
(19) United States
US 2008027O610A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0270610 A1
John et al. (43) Pub. Date: Oct. 30, 2008

(54) SYSTEMAND METEHOD FOR HIGHLY
SCALABLE REAL-TIME AND TIME-BASED
DATA DELIVERY USING SERVER CLUSTERS

Ranjit John, Sunnyvale, CA (US);
Satish Menon, Sunnyvale, CA
(US); Laxmi Thota, Cupertino, CA
(US); James Wang, San Jose, CA
(US); Jayakumar
Muthukumarasamy, Dublin, CA
(US); Robert Horen, Pleasanton,
CA (US)

(75) Inventors:

Correspondence Address:
PERKINS COE LLP
P.O. BOX 1208
SEATTLE, WA 98111-1208 (US)

(73) Assignee: Kasenna, Inc., Sunnyvale, CA (US)

(21) Appl. No.: 12/166,276

(22) Filed: Jul. 1, 2008

-N4
s Content
CD Distribution
2. FS NetWOrk

s
?

Acquisition &
Management Cluster

Related U.S. Application Data

(63) Continuation of application No. 10/205,476, filed on
Jul. 24, 2002, now Pat. No. 7,403,993.

Publication Classification

(51) Int. Cl.
G06F 5/73 (2006.01)

(52) U.S. Cl. .. 709/226
(57) ABSTRACT

The present invention provides loosely-coupled cluster sys
tems comprising a plurality of servers based on storage
attached to the plurality of servers. Videos, or other assets, are
automatically replicated within the server system to increase
the number of concurrent play requests serviceable. The
server systems can detect spikes in demand that may exceed
the guaranteed number of concurrent play requests service
able and dynamically transfer the high-in-demand or hot
asset to servers in the cluster that do not have the video.
Alternatively, instead of transferring the entire asset, varying
length prefixes of the asset may be transferred depending on
the availability of resources. The remainder of the asset is
transferred in some embodiments on demand with sufficient
buffering or other storage to guarantee playback to the user or
subscriber according to the required quality of service (QOS).

300 A1

Streaming Clusters

Patent Application Publication Oct. 30, 2008 Sheet 1 of 8 US 2008/0270610 A1

68

66

-74 I-64
-72 -62

60
50

FIG.1

Load - Balancer

FIG.2

Patent Application Publication

FIG 3

FIG.4

Oct. 30, 2008 Sheet 2 of 8

A 47

4 S

Media
Base
Server

L

125

o y 120

Ef 250

220 Media
Base
Sever

US 2008/0270610 A1

225

SAN | Data LAN
230

SAN or -210
NAS

Storage
E. is3.

Patent Application Publication Oct. 30, 2008 Sheet 3 of 8 US 2008/0270610 A1

s Content
CD Distribution
2. FS Network

s
?

Acquisition &
Management Cluster Streaming Clusters

410 -400
--
42O
O 7 15 - 430 440 31

7

Payload

450

FIG.6

Patent Application Publication Oct. 30, 2008 Sheet 4 of 8 US 2008/0270610 A1

I Am Alive (525)
730 ne.

740 740

750 750

760

Patent Application Publication Oct. 30, 2008 Sheet 5 of 8 US 2008/0270610 A1

Request For
ASSet Received

Server
Determines lift

Server
Determines if its Determines if it

Stream
The ASSet

HaS ASSet Has Sufficient Loads Less
Resources To Than A
Stream ASSet Threshold Value No Second

Server
Found

Attempt To Find A Second Server
Having The Asset, Sufficient

Resources To Stream The ASSet,
And That is Less Loaded

Second Server Found

Attempt To Forward Request To A
Second Server That Has The Asset
And Sufficient Resources To

Stream The Asset

Forward
Request To

Second Server

864

FIG.9

9 O2

04 9
Multiple Choices

9 12

916
RTSP OK

918
Play

FIG.10

US 2008/0270610 A1

Laue100 o

zôdu'xneopuxnwTOGWI Ë

Oct. 30, 2008 Sheet 6 of 8 Patent Application Publication

US 2008/0270610 A1 Oct. 30, 2008 Sheet 7 of 8

ZunSquu

US 2008/0270610 A1 Oct. 30, 2008 Sheet 8 of 8 Patent Application Publication

1200

.14 FIG

US 2008/027O61.0 A1

SYSTEMAND METEHOD FOR HIGHLY
SCALABLE REAL-TIME AND TIME-BASED
DATA DELVERY USING SERVER CLUSTERS

RELATED APPLICATIONS

0001. This is a continuation of and claims priority to U.S.
application Ser. No. 10/205,476 filed Jul. 24, 2002 entitled
“System And Method For Highly Scalable Real-Time And
Time-Based Data Delivery Using Server Clusters.” and is
related to U.S. application Ser. No. 12/038,798 filed Feb. 27,
2008, which is itself a divisional of U.S. application Ser. No.
10/205,476 filed Jul. 24, 2002, both of which are incorporated
by reference herein.

FIELD OF THE INVENTION

0002 The invention relates generally to server systems
and methods for serving content and more particularly to
server systems and methods that facilitate real-time and time
based media streaming and hot-spot or high-demand asset
management particularly for streaming DVD quality video
COntent as SetS.

BACKGROUND

0003. In order to deliver (or stream) real-time or time
based data from a server system to an end-user system, a
number of system resources must be tightly managed. Typi
cally, a video server system comprises video server hardware
and software while an end-user system refers to a set-top box
and TV. Personal Computer (PC), or other user device.
Resources that must be tightly managed include Inpuff0utput
(110) resources such as disk drive (or other storage media)
space and disk drive (or other storage media) bandwidth, CPU
resources, memory, and network bandwidth.
0004 Real-time and/or time-based media streaming, such
as video streaming or video-on-demand (for example, movie,
music, or other multi-media on-demand on a Seftop-box or
other device connected to a television set or other receiver) is
an extremely cost-sensitive business.
Because of the bandwidth required to deliver a high quality
video stream (typically 3 to 8 Megabits/second/user), these
applications place tremendous load on the video server's
memory, disk (or other storage media) and network Sub
systems. When such an application scales from serving a few
users (for example, tens to hundreds) to very large numbers of
users (for example hundreds of thousands or millions), the
total solution cost, using today's 30 technologies become
cost-prohibitive. Business economics for example may ini
tially benefit from a small low cost system that can service a
limited number of users or subscribers. As the number of
users or Subscribers grows the initial system is augmented to
add additional capacity. Desirably the initial system is
retained and the initial system architecture is retained and
scaled to serve the larger set of users.
0005 Typical video-on-demand deployments start small
and grow. A Small server system capable of serving a few
hundred users eventually must become part of a larger system
that serves hundreds of thousands. Heretofore, there have
generally been two approaches that have been taken to
address this system size or system capacity Scaling problem:
(1) Deployment and use of tightly-coupled multiprocessor
systems delivering a large number of streams, and (2) Loosely
coupled clusters that are composed of small, off-the-shelf
computers, but connected using standard computer networks.

Oct. 30, 2008

0006 Examples of these types of configuration are
described relative to FIG. 1 and FIG.2. With reference to FIG.
1, there is illustrated a portion of one embodiment of a tightly
coupled multiprocessor System, server 50, delivering a large
number of streams. Server 50 has the capacity for a large
number of processors, usually embodied as processorboards.
Accordingly, server 50 comprises a plurality of slots, such as
slots 60, 62, 64, 66, and 68. In one embodiment, server 50 has
256 slots, and is therefore capable of comprising 256 proces
sor boards. Typically, server 50 begins service with a few
processor boards, such as boards 70, 72, and 74, and boards
are added as the system grows. Such a system tends to be very
costly and does not usually meet the strict cost constraints
placed by business. There is also the potential for failure of
one board, such as processorboard 72, to cause total failure of
server 50. Further, as the system grows, the cost of computa
tional power decreases, and the processor boards required to
update the system may be outdated by the time a system
administrator is prepared to grow the server system.
0007 Examples of the loosely coupled clusters that are
composed of Small, off-the-shelf computers, but connected
using standard network may for example use Gigabit Ethernet
or Fiberchannel networking and use software to manage the
collection of systems as a single entity capable of meeting
Some scalability and quality of service requirements. An
exemplary system according to this loosely coupled cluster
concept is illustrated in FIG. 2. FIG. 2 depicts servers 80 and
82 operating together as a cluster, receiving requests from
load balancer 79 (a Layer 4 switch). Servers 80 and 82 each
have access to all assets—including asset 86, asset 88, and
asset 90 through fiber-channel switch 84. The shared storage
includes additional components—fiber-channel Switches,
Switch adapters, disks that are fiber-channel capable, etc. All
are additional cost components and add complexity to the
scalability of the network.
0008. In addition, the shared storage cluster shown in FIG.
2 does not solve the resource management problem. For
example, a video stored on a disk attached to a shared fiber
channel switch still has its limitations on the amount of band
width available from the disk or through a fiber channel link.
Thus, if a particular asset, or video, becomes in high-demand
or is “hot” (where a lot of subscribers are requesting the video
simultaneously and exceeding any disk’s capacity to serve it
or any one server's capacity in terms of disk or network
bandwidth, to serve it), additional mechanisms are required to
handle it. Many conventional systems attempt to copy high
demand or hot assets onto Switch memory or server physical
memory 84 for faster access. However, these schemes fail
beyond a certain size file or asset, as the system resource
requirements become prohibitive for large video files.
0009 Further, conventional load balancing handles
requests from client devices and spreads them across to vari
ous servers to effectively balance network bandwidth as well
as connection overheads (usually in Software). However, the
present solutions fail to take into account the I/O problem—
the problem that happens at the I/O subsystem where conten
tion for a video file or for storage system video file retrieval
bandwidth causes the disk Subsystem to run out of resources.
0010. This input/output problem is endemic to any time
based media (Such as audio and video) and real-time content
delivery, and is especially true for “high-quality” or “high
value' video content. For example, a typical movie for a
movie-on-demand application generally needs to be deliv
ered at 4 Mbps to 8 Mbps today and up to 20 Mbps for a

