601 relates to a
conditional binding which associates an input port with one
of two different output ports. The dialog box 601 includes
two areas 606 and 607, which each identify a respective one
of these two oufput ports. If this conditional binding had
the capability to associate the input port with more than
two output ports, then the dialog box 601 would include for
each such output port a respective area similar to the
areas 606 and 607. The areas 606 and 607 each identify the
associated output port by setting forth the name of the
process in which that output port is disposed, the name of
a sub-process if the output port is not in the main
process, the name of a particular module within that
process, including its instance number (as discussed above
in association with TABLE 5), and the word "Output" to
indicate that the port in question is an output port.
Finally, each area identifies any name associated with the
particular output port. In the case of area 106, this name
ig "MSRP", which stands for Manufacturer's Suggested Retail
Price, because the data in question is a representation of
a price. In the case of area 607, this name is "Price",
and indicates that the data at the indicated output port
represents a price. For convenience, the dialog box 601
gives each of these two output ports a shorthand label. In
the illustrated example, these shorthand labels are "B1"
and "B2", and appear immediately to the left of the areas
606 and 607,

In the lower portion of the dialog box 601 are three
areas 611-613 which are used to set the actual condition.
In particular, area 611 is used to enter an equation which
can include a combination of Boolean and algebraic terms.

Area 612 is used to specify which output port: will be

10

15

20

25

30

WO 02/21341 PCT/US01/28270

94

associated with the input port if the condition specified
in area 611 is true. Area 613 specifies which output port
will be coupled to the input port if the condition
specified in area 611 is false.

The dialog box 601 also includes an "OK" button 617,
which can be clicked to close the dialog box 601 and set
the conditional binding to operate according to the
information which is currently set forth in the dialog box.
In addition, there is a "Cancel" button 618, which can be
clicked to close the dialog box 601 without making any
change to the pre-existing state of the conditional
binding.

As discussed above, the example of an XML project
definition set forth in TABLE 5 includes at lines 44-108 a
Text Stamper module, of which lines 46-99 define a number
of parameters that control various characteristics of the
text which is superimposed onto an image by the Text
Stamper module. These parameters are specified by a user
who is creating a project definition, at the time that the
Text Stamper module is added to the project definition.
The user also has the capability to subsequently adjust
these parameters. In order to set or adjust these
parameters, the user is presented with a dialog box, an
example of which is shown at 651 in FIGURE 18. The dialog
box 651 will be automatically presented when the Text
Stamper module is initially being added to the project
definition. Thereafter, if a user wishes to modify the
settings, the user can invoke the display of the dialog box
651, for example by using a pointing device to right-click
on the center of the module. When opened, the diélog box
651 may, for example, be superimposed over a portion of the
screen 501 shown in FIGURE 14. The information shown in

the dialog box of FIGURE 18 corresponds directly to the

10

15

20

25

30

WO 02/21341 PCT/US01/28270

95

parametric control information set forth at lines 46-99 in
TABLE 5,'as discussed below.

In this regard, the user has two ways in which to
obtain the text which is to be stamped on the image.
First, the text can be defined internally to the Text
Stamper module as a literal string, in which case the text
does not change during execution of the project definition.
Alternatively, the text can be obtained from an output port
of another module, in which case it is possible for the
text to change during execution of the project definition,
such that each processed image has different text
superimposed on it. The selection of one of these
approaches is controlled by the setting of a "Bind to" box
653 disposed within the dialog box 651. If there is no
check mark in the Dbox 653, then the text string is
configured as an internal literal string, which. is
specified in a box 654. In the example of FIGURE 18,
however, there is a check mark in the box 653, as a result
of which the box 654 is effectively ignored. The box 654
simply includes a grayed-out string "Bound to Price", which
is an indication to the user that the text is being
obtained externally from an output port named "Price".

