Title: METHOD OF PLAYING A MULTIMEDIA CONTENT TRANSMITTED BY A THIRD-PARTY ON A USER DEVICE

Abstract: The invention relates to transmitting a multimedia content to a user device and playing said multimedia content on said user device during booting of said user device. Transmission is achieved by downloading or by streaming. The invention allows transmission of a start-up content (for instance a video logo or advertisement) from an operator, a content provider or a manufacturer to the user device. According to the invention such a start-up content is customized by the third-party and can be updated when needed. The start-up content is transmitted at a time when it does not disturb the user (during booting the user would be unable to use his device anyway).
Published: with international search report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
METHOD OF PLAYING A MULTIMEDIA CONTENT TRANSMITTED BY A THIRD-PARTY ON A USER DEVICE

FIELD OF THE INVENTION

The invention relates to a user device, a third-party device, and a system comprising a user device, a third-party device and a network, wherein said user device and said third-party device comprise means for communicating via said network.

The invention also relates to a method of playing a multimedia content on a user device, and a program comprising instructions for implementing such a method when executed by a processor in a user device.

The invention applies to, for example, personal communication devices, such as phones, ADSL modems, set-top-boxes having Web access, or the like.

BACKGROUND OF THE INVENTION

US patent application n°20020193094A1 describes a method of downloading a phone software product (e.g. games, ring tones, banners, logos, etc.) to a wireless phone on request by a user. This is achieved by dialing a pay-per-call number belonging to a special pay-per-call numbering plan. The call is routed to a wireless telephone service provider and then to a software product content provider. The software product content provider prompts the user to select one or more software products to be downloaded and transfers the selected software product to the wireless telephone service provider which, in turn, transfers the software product to the wireless phone via an SMS gateway. The wireless service provider bills the subscriber at a premium rate for the phone call and transfers at least a portion of the premium rate to the software product content provider as payment for the downloaded software product.

One of the objects of the invention is to propose another application in which multimedia content is transmitted to a user device, for example a mobile phone, via a network.

SUMMARY OF THE INVENTION

A user device according to the invention is defined in claims 1 to 4. A method of playing a multimedia content on a user device according to the invention is defined in claims
5 to 9. A third-party device according to the invention is defined in claim 10. A system according to the invention is defined in claim 11, and a program according to the invention is defined in claim 12.

A user device according to the invention comprises means for communicating via a network, means for booting, means for implementing, during said booting, a protocol for transmitting a multimedia content by a third-party device to said user device via said network, and means for playing, during said booting, a multimedia content transmitted by said third-party device.

According to the invention, a protocol for transmitting a multimedia content from a third-party to the user device is automatically implemented each time the user device is booted up without any interaction of the user, which means that the user does not select the transmitted multimedia content. When the user switches on the device, multimedia content is automatically played. This multimedia content is customized by the third-party and can be updated by the third-party, if required. Transmission and playing take place during booting.

One advantage of the invention is to allow transmission of a start-up multimedia content (for instance a video introduction, a video logo, an advertisement, etc.) from a third-party to a user device. By way of example the third-party may be the operator of the network, a content provider or the manufacturer of the user device. According to the invention, such a start-up multimedia content is customized by the third-party and can be updated whenever the third-party wishes to do so.

Another advantage of the invention is that such a start-up multimedia content is transmitted from the third-party to the user device in such a way that it minimizes the inconvenience for the user. According to the invention, the multimedia content is transmitted and played while the user device is booting. During booting, the user does not have access to the user device. However the communication means of the user device can operate from an early stage of the booting phase (what usually takes time in booting is charging the operating system of the user device; on average this may take 30 seconds or even more for high-end devices). The invention takes advantage of this situation by proposing that a start-up multimedia content is transmitted and played during a period of time when the user would be unable to use his device anyway. If the playback is terminated at the end of the booting process, there will be no inconvenience at all for the user.

Transmission from said third-party device to said user device is achieved either by downloading or by streaming. Downloading requires the multimedia content to be stored in a memory in the user device. Streaming has the advantage that such a storage in the user device
is not needed. When the downloading mode is used, implementation of the transmission protocol only leads to an effective downloading of multimedia content when the third-party wishes to update the multimedia content to be played by the user device during booting.