US 2008/027O61.0 A1

high-definition (HD) system and over a period of 90 to 120
minutes. For Such an application, continued availability of
resources—such as disk or other storage Subsystem band
width, memory, network bandwidth, and CPU resources—
over a long period of time is required to deliver a video
service. Customers simply will not subscribe to a paid service
to see a full length movie at lower than broadcast quality and
may not even be inclined to subscribe unless the movie is the
quality of a DVD or equivalent movie.
0011. This is in contrast to existing load balancing/cluster
systems for Solving computational problems or data delivery
problems (such as serving web pages from a server cluster at
an aggregation site). Computational clusters usually tax the
disk subsystems very little whereas data clusters for non
time-based data (such as graphics images or web pages) tax
the disk subsystem, but they do not have real-time delivery
semantics associated with them. For example, users will gen
erally tolerate parts of a web-page loading slowly whereas
breakups in audio and video are considered less tolerable or
intolerable. Subscribers simply will not subscribe to a video
(movie) delivery service where the play is broken or erratic in
time, or the required frame-rates (typically 24 or 30 frames/
second) cannot be maintained.
0012. A single copy of a video on a server's disk sub
system can only service a certain number of concurrent play
requests. This number is typically limited to by the hard disk’s
bandwidth. For example, if a disk provides 30 Megabytes of
bandwidth for read/write access, it implies that it can support
delivery of videos encoded at 5 Megabits/second to 48 users
concurrently ((30 Megabytesx8 bits/byte)/5 Megabits/sec
ond 48 per second). Striping techniques, where a file system
is built on top of a number of such disks, increase the number
of concurrent users. However, there is an upper limit to the
number of concurrent users the subsystem can server. When a
video (or other content) becomes “popular, more copies of
that video need to be provided to increase the concurrent
number of plays available given the disk drive bandwidth.
(Note that this disk drive bandwidth requirement is entirely
different from disk drive storage capacity.) If the relative
popularity of the video is known, a predetermined number of
copies can be provided. However, dynamic spikes in interest
or demand for a particular video movie or other real-time
deliverable video content item may occur in a real-time
streaming system.
0013. Accordingly, there is a need in this art for a scalable
server system, method, architecture, and topology that is able
to cost-effectively, timely, and easily increase the number of
users serviceable. Such a system should be viable for time
based media delivery, including streaming of broadcast,
DVD, and HD movie quality video.
0014. There is a further need in this art for a server system,
method, architecture, and topology capable of managing sys
tem resources and load balancing to effectively provide real
time asset streaming, including streaming of broadcast and
DVD movie quality video assets. Management of resources
would extend to disk management, CPU management,
memory management, and network bandwidth management.
0015 There is still a further need in this art for a server
system, method, architecture, and topology capable of
dynamically adjusting to content delivery service demand in
a real-time system. That is, a server system capable of auto
matically and dynamically increasing its capacity for playing

Oct. 30, 2008

out a specific asset, Such as a specific video movie, when
demand for that asset increases.

SUMMARY

0016. The invention provides system, apparatus, method,
computer program and computer program product, and busi
ness method and model for distribution of media assets to
users or subscribers. The inventive system and method are
highly scalable architecturally and on a dynamic demand
basis.
0017. In one aspect the present invention provides loosely
coupled cluster systems comprising one or a plurality of
servers based on storage attached to the server(s). In another
aspect, videos, or other assets, are automatically replicated
within the server system to increase the number of concurrent
play requests serviceable. In another aspect, the server sys
tems can detect spikes in demand that may exceed the guar
anteed number of concurrent play requests serviceable and
dynamically transfer the high-in-demand or hot asset to
servers in the cluster that do not have the asset. Alternatively,
instead of transferring the entire asset, varying length prefixes
of the asset may be transferred depending on the availability
of resources. The remainder of the asset is transferred in some
embodiments on demand with sufficient buffering or other
storage to guarantee playback to the user or Subscriber
according to the required quality of service (QOS).
0018. In one embodiment, the invention provides a server
system for time-based media streaming comprising: a plural
ity of servers coupled for communication with each other,
including a first server and second server, the first server
comprising: a first computer-readable storage medium
encoded with stored server information comprising asset
information associated with the second server, a first com
puter-readable storage device associated with the first server
encoded with first asset information; and a second computer
readable storage device associated with the second server
encoded with second asset information.
0019. In another embodiment, the invention provides a
method for time-based streaming of assets, the method
including: receiving a request for an asset at a first server;
determining if the first server has the asset; determining if the
first server has sufficient resources to stream the asset;
streaming the asset while maintaining a time-base for the
streamed asset if the first server has the asset and the first
server has sufficient resources to stream the asset; and
0020 if the first server does not have the asset, or the first
server does not have Sufficient resources to stream the asset,
attempting to identify a second server having the asset and
Sufficient resources to stream the asset; and forwarding the
request to the identified second server.
0021. In another embodiment, the invention provides a
method for time-based streaming of assets and load-balanc
ing, the method including: receiving a request for an asset at
a first server having the asset and Sufficient resources to
stream the asset, streaming the asset while maintaining a
time-base for the streamed asset if the first server has a first
server load level less than a load threshold value; and if the
first server has a load level greater than a load threshold level,
the method further including: attempting to find a second
server having the asset, Sufficient resources to stream the
asset, and a second server load level less than the first server
load level; forwarding the request if the second server is
located; and streaming the asset while maintaining a time
base for the streamed asset if the second server is not located.

US 2008/027O61.0 A1

0022. In another embodiment, the invention provides a
method for time-based streaming of assets, the method
including: receiving a request for an asset at a first server,
determining if the first server has the asset; determining if the
first server has sufficient resources to stream the asset; and if
the first server does not have the asset or the first server does
not have sufficient resources to stream the asset, forwarding
the request to a second server having the asset and Sufficient
resources to stream the asset; and if the first server has the
asset and Sufficient resources to stream the asset, determining
if the first server has a load level less than a load threshold
value; and if the first server has a first server load level less
than a load threshold value, streaming the asset and maintain
ing a time-base for the streamed asset; and if the first server
has a load level greater than a load threshold level, attempting
to find a second server having the asset, Sufficient resources to
stream the asset, and a second server load level less than the
first server load level; forwarding the request if the second
server is located; and streaming the asset and maintaining a
time-base for the streamed asset if the second server is not
located.

0023 The invention further provides various computer
programs and computer program products adapted for execu
tion on general purpose computers, servers, and information
systems.
0024. The invention also provides a business model and
method for distribution of content and assets (such as video
movies) as well as a business model and method for operating
and growing a scalable content and asset distribution system.
0025. In another embodiment, the invention provides a
business model for operating a time-base accurate asset
streaming business, the business model comprising: operat
ing a first server to receive and service requests for an asset,
the first server (i) receiving a request for an asset, (ii) deter
mining if the first server has the asset available for time-base
accurately streaming and has sufficient resources to time
base accurately stream the asset, and (iii) time-base accu
rately streaming the asset if it is determined that the first
server has the asset available for time-base accurately stream
ing and has sufficient resources to time-base accurately
stream the asset; and if the determining indicates that the first
server does not have the asset available for time-base accu
rately streaming or does not have Sufficient resources to time
base accurately stream the asset, then: (i) identifying a second
server having the asset available for time-base accurately
streaming and Sufficient resources to time-base accurately
stream the asset, and (ii) forwarding the request to the iden
tified second server for servicing by the second server.

BRIEF DESCRIPTION OF THE DRAWINGS

0026. The present invention may be better understood, and
its features and advantages made apparent to those skilled in
the art by referencing the accompanying drawings.
0027 FIG. 1 is a diagrammatic illustration showing an
embodiment of a tightly-coupled multiprocessor system, as
known in the art.

0028 FIG. 2 is a diagrammatic illustration showing an
embodiment of a general architecture of a loosely-coupled
server system with a fiber switch, as known in the art.
0029 FIG. 3 is a diagrammatic illustration showing an
embodiment of a cluster system with direct attached storage,
according to an embodiment of the present invention.

