PROSTAGLANDIN DERIVATIVES FOR TREATING GASTROINTESTINAL DISORDER

The present invention relates to a method for the long term treatment of gastrointestinal disorders in a human subject, which comprises administering an effective amount of a halogenated prostaglandin compound and/or its tautomer to the subject. The method induces substantially no electrolyte shifting during the term of the treatment. The compound used in the present invention can improve quality of life in the human subjects with gastrointestinal disorders, are similarly effective in treating male and female human subjects, and also effective in a human subject aged even 65 years and older.
DESCRIPTION

PROSTAGLANDIN DERIVATIVES FOR TREATING GASTROINTESTINAL DISORDER

TECHNICAL FIELD

The present invention relates to a method and composition for the long-term treatment of gastrointestinal disorders in a human subject.

The present invention also relates to a method and composition for the treatment of gastrointestinal disorders in both male and female human subject.

The present invention further relates to a method and composition for the treatment of gastrointestinal disorders in a human subject aged 65 years and older.

Furthermore, the present invention relates to a method and composition for the improvement of quality of life in a human subject with gastrointestinal disorders.

BACKGROUND ART

Constipation is generally defined as infrequent and difficult passage of stool. Medical reporting estimates that one of every 50 people in the United States suffers from constipation. That is, one of the most common disorders among Americans. Constipation is more likely to affect females than males and more likely to occur in older
adults, showing an exponential increase after the age of 65. The actual occurrence of constipation is likely higher than reported, as many individuals suffer at home without seeking professional care.

Although in some instances constipation may be caused by obstruction, most constipation can be associated with factors such as a diet low in soluble and insoluble fibers, inadequate exercise, medication use (in particular, opiate analgesics, anticholinergic antidepressants, antihistamines, and vinca alkaloids), bowel disorders, neuromuscular disorders, metabolic disorders, poor abdominal pressure or muscular atony.

A precise quantitative definition of constipation has been difficult to establish due to the wide range of perceived "normal" bowel habits, as well as the diverse array of symptoms and signs associated with constipation. The FDA has recognized a need for prescriptive treatment of occasional constipation.

Prostaglandins (hereinafter, referred to as PGs) are members of class of organic carboxylic acids, which are contained in tissues or organs of human or other mammals, and exhibit a wide range of physiological activity. PGs found in nature (primary PGs) generally have a prostanoic acid skeleton as shown in the formula (A):
PGs are classified into several types according to the structure and substituents on the five-membered ring, for example,

5 Prostaglandins of the A series (PGAs);

Prostaglandins of the B series (PGBs);

Prostaglandins of the C series (PGCs);

10 Prostaglandins of the D series (PGDs);
Prostaglandins of the E series (PGEs);

and the like. Further, they are classified into PG₁s containing a 13,14-double bond; PG₂s containing, 5,6- and 13,14-double bonds; and PG₃s containing 5,6-, 13,14- and 17,18-double bonds. PGs are known to have various pharmacological and physiological activities, for example, vasodilatation, inducing of inflammation, platelet aggregation, stimulating uterine muscle, stimulating intestinal muscle, anti-ulcer effect and the like. The major prostaglandins produced in the human gastrointestinal (GI) system are those of the E, I and F series (Sellin, Gastrointestinal and Liver Disease: Pathophysiology, Diagnosis, and Management. (WB Saunders Company, 1998); Robert, Physiology of the Gastrointestinal Tract 1407-1434 (Raven, 1981); Rampton, Prostaglandins: Biology and Chemistry of Prostaglandins and Related Eicosanoids 323-344


PGE or PGF can stimulate the intestines and cause intestinal contraction, but the enteropooling effect is poor. Accordingly, it is impossible to use PGEs or PGFs as cathartics because of side effects such as stomachache caused by the intestinal contraction.


U.S. Patent No. 5,317,032 to Ueno et al. describes prostaglandin analog cathartics, including the existence of bicyclic tautomers of the same and U.S. Patent No. 6,414,016 to Ueno describes bicyclic tautomers of a prostaglandin analog as having pronounced activity as anti-constipation agents. The bicyclic tautomers of a prostaglandin analog, which is substituted at the C-16 position by one or more halogen atoms, especially fluorine
atoms, can be employed in small doses for relieving constipation.

U.S. Patent publication No.2003/0130352 to Ueno et al. describes that prostaglandin compound opens and activates chloride channels, especially CIC channels, more especially CIC-2 channel.

U.S. Patent publication No.2003/0119898 to Ueno et al. describes specific composition of a halogenated prostaglandin analog for the treatment and prevention of constipation.

U.S. Patent publication No.2004/0138308 to Ueno et al. describes that a chloride channel opener, especially a prostaglandin compound can be used for the treatment of abdominal discomfort, and for the treatment of functional gastrointestinal disorders such as irritable bowel syndrome and functional dyspepsia.

MiraLax™ (polyethylene Glycol 3350, NF Powder for solution) is synthetic polyglycol having an average molecular weight of 3350, and used for the treatment of occasional constipation. This product is basically used for up to two weeks. Prolonged, frequent or excessive use of MiraLax™ may result in electrolyte imbalance and dependence on laxatives (MiraLax™ Package insert). MiraLax™ acts as an osmotic agent, which creates an imbalance in the lumen of the gut and draws fluid
osmotically into the lumen. The increased fluid level softens the stool and promotes bowel movements.

Likewise, the aforesaid ClC-2 chloride channel activators are believed to function by stimulating chloride secretion into the lumen of the gut, which draws water through an osmotic mechanism into the lumen that, in turn, promotes bowel movements. Given that a specific prostaglandin compound is an ion channel activator and is believed to work essentially in an osmotic manner, like Miralax™, one would expect that long term use of said prostaglandin compound would also have the disadvantages found in Miralax™. Therefore, its use would be limited practically to a couple of weeks, just like Miralax™.

Zelnorm® (tegaserod maleate) is indicated for the short-term treatment of women with irritable bowel syndrome (IBS), whose primary bowel symptom is constipation. In two randomized, placebo-controlled, double-blind studies enrolling 288 males, there were no significant differences between placebo and Zelnorm® response rates. The safety and effectiveness of Zelnorm® in men with IBS with constipation has not been established. In addition, Subgroup analyses of patients aged 65 years and older showed no significant treatment effect for Zelnorm® over placebo. That is, the effectiveness of Zelnorm® in patients aged 65 years and older with chronic idiopathic
constipation has not been established. Further, if the patients stop taking Zelnorm®, the symptoms may return within 1 or 2 weeks. (Zelnorm® Package insert)

**SUMMARY OF THE INVENTION**

Despite the essentially osmotic mechanism of action, however, the inventor has found surprisingly that there is no electrolyte shifting on using certain halogenated prostaglandin compounds in human patients during long term use.

The inventor has also found that halogenated prostaglandin compounds are effective in a long-term treatment and that substantially no rebound effect is seen after the discontinuation of even the long-term treatment with said compound.

Furthermore, the inventor has found that halogenated prostaglandin compounds improve the quality of life in the patients with gastrointestinal disorders and are similarly effective in treating male and female human patients, and even 65 years and older patients.

Namely, the present invention provides a method for the long term treatment of gastrointestinal disorders in a human subject, which comprises administering an effective amount of a prostaglandin compound represented by Formula (I) and/or its tautomer:
wherein $W_1$ and $W_2$ are

\[
\begin{array}{c}
\text{R}_3 \quad \text{R}_4, \quad \text{R}_3 \quad \text{R}_4 \quad \text{or} \quad \text{O} \\
\end{array}
\]

$R_3$ and $R_4$ are hydrogen; or one of them is OH and the other is hydrogen;

$X_1$ and $X_2$ are hydrogen, lower alkyl or halogen, provided that at least one of them is halogen;

$R_2$ is hydrogen or alkyl;

$Y$ is a saturated or unsaturated C$_{2-10}$ hydrocarbon chain, which is unsubstituted or substituted by oxo, halogen, alkyl, hydroxy or aryl;

$A$ is -CH$_2$OH, -COCH$_2$OH, -COOH or its functional derivative;

$R_1$ is a saturated or unsaturated, straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower
cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower
cycloalkyl; lower cycloalkyloxy; aryl; or aryloxy;
the bond between C-13 and C-14 positions is double
or single bond, and
the steric configuration at C-15 position is R, S or a
mixture thereof
to the subject in need thereof.

The present invention also provides a method for the
treatment of gastrointestinal disorders in a male human
subject, or a human subject aged 65 years and older, which
comprises administering an effective amount of a
prostaglandin compound represented by Formula (I) and/or
its tautomer to the subject in need thereof.

The present invention further provides a method for
the improvement of quality of life in a human subject with
gastrointestinal disorders, which comprises administering
an effective amount of a prostaglandin compound represented
by Formula (I) and/or its tautomer to the subject in need
thereof.

In each embodiment of the method of the present
invention, total daily dose of the PG compound may
preferably be 6-96μg.

The method of the present invention can be carried
out by administering a pharmaceutical composition which
comprises the above-identified prostaglandin compound
and/or its tautomer to the subject to be treated. Accordingly, in another aspect of the present invention, a pharmaceutical composition for the long term treatment of gastrointestinal disorders in a human subject comprising

(i) an effective amount of a prostaglandin compound represented by Formula (I) and/or its tautomer and (ii) a pharmaceutically suitable excipient is provided.

The present invention further provides a pharmaceutical composition for the treatment of gastrointestinal disorder in both male and female patients or in a human subject aged 65 years and older, which comprises (i) an effective amount of a prostaglandin compound represented by Formula (I) and/or its tautomer and (ii) a pharmaceutically suitable excipient.

The present invention still further provides a pharmaceutical composition for the improvement of quality of life in a human subject with gastrointestinal disorders, which comprises (i) an effective amount of a prostaglandin compound represented by Formula (I) and/or its tautomer and (ii) a pharmaceutically suitable excipient.

