(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2016/116073 A1

- (43) International Publication Date 28 July 2016 (28.07.2016)
- (51) International Patent Classification:

 C07D 215/22 (2006.01) C07B 57/00 (2006.01)

 C07F 9/09 (2006.01)
- (21) International Application Number:

PCT/CZ2016/000003

(22) International Filing Date:

11 January 2016 (11.01.2016)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

2015-35 21 January 2015 (21.01.2015)

CZ

- (71) Applicant: ZENTIVA, K.S. [CZ/CZ]; U Kabelovny 130, 10237 Praha 10 (CZ).
- (72) Inventors: ZVATORA, Pavel; Rude armady 300, 798 03
 Plumlov (CZ). ZVONICEK, Vit; Adamovska 7, 140 00
 Praha 4 (CZ). STEFKO, Martin; Cernysevskeho 15, 851
 01 Bratislava (SK). LUSTIG, Petr; Husova 255, 530 00
 Pardubice (CZ). DOUSA, Michal; Maxima Gorkeho 800, 339 01 Klatovy (CZ). RIDVAN, Ludek; Bratislavska 11, 102 00 Praha 10 (CZ).
- (74) Agents: JIROTKOVA, Ivana et al.; ROTT, RUZICKA & GUTTMANN, Vinohradska 37, 120 00 Praha 2 (CZ).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

 as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii))

Published:

— with international search report (Art. 21(3))

(54) Title: CHIRAL RESOLUTION OF BEDAQUILINE BY USING CYCLCIC PHOSPHORIC ACIDS

(57) Abstract: A method of performing isolation and purification of bedaquiline (la) from a mixture of stereoisomers of 6-bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(l-naphthyl)-l- phenyl-butan-2-ol identified as I-rac, being a mixture of the stereoisomers of formulae Ila, lib, with any ratio of individual constituents of the mixture, wherein said mixture is dissolved together with derivatives of 1,3-propanediol hydrogen phosphate of formula IV, wherein R_1 , R_2 , and R_3 independently stand for hydrogen, a halogen, C_1 - C_6 alkyl, aryl, naphthyl, phenyl and preferably a halogenated phenyl or phenyl substituted in any way, and the resulting salt is crystallized.

CHIRAL RESOLUTION OF BEDAQUILINE BY USING CYCLCIC PHOSPHORIC ACIDS

Technical Field

5 The invention relates to isolation of a solid form of (1*R*,2*S*)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol of formula **Ia**,

10

15

20

known as bedaquiline. Bedaquiline is isolated from a mixture of the corresponding stereoisomers (Ia - (1R,2S)-(6-bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol, Ib - (1S,2R)-(6-bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol, IIa - (1S,2S)-(6-bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol, IIb - (1R,2R)-(6-bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol), or the corresponding racemate I-rac (I-rac = mixture of the Ia : Ib isomers in the 1:1 ratio) by means of crystallization with (S)-(+)-1-phenyl-1,3-propanediol-2,2-dimethyl hydrogen phosphate (formula IIIs; CAS RN: 98674-81-8), or its derivatives, as a chiral crystallization agent.

I-rac = Ia:Ib in 1:1 ratio

II-rac = IIa:IIb in 1:1 ratio

Ia: (1R,2S)-(6-Bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol
Ib: (1S,2R)-(6-Bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol
IIa: (1S,2S)-(6-Bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol
IIb: (1R,2R)-(6-Bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol
ol

10

I-rac = mixture of the Ia and Ib isomers in the 1:1 ratio

II-rac = mixture of the IIa and IIb isomers in the 1:1 ratio

Background Art

15

20

(1*R*,2*S*)-1-(6-Bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol **Ia**, which is known as bedaquiline (CAS no. 843663-66-1), belongs to the group of quinoline derivatives that can be used as microbial inhibitors.

Preparation of this molecule and its use for the treatment of microbial diseases is described in a patent (WO 2004/011436). Bedaquiline was isolated from a diastereoisomeric mixture by means of chiral liquid chromatography. Isolation of bedaquiline from a mixture of the corresponding stereoisomers by means of crystallization with the chiral agent (R)-(-)-1,1'-

binaphthyl-2.2'-diyl hydrogen phosphate or its derivatives is described in a patent (WO 2006/125769).