Oct. 30, 2008

0030 FIG. 4 is a diagrammatic illustration showing an
embodiment of a cluster system with shared storage accord
ing to an embodiment of the present invention.
0031 FIG. 5 is a diagrammatic illustration showing an
embodiment of a cluster system with hierarchical storage
according to an embodiment of the present invention.
0032 FIG. 6 is a diagrammatic illustration showing an
embodiment of an Intra Cluster Protocol message format,
according to an embodiment of the present invention.
0033 FIG. 7 is a diagrammatic illustration showing an
embodiment of an activation process according to an embodi
ment of the present invention.
0034 FIG. 8 is a diagrammatic illustration showing an
embodiment of a method for calculating indices in a Sum
mary Cache, according to an embodiment of the present
invention.
0035 FIG. 9 is a schematic overview of one embodiment
of a request forwarding procedure for a server in a cluster,
according to one embodiment of the present invention.
0036 FIG. 10 is a diagrammatic illustration showing a
control flow when a play request is forwarded using RTSP,
according to an embodiment of the present invention.
0037 FIG. 11 is an illustration of a graphical appearance
of one aspect of the cluster management console, according to
an embodiment of the present invention.
0038 FIG. 12 schematically depicts a process through
which events (traps) are propagated to the Cluster Console,
according to an embodiment of the present invention.
0039 FIG. 13 depicts a Load Monitor displayable by the
Console, according an embodiment of the present invention.
0040 FIG. 14 depicts a stream monitor displayable on the
console, according to an embodiment of the present inven
tion.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

0041 Generally, the present invention provides loosely
coupled cluster systems comprising a plurality of servers
based on storage directly attached to the plurality of servers.
Videos, music, multi-media content, or other assets, are rep
licated within the server system to increase the number of
concurrent play requests for the videos, music, multi-media
content, or other assets serviceable. For convenience these
various videos, movies, music, multi-media content or other
assets are referred to as video or movies as these are the most
prevalent types of assets; however, it should be clear that
references to any one of these asset or content types. Such as
to video or movies, refers to each of these other types of
content or asset as well.
0042. In some embodiments, the server systems detect
spikes in demand that may exceed the guaranteed number of
concurrent play requests serviceable. In some embodiments,
the server systems dynamically replicate the hot, high-de
mand or frequently requested asset to servers in the cluster
that do not have the video. (High-demand or frequently
requested assets are conveniently referred to as “hot” or as
“hot-assets in this description.) Alternatively, instead of rep
licating the entire asset, varying length "prefixes', or initial
portions, of the asset may be replicated depending on the
availability of resources. The remainder of the asset is trans
ferred in some embodiments on demand with sufficient buff
ering or other storage to guarantee playback to the user or
subscriber according to the required quality of service (QOS).
Assets as used herein generally refers to data files. Assets

US 2008/027O61.0 A1

stored on, and streamed by, server systems discussed herein
preferably comprise real-time or time-based assets, and more
preferably comprise video movies or other broadcast, DVD,
or HD movie quality content, or multi-media having analo
gous video movie component. It will also be appreciated that
as new and different high-bandwidth content assets are devel
oped such high-bandwidth content assets benefiting from
real-time or Substantially real-time play may also be accom
modated by the inventive system and method.
0043. Accordingly, the present invention provides a server
system, method, architecture, and topology for real-time and
time-base accurate media streaming. The terms real-time and
time-base or time-base accurate are generally used inter
changeably in this description as a real-time play generally
meaning that streaming or delivery is time-base accurate (it
plays at the designated play rate) and is delivered according to
some absolute time reference (that is there is not too much
delay between the intended play time and the actual play
time). In general, real-time play is not required relative to a
video movie but real-time play or substantially real-time play
may be required or desired for a live sporting event, awards
ceremony, or other event where it would not be advantageous
for some recipients to receive the asset with a significant
delay relative to other recipients. For example, it is desirable
that all requesting recipients of a football game would receive
both a time-base accurate rendering or play out and that the
delay experienced by any recipient be not more than some
predetermined number of seconds (or minutes) relative to
another requesting recipient. The actual time-delay for play
out relative to the live event may be any period of time where
the live event was recorded for such later play. In one embodi
ment, a requestor selecting such event asset play during
delayed live play out may choose between beginning play at
the start of the asset or joining the asset play synchronized
with the pay to other requesting recipients.
0044 Streaming, as used herein, generally refers to distri
bution of data. Aspects of the invention further provide com
puter program Software/firmware and computer program
product storing the computer program in tangible storage
media. By real-time (or time-based) streaming, herein is
meant that assets stored by or accessibly by the server system
are generally transmitted from the server systemata real-time
or time-base accurate rate. In other words the intended play or
play out rate for an asset is maintained precisely or within a
predetermined tolerance. Generally, for movie video stream
ing using compression technology available today from the
Motion Pictures Expert Group, (MPEG), a suitable real-time
or time-base rate is 4 to 8 Megabits/second, transmitted at 24
or 30 frames/second. Real-time or time-base asset serving
maintains the intended playback quality of the asset. It will be
appreciated that in general, service or play of an ordinary
Internet web page or video content item will not be real-time
or time-base accurate and Such play may appearjerky with a
variable playback rate. Even where Internet playback for
short video clips of a few to several seconds duration may be
maintained. Such real-time or time-base accurate playback
cannot be maintained over durations of several minutes to
several hours.

0045 Server systems according to the present invention
may be described as or referred to as cluster systems, archi
tectures, or topologies. That is, the server systems comprise a
plurality of servers in communication (electrical, optical, or
otherwise) with each other. A variety of servers for use with
the present invention are known in the art and may be used,

Oct. 30, 2008

with MediaBase servers made by Kasenna, Inc. of Mountain
View, Calif. being particularly preferred. Aspects of server
systems and methods for serving media assets are described
in co-pending U.S. patent application Ser. No. 09/916,655
filed 27 Jul. 2001 entitled Improved Utilization of Bandwidth
in a Computer System Serving Multiple Users; U.S. patent
application Ser. No. 08/948,668 filed 14 Oct. 1997 entitled
System For Capability Based Multimedia Streaming over A
Network; and U.S. patent application Ser. No. 10/090,697
filed 4 Mar. 2002 entitled Transfer File Format And System
And Method For Distributing Media Content; each of which
applications are hereby incorporated by reference.
0046 Each server within the server system generally com
prises at least one processor and is associated with a com
puter-readable storage device, such as a disk or an integrated
memory or other computer-readable storage media, which
stores asset information. Asset information generally com
prises all or part of the asset, or metadata associated with the
asset, as described more fully below. A plurality of proces
sors, such as two, three, four, five, six, seven, eight, or more
processors or microprocessors may be utilized in any given
server. Each server within the system further has access to
“load' information about other servers within the system, or
cluster. Load information is discussed further below. When
receiving a request, then, each server can decide whether to
serve or play the requested asset itself, or to transfer the
request to another server that has the asset. When choosing
where to route the request, if the server is going to transfer the
request, the server may take into account load information
about the other servers, as well as what type of asset infor
mation the other servers have (the entire asset, a prefix of the
asset, or metadata, and the like). If the server receiving the
request does not have the requested asset, it can transfer the
request to another server that does have the asset, or request
the asset from a shared (or otherwise accessible) storage
device. In some embodiments, a system administrator, or
other source, may provide a load threshold value, as discussed
further below. Servers within the cluster have access to the
load threshold value. When a first server receives a request
and has a load greater than the load threshold value, it will
attempt to locate another, less loaded, server to service the
request even if the first server has the asset and is able to
service the request.
0047. The present invention further provides methods and
systems and computer program and computer program prod
uct for hot (or high-demand) asset management. That is, a
system administrator, or other source, may provide a hot (or
high-demand) asset count and a hot (or high-demand) asset
time period. The server system, or cluster, keeps track of the
number of requests received for a given asset. If the number of
requests exceeds the hot asset count within the hot (or high
demand) asset period, the asset is deemed hot or in high
demand, and a server having access to the asset can make a
copy onto another server that does not have access to the asset.
By have the asset herein is generally meant that the server
has asset information associated with the requested asset,
Such as all or a portion of the asset, Stored in its direct attached
or integrated storage device or memory. Alternatively, a first
server, upon determining that an asset is hot, may copy a
variable length prefix of an asset to a second server that does
not have the asset. Upon receiving a request for that asset, the
second server can request the entire asset from the first server.
The idea is that the system monitors interest in or demand for
the asset, Such as a video movie, and when it appears that the

US 2008/027O61.0 A1

interest or demand is such that the demand on the server will
exceed its storage device service bandwidth capacity, it cre
ates another service process to provide for the expected
demand. Systems, methods, and computer programs accord
ing to the present invention are discussed in further detail
below.

0048. A server cluster according to embodiments of the
present invention comprises a plurality of servers working
together to service a request. The plurality of servers may
have independent disks, or other computer readable storage
devices, or share disks through a file system over a shared
storage system, Such as networked attached storage (NAS) or
a storage area network (SAN). Operationally, the cluster may
be deployed at the origin site, where the original assets reside,
or at an edge where a server is primarily used as a streaming
media cache.

0049. In some embodiments, the front end of the cluster is
a load-balancing component that directs user request to one of
the servers within the cluster, or system. In preferred embodi
ments, the load-balancing component comprises a Layer 4
Switch. In other embodiments, the load-balancing component
comprises a software load balancing proxy or round-robin
DNS. These and other load-balancing components are known
in the art. In further preferred embodiments of the present
invention, no load-balancing component is necessary, and the
load-balancing is effectively performed by a server receiving
user requests, which forwards or accepts the requests as
appropriate, and as described further below. In such embodi
ment, a Level 2 switch may be provided as an interface to the
servers within the cluster. It will be appreciated that the cost
of a simple Layer 2 Switch is a faction of the cost of a Layer
4 load-balancer so that embodiments of the invention provide
considerable cost savings and economies over those embodi
ments requiring external load-balancers.
0050. In a first preferred embodiment, depicted schemati
cally in FIG. 3, cluster system 100 is provided comprising a
plurality of servers including server 105, server 110, and
server 115. A variety of suitable media servers are known in
the art, with MediaBase servers (Kasenna, Inc.; Mountain
View, Calif.) being particularly preferred. Servers 105, 100,
and 115 each comprise a computer-readable storage medium
encoded with a computer program module that, when
executed by at least one processor, enables the server to
broadcast load information, receive and store load informa
tion, and/or provide the load balancing and hot-asset manage
ment functionalities described further below. Alternatively,
these functionalities may be provided by a plurality of com
puter program modules. Each server is associated with its
own independent storage—computer-readable storage
device 108,113, and 118, respectively. Servers 105,110, and
115 are in communication with one another. In system 100,
servers 105,110, and 115 are in communication via local area
network (LAN)120. In other embodiments, servers 105,110,
and 115 are in communication via a LAN for streaming, and
have a separate connection (for example, a direct or wireless
connection) for messaging amongst each other. In other
embodiments, servers 105, 110, and 115 are in communica
tion via a wide area network (WAN). Other communication
means and/or protocols may be utilized as are known in the art
for coupling computers, networks, network devices, and
information systems.
0051. User requests come to cluster 100 as, for example, a
hyper-text transport protocol (HTTP) or real time streaming
protocol (RTSP) request, although a variety of other protocols