Since there is a check mark in the box 653, the text
string to be superimposed on the image is to be obtained
from an output port of another wmodule. Therefore,
available output ports are listed in a box 657, and the
user highlights one of them in order to select it. 1In the
illustrated example, the "Price" output of another module
has been highlighted in order to select it. In the XML
definition of TABLE 5, lines 61-63 define a "Bound"
parameter which indicates whether the box 653 contains a
checkmark, and lines 73-75 indicate the particular output
port which the user has selected in box 657. Since the

text box 654 is not used in the illustrated example, the

10

15

20

25

30

WO 02/21341 PCT/US01/28270

96

XML definition in TABLE 5 does not include an entry
corresponding to box 654, but it would include such an
entry if there was no checkmark in box 653. Alternatively,
the XML definition in TABLE 5 could include such an entry
for box 654, even though there is a checkmark in box 653.

In addition to defining what text to use, the dialog
box 651 permits certain characteristics of the appearance
of the text to be controlled. In this regard, box 661
permits selection of a font, and corresponds to lines 91-93
in TABLE 5. Button 662 specifies whether or not the text
is to be in a bold font and corresponds to lines 52-54 in
TABLE 5. Button 663 indicates whether the font is to be
presented in regular or italics style, and corresponds to
lines 97-99 of TABLE 5. Button 666 controls whether or not
the text is to be underlined, and corresponds to lines 70-
72 in TABLE 5. The color of the text can be selected using
button 667, which calls up a not-illustrated dialog box
that offers a choice of colors. After selection of a
color, that color is displayed on the face of button 667.
Button 667 corresponds to lines 79-81 of TABLE 5. The size
of the font can be selected at 668, which corresponds to
lines 58-60 of TABLE 5.

A merge mode can be selected at 671, which corresponds
to lines 67-69 in TABLE 5. This permits control over the
combination or mixture of colors in an image, using
additive or subtractive color theory. In this regard, an
image can be selectively changed according to hue,
saturation or lightness, and modifications can be made to
the red, green or blue channel of an image. The manner in
which the superimposed text is associated with the image,
or in other words a merge mode, 1is selected at 671, which
corresponds to lines 67-69 in TABLE 5. The degree of
transparency of the superimposed text can be adjusted on a

scale from 0 to 100 using a simulated slide control 672

10

15

20

25

30

WO 02/21341 PCT/US01/28270

97

that can be dragged by a mouse, where a numeric value for
the current setting is displayed at 673. A value of 0
means that the text is opaque, whereas a value of 100 means
that the text is completely invisible. Lines 55-57 of
TABLE 5 correspond to the transparency setting.

The dialog box 651 also provides the capability to
control the positional relationship between the
superimposed text and the image. In this regard, the text
can be placed at a selected angle with respect to the image
by entering an appropriate value in degrees in box 676,
ranging from 0 to 360. Box 676 corresponds to lines 88-90
in TABLE 5. The user can select one of two different ways
to specify the position of the text relative to the image,

by checking one of two boxes 677 and 678. Only one of

~these boxes can be checked, and placing a check mark in one

removes the check mark from the other. Lines 94-96 of
TABLE 5 contain a value indicating which of the boxes 677
and 678 has been checked.

If the box 677 is checked, then the position of the
text is defined on a precise basis using a Cartesian
coordinate system, based on a count of pixels within the
image. The "X" position value is specified in a box 681,
and the "Y" value is specified in a box 682. The boxes 681
and 682 respectively correspond to lines 49-51 and lines
85-87 in TABLE 5. Alternatively, if the box 678 is
checked, then the user can set the position more rapidly
but less accurately, in particular by selecting one of nine
"radio" buttons disposed within a box 683. In the example
of FIGURE 18, the center radio button has been selected, to
indicate that the text is to be centered in both the X and
Y directions within the image. The box 683 corresponds to
lines 82-84 in TABLE 5.