Advantageously, the multimedia content is compressed in order to lower the network resources required for transmission. For example, it is compressed by using the H263 standard.

In a specific embodiment of the invention, when the multimedia content is streamed by the third-party device, playing of the multimedia content is stopped when the booting process is finished in order that the user may start using his device immediately.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of the invention are further described with reference to the following Figures:

- Fig.1 is a schematic diagram of an example of a system according to the invention,
- Fig.2 is a general schematic diagram of a method according to the invention of playing a multimedia content in a user device,
- Fig.3 is a schematic diagram of a first alternative of the method of Fig.2;
- Fig.4 is a schematic diagram of a second alternative of the method of Fig.2;
- Fig.5 is a block diagram of a user device according to the invention,
- Fig.6 is a block diagram of a third-party device according to the invention.

DETAILED DESCRIPTION OF THE INVENTION

Referring to Figure 1, the system comprises a user device 10, a network 20 and a third-party device 30. The network 20 comprises a telephone network 40 having a Web or a WAP gateway 50. The third-party device 30 is a Web or a WAP server having access to the Web 60.

In a first example, the telephone network 40 is of the GPRS or UMTS type, and the user device is a mobile phone having access to the telephone network 40 via a radio link. In a second example, the user device is an ADSL box or a set-top-box connected to the telephone network 40 via a telephone wire.

The telephone network 40 is operated by an operator. The third-party may be the operator of the network 40 or any other actor, such as the manufacturer of the user device or a content provider having a business relationship with the operator.
Fig. 2 is a general block diagram of a method according to the invention of playing a multimedia content on the user device 10. As indicated in Fig. 2, this method comprises a step 100 of initiating the booting process of the user device 10. This step 100 is executed when the user switches on the user device. Then three processes P1, P2 and P3 are run in parallel:

- the booting process P1 (box 102),
- a process P2 of implementing a protocol for transmitting a multimedia content from the third-party device 30 to the user device 10 (box 104),
- a process P3 of playing a multimedia content transmitted by the third-party device 30 (box 106).

Dependent on the embodiment considered, there may be a relationship between processes P2 and P3. In Fig. 2, this relationship is represented by an arrow 108.

When all of the three processes are finished (which is represented in box 109), the user device is available to the user for normal operations.

A first embodiment of the method of Fig. 2 will now be described in detail with reference to Fig. 3. In this first embodiment, the user device 10 has a content memory MEM for storing the content V_{BOOT} to be played during booting. The content playing process P3 plays the content V_{BOOT} stored in the content memory MEM when the user device is switched on. The content transmission process P2 allows replacement of the content to be played during booting. This is achieved by downloading a new content. The new content will be played during the next booting process (that is, the next time the user device is switched on).

It is to be noted that downloading takes time so that the process P2 may finish after completion of the booting process P1.

In this first embodiment, the process P2 of implementing the content transmission protocol comprises:

- a step 110 of transmitting a first request RD1 from said user device 10 to said third-party device 30, the first request RD1 asking whether the third-party device 30 has a content to download to said user device 10,
- a step 112 of transmitting a positive response AO from the third-party device 30 to the user device 10 when the third-party device has a multimedia content to download,
- a step 114 of transmitting a second request RD2 from the user device 10 to the third-party device 30, said second request asking for the download of a content,
- a step 116 of downloading a content V_D from said third-party device to said user device, and
- a step 118 of storing the downloaded content V_D into the content memory MEM.
In this first alternative, the content playing process P3 plays the content V_{MEM} (if any) that is stored in the content memory MEM prior to the execution of the process P2.

In this first alternative, the content transmission protocol is based on the HTTP transport protocol. By way of example, the first request RD1 contains a unique identifier of the current start-up content V_{BOOT} played by the user device 10 during booting. This identifier may be the name of the content file, a URL of the content file, an MD5 key, or the like. This unique identifier is used by the third-party device 30 to decide whether or not a new content is to be downloaded to the user device 10, i.e. whether it has to send a positive response to the user device 10. Upon reception of a positive response AO, the user device 10 sends the second request RD2 asking for the download of multimedia content. This RD2 request points towards a CGI script (CGI stands for Common Gateway Interface) hosted by the third-party device 30. Upon reception of the request RD2 by the third-party device 30, the CGI script is executed which results in the download of the appropriate content.