Oct. 30, 2008

known in the art are suitable for forming user requests. The
requests are directed via load-balancing component 125.
shown as a Layer 4 switch in FIG. 1, to one of the servers in
the cluster. In other embodiments, load-balancing component
125 is not present and user requests are received directly by
one or a plurality of servers incluster 100. Media assets reside
on local disks including disk 108,113, and 118. Media assets,
as discussed above, are preferably data files requiring real
time delivery, and more preferably video files. Generally any
media format may be supported with MPEG-1, MPEG-2, and
MPEG-4 formats being preferred. The cluster replication
policy can range from no replication to partial to full replica
tion. Installing an asset into the cluster generally requires an
administrator, or other authorized user, to determine which
server or servers should host the asset and install the asset on
those servers. Adding additional servers preloaded with asset
information can increase the throughput of cluster 100.
0.052 Accordingly, in one embodiment of cluster 100, by
way of example, 1000 media assets are stored (in fact any
number of media assets may be stored). If the assets are high
quality MPEG-2 format (encoded at 4 Mb/s) movies and if
each asset is 2 hrs in length (a typical full length feature
movie), approximately 4.5 gigabyte (GB) of storage is
required per movie. The size and length of assets will vary
accordingly to the specific asset stored, and the above num
bers are given by way of example only. Cluster 100 therefore
required 4.5 terabyte (TB) (4.5 GBx1000) of storage with no
replication. Two-way replication would require 9 TB of stor
age. Accordingly, cluster 100 may comprise 12 servers each
with around 800 GB of direct attached storage to support
two-way replication. Each server would further be required to
play out around 42 streams and the network required to have
an aggregate serving bandwidth of 2 Gb/s (4 Mb/sx500) to
Support 500 users. These metrics and storage requirements
will vary according to the size and length of stored assets, the
encoding rate of the assets, the desired degree of replication,
and the desired number of supported users. The above num
bers are provided by way of example and are not intended to
limit the invention.

0053. In another embodiment of the present invention,
schematically depicted in FIG. 4, cluster 200 comprises
shared storage system 210. Shared storage system 210 may
comprise, for example a network attached storage (NAS)
system, or a storage area network (SAN). Shared storage
system 210 communicates to servers in cluster 200, such as
server 215, 220, and 225 via network connection 230, such as
a SAN or data local area network (LAN). In embodiments
comprising a SAN, the SAN comprises its own data network.
In some embodiments, the SAN data network comprises fiber
switches and the like. In other embodiments network connec
tion 230 comprises other components providing functionality
to communicate between shared storage system 210 and serv
ers 215, 220 and 225. As described above, server 215, 220 and
225 are in electronic communication through, for example,
LAN 240. In preferred embodiments comprising a NAS,
LAN 240 is the same as LAN 230. In other embodiments
comprising a NAS, LAN 240 and LAN 230 are separate
networks. In other embodiments, as discussed above, the
servers are in direct communication or have a separate wire
less connection. In still other embodiments, the servers have
one communication network or link for asset transfer and
streaming and a second communication network or link for
messaging and communication amongst themselves. Servers
215, 220, and 225 each comprise a computer-readable storage

US 2008/027O61.0 A1

medium encoded with a computer program module that,
when executed by at least one processor, enables the server to
broadcast load information, receive and store load informa
tion, and/or provide the load balancing and hot-asset manage
ment functionalities described further below. Alternatively,
these functionalities may be provided by a plurality of com
puter program modules. Load-balancing component 250 may
pass user requests to servers within cluster 200, as discussed
above with reference to FIG.1. In other embodiments, load
balancing component is unnecessary and not present.
0054. In cluster 200, assets reside on shared storage sys
tem 210. Individual servers, such as server 215, 220, and 225
store asset metadata locally in direct attached, or integrated,
storage. Metadata generally comprises information about an
asset, Such as a video, including encoding type, bit rate,
duration, and/or the like. Installing an asset into cluster 200
generally involves installing the asset on the shared storage
system and distributing the metadata associated with the asset
to all the servers in the cluster. Generally, any server may be
used to install an asset onto the shared storage system and
copy the metadata to the rest of the servers in cluster 200.
0055. Using the cluster example given above providing
1000 high-quality MPEG-2 titles each lasting 2 hours with
two-way replication and supporting 500 users—cluster 200
would require 4.5 TB of storage on the shared storage system.
Using servers capable of playing out 125 streams, cluster 200
would require 4 servers. Further, the network between clients
and servers required an aggregate bandwidth of (4Mb/sx500)
2 Gb/s. The data network 230 between servers and storage
would require a similar bandwidth. The actual required band
width, number of servers, and amount of required storage will
vary according to the number, type and length of asset stored,
number of servers utilized in cluster 200, and the desired
number of Supported users. The above numbers are given
only by way of example.
0056. In a third embodiment, shown schematically in FIG.
5, cluster 300 is provided comprising hierarchical storage. In
this embodiment, assets reside at centrally administered
server cluster 310 (the head end) and streaming occurs at the
edges. An edge generally refers to a location in a server
system that is closer to an end user. An edge server is a server
located at an edge of a network and an edge cluster is a set of
servers located at an edge. Edge streaming clusters, such as
cluster 320 and 330 are similar to the direct attached storage
embodiment, discussed above with regard to FIG.1. In opera
tion, ifanasset is requested and is not found in an edge cluster,
the asset is requested from higher levels of storage (i.e. from
cluster 310). Cluster 310 and edge cluster 320 and 330 are in
communication via a content distribution network, which
may be another LAN. In some embodiments, the content
distribution network is a WAN or other network connection,
and the appropriate protocols and messaging systems are
used to facilitate communication between inner clusters and
edge clusters. In some embodiments, the content distribution
network shares traffic with a network connection between
edge servers, or between edge servers and end users. Servers
within cluster 320 and 330 each comprise a computer-read
able storage medium encoded with a computer program mod
ule that, when executed by at least one processor, enables the
server to broadcast load information, receive and store load
information, and/or provide the load balancing and hot-asset
management functionalities described further below. Alter
natively, these functionalities may be provided by a plurality
of computer program modules.

Oct. 30, 2008

0057. In cluster 300, any server can generally be used to
install an asset. Installation generally involves placing the
asset in the headend and installing a metadata entry and a
prefix associated with the asset in all the servers in the edge
clusters, such as cluster 320 and 330.
0.058 Utilizing the cluster example above providing
1000 high-quality MPEG-2 titles each lasting 2 hours with
two-way replication and supporting 500 users—cluster 300
required 4.5 TB of storage at the headend. At the edges,
assuming that each server caches 100 titles and stores a 5
percent prefix of all 1000 titles, each server would require
652.5 GB (100x4.5 GB+900x0.225 GB) of storage for the
cache. Assuming that a server can play out 125 streams,
cluster 300 would require 4 servers. The network between
Subscribers and edge clusters would need to have an aggre
gate bandwidth of 2 Gb/s (4 Mb/sx500). These metrics and
storage requirements will vary according to the size and
length of stored assets, the encoding rate of the assets, the
desired degree of replication, and the desired number of Sup
ported users. The above numbers are provided by way of
example and are not intended to limit the invention.
0059 Choice of cluster configuration—direct attached
storage as in cluster 100, shared storage as in cluster 200, or
hierarchical storage as in cluster 300—depends on require
ments as to cost, number of required streams, and number of
Supported users. It is anticipated that one configuration, Such
as cluster 200 may be implemented and later reconfigured
into another configuration, such as cluster 300.
0060. The above description recites various configura
tions of a cluster according to the present invention. Servers
within the cluster contain at least one processor, and are
configured to perform a variety of functionalities with respect
to streaming assets, messaging between servers, and routing
requests. These functionalities are generally provided as a
service, herein referred to as a node agent (or "nodeagent'),
that is embedded as a computer program module encoded in
a computer-readable storage medium within a server and
executed by one or more processors. The computer program
module, or service or node agent as used herein, contains
instructions that, when executed, provide the servers with a
variety of messaging and/or other performance functional
ities. These functionalities are discussed further below. A
node agent may be implemented using any of a variety of
computer program module protocols or languages as known
in the art, with implementation as a Common Object Request
Broker Architecture (CORBATM) service being particularly
preferred. It is to be understood that a node agent may be
implemented in any of the above described cluster embodi
ments, or the like. Particularly, a node agent may be installed
on any, some, or all of servers 105,110, 115 in FIG.3, servers
215, 220, and 225 in FIG. 4, and servers within clusters 320
and 330 in FIG. 5.

0061. A node agent generally exports an interface through
which other services, or computer program modules, on the
server or in communication with the server interact with the
node agent. This interface may be any of a variety of inter
faces as known in the art, for example, an Internet Inter-Orb
Protocol (IIOP). In some embodiments, a plurality of inter
faces are exported by the node agent, each interface for com
munication via a different protocol.
0062. In some embodiments, the node agent further sup
ports a message-based protocol built over a user datagram
protocol (UDP) called the Intra Cluster Protocol (ICP), used

US 2008/027O61.0 A1

for exchanging bootstrapping, load, and event notification
messages between nodeagents in a cluster—that is, generally,
between servers.