If text reaches the border of the image, the user has

the option of deciding whether to place text outside the

10

15

20

25

30

WO 02/21341 PCT/US01/28270

98

image. This is controlled by whether or not the user
places a check mark in a box 686. The box 686 corresponds
to lines 64-66 of TABLE 5. A further option is that, if
the text is too large in relation to the image, the user
has the option of indicating whether the size of the image
should be expanded. This is controlled by whether or not
the wuser places a check mark in a box 687, which
corresponds to iines 76-78 in TABLE 5. If box 687 is
checked, and if the image 1is therefore expanded, the
expansion will occur through the addition of pixels at one
or more edges of the image. The color for these additional
pixels needs to be defined, and this is controlled by a
button 688. Like the button 667, the button 688 calls up
a further dialog box which permits the selection of a
color. Once a color has been selected, the face of the
button 688 is thereafter displayed in that color. Button
688 corresponds to lines 46-48 of TABLE 5.

It is frequently helpful to a user to be able to see
a sample of how the text might appear on an image, based on
the current settings of the various parameters that can be

set using dialog box 651 in the manner described above.

- Accordingly, the user can click a preview button 691, which

causes a display at 692 of a sample image with sample text
superimposed on it in a manner conforming to the current
parameter settings in box 651. In the example of
FIGURE 18, the sample image‘is a camera, and the sample
text is "$150". The preview image in box 692 is not actual
data or actual text which would be used during execution of
the project definition, because the project definition is
not currently being executed.

When the user is satisfied with all of the settings in
dialog box 651, the user can click an "OK" button 696,
which causes the current information in the dialog box 651

to be converted into XML form and saved within the

10

15

20

25

30

WO 02/21341 PCT/US01/28270

99

associated project definition. Alternatively, the user can
click a "Cancel" button 697, causing all of the information
in the dialog box 651 to be discarded without any change to
the XML definition of the project definition. Clicking
either of the buttons 696 or 697 causes the dialog box 651
to be closed.

'The present invention provides a number of technical
advantages. One such technical advantage is that, by
expressing a project definition in a public communication
protocol, project definitions conforming to a suitable
format can be prepared using a variety of different
preexisting tools that are compatible with the protocol.
A related consideration is that project definitions in the
appropriate format and protocol can be easily prepared by
persons such as graphic artists who have significantly
fewer computer skills than an expert programmer of the type
needed to write hard-coded source code. This is
particularly true where a tool such as the above-described
author module is utilized, although other tools can also be
used.

Another related advantage is that, where the public
communication protocol is a markup language such as that
known as the eXtensible Markup Language (XML), the project
definition will be more likely to pass through a firewall
when in a computer network than if it was in some other
format, such as executable source code. Moreover, the
project definition does not have to be separately compiled
for each different platform on which it may be used, and
the person preparing the project definition does not need
to determine in advance which particular platform the
project definition will be used on.

Although several selected embodiments have been
illustrated and described in detail, it will be understood

that wvarious substitutions and alterations can be made

WO 02/21341 PCT/US01/28270

100

therein without departing from the spirit and scope of the

present invention, as defined by the following claims.

i0

15

20

25

30

WO 02/21341 PCT/US01/28270

101

WHAT IS CI.ATMED TS:

1. A method, comprising the steps of:

providing a set of predetermined function definitions
which are different; and

preparing a project definition expressed in a public
communication protocol, said project definition including:

a plurality of function portions which each correspond
to one of said function definitions in said set, and which
each define at least one input port and at least one output
port that are functionally related according to the
corresponding function definition;

a further portion which includes a source portion
identifying a data soﬁrce and defining an output port
through which data from the data source can be produced,
and which includes a destination portion identifying a data
destination and defining an input port through which data
can be supplied to the data destination; and

binding information which includes binding definitions
that each associate a respective said input port with one

of said output ports.

2. A method according to Claim 1, including the step
of selecting as said public communication protocol the

eXtensible Markup Language (XML) protocol.