In another embodiment not represented here, sending the second request RD2 upon reception of a positive response AO is not systematic. Based on one or more pre-defined criteria, the user device 10 may decide whether or not it sends the second request RD2. For example, the load of the network, or the size of the available memory may be a criterion.

In an alternative embodiment the first request RD1 does not contain any identifier of the current start-up content V_{BOOT} stored in the user device. Instead of sending such an identifier, the third-party device keeps a record of the start-up content or contents currently stored in the user devices and decides whether or not to send a new content by looking up its record.

A second embodiment of the method of Fig.2 will now be described in detail with reference to Fig.4. In this second embodiment, no start-up content is stored in the user device 10. The start-up content to be played during booting is transmitted from the third-party device 30 to the user device 10 by streaming each time the user device 10 is booted up. The process P2 of implementing the content transmission protocol comprises:

- a step 120 of transmitting a request RS from the user device 10 to the third-party device 30, said request asking for the streaming of a content, and

- a step 122 of streaming a content from the third-party device 30 to the user device 10 in response to said request.

In this second embodiment the content-playing process P3 plays the streamed content as it is received by the user device 10.
In this second embodiment, the content transmission protocol is based on the RTSP transport protocol. By way of example, the request RS points towards a known gateway in the network (for example, gateway 50 in Fig.1) and the gateway contains a redirection to a third-party device 30 where the content to be streamed is hosted.

Optionally, in this second embodiment, the streaming and playing processes P2 and P3 are forced to terminate as soon as the booting process P1 is finished in order that the user may start using the user device 10. In Fig.4, this forced termination of processes P2 and P3 is represented by an arrow 124.

Fig.5 gives a representation of a user device 10. The user device 10 comprises:

- a transmission/reception circuit 200 for transmission/reception via the network 20,
- a display 202,
- a user interface 204,
- a content player 206 for playing content,
- a microprocessor arrangement 208 which comprises a working memory 210, a program memory 212 and a processor 214, and
- an interconnection bus 216.

In the first embodiment of the invention, the user device 10 also comprises a content memory 220 for storing content, in particular the content that is to be played during booting. As this memory can be omitted in the second alternative embodiment of the invention, it is represented in broken lines.

The program memory 212 contains programs for controlling the operation of the user device 10 and, inter alia, a program PU (or a set of programs) for implementing the processes P1, P2 and P3 described above.

Fig.6 is a block diagram of a third-party device 30. It comprises:

- a memory 300 for storing multimedia contents, in particular a content to be downloaded or streamed to user devices during their booting in order to be played by said user devices while they are booting,
- transmission/reception means 310 for transmission/reception via the Web,
- a microprocessor arrangement 320 which comprises a working memory 330, a program memory 340 and a processor 350, and
- an interconnection bus 360.

The program memory 320 contains programs for controlling the operation of the third-party device 30 and, inter alia, a program PT for implementing the process P2 described above.
With respect to the user device, method, third-party device, system and programs described above, modifications or improvements may be proposed without departing from the scope of the invention. The invention is thus not limited to the examples provided.

Use of the verb “comprise” and its conjugations in the text and in the claims does not exclude the presence of means or steps other than those stated.

Use of the article “a” or “an” for designating an element or step does not exclude the presence of a plurality of such elements or steps.
CLAIMS

1. A user device comprising:
 - means for communicating via a network,
 - means for booting,
 - means for implementing, during said booting, a protocol for transmitting a multimedia content by a third-party device to said user device via said network,
 - means for playing, during said booting, a multimedia content transmitted by said third-party device.

2. A user device as claimed in claim 1 comprising a memory for storing a multimedia content, wherein:
 a) said protocol-implementing means comprise:
 - means for transmitting a first request asking whether said third-party device has a multimedia content to download to said user device,
 - means for receiving a response to said first request,
 - means for sending a second request, depending at least on said response, said second request asking for the download of a multimedia content,
 - means for receiving the downloaded multimedia content,
 - means for storing the received content in said memory, and
 b) said playing means are designed to play a multimedia content stored in said memory prior to said downloading.

3. A user device as claimed in claim 1 wherein:
 a) said protocol-implementing means comprise:
 - means for transmitting a request asking for the streaming of a multimedia content, and
 - means for receiving a multimedia content streamed by said third-party device in response to said request, and
 b) said playing means are designed to play the streamed multimedia content as it is received.