In another aspect of the present invention, use of a prostaglandin compound represented by Formula (I) and/or its tautomer for the manufacture of a pharmaceutical composition as defined above is provided.

BRIEF DESCRIPTION OF THE DRAWINGS
Fig. 1 is a graph showing severity of constipation during the treatment for 6 months.

Fig. 2 is a graph showing severity of constipation during the treatment for 12 months.

Fig. 3 is a graph showing abdominal bloating during the treatment for 6 months.

Fig. 4 is a graph showing abdominal bloating during the treatment for 12 months.

Fig. 5 is a graph showing abdominal discomfort during the treatment for 6 months.

Fig. 6 is a graph showing abdominal discomfort during the treatment for 12 months.

Fig. 7 is a graph showing effects on bowel movements per week.

Fig. 8 is a graph showing effects on abdominal bloating.

Fig. 9 is a graph showing effects on abdominal discomfort.

Fig. 10 is a graph showing effects on severity of Constipation.

Fig. 11 is a graph showing effects on straining.

Fig. 12 is a graph showing effects on Consistency.

Fig. 13 is a graph showing effects on male vs. female patients in bowel movement.

Fig. 14 is a graph showing effects by age in bowel
movement.

DETAILED DESCRIPTION OF THE INVENTION

In the present invention, the "effective amount" may be determined based on the age, body weight, conditions of the patient to be treated, desired therapeutic effect, administration route, treatment period and the like. According to the present invention, the amount of the prostaglandin compound to be administered may be 0.001-1000 μg/kg body weight, more preferably, 0.01-100 μg/kg body weight and most preferably, 0.1-10 μg/kg body weight per day. The frequency of administration may be one or more times per day, preferably, two or more times per day. Typical administration amount to a patient is about 6-96 μg per day. According to the specification and claims, the administration amount or dose is determined based on a patient having body weight of approximately 60 kg.

As used herein, the term "about" when used in conjunction with a unit of measure can be defined as +/- 30%, preferably +/- 20%, and especially +/- 10%. For example, the total daily dose of about 6-96 μg preferably means the range of 5.4-105.6 μg. The preferred dose is in the range of about 6-72 μg. In a more preferred embodiment, the dose is in the range of about 6-60 μg. For example, the dose of said halogenated compound can be about 8-48 μg.

(i) Prostaglandin compound of formula (I)
The instant invention utilizes a prostaglandin compound represented by formula (I):

![Chemical Structure](image)

wherein \( \text{W}_1 \) and \( \text{W}_2 \) are \( R_3 \) and \( R_4 \) are hydrogen; or one of them is OH and the other is hydrogen;

\( X_1 \) and \( X_2 \) are hydrogen, lower alkyl or halogen, provided that at least one of them is halogen;

\( R_6 \) is hydrogen or alkyl;

\( Y \) is a saturated or unsaturated \( C_{2-10} \) hydrocarbon chain, which is unsubstituted or substituted by oxo, halogen, alkyl, hydroxy or aryl;

\( A \) is \(-\text{CH}_2\text{OH}, -\text{COCH}_2\text{OH}, -\text{COOH} \) or its functional derivative;

\( R_1 \) is a saturated or unsaturated, straight chain-, branched chain- or ring-forming lower hydrocarbon, which is
unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower cycloalkyl; lower cycloalkyloxy; aryl; or aryloxy;

the bond between C-13 and C-14 positions is double or single bond, and

the steric configuration at C-15 position is R, S or a mixture thereof.

In the above formula, the term "halogen" is used to include fluorine, chlorine, bromine, and iodine atoms. Particularly preferable halogen atoms for $X_1$ and $X_2$ are fluorine atoms.

The term "unsaturated" in the definitions for $R_1$ and $Y$ is intended to include at least one or more double bonds and/or triple bonds that are isolatedly, separately or serially present between carbon atoms of the main and/or side chains. According to the usual nomenclature, an unsaturated bond between two serial positions is represented by denoting the lower number of the two positions, and an unsaturated bond between two distal positions is represented by denoting both of the positions.

The term "lower" throughout the specification and claims is intended to include a group having 1 to 6 carbon atoms unless otherwise specified.

The term "ring" refers to lower cycloalkyl, lower
cycloalkyloxy, aryl or aryloxy.

The term "lower alkyl" refers to a straight or branched chain saturated hydrocarbon group containing 1 to 6 carbon atoms and includes, for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl and hexyl.

The term "lower alkoxy" refers to a group of lower alkyl-O-, wherein lower alkyl is as defined above.

The term "lower alkanoyloxy" refers to a group represented by the formula RCO-O-, wherein RCO- is an acyl group formed by oxidation of a lower alkyl group as defined above, such as acetyl.

The term "lower cycloalkyl" refers to a cyclic group formed by cyclization of a lower alkyl group as defined above but contains three or more carbon atoms, and includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term "lower cycloalkyloxy" refers to the group of lower cycloalkyl-O-, wherein lower cycloalkyl is as defined above.

The term "aryl" refers to unsubstituted or substituted aromatic carbocyclic or heterocyclic groups (preferably mono-cyclic groups), for example, phenyl, naphthyl, tolyl, xylyl, furyl, thiienyl, pyrrolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, imidazolyl, pyrazolyl,
furanyl, pyranyl, pyridyl, pyridazyl, pyrimidyl, pyrazyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidino, piperazinyl, morpholono, indolyl, benzothienyl, quinolyl, isoquinolyl, puryl, quinazolinyl, carbazolyl, acridinyl, phenathridinyl, benzimidazolyl, benzimidazolonyl, benzothiazolyl and phenothiazinyl. Examples of substituents are halogen atom and halo(lower)alkyl, wherein halogen atom and lower alkyl are as defined above.

The term "aryloxy" refers to a group represented by the formula ArO-, wherein Ar is aryl as defined above.

The term "functional derivative" of A includes salts (preferably pharmaceutically acceptable salts), ethers, esters and amides.

Suitable "pharmaceutically acceptable salts" include conventionally used non-toxic salts, for example a salt with an inorganic base such as an alkali metal salt (such as sodium salt and potassium salt), an alkaline earth metal salt (such as calcium salt and magnesium salt), an ammonium salt; or a salt with an organic base, for example, an amine salt (such as methylamine salt, dimethylamine salt, cyclohexylamine salt, benzylamine salt, piperidine salt, ethylenediamine salt, ethanolamine salt, diethanolamine salt, triethanolamine salt, tris(hydroxymethylamino)ethane salt, monomethyl- monoethanolamine salt, procaine salt and caffeine salt), a basic amino acid salt (such as arginine
salt and lysine salt), tetraalkyl ammonium salt and the like. These salts may be prepared by a conventional process, for example from the corresponding acid and base or by salt interchange.

Examples of the ethers include alkyl ethers, for example, lower alkyl ethers such as methyl ether, ethyl ether, propyl ether, isopropyl ether, butyl ether, isobutyl ether, t-butyl ether, pentyl ether and 1-cyclopropyl ethyl ether; and medium or higher alkyl ethers such as octyl ether, diethylhexyl ether, lauryl ether and cetyl ether; unsaturated ethers such as oleyl ether and linolenyl ether; lower alkenyl ethers such as vinyl ether, allyl ether; lower alkynyl ethers such as ethynyl ether and propynyl ether; hydroxy(lower)alkyl ethers such as hydroxyethyl ether and hydroxyisopropyl ether; lower alkoxy (lower)alkyl ethers such as methoxymethyl ether and 1-methoxyethyl ether; optionally substituted aryl ethers such as phenyl ether, tosyl ether, t-butylphenyl ether, salicyl ether, 3,4-di-methoxyphenyl ether and benzamidophenyl ether; and aryl(lower)alkyl ethers such as benzyl ether, trityl ether and benzhydryl ether.

Examples of the esters include aliphatic esters, for example, lower alkyl esters such as methyl ester, ethyl ester, propyl ester, isopropyl ester, butyl ester, isobutyl ester, t-butyl ester, pentyl ester and 1-cyclopropylethyl
ester; lower alkenyl esters such as vinyl ester and allyl ester; lower alkynyl esters such as ethynyl ester and propynyl ester; hydroxy(lower)alkyl ester such as hydroxyethyl ester; lower alkoxy (lower) alkyl esters such as methoxymethyl ester and 1-methoxyethyl ester; and optionally substituted aryl esters such as, for example, phenyl ester, tolyl ester, t-butylphenyl ester, salicyl ester, 3,4-di-methoxyphenyl ester and benzamidophenyl ester; and aryl(lower)alkyl ester such as benzyl ester, trityl ester and benzhydryl ester.

The amide of A means a group represented by the formula \(-\text{CONR}'\text{R}''\), wherein each of R' and R'' is hydrogen, lower alkyl, aryl, alkyl- or aryl-sulfonyl, lower alkenyl and lower alkynyl, and includes for example, lower alkyl amides such as methylamide, ethylamide, dimethylamide and diethylamide; arylamides such as anilide and toluidide; and alkyl- or aryl-sulfonylamides such as methylsulfonylamide, ethylsulfonylamide, methylsulfonyl-amide and tolylsulfonylamide.

Examples of Y include, for example, the following groups:

\(-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}_2-\),
\(-\text{CH}_2-\text{CH}=\text{CH}-\text{CH}_2-\text{CH}_2-\),
\(-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{CH}=\text{CH}-\),
\(-\text{CH}_2-\text{C}=\text{C}-\text{CH}_2-\text{CH}_2-\),
\(-\text{CH}_2-\text{CH}_2-\text{CH}_2-\text{O}-\text{CH}_2-\),
-CH₂-CH=CH-CH₂-O-CH₂⁻,
-CH₂-C≡C-CH₂-O-CH₂⁻,
-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂⁻,
-CH₂-CH=CH-CH₂-CH₂-CH₂-CH₂⁻,
-CH₂-CH₂-CH₂-CH₂-CH₂-CH=CH⁻,
-CH₂-C≡C-CH₂-CH₂-CH₂-CH₂⁻,
-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂⁻,
-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂⁻,
-CH₂-CH=CH-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂⁻,
-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂-CH₂⁻,

Further, at least one carbon atom in the aliphatic hydrocarbon of Y is optionally substituted by oxygen, nitrogen or sulfur.