The chiral purity of the product and reaction yield are influenced by the reaction conditions and selection of the chiral agent used for the crystallization. It is obvious that for the preparation of bedaquiline with a high reaction yield, chemical and chiral purity suitable chiral substances and optimal reaction (crystallization) conditions must be used.

Disclosure of Invention

5

25

The invention provides isolation of bedaquiline from a mixture of stereoisomers containing the I-rac isomers, possibly with admixed II-rac, I-rac and II-rac being in any ratio, with the use of chiral derivatives of 1,3-propanediol hydrogen phosphate (general formula IV) and methods of its isolation. The isolation is carried out by crystallization of a salt of bedaquiline Ia with the selected chiral derivative of 1,3-propanediol-hydrogen phosphate IV in a suitable solvent or mixtures of solvents.

$$\begin{array}{c} \text{HO} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{O} \\ \text{IV} \end{array}$$

R₁, R₂, and R₃ independently stand for hydrogen, a halogen, C₁-C₆ alkyl, aryl, naphthyl, phenyl, and preferably a halogenated phenyl or phenyl substituted in any way.

It has been unexpectedly found out that the derivatives of 1,3-propanediol-hydrogen phosphate IV used make it possible to isolate bedaquiline in a high yield, with a high chemical and enantiomeric purity. The described isolation procedures can be easily transferred into the industrial scale to obtain a sufficient amount of bedaquiline for commercial use.

Detailed description of the invention

The invention provides isolation of bedaquiline from a mixture of stereoisomers containing the

I-rac isomers, possibly with admixed II-rac, I-rac and II-rac being in any ratio. In a preferred
case the content of I-rac in the mixture with II-rac is 60 to 100%. The method brings very
good results e.g. with the content of I-rac of 80% and more. The isolation is carried out with

the use of crystallization with 1,3-propanediol hydrogen phosphate **IV** and its chiral derivatives as the crystallization agent; and methods of performing the same. As an example of a suitable chiral agent one can mention the use of (R)-(+)-1-(2-methoxyphenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate (CAS RN: 98674-82-9; formula **V**), or (R)-(+)-1-(2-chlorophenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate (CAS RN: 98674-87-4; formula **VI**).

5

10

15

20

Crystallization of mixtures of diastereoisomeric salts of the bedaquiline isomers **Ia-b**, **IIa-b** with 1,3-propanediol hydrogen phosphate and its derivatives makes it possible to isolate bedaquiline in a solid form in a high yield, with high chemical and enantiomeric purity.

The isolated solid form of bedaquiline may have various internal arrangements (polymorphism) with different physical-chemical properties depending on the conditions of its isolation. For this reason, the invention relates to isolation of bedaquiline with the use of derivatives of 1,3-propanediol hydrogen phosphate under various conditions with the use of a number of common solvents or their mixtures.

The described isolation procedures are suitable for isolation of bedaquiline **Ia** in a solid form with high chemical and optical purity; they can be easily transferred into the industrial scale to provide a sufficient amount of bedaquiline for commercial use.

Isolation of bedaquiline Ia is carried out by means of crystallization of the bedaquiline isomers Ia-b, IIa-b with derivatives of 1,3-propanediol hydrogen phosphate in a suitable solvent, which can be ketones, esters, ethers, amides, nitriles, or organic acids, alcohols, aliphatic and aromatic hydrocarbons, chlorinated hydrocarbons, water and/or their mixtures. Aliphatic C₁-C₄ alcohols, esters or their mixtures are preferred. The most commonly used solvents are ethanol, isopropanol, acetonitrile, tetrahydrofuran or their mixtures.

25 The resulting diastereoisomeric salt of bedaquiline **Ia** is precipitated or crystallized, typically at temperatures in the range of -30°C to the boiling point of the solvent.