4. A user device as claimed in claim 3 comprising means for stopping playing when said booting is finished.
5. A method of playing a content on a user device having means for communicating via a network, said method comprising the steps of:
- booting said user device,
- implementing, during said booting, a protocol for transmitting a multimedia content by a third-party device to said user device via said network,
- playing, during said booting, a multimedia content transmitted by said third-party device.

6. A method as claimed in claim 5 of playing a multimedia content on a user device which comprises a memory for storing a multimedia content, wherein:
 a) said protocol-implementing step comprises:
 - transmitting a first request from said user device, said first request asking whether said third-party device has a multimedia content to download to said user device,
 - transmitting a response to said user device, at least if said third-party device has a multimedia content to download,
 - transmitting a second request from said user device depending at least on said response, said second request asking for the download of said multimedia content,
 - downloading said multimedia content from said third-party device to said user device,
 - storing the downloaded multimedia content in said memory, and
 b) said playing step comprises playing a multimedia content stored in said memory prior to said downloading.

7. A method as claimed in claim 5 of playing a multimedia content on a user device, wherein:
 a) said protocol-implementation step comprises:
 - transmitting a request from said user device, said request asking for the streaming of a multimedia content,
 - streaming a multimedia content from said third-party device to said user device in response to said request, and
 b) said playing step comprises playing the streamed multimedia content on said user device as it is received.

8. A method of playing a multimedia content as claimed in claim 5, wherein said multimedia content is customized by said third-party.
9. A method of playing a multimedia content as claimed in claim 5, wherein said multimedia content is compressed.

10. A third-party device having means for communicating via a network and means for implementing a protocol for transmitting a multimedia content to a user device via said network, said protocol-implementing means comprising:
 - means for receiving a first request sent by said user device, said first request asking whether said third-party device has a multimedia content to download to said user device,
 - means for transmitting a response to said user device, at least if said third-party device has a multimedia content to download to said user device,
 - means for receiving a second request sent by said user device, said second request asking for the download of a multimedia content,
 - means for downloading a multimedia content to said user device upon reception of said second request.

11. A system comprising at least a user device, a third-party device and a network, wherein said user device and said third-party device comprise means for communicating via said network, and means for implementing a protocol for transmitting a multimedia content by said third-party device to said user device, said user device further comprising:
 - means for booting,
 - means for initiating implementation of said protocol during said booting, and
 - means for playing, during said booting, a multimedia content transmitted by said third-party device.

12. A program comprising instructions for implementing a method as claimed in claim 5, when executed by a microprocessor of a user device.
FIG. 1

FIG. 2
A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 H04L29/06 H04N7/173 G06F9/445

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED
Minimum documentation searched (classification system followed by classification symbols)
IPC 7 H04L H04N G06F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6 560 702 B1 (CHEN JEFF ET AL) 6 May 2003 (2003-05-06) column 2, line 49 - line 67 column 3, line 25 - line 38 column 3, line 64 - line 67 column 8, line 35 - column 10, line 54</td>
<td>1-12</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of box C.
X Patent family members are listed in annex.

Special categories of cited documents:
A document defining the general state of the art which is not considered to be of particular relevance
E earlier document but published on or after the international filing date
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
C document referring to an oral disclosure, use, exhibition or other means
P document published prior to the international filing date but later than the priority date claimed

" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
"S document member of the same patent family

Date of the actual completion of the international search: 15 December 2004
Date of mailing of the international search report: 22/12/2004

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 390-3016

Authorized officer: Niculiu, R

Form PCT/ISA/210 (second sheet) (January 2004)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 6 373 498 B1 (ABGRALL JEAN-PAUL)</td>
<td>1-12</td>
</tr>
<tr>
<td></td>
<td>16 April 2002 (2002-04-16)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 3, line 16 - column 4, line 31</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 7, line 52 - column 8, line 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 8, line 32 - line 39</td>
<td></td>
</tr>
<tr>
<td></td>
<td>column 9, line 56 - column 10, line 33</td>
<td></td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1433542 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003516680 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0142911 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001075812 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 479194 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1813099 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002525701 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9930227 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6564318 B1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2001056718 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW 494341 B</td>
</tr>
</tbody>
</table>