Preferred A is -COOH or its pharmaceutically acceptable salt or ester.

Preferred X₁ and X₂ are both being halogen atoms, and more preferably, fluorine atoms.

Preferred W₁ is = O.

Preferred W₂ is \[ \begin{array}{c}
\text{R₃} \\
\text{R₄ or R₃} \\
\text{R₄}
\end{array} \]

where R₃ and R₄ are both hydrogen atoms.

Preferred Y is an unsubstituted, saturated or unsaturated hydrocarbon chain having 6-8 carbon atoms.
Preferred $R_1$ is a hydrocarbon containing 1-6 carbon atoms, more preferably, 1-4 carbon atoms. $R_1$ may have one or two side chains having one carbon atom.

$R_2$ is preferably hydrogen.

Most preferred embodiment is a prostaglandin compound of formula (I) in which $A$ is $-\text{COOH}$; $Y$ is $(\text{CH}_2)_6$; $W_1$ is $=\text{O}$; $W_2$ is $\begin{array}{c} R_3 \\ R_4 \end{array}$ or $\begin{array}{c} R_3 \\ R_4 \end{array}$, wherein $R_3$ and $R_4$ are both hydrogen; $R_2$ is hydrogen; $X_1$ and $X_2$ are fluorine; and $R_1$ is $(\text{CH}_2)_3\text{CH}_3$ or $\text{CH}_2\text{CH}(\text{CH}_3)\text{CH}_2\text{CH}_3$.

The active agent of this invention or the PG compound of formula (I) exists as a bicyclic compound in a solid state, but when dissolved in a solvent, a part of the compound forms a tautomer. In the absence of water, compound represented by formula (I) exists predominantly in the form of the bicyclic structure. In aqueous media, it is believed that hydrogen bonding occurs between the water molecule and, for example, the keto moiety at the C-15 position, thereby hindering bicyclic ring formation. In addition, it is believed that the halogen atoms at the C-16 position promote bicyclic ring formation. The tautomerism between the hydroxy at the C-11 position and the keto moiety at the C-15 position, shown below, is especially significant in the case of compounds having a 13,14 single bond and two fluorine atoms at the C-16 position.

Accordingly, the present invention may comprise
isomers of the halogenated prostaglandin compounds. For example, mono-cyclic tautomers having a keto group at the C-15 position and halogen atoms at the C-16 position is shown as follows.

A preferred compound according to the invention in its monocyclic form can be named as 13,14-dihydro-15-keto-16,16-difluoro-PGE\textsubscript{1}, according to conventional prostaglandin nomenclature.

(ii) The Pharmaceutically suitable excipient

According to the invention, the pharmaceutical composition may be formulated in any form. The pharmaceutically suitable excipient may be, therefore, selected depending on the desired form of the composition. According to the invention, "pharmaceutically suitable excipient" means an inert substance, which is combined with the active ingredient of the invention and suitable for preparing the desired form.

For example, a solid composition for oral administration of the present invention may include tablets, preparations, granules and the like. In such a solid
composition, one or more active ingredients may be mixed with at least one inactive diluent, for example, lactose, mannitol, glucose, hydroxypropyl cellulose, microcrystalline cellulose, starch, polyvinyl pyrrolidone, magnesium aluminate metasilicate and the like. According to the usual work-up, the composition may contain additives other than inactive diluent, for example, lubricant such as magnesium stearate; disintegrant such as fibrous calcium gluconate; stabilizer such as cyclodextrin, for example, α,β- or γ-cyclodextrin; etherified cyclodextrin such as dimethyl-α-, dimethyl-β-, trimethyl-β-, or hydroxypropyl-β-cyclodextrin; branched cyclodextrin such as glucosyl-, maltosyl-cyclodextrin; formylated cyclodextrin, cyclodextrin containing sulfur; phospholipid and the like.

When the above cyclodextrins are used, inclusion compound with cyclodextrins may be sometimes formed to enhance stability. Alternatively, phospholipid may be sometimes used to form liposome, resulting in enhanced stability.

Tablets or pills may be coated with film soluble in the stomach or intestine such as sugar, gelatin, hydroxypropyl cellulose, hydroxypropylmethyl cellulose phthalate as needed. Further, they may be formed as capsules with absorbable substances such as gelatins. Preferably, the composition is formulated in a soft gelatin capsule with liquid contents of the halogenated
prostaglandin compound and a medium chain fatty acid triglyceride. Examples of the medium chain fatty acid triglyceride used in the present invention include a triglyceride of a saturated or unsaturated fatty acid having 6-14 carbon atoms which may have a branched chain. A preferred fatty acid is a straight chain saturated fatty acid, for example caproic acid (C6), caprylic acid (C8), capric acid (C10), lauric acid (C12) and myristic acid (C14). In addition, two or more medium chain fatty acid triglycerides may be used in combination. Further suitable excipients are disclosed in the published PCT application WO 01/27099.

A liquid composition for oral administration may be in the form of emulsion, solution, suspension, syrup or elixir comprising a generally used inactive diluent. Such composition may contain, in addition to the inactive diluent, additives such as lubricants, sweetening agents, flavoring agents, preservatives, solubilizers, antioxidants and the like. The additives may be selected from those described in any general textbooks in the pharmaceutical field. Such liquid compositions may be directly enclosed in soft capsules. The composition of the present invention may be suppository, enema or the like. They may be in the form of, for example, sterile aqueous or non-aqueous solution, suspension, emulsion, and the like.
Examples of the excipients for the aqueous solution, suspension or emulsion may include, for example, distilled water, physiological saline and Ringer's solution.

Examples of excipients for non-aqueous solution, suspension or emulsion may include, for example, propylene glycol, polyethylene glycol, fatty acid triglyceride, vegetable oil such as olive oil, alcohols such as ethanol, polysorbate and the like. Such composition may contain additives such as preservatives, wetting agent, emulsifier, dispersant, anti-oxidants and the like.

According to the present invention, the pharmaceutical composition may be either for parenteral or oral administration and an orally applicable composition is preferred. In an example, the active ingredient is preferably dissolved in medium chain fatty acid triglyceride and filled in a capsule.

According to the method of the invention, the composition of the present invention can be administered systemically or locally by means of oral or parenteral administration, including parenteral administration using suppository, enema and the like. The composition of the present invention may be administered once to several times per day.

Preferably, the total daily dose of the prostaglandin compound of the present invention is in the range of about
6-96 µg, more preferably about 6-72 µg, still more preferably about 6-60 µg and especially, 8-48 µg. The dose may vary somewhat, at the discretion of the physician, depending the age and body weight of the patient, conditions, therapeutic effect, administration route, treatment period and the like.

The term "substantially no electrolyte shifting" used herein means that electrolyte imbalance during the term of the treatment is far less than that induced by a known electrolyte imbalance inducing agent. Moreover, the term "substantially no electrolyte shifting" refers to serum electrolyte levels in a treated patient that are within clinically normal ranges as they would be understood by the clinician. As described above, MiraLax™, that is used for the treatment of constipation may induce electrolyte imbalance, which can result in, among other things, dangerous cardiac problems. On the other hand, as shown in the following example, the prostaglandin compound used in the instant invention induces substantially no electrolyte shifting even if it is administered for long term.

The following examples also show that the pharmaceutical composition of the present invention induces substantially no rebound constipation or the other disadvantage after stopping the prolonged treatment with the composition. Accordingly, it can be resulted in that
the composition of the present invention is useful for long term treatment.

Furthermore, the assessment of quality of life in both constipation and IBS patients observed that the present compounds improved the quality of life in the patients.

According to the present invention, the present compounds are useful for the long-term treatment of gastrointestinal disorders. It is similarly effective in treating male and female patients. In addition it is useful in treating a patient aged 65 years and older.

The "gastrointestinal disorders" used herein include for example, but not limited to, acute or chronic constipation, functional gastrointestinal disorders such as irritable bowel syndrome and functional dyspepsia, gastric ulcer, large or small intestinal ulcer and abdominal discomfort.

Included in the types of constipation to be treated, although not particularly limited, are functional constipation such as relaxing constipation, spastic constipation, rectal constipation and post operative ileus; organic constipation caused by intestinal diseases and stenosis due to postoperative adhesion; and constipation induced by a drug such as opioid.

In addition to relieving or preventing constipation, the present composition may be used for preventing a
patient with hernia or cardiovascular diseases from straining at stool, or for softening feces of a patient with anorectal diseases. Moreover, the present composition may be used for cleansing the gastrointestinal tract in preparation for endoscopic examination or for diagnostic or surgical procedures such as colonoscopy, barium enema X-rays and intravenous pyelography, and emergency procedures such as emergency gastrointestinal flush for poison removal and the like. Accordingly the invention covers embodiments wherein the composition of the present invention is used for cleansing the gastrointestinal tract in a human male subject or a human subject aged 65 years and older in need thereof.

The term "treatment" used herein includes any means of control such as prevention, care, relief of symptoms, attenuation of symptoms and arrest of progression. The term "long term treatment" used herein means administering the compound for at least two weeks. The compound may be administered everyday for the whole term of the treatment or with an interval of one to several days.

The further details of the present invention will follow with reference to test examples, which, however, are not intended to limit the present invention.
Example 1

(Method)

Multi-center, open-label study was performed to evaluate the safety of 48 µg of Compound A (13,14-dihydro-15-keto-16,16-difluoro-PGE_1) (24 µg of Compound A b.i.d) when administered daily for 24 weeks (6 months) or 48 weeks (12 months) to subjects with occasional constipation. Patients who demonstrated history of chronic constipation for at least 3 months (having less then three SBMs per week) and at least one associated symptom such as hard stools, incomplete evacuation, straining were enrolled. After 14-day drug-free washout period, they received 48 µg of Compound A (24 µg of Compound A b.i.d) orally for 48 weeks.