Preparation of a mixture of the stereoisomers of 6-bromo-2-methoxy-3-quinolyl-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol **Ia-b**, **IIa-b**, isolation of the racemic mixture **I-rac** of (1S,2R)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-dimethylamino-2-(1-

naphthyl)-1-phenyl-butan-2-ol and bedaquiline **Ia** ((1*R*,2*S*)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol) is described in a patent (WO 2004/011436).

Bedaquiline Ia can be isolated from the racemic mixture I-rac in a solid form by means of chiral HPLC (WO 2004/011436) or with the use of (R)-(-)-1,1'-binaphthyl-2.2'-diyl hydrogen phosphate (WO 2006/125769). In this invention it has been found out that it is possible to advantageously use chiral derivatives of 1,3-propanediol hydrogen phosphate for isolation of bedaquiline as the chiral crystallization agent in a suitable solvent or a mixture of solvents.

To compare the effect of the method in accordance with this invention and that of WO 2006/125769, the result of Example 8 (below in this description) can be compared to the result of Example 1 in the cited document. Both the methods were carried out with comparable ratios, i.e. I-rac: II-rac is about 11:2. According to Example 1 of WO 2006/125769, 63% of all bedaquiline contained in the mixture was crystallized in this way. Our method, as demonstrated in our Example 8, provided 95% of all bedaquiline. Thus, the separation in accordance with this invention is more efficient than the methods described so far.

The free base of bedaquiline Ia can be released from the given diastereoisomeric salt with the use of a suitable base, e.g. a carbonate or phosphate base. K_2CO_3 , $KHCO_3$, Na_2CO_3

A crystalline form of the free base of bedaquiline with the melting point of 118°C is described in a patent (WO 2004/011436).

The invention is clarified in a more detailed way using the working examples below. These examples, which illustrate new possibilities of isolation of bedaquiline in a solid form in accordance with the invention, only have an illustrative character and do not restrict the scope of the invention in any respect.

Experimental part

30

5

10

15

20

25

High-performance liquid chromatography (HPLC)

Separation of the enantiomers of bedaquiline and verification of the optical purity of the products were carried out in an OJ-3R column, 150x4.6 mm ID, 3 µm, with the use of the

triethylamine buffer pH 8 – acetonitrile (40+60) mobile phase at the flow rate of 1 ml/min and separation temperature of 35°C. The injection volume of the analyzed sample, which was dissolved in methanol to the concentration of 0.5 mg/ml, was 5 μl. Bedaquiline was detected by UV detection at 227 nm.

5

10

15

20

25

30

Examples

Example 1

Preparation of a mixture of the stereoisomers of 6-bromo-2-methoxyquinolin-3-yl-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol **I-rac**, **II-rac** was carried out in accordance with the procedure described in the patent WO 2006/125769 ("Step C").

Example 2

Preparation of the **I-rac** mixture was carried out in accordance with the procedure described in the patent WO 2004/011436 (Example B7).

Example 3

Isolation of the salt of bedaquiline Ia with (R)-(-)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate IIIr from ethanol

100 mg $(1.80\cdot10^{-4} \text{ mol})$ of the **I-rac** racemic mixture was dissolved in 13 ml of anhydrous ethanol under reflux. 44.5 mg $(1.80\cdot10^{-4} \text{ mol})$ of (R)-(-)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate (98%) (CAS RN: 98674-80-7) was dissolved in 2.2 ml of ethanol and this solution was added to the solution of the diastereoisomeric mixture and left to be stirred under reflux for 10 minutes. After cooling of the solution to the room temperature with continuous stirring, solid matter separated, which was filtered and dried in a vacuum drier at 40°C for 16 hours. Inoculation of the solution with prepared crystallization inocula can also be used. Crystallization yield 75.6 mg (52.3 %). The solid fraction obtained by filtration contained the salt of (1S,2R)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol **Ib** with (R)-(-)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate with the chiral purity of 99.9%.

After the filtration, the mother liquor was evaporated with the use of a vacuum evaporator and the obtained solid matter was re-dried in a vacuum drier at 40°C for 16 hours. The evaporation of the mother liquor provided 68.9 mg (47.7%) of solid matter representing the

diastereoisomeric salt Ia with (R)-(-)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate IIIr with the chiral purity of 95%.