0063. The Intra Cluster Protocol (ICP) is an extension of
the Internet Cache Protocol, as known in the art and described
further in, for example “Internet Cache Protocol, version 2,
Wessis, D. and Clafly, K., RFC 2186, September, 1997,
hereby incorporated by reference herein. The Intra Cluster
Protocol is used by the node agent for bootstrapping, load
information exchange, asset inserts and delete notifications
and failure detection. An embodiment of the Intra Cluster
Protocol message format is shown schematically in FIG. 6.
Briefly, message 400 comprises header 410 comprising
operation code (opcode) field 420, version field 430 and data
length field 440. Header 410 is preferably 4 bytes in length,
although Substantially any length may be chosen and imple
mented accordingly. Message 400 further comprises data
field 450. Some opcodes used in preferred embodiments of
message 400 are shown in Table 1. Other standard opcodes
are supported in some embodiments, including ICP IN
VALID, ICP QUERY, ICP HIT, ICP MISS, and ICP
MISS NOFETCH.
0064. An I am alive opcode (I AM ALIVE)525 is used to
indicate a bootstrap message that is sent to inform servers that
a first server is up and running. The message size is preferably
8 bytes, but may vary according to the specific protocol
implemented. A peer opcode (PEER) 530 is sent as response
to a message comprising the I am alive opcode (I AM
ALIVE) 525. As before, the message size is preferably 8
bytes, but may vary. A digest opcode (DIGEST) 535 is used to
indicate a message used for exchanging Summary caches,
described further below. In embodiments where ICP messag
ing is used for server discovery (sending I AM ALIVE,
PEER, and/or DIGEST messages), servers within the cluster
should be on a same network Subnet. This requirement is
removed when another messaging protocol is chosen, as is
known in the art. A load opcode (LOAD) 540 is used to
indicate a message sent periodically to inform other servers
about the load on a first server, as discussed further below.
Preferably, the maximum message size is 8 bytes. An asset
insert opcode (ASSET INSERT) 545 indicates a notification
message sent to inform other servers that an asset has been
installed on a first server. Preferably, the maximum message
size is 20 bytes plus the length of the asset name plus the
length of the server name that has had the asset installed. An
asset delete opcode (ASSET DELETE)550 indicates a mes
sage sent out to inform other servers that an asset has been
deleted on a first server. Preferably, the maximum message
size is 20 bytes plus the length of the asset name plus the
length of the server name from which the asset has been
deleted. A node shutdown opcode (NODE SHUTDOWN)
555 indicates a message sent to inform other servers if a node
has been shut down by an administrator or otherwise. Pref
erably, the message size is 4 bytes. A cluster shutdown opcode
(CLUSTER SHUTDOWN) 560 indicates a message sent if
an entire cluster is shut down by an administrator or other
wise. Preferably, the message size is 4 bytes. A load frequency
change opcode (LOAD FREQ CHANGE) 565 indicates a
message informing other servers that the load frequency has
been altered. Load frequency is discussed further below.
Some servers use this type of message to reset their failure
detection alarms in addition to or instead of alerting them
selves that the load frequency is altered. Preferably, the mes
sage size is 8 bytes. An ICP interface change opcode (ICP

Oct. 30, 2008

IF CHANGE) 570 indicates a message to a server that the
bootstrap interface has been changed, and it needs to listen
and send on the new interface. Preferably, the message size is
4 bytes. The opcodes above, include preferred uses for the
opcodes and preferred sizes of the associated messages are
presented by way of example. However, it will be readily
appreciated by those skilled in the art that any of a variety of
opcodes may be designated for a particular message. Further,
the above specific interfaces are presented by way of example
and it will be readily appreciated by those skilled in the art
that a variety of specific interfaces may be chosen and imple
mented to achieve the above-described communication path
ways.

0065. A variety of variables are available for describing
the state of the node agent. These variables can be set by an
administrator, or other source, and may be present encoded
within a server at startup, or default values assumed by the
node agent. The default values may be set by an administrator,
or other source. According to one embodiment, on startup, the
node agent checks to see if a node agent table
(NodeAgentTbl) exists in a local database. That is, a server
within a cluster generally maintains a node agent table
describing its configuration. In other embodiments, agent
tables are shared.

0.066 An exemplary embodiment of a node agent table
(NodeAgentTbl) is shown as Table 2, along with some exem
plary default values. It is to be understood that all or a portion
of the described fields may be present in various embodi
ments of the node agent table. Briefly, field Cluster Mode 600
is associated with mode value or condition 601, such as
Standby, indicating what mode the node agent is in. In one
embodiment, a node agent operates in one of two modes—
standby and cluster. In standby mode, the node agent operates
as a server that streams video. In standby mode, the node
agent does not know of other servers in a cluster and does not
forward any requests. On activation to cluster mode, the
server automatically discovers other servers in the cluster and
will load balance play requests, as described further below.
0067. Threshold valuefield 610, associated with threshold
value 611, Such as a value 70, is an optional but advantageous
field and indicates a threshold load value. The determination
of and use of this threshold value is discussed further below,
however, briefly, this value indicates a load level above which
a server will attempt to find another, less loaded, server in the
cluster to service a request even if the first server has access to
the requested asset and has sufficient resources to stream the
asset. Generally, and as discussed further below, threshold
value 611 ranges from 0 to 100 (typically scaled to represent
a load level between 0% and 100% of some nominal, prede
termined, or maximum load), although in other embodiments
other ranges are possible, depending on the method used to
calculated threshold value 611. In a preferred embodiment, a
load threshold value represents an indication of the load on a
server including considerations to: percent CPU used, avail
able memory, and available network bandwidth. Other con
siderations are discussed further below.

0068. In other embodiments, a plurality of threshold val
ues are determined, each corresponding to a different server
resource, and a plurality of threshold value fields appear in
Table 2.

0069 Bootstrap Interface field 620, associated with a
Bootstrap Interface 621, such as first reported network inter
face.

US 2008/027O61.0 A1

0070 Hot Object Count field 630, is associated with count
value 630, for example, 60. Hot object counts are described
further below. Hot Object Period Field 640, is associated with
hot object period value 631, such as 60 seconds. In preferred
embodiments, hot object period is represented in seconds and
ranges from about 30 seconds to about 1800 seconds,
although in Some embodiments a longer or shorter time
period will be used. Hot object periods are discussed further
below. Briefly, if a number of requests for a first asset exceeds
the hot object count during the hot object period (i.e. more
than 60 requests in 60 seconds in this example), the asset is
considered hot, and the server will attempt to copy the asset
to another server which does not have direct access to the
asset in order to increase the capacity of the cluster to stream
the asset. Hot object count 630 and hot object period 640 may
be entered by an administrator and may vary according to the
presumed relative popularity of an asset.
0071. Additionally, a plurality of hot object count fields
and hot object period fields may appear in Table 2, each
corresponding to a certain asset or group of assets.
0072 LoadUpdate Frequency field 650 is associated with
a load update frequency 651. Such as 5 seconds. Load update
frequency 651 is discussed further below. Briefly, this indi
cates how often the server will broadcast load information
about itself. Shorter periods increase the amount of messag
ing traffic between servers, while longer periods may result in
a situation where other servers may have outdated or inaccu
rate information about the first server's load.
0073. Accordingly, on startup, if a node agent table
(Node AgentTbl) does not exist in a database, the node agent
(nodeagent) for the server creates the table with default val
ues, in one preferred embodiment, the values are as shown in
Table 2. If the node agent table exists, the nodeagent reads the
values from the table and starts itself in the appropriate mode,
given by Cluster Mode 601.

TABLE 1.

Exemplary Opcodes and their uses.

Opcode (reference #) Use

I AM ALIVE (525) Bootstrap message. Sent to inform other
servers that a server is up. Message size is
8 bytes.
Sent as response to an I AM ALIVE
message. Message size is 8 bytes.
Message is used for exchanging Summary
Caches.
Periodic message sent out to inform other
servers about load on server. Max size is
8 bytes.
Notification message sent out to inform
other servers that an asset has been
installed on server. Max message size is
20 bytes + length of asset name + length
of server name
Notification message sent out to inform
other servers that an asset has been deleted
on server. Max message size is 20 bytes +
length of asset name + length of server
l8le

Notification message sent out to inform
others if a node has been administratively
shut down. Message size is 4 bytes.

CLUSTER SHUTDOWN Notification message sent out if an
(560) administrator decides to shut down entire

cluster. Message size is 4 bytes.

PEER (530)

DIGEST (535)

LOAD (540)

ASSET INSERT (545)

ASSET DELETE (550)

NODE SHUTDOWN (555)

Oct. 30, 2008

TABLE 1-continued

Exemplary Opcodes and their uses.

Opcode (reference #) Use

LOAD FREQ CHANGE Notification message to inform other
(565) servers that the load frequency has been

altered. Other servers use this message to
reset their failure detection alarms.
Message size is 8 bytes.
Notification message to server that the
bootstrap interface has been changed and
it needs to listen and send on the new
interface. Message size is 4 bytes.