In this study, the following parameters were evaluated.

1) Electrolyte balance

Sodium, potassium, chloride, calcium, magnesium and phosphorus ion concentrations in serum of patients (n=299) were measured before, and at 6, 12, 18, 24, 30, 36, 48 and 50 weeks after the start of the Compound A treatment.

The laboratory standard values for the panel of electrolytes were taken from the normal reference ranges for the central laboratory.

2) Severity of Constipation, 3) Abdominal bloating and 4) Abdominal discomfort
Each parameter (Severity of Constipation, Abdominal bloating or Abdominal discomfort) was evaluated on the scale of: 0(absent), 1(mild), 2(moderate), 3(severe) and 4(very severe) in the patients during 6 months (n=246) or 12 months (n=304) treatments.

(Results)

1) Electrolyte balance

As shown in Table 1, treatment with compound A had no effect on sodium, potassium, chloride, calcium, magnesium and phosphorus ion concentration in serum of the patients. The results demonstrate that Compound A does not induce substantial shift of electrolyte over long-term administration.
### Table 1. Mean Serum Chemistry Results

<table>
<thead>
<tr>
<th>Week</th>
<th>Sodium (mmol/L)</th>
<th>Potassium (mmol/L)</th>
<th>Chloride (mmol/L)</th>
<th>Calcium (mg/dL)</th>
<th>Magnesium (mg/dL)</th>
<th>Phosphorus (mg/dL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>141.00</td>
<td>4.28</td>
<td>103.08</td>
<td>9.61</td>
<td>2.18</td>
<td>3.65</td>
</tr>
<tr>
<td>6</td>
<td>142.25</td>
<td>4.28</td>
<td>103.00</td>
<td>9.90</td>
<td>2.23</td>
<td>3.20</td>
</tr>
<tr>
<td>12</td>
<td>139.78</td>
<td>4.20</td>
<td>103.08</td>
<td>9.71</td>
<td>2.24</td>
<td>3.57</td>
</tr>
<tr>
<td>18</td>
<td>141.50</td>
<td>4.40</td>
<td>105.50</td>
<td>9.30</td>
<td>2.35</td>
<td>3.55</td>
</tr>
<tr>
<td>24</td>
<td>139.21</td>
<td>4.19</td>
<td>102.56</td>
<td>9.77</td>
<td>2.21</td>
<td>3.61</td>
</tr>
<tr>
<td>30</td>
<td>136.00</td>
<td>4.30</td>
<td>100.00</td>
<td>9.10</td>
<td>2.30</td>
<td>2.50</td>
</tr>
<tr>
<td>36</td>
<td>138.94</td>
<td>4.18</td>
<td>102.51</td>
<td>9.67</td>
<td>2.19</td>
<td>3.58</td>
</tr>
<tr>
<td>48</td>
<td>139.59</td>
<td>4.20</td>
<td>102.88</td>
<td>9.66</td>
<td>2.14</td>
<td>3.50</td>
</tr>
<tr>
<td>50</td>
<td>139.11</td>
<td>4.49</td>
<td>102.67</td>
<td>9.47</td>
<td>2.31</td>
<td>3.54</td>
</tr>
<tr>
<td><strong>Laboratory Standard</strong></td>
<td><strong>135-148</strong></td>
<td><strong>3.5-5.5</strong></td>
<td><strong>96-109</strong></td>
<td><strong>8.5-10.6</strong></td>
<td><strong>1.6-2.6</strong></td>
<td>*</td>
</tr>
</tbody>
</table>

*Female: 15-19 year 2.5-5.3 mg/dL, ≥ 20 year 2.5-4.5 mg/dL

Male : 15-19 year 2.5-5.6 mg/dL, ≥ 20 year 2.5-4.5 mg/dL
2) Severity of Constipation (6 and 12 months), 3) Abdominal bloating (6 and 12 months) and 4) Abdominal discomfort (6 and 12 months) were shown in FIG.1 to FIG. 6 respectively.

As shown in Figures 1 to 6, Compound A is effective during the 6 months and 12 months treatment.

Example 2

(Method)

Multi-center, double-blind, randomized, placebo-controlled study was performed to assess post-treatment response, in a portion of the total population, after four (4) weeks of active treatment (48 µg Compound A total daily dose) and three (3) weeks randomized withdrawal period. Patients who demonstrated history of chronic constipation for at least 6 months (having less then three SBMs per week) and at least one associated symptom such as hard stools, incomplete evacuation, straining were enrolled. After 14-day drug-free washout period, they received orally 48 µg (total daily dose) of Compound A for 28 days followed by either 0 or 48 µg (total daily dose) of Compound A for 21 days.

In this study, the following parameters were evaluated.

1) Bowel movements per week
2) Abdominal bloating
3) Abdominal discomfort
4) Severity of Constipation
5) Straining
6) Consistency

Each parameter (Abdominal bloating, Abdominal discomfort, Severity of Constipation or Straining) was evaluated on the scale of: 0(absent), 1(mild), 2(moderate), 3(severe) and 4(very severe) in the patients. Consistency was evaluated on a scale of: 0(very loose), 1(loose), 2(normal), 3(hard) and 4(very hard, little balls)

(Results)
1) Bowel movements per week, 2) Abdominal bloating,
3) Abdominal discomfort, 4) Severity of Constipation, 5) Straining and 6) Consistency were shown in FIG.7 to FIG.12 respectively.

As shown in Figures 7 to 12, substantially no rebound effect after the discontinuation of the treatment with Compound A was observed, and the efficacy of the compound A was sustained even after stopping the treatment.

This result indicates that the quality of life of the patients is improved by the administration of compound A.

Example 3
(Method)

Patients with irritable bowel syndrome (IBS) were treated with 48 µg of Compound A (24 µg of Compound A
b.i.d) for 48 weeks.

In this study, we evaluated the following parameters.
1) Abdominal discomfort
2) Abdominal bloating
3) Severity of Constipation

Each of Abdominal discomfort and Abdominal bloating was evaluated on a scale of: 0(absent), 1(mild), 2(moderate), 3(severe) and 4(very severe) in the patients. Severity of Constipation was evaluated on a scale of: 0(very loose), 1(loose), 2(normal), 3(hard), 4(very hard) in the patients.

(Results)

1) Abdominal discomfort, 2) Abdominal bloating and 3) Severity of Constipation were shown in Table 2 to Table 4 respectively.

As shown in Tables 2 to 4, Compound A is effective during the 12 months treatment in IBS patients.
Table 2. Analysis of Abdominal discomfort

<table>
<thead>
<tr>
<th>Week</th>
<th>Compound A Mean ± SD (N) Median Range</th>
<th>Compound A Mean ± SD (N) Median Range</th>
<th>Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1.95 ± 0.850 (183) 2.00 0.00 - 4.00</td>
<td>Change from Baseline</td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>1.16 ± 0.836 (135) 1.00 0.00 - 4.00</td>
<td>-0.79 ± 0.993 (135) -1.00 -3.00 - 2.00 &lt;0.001#</td>
<td></td>
</tr>
<tr>
<td>Week 18</td>
<td>0.98 ± 0.874 (111) 1.00 0.00 - 3.00</td>
<td>-0.97 ± 1.031 (111) -1.00 -4.00 - 3.00 &lt;0.001#</td>
<td></td>
</tr>
<tr>
<td>Week 24</td>
<td>1.09 ± 0.917 (107) 1.00 0.00 - 4.00</td>
<td>-0.82 ± 1.035 (107) -1.00 -4.00 - 3.00 &lt;0.001#</td>
<td></td>
</tr>
<tr>
<td>Week 36</td>
<td>0.93 ± 0.799 (57) 1.00 0.00 - 3.00</td>
<td>-0.77 ± 0.926 (57) -1.00 -4.00 - 2.00 &lt;0.001#</td>
<td></td>
</tr>
<tr>
<td>Week 48</td>
<td>0.87 ± 0.929 (52) 1.00 0.00 - 4.00</td>
<td>-0.81 ± 0.908 (52) -1.00 -2.00 - 2.00 &lt;0.001#</td>
<td></td>
</tr>
<tr>
<td>End of Treatment</td>
<td>1.28 ± 1.020 (183) 1.00 0.00 - 4.00</td>
<td>-0.66 ± 1.112 (183) -1.00 -4.00 - 2.00 &lt;0.001#</td>
<td></td>
</tr>
<tr>
<td>Follow-Up</td>
<td>1.40 ± 0.996 (121) 1.00 0.00 - 4.00</td>
<td>-0.55 ± 1.080 (121) -1.00 -4.00 - 2.00 &lt;0.001#</td>
<td></td>
</tr>
</tbody>
</table>

* P-value is from a Wilcoxon signed-rank test.
Table 3. Analysis of Abdominal bloating

<table>
<thead>
<tr>
<th>Week</th>
<th>Compound A Mean ± SD (N)</th>
<th>Compound A Mean ± SD (N)</th>
<th>Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median Range</td>
<td>Median Range</td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>2.23 ± 0.927 (183)</td>
<td>-0.84 ± 1.045 (135)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 - 4.00</td>
<td>-3.00 - 3.00</td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Week 12</td>
<td>1.43 ± 0.919 (135)</td>
<td>-1.07 ± 1.068 (111)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 - 4.00</td>
<td>-3.00 - 3.00</td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Week 18</td>
<td>1.19 ± 0.837 (111)</td>
<td>-0.95 ± 1.102 (107)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 - 3.00</td>
<td>-4.00 - 3.00</td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Week 24</td>
<td>1.26 ± 0.915 (107)</td>
<td>-1.00 ± 1.134 (57)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 - 4.00</td>
<td>-4.00 - 2.00</td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Week 36</td>
<td>1.05 ± 0.854 (57)</td>
<td>-0.94 ± 0.802 (52)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 - 3.00</td>
<td>-3.00 - 1.00</td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Week 48</td>
<td>1.12 ± 0.832 (52)</td>
<td>-0.73 ± 1.075 (183)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 - 4.00</td>
<td>-4.00 - 2.00</td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>End of Treatment</td>
<td>1.50 ± 1.005 (183)</td>
<td>-0.69 ± 1.109 (121)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 - 4.00</td>
<td>-3.00 - 3.00</td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Follow-Up</td>
<td>1.55 ± 0.957 (121)</td>
<td>-0.69 ± 1.109 (121)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>-1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.00 - 4.00</td>
<td>-3.00 - 3.00</td>
<td>&lt;0.001#</td>
</tr>
</tbody>
</table>