Example 4

10

15

20

Isolation of the salt of bedaquiline Ia with (R)-(-)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate IIIr from the I-rac racemic mixture in isopropyl alcohol.

100 mg $(1.80\cdot10^{-4} \text{ mol})$ of the **I-rac** racemic mixture was dissolved in 13 ml of isopropyl alcohol under reflux. 44.5 mg $(1.80\cdot10^{-4} \text{ mol})$ of (R)-(-)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate **IIIr** (98%) (CAS RN: 98674-80-7) was dissolved in 2.2 ml of isopropyl alcohol and this solution was added to the solution of the racemic mixture and left to be stirred under reflux for 10 minutes. After cooling of the solution to the room temperature with continuous stirring, solid matter separated, which was filtered and dried in a vacuum drier at 40°C for 16 hours. Inoculation of the solution with prepared crystallization inocula can also be used. Crystallization yield 73.6 mg (50.9%). The solid fraction obtained by filtration contained the salt of (1S,2R)-1-(6-bromo-2-methoxyquinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol **Ib** and (R)-(-)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate **IIIr** with the chiral purity of 99.7%.

After the filtration the mother liquor was evaporated with the use of a vacuum evaporator and the obtained solid matter was re-dried in a vacuum drier at 40° C for 16 hours. The evaporation of the mother liquor provided 70.9 mg (49.1%) of solid matter representing the diastereoisomeric salt **Ia** with (R)-(-)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate **IIIr** with the chiral purity of 96.6%.

Example 5

Isolation of the salt of bedaquiline Ia with (S)-(+)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate (IIIs) from the I-rac racemic mixture in isopropyl alcohol

100 mg (1.80·10⁻⁴ mol) of the I-rac racemic mixture was dissolved in 13 ml of anhydrous isopropyl alcohol under reflux. 44.5 mg (1.80·10⁻⁴ mol) of (S)-(+)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate IIIs (98 %) (CAS RN: 98674-81-8) was dissolved in 2.2 ml of isopropyl alcohol and this solution was added to the I-rac solution and left to be stirred under reflux for 10 minutes. After cooling of the solution to the room temperature with continuous stirring, solid matter separated, which was filtered and dried in a vacuum drier at 40°C for 16 hours. Inoculation of the solution with prepared crystallization

inocula can also be used. Crystallization yield 72.1 mg (49.5%). The solid fraction obtained by filtration contained the salt of bedaquiline Ia with (S)-(+)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate IIIs (with the chiral purity of 99.6% (HPLC purity 98%)).

5 Example 6

10

15

25

30

Isolation of the salt of bedaquiline Ia with (R)-(+)-1-(2-chlorophenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate (VIr) from isopropyl alcohol 100 mg

 $(1.80\cdot10^{-4} \text{ mol})$ of the **I-rac** racemic mixture was dissolved in 13 ml of isopropyl alcohol under reflux. 48.3 mg $(1.80\cdot10^{-4} \text{ mol})$ of (R)-(+)-1-(2-chlorophenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate (CAS RN: 98674-87-4) **VIr** (97%) was dissolved in 2.2 ml of isopropyl alcohol and this solution was added to the **I-rac** solution and left to be stirred under reflux conditions for 10 minutes. After cooling of the solution to the room temperature with continuous stirring, solid matter separated, which was filtered and dried in a vacuum drier at 40°C for 16 hours. Inoculation of the solution with prepared crystallization inocula can also be used. Crystallization yield 63.8 mg (43%). The solid fraction obtained by filtration contained the salt of bedaquiline **Ia** with (R)-(+)-1-(2-chlorophenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate **VIr** with the chiral purity of 99.2%.