ICP IF CHANGE (570)

TABLE 2

NodeAgentTbi exemplary fields and values

Field Exemplary Value

Cluster Mode (600) Standby (601)
Threshold Value (610) 70 (611)
Bootstrap Interface (620) First reported Network (621)

Interface
Hot Object Count (630) 60 (631)
Hot Object Period (640) 60 seconds (641)
Load Update Frequency (650) 5 seconds (651)

0074. Additionally, values in the node agent table in
cluding hot object count, hot object period, load update fre
quency, and load threshold value—may be dynamically
updated during operation of the node agent, either upon
request by a system administrator or other source, or auto
matically by the node agent in response to operating condi
tions. In a preferred embodiment, a system administrator is
able to change one or more hot object count, hot object period,
and threshold value using the cluster management console,
described further below.
0075. In preferred embodiments, on a cold start, that is
where the server is configured for the first time, the node agent
comes up in Standby mode. In this mode, the server can be
monitored and administered, but it is not a member of a
cluster—that is, it does not communicate or exchange load or
asset information with other servers. The node agent can be
activated to the Cluster mode by an administrator either
directly at the server comprising the node agent, or remotely
through a console. Activation is the process by which a node
agent becomes part of a cluster. By part of a cluster herein is
meant generally that a server communicates—that is sends
and receives messages—with other servers. The collection of
servers sending and receiving each others messages is gener
ally referred to as a cluster.
0076 An embodiment of the activation process is shown
schematically in FIG. 7. Briefly, FIG. 7 depicts three servers
in a cluster, server 700, server 710, and server 720. Server 700
is in the process of activation. The three servers are in com
munication through communication links or other means dis
cussed above. Arrows and connections shown in FIG. 7 are
intended to show the flow of information and are not intended
to indicate physical or separate connections between servers.
On activation, the node agent associated with server 700
broadcasts, step 730, an I am alive (I AM ALIVE) 525 mes
sage. In preferred embodiments, the I am alive (I AM
ALIVE) 525 message is sent on port 9090. The message is
received by servers 710 and 720, as well as any other servers
in the cluster (not shown). Other servers that are up, including

US 2008/027O61.0 A1

server 710 and 720, respond with a digest message, step
740, such as a message using digest opcode (DIGEST) 535.
Once a server, such as server 710 or 720, has retrieved the
digest, the server sends out, step 750, a peer (PEER) message,
using the PEER opcode 530 to build its cluster membership
list. On getting this message, server 700 invokes a digest
request, step 760, for example using the digest (DIGEST)
opcode 535 on the server having sent the peer (PEER) mes
sage (such as server 710 or 720). Cluster 700 is operationally
ready once the bootstrap phase is over. It then broadcasts load
information, step 770, for example using the load (LOAD)
opcode 540 to servers in the cluster periodically, as dictated
by load frequency field 650.
0077 Accordingly, servers in a cluster maintain a list of
assets that are available in the cluster and where they reside
(generally by sending and receiving digest messages,
updates, and asset insert or asset delete notifications). Gener
ally, every streaming server within the cluster maintains an
asset list, in some embodiments, only a Subset of servers
maintain an asset list, and in one embodiment, one server
maintains an asset list. In some embodiments, therefore, the
node agent caches a local asset directory of the assets that are
available on the local server and also keeps an asset directory
associated with each server in the cluster. The local directory
is communicated to the rest of the servers during the activa
tion phase, summarized above and in FIG. 7. When a server
receives a request that it cannot service, or in some embodi
ments, when its load is greater than a threshold value, it
consults these directories to select a server to forward the
request.
0078. The asset directories are advantageously compact
and allow fast lookups, inserts and deletes. Accordingly, in
preferred embodiments, asset directories are implemented as
a Summary Cache, as known in the art and described further
in, for example, "Summary Cache: A Scalable Wide-Area
Web Cache Sharing Protocol, L. Fan, P. Cao, J. Almeida, and
A. Broder IEEE/ACM Transactions on Networking 8(3):
281-293 (2000), hereby incorporated by reference herein. It
will be readily appreciated by those skilled in the art that other
structures could be employed to maintain an asset list at a
server. Briefly, a Summary Cache represents a set of n ele
ments as a bit vector of size nxm where m is referred to as the
Bloom Load Factor. A set of hash functions that map into this
range are chosen to Support insertion, deletion, and member
ship queries. In a preferred embodiment, the node agent
implements a Summary Cache with a Bloom Load Factor of
16 and 4 hash functions. However, a Bloom Load Factor of
generally between 8 and 64 and between 2 and 8 hash func
tions can be used, although in Some embodiments a greater or
lesser number of either may be advantageous. The choice of
the Bloom Load Factor and the number of hash functions is
influenced by the acceptable probability of a false hit. A false
hit occurs when the Summary cache responds to a member
ship query by saying that the element exists but in reality it
does not. For a Bloom Load Factor of 126 and 4 hash func
tions, the probability of a false hit is approximately a quarter
of one percent. In some embodiments, the hash functions are
built by first calculating the MD5 signature of the asset name,
as known in the art. Recall that an MD5 signature hashes an
arbitrary length string into a fixed length signature. In other
embodiments, the hash functions are built by calculating the
MD5 signature of some other string uniquely associated with
the asset.

Oct. 30, 2008

0079. One embodiment of a method for calculating indi
ces in a Summary Cache is shown in FIG. 8. The MD5
signature of asset name 800 is calculated in step 810. The
MD5 signature hashes an arbitrary length string into a 128-bit
signature 820. In other embodiments signature 820 is longer
or shorter than 128 bits. The signature is then divided into four
32-bit integers (integers 822, 824, 826, and 828) using
modulo nxm, in step 830. Integers 822, 824,826, and 828 are
used as the four hashes. That is, a 1 is entered in a position
of Summary cache 840 corresponding to locations given by
integers 822, 824, 826, and 828. In preferred embodiments,
the maximum number of assets on a server is set as a com
mand line parameter. In a preferred embodiment, the maxi
mum number of assets on a server is 1000, and the Summary
Cache size is accordingly 1000x16, or 16000 bits. Accord
ingly, integers 822, 824, 826, and 828 in FIG. 8 are between
0 and 15999. The size of the Summary Cache, and accord
ingly the modulo number used in step 830 and the range of
integer values for integers 822, 824, 826, and 828 will vary
according to the number of assets on a server and the length of
the signatures.
0080 Assets that are installed or deleted once the clusteris
operational generate notifications to the node agent. The node
agent in turn communicates this information using asset
insert (ASSET INSERT) 545 or asset delete (ASSET DE
LETE) 550 messages to the rest of the servers in the cluster.
These messages broadcast indices to the Summary Cache that
needs to be altered as a result of the installation or deletion of
an aSSet.

I0081. As discussed briefly above, each server in a cluster
calculates one or a plurality of factors associated with its load
and broadcasts one or more load factors, or metrics, to other
servers in the cluster. That is, each server periodically (or
according to some other scheme or policy) extracts a load
metric or metrics, computes a load factor or factors and broad
casts this information to servers in the cluster. Load metrics
may include, for example, any one or combination of CPU
idle time, CPU utilization, amount of free physical and swap
memory, and network bandwidth utilized or available net
work bandwidth, or other load related metrics or measures.
Each of these metrics may be converted into a load factor
through any variety of scaling and normalization procedures.
In one embodiment, a network bandwidth metric is calculated
by determining the number of streams in use out of a known
number of available streams. In a preferred embodiment, each
metric is represented as a percentage and a plurality of metrics
are Summed and normalized to a number, an overall load
factor, between 0 and 100 that reflects the overall load on the
server. In some embodiments, a plurality of metrics are com
bined in a weighted Sum. In some embodiments, higher num
bers indicate greater loads. In other embodiments, lower
numbers indicate greater loads. In other embodiments, a plu
rality of load factors are calculated, each for a different load
metric or combination of metrics. Load information, com
prising one or more load factors, is broadcast to other servers
using a load message, such as ICP LOAD 540, or other like
message protocol. The same or different weightings may be
applied to different of the metrics so that their relative impor
tance in the overall metric may be accounted for.
I0082 Each server within a cluster further is configured,
through program module node agent, to provide request for
warding. That is, on receiving a request for an asset, a first
server checks to see if any of the following conditions are
true: (1) the asset does not exist on the first server, or is not

US 2008/027O61.0 A1

associated with the first server that is, the first server does
not have metadata associated with the asset, a prefix associ
ated with the asset, or the asset itself residing on its direct
storage, as appropriate with regard to the particular server
configuration; (2) Sufficient resources do not exist to stream
the asset on or from the first server; or (3) the current load on
the first server is over a threshold limit—that is a specified
load factor exceeds a threshold limit, as discussed above. In
some embodiments, the first server only checks if the asset
does not exist on the first server and if sufficient resources do
not exist to stream the asset on the first server, and a load
threshold value is not checked. If any of these conditions is
true, the server attempts to locate a second server in the cluster
that has the asset and Sufficient resources to stream the asset.

0083. In a case where the server has the asset and the
resources, but has a load factor exceeding a threshold limit, it
will attempt to find another server that is less loaded (that is,
has a load factor corresponding to a load less than the first
server) and that has the asset. If it fails to locate another server,
it will service the request. In some embodiments, the first
server has a smaller overall load factor than a second server,
but a greater load factor of a critical metric. That is in some
embodiments, a first server will attempt to forward a request
if a single load factor is greater than a threshold value corre
sponding to that load factor. In preferred embodiments, the
first server attempts to forward the request when its overall
load factor is greater than a threshold value.
0084. Accordingly, servers within clusters according to
the present invention may advantageously but optionally have
a load thresholding feature. As discussed briefly above, a load
threshold is a number corresponding to a threshold level for a
load factor, discussed above. The load threshold represents
the load factor level beyond which the server will consult the
node agent to determine if there is a server that is less loaded
than itself that would be able to service the request. In pre
ferred embodiments, the load threshold value is a number
between 0 and 100 and corresponds to the threshold level of
an overall load factor, discussed above, representing a plural
ity of load metrics. In preferred embodiments, a load thresh
old value of between 20 and 50 is used. In some embodi
ments, a plurality of load threshold values are provided
corresponding to a plurality of load factors and the first server
attempts to locate a second, less loaded server when a prede
termined number of load threshold values are exceeded.
Accordingly, while operating over the load threshold, the
cluster Software, or program module, or node agent, adds a
Small overhead to the play request processing, as it has to
determine the most appropriate server in the cluster to service
the request. In other embodiments, load thresholding is not
provided by the node agent. In still other embodiments, dif
ferent load assessment and/or allocation techniques or proce
dures may be applied.
0085. The load (LOAD) messages may advantageously
double as heartbeats that are used for failure detection in some
embodiments. That is, each server under normal operating
conditions broadcasts load information, for example, using a
LOAD message, at regular intervals given, for example, by
load update frequency 651, or according to Some other
scheme or policy. In some embodiments, timers are pro
grammed to trigger events in the case where there has been no
communication between a pair of nodes for a certain length of
time. The triggered event verifies if a server is out of service
or is merely slow in responding. If a first server detects that a
second server is down, it marks the second server as down and