* P-value is from a Wilcoxon signed-rank test.
### Table 4. Analysis of Severity of Constipation

<table>
<thead>
<tr>
<th>Week</th>
<th>Compound A Mean ± SD (N)</th>
<th>Compound A Median Range</th>
<th>Change from Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>2.95 ± 0.751 (183)</td>
<td>3.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.00 - 4.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change from Baseline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Week 12</td>
<td>1.76 ± 1.003 (135)</td>
<td>2.00</td>
<td>-1.16 ± 1.099 (135)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 - 4.00</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-4.00 - 2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Week 18</td>
<td>1.33 ± 0.985 (111)</td>
<td>1.00</td>
<td>-1.59 ± 1.148 (111)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 - 4.00</td>
<td>-2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-4.00 - 3.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Week 24</td>
<td>1.50 ± 0.965 (107)</td>
<td>1.00</td>
<td>-1.40 ± 1.036 (107)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 - 4.00</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3.00 - 2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Week 36</td>
<td>1.39 ± 0.921 (57)</td>
<td>1.00</td>
<td>-1.33 ± 1.123 (57)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 - 4.00</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-4.00 - 2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Week 48</td>
<td>1.37 ± 0.894 (51)</td>
<td>1.00</td>
<td>-1.37 ± 1.095 (51)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 - 3.00</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-3.00 - 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>End of Treatment</td>
<td>1.84 ± 1.120 (183)</td>
<td>2.00</td>
<td>-1.11 ± 1.148 (183)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 - 4.00</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-4.00 - 2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&lt;0.001#</td>
</tr>
<tr>
<td>Follow-Up</td>
<td>2.07 ± 0.946 (121)</td>
<td>2.00</td>
<td>-0.88 ± 1.122 (121)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.00 - 4.00</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-4.00 - 2.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>&lt;0.001#</td>
</tr>
</tbody>
</table>

* P-value is from a Wilcoxon signed-rank test.
Example 4

(Method)

Multi-center, parallel-group, double-blind, placebo-controlled study was performed to compare the effect of Compound A on the weekly number of spontaneous bowel movements in male and female patients. Male and female patients with occasional constipation were received 48 μg (total daily dose) of Compound A (24 μg of Compound A b.i.d) for 4 weeks. The bowel movements in the patient were recorded during the treatment.

(Results)

The effect of 48 μg of Compound A on the weekly number of spontaneous bowel movements in male vs. female patients is shown in FIG.13.

As shown in Figure 13, Compound A was significantly effective for both male and female patients. There was no significant difference between the effects in male and female patients.

Example 5

(Method)

Multi-center, parallel-group, double-blind, placebo-controlled study was performed to compare the effect of Compound A on improving weekly number of spontaneous bowel movements among different aged patients with occasional
constipation. The patients were received 48 μg (total daily dose) of Compound A (24 μg of Compound A b.i.d) for 4 weeks. The bowel movements in the patient were recorded during the treatment.

(Results)

The result is shown in Figure 14. As shown in Figure 14, Compound A was significantly effective in all aged groups, and even 65 years and older patients.

Example 6

(Method)

A 48-week multi-center study was performed to assess the safety and efficacy of 48 μg (total daily dose) of Compound A to subjects with occasional constipation. Patients who demonstrated history of constipation for at least 3 months (having less then three SBMs per week) and at least one associated symptom such as hard stools, incomplete evacuation, straining were enrolled. After 14-day drug-free washout period, they received orally 48 μg of Compound A (24 μg of Compound 1, b.i.d) daily for 48 weeks.

The subjects completed the Medical Outcomes Study (MOS) 36-item short form (SF-36), i.e. a conventionally used QOL assessment form, at enrollment (baseline) and end of treatment (Week 48). Component of the MOS SF-36 (Med Care 30(6), 473-483, 2000) are outlined below:
Physical component: Physical Function, Role-Physical, Bodily Pain and General Health
Mental component: Vitality, Social Function, Role-Emotional and Mental Health

Each of the 8 components was scored within the guidelines of the publisher, including the publisher’s guidelines for imputing missing variables. The change from baseline in each of the 8 component scores at the end of treatment (Week 48) were recorded and evaluated with paired t-tests.

(Results)

As shown in Table 5, for each of the 8 component scores, the mean baseline score was between 47 and 52, indicating that the subject population was generally healthy. The mean change from baseline for each component score at Week 48 represented a small increase, which is indicative of an improvement in the respective categories. Improvements that were significantly different from zero were observed at Week 48 for the components of Physical Function, Role-Physical, Bodily Pain, General Health, Vitality, Social Function and Mental Health. The results indicate that Compound A improves the QOL of the patients.
Table 5. Summary of SF36 results

<table>
<thead>
<tr>
<th></th>
<th>Component/Scale Score</th>
<th>Physical Function</th>
<th>Role-Physical</th>
<th>Bodily Pain</th>
<th>General Health</th>
<th>Vitality</th>
<th>Social Function</th>
<th>Role-Emotional</th>
<th>Mental Health</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Baseline</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>320</td>
<td>320</td>
<td>319</td>
<td>319</td>
<td>319</td>
<td>320</td>
<td>319</td>
<td>319</td>
<td>319</td>
</tr>
<tr>
<td>Mean (Std)</td>
<td>49.04</td>
<td>49.75</td>
<td>47.53</td>
<td>51.52</td>
<td>50.61</td>
<td>50.12</td>
<td>49.52</td>
<td>50.60</td>
<td>9.829</td>
</tr>
</tbody>
</table>

| **Week 48**    |                       |                    |               |             |                |          |                 |                |              |
| N              | 153                   | 153               | 151           | 151         | 151            | 152      | 151             | 151            | 151          |
| Mean (Std)     | 2.48**                | 1.95**            | 3.38**        | 1.47*       | 2.89**         | 2.22**   | 1.22            | 1.97**         | 9.201        |

a): Values represented at Week 48 are for the changes from baseline.
b): *p<0.05, **p<0.01 (paired T-tests.)
Example 7

(Method)

A 12-week, double-blind, randomized study was performed to assess the safety and efficacy of oral 16 µg, 32 µg and 48 µg (total daily dose) of compound A to subjects with irritable bowel syndrome (IBS).

The patients answered the IBS QOL questionnaire at baseline, at week 4, Week 12 and at the end of study, and Questionnaire results were scored according to the IBS QOL User’s Manual (A Quality of Life Measure for Persons with Irritable Bowel Syndrome (IBS-QOL): User’s Manual and Scoring Diskette for United States Version. Seattle, Washington: University of Washington; 1997). Scaled scores were used for all analyses, and scores were calculated according to the User’s Manual as follows:

\[
\text{Scaled Score} = \left(\frac{\text{Sum of IBS-QOL items \ - \ lowest possible score}}{\text{Possible raw score range}}\right) \times 100
\]

Changes from baseline at week 4, week 12 and at the End of Study were assessed for the mean overall score and for the mean domain scores (dysphoria, interference with activity, body image, health worry, food avoidance, social reaction, sexual, and relationship).

(Results)
A summary of mean change from baseline in IBS-QOL scores analyzed without LOCF (Last observation carried forward) is shown in Table 6 to Table 8.

These data indicated that the change from baseline was significantly different from Zero in all groups. In general, the 16 µg of compound A group showed the greatest improvement from baseline of all the groups in every specific area and for QOL overall.
Table 6. Summary of change from Baseline in IBS QOL (16 µg)

<table>
<thead>
<tr>
<th></th>
<th>QOL Overall</th>
<th>Dysphoria</th>
<th>Interference with Activity</th>
<th>Body Image</th>
<th>Health Worry</th>
<th>Food Avoidance</th>
<th>Social Reaction</th>
<th>Sexual</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Baseline</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
<td>51</td>
</tr>
<tr>
<td>Mean (Std)</td>
<td>55.66</td>
<td>53.19</td>
<td>65.82</td>
<td>41.42</td>
<td>37.74</td>
<td>46.08</td>
<td>63.97</td>
<td>64.95</td>
<td>67.81</td>
</tr>
<tr>
<td><strong>Week 4</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Mean (Std)</td>
<td>14.7**</td>
<td>17.85**</td>
<td>10.87**</td>
<td>16.39**</td>
<td>22.41**</td>
<td>13.89**</td>
<td>11.94**</td>
<td>13.33**</td>
<td>10.74**</td>
</tr>
<tr>
<td><strong>Week 12</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Mean (Std)</td>
<td>18.54**</td>
<td>23.51**</td>
<td>13.95**</td>
<td>22.32**</td>
<td>23.81**</td>
<td>15.28**</td>
<td>14.58**</td>
<td>16.67**</td>
<td>15.47**</td>
</tr>
<tr>
<td><strong>End of Study</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Mean (Std)</td>
<td>16.82**</td>
<td>21.62**</td>
<td>11.95**</td>
<td>20.41**</td>
<td>21.94**</td>
<td>13.95**</td>
<td>13.78**</td>
<td>14.03**</td>
<td>14.28**</td>
</tr>
</tbody>
</table>
Table 7. Summary of change from Baseline in IBS QOL (32 µg)