3. A method according to Claim 1, wherein one of said
function definitions implements a function which varies in
dependence on control input; and wherein said preparing
step includes the step of including in said project
definition, for each said function portion therein that
corresponds to said one of said function definitions,
respective control information for use as said control

input.

10

15

WO 02/21341 PCT/US01/28270

102

4. A method according to Claim 3, wherein said
preparing step includes the step of including in said
project definition a list which identifies at least some of
said function, source and destination portionsg, said
project definition including for each said portion in said
list a section which sets forth any said control
information for that portion, and a section which includes

said binding definitions for that portion.

5. A method according to Claim 4, wherein said
preparing step includes the step of including in said
project definition a plurality of process definitions which
each include a respective said 1list, said 1lists each
including a subset of said function, source and destination

portions, and said subsets being mutually exclusive.

10

15

20

25

WO 02/21341 PCT/US01/28270

103

6. A computer-readable medium encoded with a computer
program which recognizes a set of predetermined function
definitions that are different, and which is operable when
executed to facilitate preparation in a public
communication protocol of a project definition which
includes:

a plurality of function portions which each correspond
to one of said function definitions in said set, and which
each define at least one input port and at least one output
port that are functionally related according to the
corresponding function definition;

a further portion which includes a source portion
identifying a data source and defining an output port

through which data from the data source can be produced,

~and which includes a destination portion identifying a data

destination and defining an input port through which data
can be supplied to the data destination; and

binding information which includes binding definitions
that each associate a respective said input port with one

of said output ports.

7. A computer-readable medium according to Claim 6,
wherein said program is operable when executed to use as
said public communication protocol the eXtensible Markup

Language (XML) protocol.

10

15

20

25

WO 02/21341 PCT/US01/28270

104

8. A computer-readable medium according to Claim 6,
wherein one of said function definitions implements a
function which varies in dependence on control input; and
wherein said program is operable when executed to include
in said project definition, for each said function portion
therein that corresponds to said one of said function
definitions, respective control information for use as said

control input.

9. A computer-readable medium according to Claim 8,
wherein said program is operable when executed to include
in said project definition a list which identifies at least
some of said function, source and destination portions,
said project definition including for each said portion in
said list a section which sets forth any said control
information for that portion, and a section which includes

said binding definitions for that portion.

10. A computer-readable medium according to Claim 9,
wherein said program is operable when executed to include
in said project definition a plurality of process
definitions which each include a respective said list, said
lists each including a subset of said function, source and
destination portions, and said subsets being mutually

exclusive.

WO 02/21341 PCT/US01/28270

PROJECT DEFINITION FIG. 1 /1/0
e L 1
SUBDIRECTORY
12 l 21 26 23 31 37 VRO
r—i--l | A Y W L 33—/
FILES - |-
(IWES)JL SOURCE;/:'\>BRANCH \] rcrion é{)DESTINATION :—>LF1L53|
- | R Mfy—— ———————— ~
| [] -
141 42 ACTION .‘RDDESTINATION 'rﬂ"rlLEST
I
i T, N
' 28 32 3 ! /
I - S - J SUBDIRECTORY
SOURCE FUNCTION DESTINATION
FIG. 2 FIG. 8
FIG. 4 FIG. 6
011010
100110
011010
100110
W]
f— -
71
FIG. 6 79— . N
l/ 011010 l/ LL 011010
dd 100110 73 100110 74

o11010 | 011010
100110 100110

O =z
Lo o i

DATABASE ACCESS FILL TEXT STAMPER

WO 02/21341

FIG. 7

351

PCT/US01/28270

71~

82 83 84
\ \ /

al || ||| A

FIG. 10

3527

PUT REQUEST
IN QUEUE

A
(DONE)

DATABASE ACCESS FILL TEXT STAMPER
G
N 361
. YESAEUE FIG. 11
EMPTY?
NO

GET A REQUEST FROM QUEUE

- 3562

Ty

EVALUATE AVAILABILITY OF PROCESSORS

L~ 363

366

PROCESSOR(S)
AVAILABLE?