20 Example 7

Isolation of the salt of bedaquiline **Ia** with (R)-(+)-1-(2-methoxyphenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate **Vr** from the **I-rac** racemic mixture in isopropyl alcohol 100 mg $(1.80\cdot10^{-4} \text{ mol})$ of the **I-rac** racemic mixture was dissolved in 13 ml of isopropyl alcohol under reflux. 47.5 mg $(1.80\cdot10^{-4} \text{ mol})$ of (R)-(+)-1-(2-methoxyphenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate (CAS RN: 98674-82-9) **Vr** (97%) was dissolved in 2.2 ml of isopropyl alcohol and this solution was added to the **I-rac** solution and left to be stirred under reflux for 10 minutes. After cooling of the solution to the room temperature with continuous stirring, solid matter separated, which was filtered and dried in a vacuum drier at 40°C for 16 hours. Inoculation of the solution with prepared crystallization inocula can also be used. Crystallization yield 72 mg (49%). The solid fraction obtained by filtration contained the salt of bedaquiline **Ia** with (R)-(+)-2-hydroxy-4-(2-methoxyphenyl)-5.5-dimethyl-1,3,2-dioxaphosphane 2-oxide **Vr** with the chiral purity of 99.8%.

Example 8

Isolation of the salt of bedaquiline Ia with (R)-(+)-1-(2-methoxyphenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate Vr from the I-rac and II-rac mixture of isomers (11:2) in isopropyl alcohol

5

10

15

100 mg $(1.80 \cdot 10^{-4} \text{ mol})$ of the mixture of the **I-rac and II-rac (11:2)** mixture of isomers was dissolved in 13 ml of isopropyl alcohol under reflux. 47.5 mg $(1.80 \cdot 10^{-4} \text{ mol})$ of (R)-(+)-1-(2-methoxyphenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate Vr (97 %) was dissolved in 2.2 ml of isopropyl alcohol and this solution was added to the solution of the mixture of the stereoisomers and was left to be stirred under reflux for 10 minutes. After cooling of the solution to the room temperature with continuous stirring, solid matter separated, which was filtered and dried in a vacuum drier at 40°C for 16 hours. Inoculation of the solution with prepared crystallization inocula can also be used. Crystallization yield 59.3 mg (40.2%; 95% calculated to bedaquiline only). The solid fraction obtained by filtration contained the salt of bedaquiline Ia with (R)-(+)-2-hydroxy-4-(2-methoxyphenyl)-5,5-dimethyl-1,3,2-dioxaphosphane 2-oxide Vr with the chiral purity of 99.7%.

Example 9

Isolation of the free base of bedaquiline Ia.

Isolation of the free base of bedaquiline from the respective salt was carried out in accordance with the procedure described in a patent (WO 2006/125769).

PCT/CZ2016/000003

Claims

1. A method of performing isolation and purification of bedaquiline (Ia) from a mixture of stereoisomers of 6-bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol identified as I-rac, being a mixture of the stereoisomers of formulae Ia, Ib, and II-rac, being a mixture of the stereoisomers of formulae IIa, IIb, with any ratio of individual constituents of the mixture, characterized in that said mixture is dissolved together with at least one derivative of 1,3-propanediol hydrogen phosphate of formula IV

wherein R₁, R₂, and R₃ independently stand for hydrogen, a halogen, C₁-C₆ alkyl, aryl, naphthyl, phenyl, and preferably a halogenated phenyl or phenyl substituted in any way, and the resulting salt is crystallized.

2. The method according to claim 1, characterized in that the isolation from the mixture of (1R,2S)- (1S,2R)- (1S,2S)- (1R,2R) of formulae Ia, Ib, IIa, IIb; I-rac with admixed II-rac is accomplished through crystallization of a salt of (S)-(+)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate IIIs.

IIIs

3. The method according to claim 1, characterized in that the isolation from the mixture of (1R,2S)- (1S,2R)- (1S,2S)- (1R,2R) (Ia, Ib, IIa, IIb; I-rac with admixed II-rac) is accomplished through crystallization of a salt of (R)-(+)-1-(2-methoxyphenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate Vr.