<table>
<thead>
<tr>
<th></th>
<th>QOL Overall</th>
<th>Dysphoria</th>
<th>Interference with Activity</th>
<th>Body Image</th>
<th>Health Worry</th>
<th>Food Avoidance</th>
<th>Social Reaction</th>
<th>Sexual</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Baseline</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>(Std)</td>
<td>60.14</td>
<td>59.69</td>
<td>69.82</td>
<td>43.37</td>
<td>44.38</td>
<td>52.21</td>
<td>66.84</td>
<td>68.62</td>
<td>70.23</td>
</tr>
<tr>
<td><strong>Week 4</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>(Std)</td>
<td>11.25**</td>
<td>14.58**</td>
<td>7.04*</td>
<td>15.28**</td>
<td>16.9**</td>
<td>8.33*</td>
<td>9.9**</td>
<td>8.68**</td>
<td>7.64*</td>
</tr>
<tr>
<td><strong>Week 12</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td>(Std)</td>
<td>13.08**</td>
<td>15.25**</td>
<td>9.42**</td>
<td>17.99**</td>
<td>19.44**</td>
<td>11.36**</td>
<td>10.8**</td>
<td>10.98**</td>
<td>9.09*</td>
</tr>
<tr>
<td><strong>End of Study</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>(Std)</td>
<td>12.58**</td>
<td>14.77**</td>
<td>8.2**</td>
<td>17.47**</td>
<td>17.61**</td>
<td>10.79**</td>
<td>11.08**</td>
<td>10.23**</td>
<td>10.79**</td>
</tr>
</tbody>
</table>
### Table 8. Summary of change from Baseline in IBS QOL (48 μg)

<table>
<thead>
<tr>
<th></th>
<th>QOL Overall</th>
<th>Dysphoria</th>
<th>Interference with Activity</th>
<th>Body Image</th>
<th>Health Worry</th>
<th>Food Avoidance</th>
<th>Social Reaction</th>
<th>Sexual</th>
<th>Relationship</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Baseline</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Mean (Std)</td>
<td>59.85</td>
<td>56.81</td>
<td>68.25</td>
<td>45.69</td>
<td>44.07</td>
<td>50.37</td>
<td>66.81</td>
<td>71.94</td>
<td>75.18</td>
</tr>
<tr>
<td><strong>Week 4</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>Mean (Std)</td>
<td>12.43**</td>
<td>17.28**</td>
<td>9.14**</td>
<td>13.24**</td>
<td>19.61**</td>
<td>12.01**</td>
<td>8.82**</td>
<td>8.46**</td>
<td>6.87**</td>
</tr>
<tr>
<td><strong>Week 12</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>Mean (Std)</td>
<td>14.8**</td>
<td>20.83**</td>
<td>10.95**</td>
<td>17.08**</td>
<td>23.33**</td>
<td>11.3**9</td>
<td>14.17**</td>
<td>5</td>
<td>6.95**</td>
</tr>
<tr>
<td><strong>End of Study</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>Mean (Std)</td>
<td>11.54**</td>
<td>16.28**</td>
<td>7.97**</td>
<td>14.24**</td>
<td>17.05**</td>
<td>8.33**</td>
<td>12.06**</td>
<td>3.49</td>
<td>6.01**</td>
</tr>
</tbody>
</table>

*P<0.05, **P<0.01 (paired T-Tests)
1. A method for the long term treatment of gastrointestinal disorders in a human subject, which comprises administering to the subject in need thereof an effective amount of a prostaglandin compound represented by Formula (I) and/or its tautomer:

![Chemical Structure](image)

Wherein $W_1$ and $W_2$ are:

- $R_3$ and $R_4$ are hydrogen; or one of them is OH and the other is hydrogen;

$X_1$ and $X_2$ are hydrogen, lower alkyl or halogen, provided that at least one of them is halogen;

$R_2$ is hydrogen or alkyl;

$Y$ is a saturated or unsaturated C$_{2-10}$ hydrocarbon chain, which is unsubstituted or substituted by oxo, halogen, alkyl, hydroxy or aryl;
A is -CH₂OH, -COCH₃OH, -COOH or its functional derivative;
R₁ is a saturated or unsaturated, straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower cycloalkyl; lower cycloalkyloxy; aryl; or aryloxy;
the bond between C-13 and C-14 positions is double or single bond, and
the steric configuration at C-15 position is R, S or a mixture thereof.
2. The method of claim 1, wherein said prostaglandin compound is a monocyclic tautomer of formula (I).
3. The method of claim 1, wherein the amount of said prostaglandin compound to be administered is in the range of about 6-96 μg per day.
4. The method of claim 1, wherein the amount of said prostaglandin compound to be administered is in the range of about 6-72 μg per day.
5. The method of claim 1, wherein the amount of said prostaglandin compound to be administered is in the range of about 6-60 μg per day.
6. The method of claim 1, wherein the amount of said prostaglandin compound to be administered is in the range
of about 8-48 μg per day.

7. The method of claim 1, wherein the prostaglandin compound is administered orally.

8. The method of claim 7, wherein said prostaglandin compound is administered with an oil solvent as an excipient.

9. The method of claim 8, wherein said oil solvent is a medium chain fatty acid.

10. The method of claim 1, wherein A is -COOH; Y is (CH₂)₆; W₁ is =O; W₂ is \( \text{R}_3 \text{R}_4 \text{R}_4 \) wherein \( \text{R}_3 \) and \( \text{R}_4 \) are both hydrogen atoms; \( \text{R}_2 \) is hydrogen atom; \( \text{X}_1 \) and \( \text{X}_2 \) are fluorine atoms; and \( \text{R}_1 \) is (CH₂)₃CH₃.

11. The method of claim 1, wherein said gastrointestinal disorder is selected from the group consisting of constipation, irritable bowel syndrome and functional dyspepsia.

12. The method of claim 1, wherein said prostaglandin compound is administered for at least two weeks.

13. The method of claim 1, wherein said prostaglandin compound is administered for at least three weeks.

14. The method of claim 1, wherein said prostaglandin compound is administered for at least four weeks.

15. The method of claim 1, wherein said prostaglandin compound is administered for at least 2 months.

16. The method of claim 1, wherein said prostaglandin
compound is administered for at least 6 months.

17. The method of claim 1, wherein said prostaglandin compound is administered for at least 1 year.

18. The method of claim 1, wherein said prostaglandin compound is administered chronically.

19. A method for treating gastrointestinal disorders in a male human subject, which comprises administering to the male subject in need thereof an effective amount of a prostaglandin compound represented by Formula (I) and/or its tautomer:

![Chemical Structure](image)

wherein $\text{W}_1$ and $\text{W}_2$ are

$\text{R}_3$ and $\text{R}_4$ are hydrogen; or one of them is OH and the other is hydrogen;

$\text{X}_1$ and $\text{X}_2$ are hydrogen, lower alkyl or halogen, provided that at least one of them is halogen;

$\text{R}_2$ is hydrogen or alkyl;
Y is a saturated or unsaturated C_{2-10} hydrocarbon chain, which is unsubstituted or substituted by oxo, halogen, alkyl, hydroxy or aryl;

A is -CH$_2$OH, -COCH$_2$OH, -COOH or its functional derivative;

R$_1$ is a saturated or unsaturated, straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower cycloalkyl; lower cycloalkyloxy; aryl; or aryloxy;

the bond between C-13 and C-14 positions is double or single bond, and

the steric configuration at C-15 position is R, S or a mixture thereof.

20. A method for treating gastrointestinal disorders in a human subject aged 65 years and older, which comprises administering to the subject aged 65 years and older in need thereof an effective amount of a prostaglandin compound represented by Formula (I) and/or its tautomer:
wherein $W_1$ and $W_2$ are

R$_3$ and R$_4$ are hydrogen; or one of them is OH and the other is hydrogen;

X$_1$ and X$_2$ are hydrogen, lower alkyl or halogen, provided that at least one of them is halogen;

R$_2$ is hydrogen or alkyl;

Y is a saturated or unsaturated C$_{2-10}$ hydrocarbon chain, which is unsubstituted or substituted by oxo, halogen, alkyl, hydroxy or aryl;

A is $-\text{CH}_2\text{OH}$, $-\text{COCH}_2\text{OH}$, $-\text{COOH}$ or its functional derivative;

R$_1$ is a saturated or unsaturated, straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower
cycloalkyl; lower cycloalkyloxy; aryl; or aryloxy;
the bond between C-13 and C-14 positions is double
or single bond, and
the steric configuration at C-15 position is R, S or
a mixture thereof.

subject with gastrointestinal disorders, which comprises
administering to the subject an effective amount of a
prostaglandin compound represented by Formula (I) and/or
its tautomer:

\[
\begin{align*}
\text{W1} & \quad \text{Y} \quad \text{A} \\
\text{W2} & \\
\text{R2O} & \\
\text{X1} & \quad \text{R1} \\
\text{X2} & \\
\end{align*}
\]

(1)

wherein \( W_1 \) and \( W_2 \) are

\[
\begin{array}{c}
\text{R3} \quad \text{R4} \\
\text{or} \\
\text{R3} \quad \text{R4} \\
\end{array}
\]

\( R_3 \) and \( R_4 \) are hydrogen; or one of them is OH and the
other is hydrogen;

\( X_1 \) and \( X_2 \) are hydrogen, lower alkyl or halogen,
provided that at least one of them is halogen;

\( R_2 \) is hydrogen or alkyl;
Y is a saturated or unsaturated C_{2-10} hydrocarbon chain, which is unsubstituted or substituted by oxo, halogen, alkyl, hydroxy or aryl;

A is -CH_{2}OH, -COCH_{2}OH, -COOH or its functional derivative;

R_{1} is a saturated or unsaturated, straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or arylkoxy; lower cycloalkyl; lower cycloalkyloxy; aryl; or arylkoxy;

the bond between C-13 and C-14 positions is double or single bond, and

the steric configuration at C-15 position is R, S or a mixture thereof.