Oct. 30, 2008

removes it from membership of the cluster. When it receives
an I am alive (I AM ALIVE) 525 message from the server
that went down, it includes it back into the cluster.
I0086 FIG. 9 provides a schematic overview of one
embodiment of a request forwarding procedure for a server in
a cluster. A request for an asset is received in step 850. For
example, referring back to FIG. 3, server 115 may receive a
request for an asset in step 850. The following method con
tinues to be discussed with reference to the cluster configu
ration shown in FIG.3, however it is to be understood that the
method is applicable to all cluster configurations described
above. Server 115 determines, step 852, if it has the asset—
that is, in embodiments using a configuration Such as that in
FIG.3, server 115 determines if asset information associated
with the requested asset is stored on storage device 118. In
step 854, the server (such as server 115) determines if it has
sufficient resources to stream the asset. In other embodi
ments, the decisions are made in a different order. If the server
either does not have the requested asset or does not have
Sufficient resources to stream the asset, the server (Such as
server 115) will attempt to forward the request (step 856) to a
second server (such as server 110) that does have the asset and
Sufficient resources to stream. In some embodiments, if the
server has the requested asset and Sufficient resources to
stream, the server will simply stream the asset (step 858). In
other embodiments, the server then determines if its load is
less than a threshold value, step 860, as discussed above, and
streams the asset (step 858) if the load is sufficiently light. If
the load exceeds a threshold value, than the server attempts to
find a second server having the asset, Sufficient resources to
stream, and that is less loaded, step 862. If the server finds
such a second server, it forwards the request (step 864), and if
not, the first server will stream the asset (step 858). In other
embodiments, the first server gives preference in step 862 to
servers having the complete asset rather that servers having a
prefix or other portion of the asset.
I0087. The request forwarding capabilities provided by the
node agent—described above and in FIG. 9 allow load
balancing components, such as a Layer 4 Switch, to optionally
be eliminated. That is, in preferred embodiments, a load
balancing component is not present to direct user requests to
a particular server within a cluster. Instead, user requests may
enter the cluster at one or a plurality of servers, and the
individual servers themselves forward the requests as neces
sary. In other embodiments, a load-balancing component,
Such as a Layer 4 Switch, is utilized to distribute requests.
I0088 FIG. 10 depicts a schematic overview of a control
flow when a play request is forwarded. FIG. 10 depicts an
embodiment using RTSP (Real Time Streaming Protocol)
request forwarding. It will be understood by those skilled in
the art after reading this specification that other protocols may
be used. Referring to FIG. 10, server 900 in a cluster receives
an RTSP Setup call, step 902, and decides to load balance
according to one or more of the criteria above, by forwarding
the request. Therefore, server 900 responds with an RTSP
Multiple Choices message (step 904). Included with the
RTSP Multiple Choices message is the name of an alternate
server in the cluster that, in one embodiment, is the least
loaded server that has the requested asset. Client 910 now
makes an RTSP Setup call (step 912) to the new server, such
as server 914. On a successful setup, server 914 responds with
an RTSPOK message (step 916). Client 910 can now play the
asset (step 918) from the second server.

US 2008/027O61.0 A1

0089. The present invention further advantageously but
optionally provides methods, procedures, and computer pro
grams and computer program products for hot or high
demand asset load balancing. Briefly, an asset (Such as a
feature video movie or motion picture) is said to be hot when
usage statistics indicate a spike or other high-demand condi
tion in the number of requests for that asset. Generally, a spike
means a flurry of requests in a short period of time. Accord
ingly, servers in clusters of the present invention are config
ured to provide a hot asset trigger through the computer
program module, or node agent, installed therein. In a pre
ferred embodiment, the hot asset trigger, represented by hot
asset count 630 and hot asset period 640, is set by an admin
istrator. In other embodiments, hot asset count 630 and hot
asset period 640 are dynamically selected and/or updated by
the node agent, or by the server itself. The trigger is fired or
released when the number of requests for an asset within hot
asset period 640 exceeds hot asset count 630. In other
embodiments, the trigger is fired when the number of requests
for an asset within hot asset period 640 equals or exceeds hot
asset count 630. Once the trigger is fired, that is, if the number
of requests for an asset within hot asset period 640 equals or
exceeds hot asset count 630, the node agent will replicate the
asset to the least lightly loaded server in the cluster (or some
other server in the cluster that has capacity to serve according
to some scheme or policy) that does not have that asset. In
Some embodiments, a service wrapper is provided, a video
transfer service, that provides video content delivery func
tionality. This wrapper, or video transfer service, provides a
computer program module containing instructions to repli
Cate an aSSet.

0090. In some embodiments, the entire asset is not repli
cated to another server not having the asset once the asset is
considered hot, rather, a variable length prefix of the asset is
replicated to another server. Generally, a prefix of an asset
comprises between 5 and 50 percent of the asset, although in
Some embodiments a larger or shorter prefix may be trans
ferred. This is referred to as prefix caching. Embodiments of
prefix caching for media objects are described in copending
U.S. patent application Ser. No. 09/774,204 filed 29 Jan. 2001
and entitled Prefix Caching for Media Objects, herein incor
porated by reference.
0091. When a second server having a variable prefix of an
asset receives a request for that asset and conditions are Suit
able for the second server to service that request, it begins
playout of the prefix and requests transfer of the entire asset
from a server having the asset, or from a centralized storage
location, depending on the configuration of the cluster. In still
other embodiments, the entire asset is not replicated to
another server not having the asset once the asset is consid
ered hot, rather, metadata associated with the asset is repli
cated to another server, and the server requests a copy of the
entire asset upon receiving a serviceable request.
0092 A Cluster Management Console may be provided to
allow an administrator to effectively manage a cluster. The
Cluster Management Console is generally a centralized tool
to define, configure, administer and monitor the servers in a
cluster. The Console collects server information, asset infor
mation, and load and stream counts, and presents the infor
mation ordata in an easy to view format. An administrator can
then use this information to move and replicate assets, add or
remove servers, adjust parameters to keep the cluster running
at idea performance, and the like. Generally, then, the Cluster
Management Console provides all or a subset of the following

Oct. 30, 2008

functionalities: defining a cluster, adding and/or removing
servers from a cluster; activating and/or deactivating servers
in a cluster, configuring clusterparameters; displaying server
information, cluster configuration, asset listings, SNMP
events, and the like; displaying system error, warnings, and
the like by enabling SNMP traps; monitoring server load,
active stream counts, asset requests, and hot objects; admin
istering a server using the administrative web graphical user
interface; logging into a cluster; and playing out, transferring,
listing locations of replicated assets, renaming and deleting
aSSetS.

0093. In some embodiments, clusters of the present inven
tion are configured to Support a single signon feature. That is,
when servers in a cluster are operating with A4 services
(Authentication, Authorization, Access Control and Account
ing) enabled, the server is a secure server an only those
authorized by a Successful login may be able to play out
assets, and it may become inconvenient for an administrator
to have to log on to each of the servers separately. The Single
Sign. On feature allows an administrator to log on once to a
cluster using a Cluster Management Console, and be able to
administer any of the servers in the cluster without having to
log on separately. Once an administrator logs on to a cluster
using the Console, the user credentials are passed along with
any administer or play requests. The Console can be imple
mented as a program module having a variety of formats, such
as for example, a Java Applet. In some embodiments, the
Console is installed on a server within a cluster. In other
embodiments, the Cluster Management Console resides on a
computer or other device having a processor and in commu
nication with a server or servers in the cluster.

0094. One embodiment of the graphical appearance of
console view 1000 is shown in FIG. 11. Console view 1000
comprises Cluster View pane 1005, Server View pane 1010,
and Message pane 1015. Cluster View pane 1005 is used to
define new clusters, add and delete servers in a cluster and to
brows different clusters and servers that are part of each
cluster. For example, Cluster View pane 1005 shows three
clusters—a first cluster (L4Cluster), a second cluster (Qe
Cluster), and a third cluster (Jglue). Where L4Cluster,
Qecluster, and Jglue represent arbitrary cluster names.
0.095 Servers in any or each cluster can be viewed for
example, QeCluster comprises servers glimmer, gelato’,
qalinux3, and rigel, in FIG. 11, where server glimmer,
gelato', 'qalinux3, and rigel are names assigned to the
particular servers, respectively. Server View pane 1010 pro
vides detailed information about servers and buttons for
monitoring various cluster-wide data. For example, Server
View Pane 1010 has buttons to view general information,
monitor information, and asset catalog information. As
shown, Server View pane 1010 displays asset catalog infor
mation including assets contained in cluster Qecluster.
Message pane 1015 is used for informational messages, and
for notification of warnings or critical events. As shown,
Message pane 1015 displays several messages, including that
gelato in Qecluster was restarted. The date and time of the
messages may also be shown.
0096. The Console can be used to view multiple clusters,
as shown in FIG. 11. In preferred embodiments, an adminis
trator defining a cluster would create views in console 1000
that reflect physical clusters, as described above. In other
embodiments, views in Console 1000 do not reflect physical
clusters.