EVALUATE CHARACTERISTICS OF REQUESTED
PROJECT, AND FACTOR IN THE
AVAILABILITY OF PROCESSOR(S)

~-367

CAN
PROJECT BE

LAUNCHED
?

LAUNCH ONE OR MORE INSTANCES OF
PROJECT IN ONE OR MORE PROCESSORS

- 371

!

INITIALIZE WATCHDOG(S)

™-372

PCT/US01/28270

WO 02/21341

961 161 981
\ \ L8l 0]
M mmm i b sl
INdINO ¢6L WINWN NOLLOY
VavLY 1 1
0L 3ISvavLva 11 YNY3LX3 a1 .
181 9/1 L/ 891 g OId
\ \ \
ey 1) La\w Wmﬁwﬂm_ <=
Q/A @ e i./ ol
INS L[¥30703 L1 YIAWN 43dNVLS
iy Nolwnusie 3 |69 pal i ik
991 191 961 1Gl g7l 171 s Iyl 9zl 121
\ \ \ \ PN \ / / 6cl / /
u/ @ sis] 1] \4 i mmuu /4 m@% ‘_/ e 4/ i Y “_,%f/é -
YIS 291 430704 /Gl ¥INWN 7G|l ¥IJWVLS NV vl 371 8¢l y3gTng 8L Tivi3 04Nl 22l SS30V
711 NOLIYNIISIa 314 1X31 —43INI 3114 INIYLS ON3S JOVAI 3Svaviva
No_.\i ~_
. %L N
|] 1 [| 4_ 1]
~ 7 7 S S
101 LOL) #LL €Ll 2Ll LLL

(0) @IILINN

PCT/US01/28270

WO 02/21341

ve 914

86 "9l
oL

Foiva 1 Maval
TVIvO] [VLVO

Foo oo
AAUERALY

 ~LCC

3Svaviva
)

A

FocT Fo

RAERAIY

Foe Moo

LYVO LWV
Wy3

ro=a ree
(Wvay viva,
F== oo
AR
LIS d13

(‘ \
cce Y4
S LINY3INI

el
22
<l
N
Ly
A4
L0~ /
¥Inas |
am |2
_WW.__
| |
281,
e
o y
IIIIII — /
SO | | L bop \NIOSEP
S= I A NO<C8LY
1 193r04d_ IS =yl \ ON BLY
9p AN
v)| & qraear
SO TN P 1= ==t -
T = = =
LS L_ 1221151 IZ11E]
puilyuloutosipn iy sl I L= O
(SNOLLINLA3a! B2RL e g
lalm,.q.omﬁmﬂ FVIBLN W/:\\\\\ 9/%
NIONIW | gy| ¢ 8 YV08AIN
v LG 3SNON
¢ ~ adsial| LSV
(YA ~~9Gy VIO

L o

807
- I
AYONIN _ﬂ.Nu MJ_ \ /4//mommuoomn_
omiad | [ISE A
I | __..r_ A.V\Iu_ / \ \ //
e N i Y e A R
NG || - S Sl
_ | e —T— A= 21 IENELZ]
L _NOLSN3 L_ 1221 1cl 1zl 1.1
||||| st Do) L L2 L
SNoLNRd) | |13k N /T
— ~
LOIVANYIS § | | 1352 "N\ 27
QUVOBAT
ISNOW
1 AV1dSIA
3U0W3Y 92