22. A composition for the long term treatment of gastrointestinal disorders in a human subject, which comprises

(i) an effective amount of a prostaglandin compound represented by Formula (I) and/or its tautomer:
wherein \( W_1 \) and \( W_2 \) are

\[
R_3 \quad R_4 \quad R_3 \quad R_4 \quad \text{or} \quad O
\]

\( R_3 \) and \( R_4 \) are hydrogen atoms; or one of them is OH and the other is hydrogen;

\( X_1 \) and \( X_2 \) are hydrogen atom, lower alkyl or a halogen atom, provided that at least one of them is a halogen atom;

\( R_2 \) is a hydrogen atom or an alkyl;

\( Y \) is a saturated or unsaturated \( C_{2-10} \) hydrocarbon chain which is unsubstituted or substituted by oxo, halogen, an alkyl group, hydroxyl or aryl;

\( A \) is \(-\text{CH}_2\text{OH}, -\text{COCH}_2\text{OH}, -\text{COOH}\) or its functional derivative;

\( R_1 \) is a saturated or unsaturated straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower
cycloalkyl; lower cycloalkyloxy; aryl or aryloxy;
the bond between C-13 and C-14 positions is double
or single bond, and
the steric configuration at C-15 is R, S or a
mixture thereof; and
(ii) a pharmaceutically acceptable excipient.

23. The composition of claim 22, wherein said
prostaglandin compound is a monocyclic tautomer of formula
(I).

24. The composition of claim 22, which is formulated
so that about 6-96 µg per day of said prostaglandin
compound is administered.

25. The composition of claim 22, which is formulated
so that about 6-72 µg per day of said prostaglandin
compound is administered.

26. The composition of claim 22, which is formulated
so that about 6-60 µg per day of said prostaglandin
compound is administered.

27. The composition of claim 22, which is formulated
so that about 8-48 µg per day of said prostaglandin
compound is administered.

28. The composition of claim 22, which is to be
administered orally.

29. The composition of claim 28, wherein the
pharmaceutically suitable excipient is an oil solvent.
30. The composition of claim 29, wherein said oil solvent is a medium chain fatty acid.

31. The composition of claim 22, wherein A is \(-\text{COOH}\); Y is \((\text{CH}_2)_5\); \(\text{W}_1\) is \(=\text{O}\); \(\text{W}_2\) is \(\text{R}_4\) or \(\text{R}_3\), wherein \(\text{R}_3\) and \(\text{R}_4\) are both hydrogen atoms; \(\text{R}_2\) is hydrogen atom; \(\text{X}_1\) and \(\text{X}_2\) are fluorine atoms; and \(\text{R}_1\) is \((\text{CH}_2)_3\text{CH}_3\).

32. The composition of claim 22, wherein said gastrointestinal disorder is selected from the group consisting of constipation, irritable bowel syndrome and functional dyspepsia.

33. The composition of claim 22, which is to be administered for at least two weeks.

34. The composition of claim 22, which is to be administered for at least three weeks.

35. The composition of claim 22, which is to be administered for at least four weeks.

36. The composition of claim 22, which is to be administered for at least 2 months.

37. The composition of claim 22, which is to be administered for at least 6 months.

38. The composition of claim 22, which is to be administered for at least 1 year.

39. The composition of claim 22, which is to be administered chronically.

40. A composition for treating gastrointestinal
disorders in both male and female human subjects, which comprises (i) an effective amount of a prostaglandin compound represented by Formula (I) and/or its tautomer:

![Chemical Structure](image)

wherein \( W_1 \) and \( W_2 \) are

\[
R_3 \quad R_4 , R_3 \quad R_4 \quad \text{or} \quad \begin{array}{c}
\text{\textit{O}}
\end{array}
\]

\( R_3 \) and \( R_4 \) are hydrogen atoms; or one of them is OH and the other is hydrogen;

\( X_1 \) and \( X_2 \) are hydrogen atom, lower alkyl or a halogen atom, and at least one of them is a halogen atom;

\( R_2 \) is a hydrogen atom or an alkyl;

\( Y \) is a saturated or unsaturated C\(_{2-10}\) hydrocarbon chain which is unsubstituted or substituted by oxo, halogen, an alkyl group, hydroxyl or aryl;

\( A \) is \(-\text{CH}_2\text{OH}, -\text{COCH}_2\text{OH}, -\text{COOH}\) or its functional derivative;

\( R_1 \) is a saturated or unsaturated straight chain-, branched chain- or ring-forming lower hydrocarbon, which is
unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower cycloalkyl; lower cycloalkyloxy; aryl or aryloxy;

the bond between C-13 and C-14 positions is double or single bond; and

the steric configuration at C-15 is R, S or a mixture thereof; and

(ii) a pharmaceutically suitable excipient.

41. A composition for the treatment of gastrointestinal disorders in a human subject aged 65 years and older, which comprises an effective amount of a prostaglandin compound, represented by Formula (I) and/or its tautomer:

![Chemical Structure](image)

wherein \( W_1 \) and \( W_2 \) are

\[
\begin{align*}
\text{\( R_3 \)} & , \\
\text{\( R_4 \)} & , \\
\text{\( R_3 \)} & \text{ or } \\
\text{\( R_4 \)} & \text{ or }
\end{align*}
\]

\( R_3 \) and \( R_4 \) are hydrogen atoms; or one of them is OH.
and the other is hydrogen;

\[ X_1 \text{ and } X_2 \text{ are hydrogen atom, lower alkyl or a halogen atom, provided that at least one of them is a halogen atom;} \]

\[ R_2 \text{ is a hydrogen atom or an alkyl;} \]

\[ Y \text{ is a saturated or unsaturated C}_{2-10} \text{ hydrocarbon chain which is unsubstituted or substituted by oxo, halogen, an alkyl group, hydroxyl or aryl;} \]

\[ A \text{ is } -\text{CH}_2\text{OH, } -\text{COCH}_3\text{OH, } -\text{COOH or its functional derivative;} \]

\[ R_1 \text{ is a saturated or unsaturated straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower cycloalkyl; lower cycloalkyloxy; aryl or aryloxy;} \]

the bond between C-13 and C-14 positions is double or single bond, and

the steric configuration at C-15 is R, S or a mixture thereof

(ii) a pharmaceutically suitable excipient.

A composition for improving quality of life in a human subject with gastrointestinal disorders, which comprises

(i) an effective amount of a prostaglandin compound represented by Formula (I) and/or its tautomer:
wherein \( W_1 \) and \( W_2 \) are

\[
\begin{array}{c}
\text{R}_3 \quad \text{R}_4 , \quad \text{R}_3 \quad \text{R}_4 \quad \text{or} \quad \text{O} \\
\end{array}
\]

\( \text{R}_3 \) and \( \text{R}_4 \) are hydrogen atoms; or one of them is OH and the other is hydrogen;

\( \text{X}_1 \) and \( \text{X}_2 \) are hydrogen atom, lower alkyl or a halogen atom, provided that at least one of them is a halogen atom;

\( \text{R}_2 \) is a hydrogen atom or an alkyl;

\( \text{Y} \) is a saturated or unsaturated \( \text{C}_{2-10} \) hydrocarbon chain which is unsubstituted or substituted by oxo, halogen, an alkyl group, hydroxyl or aryl;

\( \text{A} \) is \(-\text{CH}_2\text{OH}, -\text{COCH}_2\text{OH}, -\text{COOH}\) or its functional derivative;

\( \text{R}_1 \) is a saturated or unsaturated straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower
cycloalkyl; lower cycloalkyloxy; aryl or aryloxy;
the bond between C-13 and C-14 positions is double
or single bond, and
the steric configuration at C-15 is R, S or a
mixture thereof, and
(ii) a pharmaceutically suitable excipient.

Use of a prostaglandin compound represented by
Formula (I) and/or its tautomer:

![Chemical Structure](attachment:image)

wherein \( W_1 \) and \( W_2 \) are

\[
\begin{align*}
\begin{array}{c}
\text{R}_3 \\
\text{R}_4
\end{array}
\end{align*},
\begin{align*}
\begin{array}{c}
\text{R}_3 \\
\text{R}_4
\end{array}
\end{align*}
\]

\( \text{R}_3 \) and \( \text{R}_4 \) are hydrogen atoms; or one of them is OH
and the other is hydrogen;

\( \text{X}_1 \) and \( \text{X}_2 \) are hydrogen atom, lower alkyl or a halogen
atom, provided that at least one of them is a halogen atom;

\( \text{R}_2 \) is a hydrogen atom or an alkyl;

\( \text{Y} \) is a saturated or unsaturated \( C_{2-10} \) hydrocarbon
chain which is unsubstituted or substituted by oxo, halogen,
an alkyl group, hydroxyl or aryl;

A is \(-\text{CH}_2\text{OH}, -\text{COCH}_2\text{OH}, -\text{COOH}\) or its functional derivative;

\(R_1\) is a saturated or unsaturated straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower cycloalkyl; lower cycloalkyloxy; aryl or aryloxy;

the bond between C-13 and C-14 positions is double or single bond, and

the steric configuration at C-15 is \(R, S\) or a mixture thereof

for manufacturing a pharmaceutical composition for the long term treatment of gastrointestinal disorders in a human subject, wherein the composition is to be administered to the patient in need thereof.

44. The use of claim 43, wherein said prostaglandin compound is a monocyclic tautomer of formula (I).

45. The use of claim 43, wherein the composition is formulated so that about 6-96 \(\mu\)g per day of said prostaglandin compound is administered.

46. The use of claim 43, wherein the composition is formulated so that about 6-72 \(\mu\)g per day of said prostaglandin compound is administered.
47. The use of claim 43, wherein the composition is formulated so that about 6-60 \( \mu \)g per day of said prostaglandin compound is administered.