US 2008/027O61.0 A1

0097 Critical errors, warning, asynchronous event notifi
cations (hot object transfer completion, for example), and the
like are reported back to the Cluster Management Console as
SNMP traps. An administrator using the Console is accord
ingly informed about Such events on any server in a cluster
and if needed can then take appropriate action. FIG. 12 sche
matically depicts one embodiment of how asynchronous
events (traps) are propagated to the Cluster Console. These
traps are errors or warnings that are generated in the cluster,
that may require immediate attention, or meet some other
criteria. Console 1300 registers (step 1302) with SNMP Ser
vice 1305. SNMP Service 1305 implements the Simple Net
work Management Protocol (SNMP) and acts like a central
clearing house for traps. Service 1308, Such as a node agent,
or other computer program module, or plurality of services,
generate traps that are sent (step 1310) to SNMP Service
1305. On receiving a trap, SNMP Service 1305 forwards the
trap to Console 1300 which then displays the message. Addi
tionally, in some embodiments, services 1308 send, step
1318, error or warning messages to log 1320. Log 1320 may
further send traps, step 1322, to SNMPService 1305.
0098. The Cluster Management Console further allows for
monitoring of server load, cluster-wide active stream counts,
and asset popularity. In addition, playout status, disk status,
network status, and the like can be monitored if the appropri
ate SNMP agent is running on the desired servers. FIG. 13
depicts one embodiment of a Load Monitor displayable by
the Console. Load Monitor 1100 displays four load graphs
1101,1102.1103, and 1104—each corresponding to a differ
ent server. Y-axis 1105 represents a load factor, discussed
above, and X-axis 1110 represents time. Bar scale 1115 gives
another depiction of load level. FIG. 14 depicts one embodi
ment of a stream monitor displayable on the console. Stream
monitor 1200 depicts information associated with three serv
ers—1201, 1202, 1203, and 1204 in an additive manner such
that the total number of streams playing can also be viewed.
Y-axis 1210 represents number of streams, while X-axis 1215
represents time.
0099 Clusters according to the present invention further
maintain counters that allow an administrator to view or
ascertain operational health of the cluster. Generally, each
server maintains some or all of the counters described below.
In other embodiments, counters are shared. In some embodi
ments, counter information is aggregated and displayed by
the Cluster Management Console, described above, that con
tacts each of the servers in the cluster. Exemplary counters, all
or some of which may be implemented in a particular cluster
are: (1) an asset not cached counter (AssetNotCached) that is
incremented when a server receives a request for an asset that
is not installed locally; (2) an asset not in cluster counter
(AssetNotInCluster) that is incremented when a server
receives a request for an asset that is not installed locally and
also is unable to find it anywhere in the cluster; (3) a resources
unavailable counter (ResourcesUnavailable) that is incre
mented when a server receives a play request for an asset that
is installed locally, but the server does not have the resources
to play the request; (4) a first try counter (FirstTry) that is
incremented when a server looks for an alternate server to
service a play request and finds one in the first try; (5) a second
try counter (SecondTry) that is analogous to the first try
counter (FirstTry), but in this case it takes two attempts to find
an alternate server to service the request. If this counter is
rapidly increasing, one possibility is that the load information
is not being exchanged frequently enough; (6) a three or more

Oct. 30, 2008

counter (ThreeOrMore) that is incremented when it takes
more than two requests to service a request (this counter may
further indicate a need to change the load update frequency);
(7) an out of cluster resources counter (OutOfClusterRe
Sources) that is incremented when a server receives a request
for an asset that it cannot service but also finds out that no
other server in the cluster can service the request (this counter
may indicate the cluster is operating at peak capacity and
more servers may need to be added to the cluster if this
counter is rapidly increasing); (8) an ICP messages counter
(ICPMessages) that is incremented when a server receives an
ICP QUERY message from a cache, inquiring about the
presence of an asset; (9) an ICP hits counter (IcpHits) that is
incremented when a server responds to an ICP QUERY mes
sage with an ICP HIT message (the server responds with an
ICP HIT message when the requested asset is present in the
cluster); (10) an asset inserts counter (Assetinserts) that is
incremented when an asset is installed at the server, (11) an
asset deletes counter (AssetDeletes) that is incremented when
an asset is deleted from a server; and (12) a false hits counter
(FalseFHits) that is incremented when a server receives a
request to play an asset from another server in the cluster but
the receiver does not have the requested asset (false hits lead
to more messages and increase the response times).
0100. The invention may advantageously implement the
methods and procedures described herein on a general pur
pose or special purpose computing device. Such as a device
having a processor for executing computer program code
instructions and a memory coupled to the processor for Stor
ing data and/or commands. It will be appreciated that the
computing device may be a single computer or a plurality of
networked computers and that the several procedures associ
ated with implementing the methods and procedures
described herein may be implemented on one or a plurality of
computing devices. In some embodiments the inventive pro
cedures and methods are implemented on Standard server
client network infrastructures with the inventive features
added on top of such infrastructure or compatible therewith.
0101 The invention also provides a business model and
method for distribution of content and assets (such as video
movies) as well as a business model and method for operating
and growing a scalable content and asset distribution system.
0102. In one embodiment, the invention provides a busi
ness model for operating a time-base accurate asset streaming
business including: operating a first server to receive and
service requests for an asset, the first server (i) receiving a
request for an asset, (ii) determining if the first server has the
asset available for time-base accurately streaming and has
Sufficient resources to time-base accurately stream the asset,
and (iii) time-base accurately streaming the asset if it is deter
mined that the first server has the asset available for time-base
accurately streaming and has sufficient resources to time
base accurately stream the asset; and if the determining indi
cates that the first server does not have the asset available for
time-base accurately streaming or does not have sufficient
resources to time-base accurately stream the asset, then: (i)
identifying a second server having the asset available for
time-base accurately streaming and Sufficient resources to
time-base accurately stream the asset, and (ii) forwarding the
request to the identified second server for servicing by the
second server. This asset may for example comprises a multi
media asset Such as for example a video movie or other asset
type described herein.

US 2008/027O61.0 A1

0103 Embodiments of the business model and method
may include or utilize features of the inventive system,
method, procedures and computer program and computer
program product described elsewhere herein and not sepa
rately described relative to the inventive business model and
method.
0104. The foregoing descriptions of specific embodiments
and best mode of the present invention have been presented
for purposes of illustration and description. They are not
intended to be exhaustive or to limit the invention to the
precise forms disclosed, and obviously many modifications
and variations are possible in light of the above teaching. The
embodiments were chosen and described in order to best
explain the principles of the invention and its practical appli
cation, to thereby enable others skilled in the art to best utilize
the invention and various embodiments with various modifi
cations as are Suited to the particular use contemplated. It is
intended that the scope of the invention be defined by the
claims appended hereto and their equivalents.
What is claimed is:
1. A server system for time-based media streaming com

prising:
a plurality of servers coupled for communication and

including a first server, and
a computer readable storage medium at said first server

storing therein information associated with an asset that
is replicated in a computer readable storage medium
associated with at least one other server;

said first server being configured to:
(i) receive a request for said asset from an external client

coupled to the server system; and
(ii) determine if said asset is a hot asset, and if said asset is

determined to be a hot asset, then copying information
associated with said asset to a second server including
copying at least one of: (a) a prefix of said asset to said
second server, and (b) copying the asset to the second
server and streaming the prefix of the asset from the
second server.

2. A server system according to claim 1, wherein said asset
comprises an audio or a video.

3. A server system according to claim 1, wherein said asset
information comprises metadata associated with an asset.

4. A server System according to claim 1, wherein said first
server stores a hot asset count value and a hot asset period and
is further configured to keep track of received requests for
assets and to replicate part or all of the asset to another server
in response to a determination that a number of received
requests for the asset during a period equal in length to the hot
asset period exceeds the hot asset count value.

5. A server System according to claim 1, wherein said first
server is further configured to cause the request from the
client to be sent to the second server by informing the client to
send the request to the second server.

6. A method for time-based streaming of assets, said
method comprising:

receiving a request from a client for an asset at a first server;
and

determining if said asset is a hot asset, and if said asset is
determined to be a hot asset, then copying information
associated with said asset to a second server including
copying at least one of: (a) a prefix of said asset to said

Oct. 30, 2008

second server, and (b) copying the asset to the second
server and streaming the prefix of the asset from the
second server.

7. A computer program product for use in conjunction with
a first server having at least one processor and a memory
coupled to the processor, the first server being in communi
cation with at least one second server, the computer program
product comprising a computer readable storage medium and
a computer program mechanism embedded therein, the com
puter program mechanism comprising:

a program module that directs the first server to function in
a specified manner to provide for time-based streaming
of assets upon receiving a request for an asset from an
external client the program module including instruc
tions for:

receiving a request from a client for an assetata first server,
and

determining if said asset is a hot asset, and if said asset is
determined to be a hot asset, then copying information
associated with said asset to a second server including
copying at least one of: (a) a prefix of said asset to said
second server, and (b) copying the asset to the second
server and streaming the prefix of the asset from the
second server.

8. A method for operating a time-base accurate asset
streaming business, said method comprising:

operating a plurality of servers each configured to receive
and service requests for assets from external clients of
said business, said operating comprising:

operating a first server to receive a request from a client for
an asset at said first server, and

operating said first server to determine if said asset is a hot
asset, and if said asset is determined to be a hot asset,
then copying information associated with said asset to a
second server including copying at least one of: (a) a
prefix of said asset to said second server, and (b) copying
the asset to the second server and streaming the prefix of
the asset from the second server.

9. A method for dynamically adjusting to content delivery
service demand in a real-time system, the method compris
ing:

detecting demand for a particular asset; and
automatically and dynamically increasing a capacity for

playing out a particular asset when demand for that asset
increases.

10. A method as in claim 9, further including detecting
demand for a plurality of different assets and automatically
load-balancing said playing out said plurally of assets in
response to said detected demands.

11. A system for dynamically adjusting to content delivery
service demand in a real-time system, the system comprising:

a plurality of servers coupled for communication; and
at least a first one of said plurality of servers including a

receiver for receiving a request for an asset from an
external client, and a detector for detecting demand
for a particular asset based on said received requests;
and

said plurality of servers being configured to automati
cally and dynamically increase a system capacity for
playing out a particular asset when demand for that
asset increases.