PCT/US01/28270

WO 02/21341

4INIS SS3004d

: [ee—mmm—————memmmmo- i 40SS300dd__ _ _ __ _
6 OId4| 8 | TSNoINEEGTSNOLINGIOL~v82] (st _ — — 3NGON SNidWwNe Gv0T _ _ |
NIONIN 1 OISy) 433rodd_ 10 gogTzocTo0el N TzicleleTvie
260~ TqemuacTsommiel | et et rE e L
||||| WOISND | 1D3ro¥d -€8¢] 1221121181181 'E21 12115
r ININD 11 Wisl Y L el | swliallalla 1S &= 121 15
I T Tyt epltep e ey - ISGHISIGHISE (=EliSh
LASINOR jr====—mm s 7 Sagizig GEnSHg
ol /"1 TonoiliNiaa TsNorni3a L-28z S_MIENENEL (=220 D=
96¢ | WOLSND | 123rQdd 1 | { I | | }
A SCICoooIC-ooC |
8¢ TSNOLINIE3 | SNOLIN30 |~ 182!
/82~ _WOISN _|_ 133r0¥d (082 | 50
L e e o e o e oo e o e St S — |
‘ LINVYINI
ALA 172
N S —t__ t 92
AOW3N “.ﬂ 8c 1| “.m . M.“ INOILVDI1ddV | _.,mﬁ
rmm==m--q 1 1S S EE | INISSI00Yd vaull I
" _||.N.m|N||| Lhy__yva _ 1| ".w.wlM.“ r_mwOlsﬁl._ acz [‘_ “
j__ya _ 11 [<318vL003X3! | e M& 44 A4/ 27 YINYIS |
I |l=m == = 11y Q3103138 - - 314
e R e S e s w
1227 |V} Q310313S 111 96¢ i 1= =) I 9NILV§3dO ! C=
| = ZT=Toz LS /! 1= 5 L-——Z— -
I 17NoiTING3a 1 |} T NoriNia3a T 15 251 REES
11 iy 11 1Sl LSC
L1 133r08d rry 193M08d y1 L AGVIIIXNY
L - Jbo - J | [40Ss3004d X, N
\ JAY/ 91z

YIAYIS ONIOVAI

FROM FIG. 9A

WO 02/21341 PCT/US01/28270

CSTART) FIG. 12

<

Y

381~ CHECK FOR ABNORMAL
STATE OF EXECUTION

382

NO

ABNORMAL?

Y

383~ QUEUE INCOMING EVALUATE EFFICIENCY | ~401
INFORMATION OF MEMORY USE

Y

TERMINATE EXECUTION

!

FOR EACH PROJECT,
387~ IDENTIFY LAST DATA
ITEM PROCESSED
TO COMPLETION

Yy

RELAUNCH APPLICATION
AND EACH PROJECT,
STARTING EACH

386~

A PROJECT WITH FIRST QUEUE INCOMING g
388 DATA ITEM NOT INFORMATION 407
PROCESSED TO ‘
PLET
Y *
o] oo | [EEAE [
APPLICATION | '

\

CAUSE APPLICATION
TO CONTINUE FROM ~_412
WHERE INTERRUPTED

!

SUPPLY QUEUED
INFORMATION TO K~ 413
APPLICATION

Y

WO 02/21341 PCT/US01/28270

INTERACTIVE

492

e 496~ CANCEL 497
OnSale N\-493
OutOfStock M 498/D Don't show me this again.

FIG. 17

CONDITIONAL BINDING

. Process: Untitled (0) 606
B'?:;r)‘m Module: DatabaseAccess.1.0utput d

Properly: MSRP CANCEL | 618

Binding2 | Process: Untitled (0) SubProcess: Sub (1)
(82) Module: Calculator.1.0utput
Property: Price