48. The use of claim 43, wherein the composition is formulated so that about 8-48 \( \mu \)g per day of said prostaglandin compound is

49. The use of claim 43, wherein the composition is to be administered orally.

50. The composition of claim 49, wherein the composition further comprises an oil solvent as an excipient.

51. The use of claim 50, wherein said oil solvent is a medium chain fatty acid.

52. The use of claim 43, wherein \( A = -\text{COOH} \); \( Y = (\text{CH}_2)_6 \); \( W_1 = O \); \( W_2 = R_3 \) or \( R_4 \); wherein \( R_3 \) and \( R_4 \) are both hydrogen atoms; \( R_2 \) is hydrogen atom; \( X_1 \) and \( X_2 \) are fluorine atoms; and \( R_1 \) is \((\text{CH}_2)_3\text{CH}_3\).

53. The use of claim 43, wherein said gastrointestinal disorder is selected from the group consisting of constipation, irritable bowel syndrome and functional dyspepsia.

54. The use of claim 43, wherein the composition is to be administered for at least two weeks.

55. The use of claim 43, wherein the composition is to be administered for at least three weeks.

56. The use of claim 43, wherein the composition is
to be administered for at least four weeks.

57. The use of claim 43, wherein the composition is to be administered for at least 2 months.

58. The use of claim 43, wherein the composition is to be administered for at least 6 months.

59. The use of claim 43, wherein the composition is to be administered for at least 1 year.

60. The use of claim 43, wherein the composition is to be administered chronically.

61. Use of a prostaglandin compound represented by Formula (I) and/or its tautomer:

![Chemical Structure](image)

wherein W₁ and W₂ are

![Chemical Structure](image)

R₃ and R₄ are hydrogen atoms; or one of them is OH and the other is hydrogen;

X₁ and X₂ are hydrogen atom, lower alkyl or a halogen atom, and at least one of them is a halogen atom;
R₂ is a hydrogen atom or an alkyl;

Y is a saturated or unsaturated C₂₋₁₀ hydrocarbon chain which is unsubstituted or substituted by oxo, halogen, an alkyl group, hydroxyl or aryl;

A is -CH₂OH, -COCH₂OH, -COOH or its functional derivative;

R₁ is a saturated or unsaturated straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower cycloalkyl; lower cycloalkyloxy; aryl or aryloxy;

the bond between C-13 and C-14 positions is double or single bond; and

the steric configuration at C-15 is R, S or a mixture thereof

for manufacturing a pharmaceutical composition for the treatment of gastrointestinal disorders in both male and female human subjects, wherein the composition is to be administered to a subject in need thereof.

Use of a prostaglandin compound represented by Formula (I) and/or its tautomer:
wherein \( W_1 \) and \( W_2 \) are

\[ \begin{align*}
R_3 & \quad R_4, \\
R_3 & \quad R_4 \quad \text{or} \\
\end{align*} \]

\( R_3 \) and \( R_4 \) are hydrogen atoms; or one of them is \( \text{OH} \) and the other is hydrogen;

\( X_1 \) and \( X_2 \) are hydrogen atom, lower alkyl or a halogen atom, provided that at least one of them is a halogen atom;

\( R_2 \) is a hydrogen atom or an alkyl;

\( Y \) is a saturated or unsaturated \( C_{2-10} \) hydrocarbon chain which is unsubstituted or substituted by oxo, halogen, an alkyl group, hydroxyl or aryl;

\( A \) is \(-\text{CH}_2\text{OH}, -\text{COCH}_2\text{OH}, -\text{COOH}\) or its functional derivative;

\( R_1 \) is a saturated or unsaturated straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower
cycloalkyl; lower cycloalkyloxy; aryl or aryloxy;

the bond between C-13 and C-14 positions is double
or single bond, and

the steric configuration at C-15 is R, S or a
mixture thereof

for manufacturing a pharmaceutical composition for the
treatment of gastrointestinal disorders in a human subject
aged 65 and older, wherein the composition is to be
administered to the subject in need thereof.

Use of a prostaglandin compound represented by
Formula (I) and/or its tautomer:

\[
\begin{align*}
W_1 & \quad Y \quad A \\
W_2 & \quad O \\
R_2 & \quad R_1 \\
X_1 & \quad X_2
\end{align*}
\]

(I)

wherein \( W_1 \) and \( W_2 \) are

\[
\begin{align*}
R_3 & \quad R_4, \quad R_3 & \quad R_4 \quad \text{or} \quad O
\end{align*}
\]

\( R_3 \) and \( R_4 \) are hydrogen atoms; or one of them is OH
and the other is hydrogen;

\( X_1 \) and \( X_2 \) are hydrogen atom, lower alkyl or a halogen
atom, provided that at least one of them is a halogen atom;

\[ R_2 \] is a hydrogen atom or an alkyl;

\[ Y \] is a saturated or unsaturated C_{2-10} hydrocarbon chain which is unsubstituted or substituted by oxo, halogen, an alkyl group, hydroxyl or aryl;

\[ A \] is \( -\text{CH}_2\text{OH}, -\text{COCH}_2\text{OH}, -\text{COOH} \) or its functional derivative;

\[ R_1 \] is a saturated or unsaturated straight chain-, branched chain- or ring-forming lower hydrocarbon, which is unsubstituted or substituted by halogen, oxo, hydroxy, lower alkyl, lower alkoxy, lower alkanoyloxy, lower cycloalkyl, lower cycloalkyloxy, aryl, or aryloxy; lower cycloalkyl; lower cycloalkyloxy; aryl or aryloxy;

the bond between C-13 and C-14 positions is double or single bond, and

the steric configuration at C-15 is R, S or a mixture thereof

for manufacturing a pharmaceutical composition for the improvement of quality of life in a human subject with gastrointestinal disorders, wherein the composition is to be administered the subject in need thereof.
**FIG. 1**

![Graph showing severity score over time with statistical significance markers](image)

**FIG. 2**

![Graph showing severity score over time with statistical significance markers](image)
FIG. 5

FIG. 6
FIG. 7

![Graph showing bowel movements per week over 7 weeks for Placebo and 48 ug treatment groups.](image)

FIG. 8

![Graph showing bloating score over 7 weeks for Placebo and 48 ug treatment groups.](image)
**FIG. 9**

![FIG. 9 Diagram](image)

**FIG. 10**

![FIG. 10 Diagram](image)
FIG. 11

FIG. 12
FIG. 13

Bowel Movements per week

- Placebo Male
- 48 µg Male
- Placebo Female
- 48 µg Female

p=0.0145, p=0.0195, p=0.0489, p=0.0503
p<0.0001, p<0.0001, p<0.0001, p<0.0001

BL, Wk 1, Wk 2, Wk 3, Wk 4

FIG. 14

Bowel Movement per Week

- Placebo Group A
- 48 µg Group A
- Placebo Group B
- 48 µg Group B
- Placebo Group C
- 48 µg Group C

Group A: 18 ≤ Age ≤ 50, Group B: 50 ≤ Age ≤ 65, Group C: 65 ≤ Age
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

A61K31/557 A61K31/558 A61P1/04 A61P1/06 A61P1/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, BIOSIS, WPI Data, PAJ, EMBASE, CHEM ABS Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>SORBERA L A ET AL: &quot;Lubiprostone. Treatment of constipation, treatment of</td>
<td>1-63</td>
</tr>
<tr>
<td></td>
<td>irritable bowel syndrome, treatment of postoperative ileus, CIC-2 channel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>activator.&quot; DRUGS OF THE FUTURE, vol. 29, no. 4, April 2004 (2004-04),</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pages 336-341, XP008055565 ISSN: 0377-8282 the whole document</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>WO 2004/060377 A (SUCAMPO AG; UENO, RYUJI; KUNO, SACHIKO) 22 July 2004 (2004-07-22)</td>
<td>1-63</td>
</tr>
<tr>
<td></td>
<td>examples 1-4 claims 1-48</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents:
  - 'A' document defining the general state of the art which is not considered to be of particular relevance
  - 'D' earlier document but published on or after the international filing date
  - 'L' document which may throw doubts on priority claims(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
  - 'O' document referring to an oral disclosure, use, exhibition or other means
  - 'P' document published prior to the international filing date but later than the priority date claimed

* "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

* "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

* "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

* "Z" document member of the same patent family

Date of the actual completion of the international search: 15 November 2005

Date of mailing of the international search report: 22/11/2005

Name and mailing address of the ISA:
European Patent Office, P.B. 5016 Patentlaan 2 NL – 2280 HV Rijswijk
Tel.: (+31-70) 340-2040, Tx: 31 651 epo nl, Fax: (+31-70) 340-3018

Authorized officer: Bazzanini, R
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>TALLEY N J: &quot;Definitions, epidemiology, and impact of chronic constipation&quot; REVIEWS IN GASTROENTEROLOGICAL DISORDERS 2004 UNITED STATES, vol. 4, no. SUPPL. 2, 2004, pages S3-S10, XP008055601 ISSN: 1533-001X page S8, right-hand column, last paragraph - page S9, middle column, last paragraph</td>
<td>21,42,63</td>
</tr>
</tbody>
</table>
**INTERNATIONAL SEARCH REPORT**

**Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. [X] Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

   Although claims 1-21 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. [ ] Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. [ ] Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

1. [ ] As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. [ ] As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. [ ] As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:

4. [ ] No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

**Remark on Protest**

- [ ] The additional search fees were accompanied by the applicant’s protest.
- [ ] No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2510051 A1</td>
<td>22-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1575596 A1</td>
<td>21-09-2005</td>
</tr>
<tr>
<td>US 6414016 B1</td>
<td>02-07-2002</td>
<td>AU 8261501 A</td>
<td>22-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0114042 A</td>
<td>22-07-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2419741 A1</td>
<td>14-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1655776 A</td>
<td>17-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1315485 A1</td>
<td>04-06-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0302422 A2</td>
<td>28-10-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0220007 A1</td>
<td>14-03-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2004508327 T</td>
<td>18-03-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA03001959 A</td>
<td>24-06-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 20030996 A</td>
<td>02-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 524401 A</td>
<td>27-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2003040528 A1</td>
<td>27-02-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200301673 A</td>
<td>09-09-2003</td>
</tr>
</tbody>
</table>