4. The method according to claim 1, characterized in that the isolation from the mixture of (1R,2S)- (1S,2R)- (1S,2S)- (1R,2R) (Ia, Ib, IIa, IIb) is accomplished through crystallization of a salt of (R)-(+)-1-(2-chlorophenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate VIr

Vir

- 5. The method according to claim 1, characterized in that the isolation is accomplished from a mixture of (Ia, Ib) (1R,2S)- and (1S,2R)-(6-bromo-2-methoxy-quinolin-3-yl)-4-dimethylamino-2-(1-naphthyl)-1-phenyl-butan-2-ol.
- 6. The method according to claim 5, characterized in that a salt with (R)-(-)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate III is crystallized from the mixture (Ia, Ib) of (1R,2S)- and (1S,2R)-.

ĺ

7. The method according to claim 5, characterized in that a salt with (S)-(+)-1-(2-phenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate IIIs is crystallized from the mixture (Ia, Ib) of (1R,2S)- and (1S,2R)-.

IIIr

- 8. The method according to claim 2, characterized in that a salt with (R)-(+)-1-(2-chlorophenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate VIr is crystallized from the mixture (Ia, Ib) of (1R,2S)- and (1S,2R)-.
- 9. The method according to claim 2, characterized in that a salt with (S)-(-)-1-(2-chlorophenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate VIs is crystallized from the mixture (Ia, Ib) of (1R,2S)- and (1S,2R)-.

VIs

- 10. The method according to claim 2, characterized in that a salt with (R)-(+)-1-(2-methoxyphenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate Vr is crystallized from the mixture (Ia, Ib) of (1R,2S)- and (1S,2R)-.
- 11. The method according to claim 2, characterized in that a salt with (S)-(-)-1-(2-methoxyphenyl)-1,3-propanediol-2,2-dimethyl hydrogen phosphate Vs is crystallized from the mixture (Ia, Ib) of (1R,2S)- and (1S,2R)-.

٧s

INTERNATIONAL SEARCH REPORT

International application No PCT/CZ2016/000003

a. classification of subject matter INV. C07D215/22 C07F9 C07F9/09 C07B57/00 ADD. According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) C07D C07F C07B Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal, WPI Data, CHEM ABS Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. WO 2006/125769 A1 (JANSSEN PHARMACEUTICA 1 - 11γ NV [BE]; PORSTMANN FRANK RALF [CH]; HORNS STEFAN) 30 November 2006 (2006-11-30) the whole document Υ EP 1 227 085 A1 (TAKEDA CHEMICAL 1-11 INDUSTRIES LTD [JP]) 31 July 2002 (2002-07-31) claims; examples 3,4 Х See patent family annex. Further documents are listed in the continuation of Box C. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be special reason (as specified) considered to involve an inventive step when the document is combined with one or more other such documents, such combination "O" document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 15 March 2016 21/03/2016 Authorized officer Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016 Gavriliu, Daniela

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/CZ2016/000003

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 2006125769 A1	30-11-2006	AT 549343 T AU 2006251208 A1 BR PI0611166 A2 CA 2606675 A1 CN 101180302 A DK 1888604 T3 EA 200702611 A1 EP 1888604 A1 ES 2383908 T3 HK 1118061 A1 HR P20120429 T1 IL 186913 A JP 5410749 B2 JP 2008545675 A KR 20080010453 A KR 20150008196 A NZ 563819 A PT 1888604 E RS 52316 B SG 162724 A1 SI 1888604 T1 UA 92484 C2 US 2008200683 A1 US 2011319623 A1 WO 2006125769 A1	15-03-2012 30-11-2006 17-08-2010 30-11-2006 14-05-2008 18-06-2012 28-04-2008 20-02-2008 27-06-2012 21-03-2014 30-06-2012 31-12-2013 05-02-2014 18-12-2008 30-01-2008 21-01-2015 28-01-2011 28-05-2012 31-12-2012 29-07-2010 31-08-2012 10-11-2010 21-08-2008 29-12-2011 30-11-2006
EP 1227085 A1	31-07-2002	AT 320420 T AU 7949900 A CA 2388483 A1 DE 60026725 T2 EP 1227085 A1 US 6800778 B1 WO 0130763 A1	15-04-2006 08-05-2001 03-05-2001 07-09-2006 31-07-2002 05-10-2004 03-05-2001