607

If| B1 > B2 AND B2 < (0.75 * Bf) ™~ 611

Then B2 _612

Eise | B1

613

PCT/US01/28270

WO 02/21341

< |
J SR P wm,_ Tl Uojng opiS seml &> SUHD S
“ o e o dld AVM“ 9cq & P
0 /Gl 010110 010110 0l0110 WAS g“w”m M"m W.m LG~ mco:.o<®Nm
i 3010; HIdWVLS 430718 18P0 uoloulysaq -4 N
NOILYNILS30 1xal ONIYLS nainay ospqoip S YPS 8¢S
: 193US JODJUOY) Ay
0 o | e gl | s
N < “_ %«Wﬂ "._ _\n/ﬁ suoly m%l E ﬁ/NN@
& D= [k — < paoopim Pg-, |
IO ¥IWN | NOILDOV rol 1| beH wp B (€S momm,ﬂw/
Iveviva | wNsa |\ e sajy Buis P4 ! 96
T e M . oo Wu m S31NaOK
= =1 Dkl D= i g S et e
IS ¥IAI04 HIWWN | ¥IdAVLS =0l E DuLi0] 3l oﬁfn ! r_ ¢
dl4 NOILYNILSIG@ 34 1X3L | adA| Jojo) A@T_ Y44)ﬁ ¢ZS
lllll —mﬁllllmm_lllll—.m._‘ll -lllwlm_,llllllll.lnh.lllu_ﬂl- dwnp shomy Qg+ | 810819
¢0l — sayouDl
N LS /T "mu\ JojpIousy *uﬁ _W.a@.ﬂ. Tl &-_775
: x = o jo0lg DN (G- | aynosx
= ME] = sejlj (0907 WL“ Y wu\/
YIS M3QI04 NINN (YIAAVLS | ALV 3ZIS ¥3ATING Tvi3 OINI SSIOOV 12| sopg jousopy| [or+ | 128
T4 NOLWNLISIA 14 ZGL LAl | ~M3INT U3 ONIMIS Qnas ||| Fovwi 3svaviva 15| sesmoig oyd (o4 |G | YsUand
< l 1| sse00y asgojng o | @.\/
7|.l||||I..|.l|||.I||.I.|||..l..||||||||.|||..ll.||..l||l|<1|| o \ mwu‘_zom@. m mem
Po_x 19¢ P R e Y [S— AN SaINPON o] ubiseg /18
N L0l (0) GITLINN < ST 830704 o
| SIINAON $193r04d
=] 105 gos——~1 1]
¥0% djofl fosloud Jp3 MalA alid

M
(e
lp]

(0)a31LILNN-YOHLINY

PCT/US01/28270

WO 02/21341

€86

d3dWVLS 1X3l

16

w

18G

O4NI 39VAI
<

011001
010110

ujabowj

1nQabowj

011001
010110

ujixa]

sayabow]

(

L8S

(66

Habow

Mobow

BWDNPUYYID4obow]

™-986

awpNabow|

ans

o
01100t
010110
01400t
010110

:»

\\mo_

91

914

-l

3

<

y ! ;
011001

010LL0
011001
010110

43AVS
ERIEN

2017

430104
NOILVYNILS3Q

JINVN
3114

A
101

B
1

=

o
011001

]

<

ol
01001

010110
011001
010110

I35]
o7

¥

010110

041001
_ 010110

17

L7

<

n
0Lloot
010110
01100t
010t10

[A

=

n.
011001

43dAVLS
1X3l

ALV
—Y3IN]

EVAN
3114

y3011n8
ONIULS

11V
aN3S

oiotio
011001
0loL10

.

13

04NI
ERL/I

Gl

914

SS30V
3Svaviva

LOL-]

)

L]

(0) GITLIINN

WO 02/21341 PCT/US01/28270

651
FIG. 18 4
Text Stamper
Text: [Bound To Price |~ 654
Font: [Arial [[} 567
66/1 6/71 662 663 666 o68
Merge Mode: | Normal [v]size: [24 [[v]
672
Transparency: Eﬁl Trrirtrnl @673 | A"Q'e:DmG
Literal position (pixels): [] Relative Position
677 X Position: [0 681 (g 00O
sag Y Postton: [0 682 8 8 8

If on border place text outside the image

Expand Image if text is too large Ej\688

657 ?91 653
Preview... Bind to:

R
ImageFilename

692 657

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

