A ball-type clamping mechanism for clamping computer hard disks in a disk tester for accurate measuring of the disk's parameters comprises a cup-shaped support (10) which is installed on a rotating part of the tester and serves to support a computer hard disk (20) which rests on the upper surface of the support. The support has a cylindrical opening (12) with a diameter equal to or slightly greater than the diameter of the disk opening. Slidingly inserted into the support (10) is a cylindrical retainer (26) which carries clamping balls (28) uniformly spaced from each other in a circumferential direction and located in recesses (30) formed in the side wall of the retainer. The balls have a diameter larger than the side wall of the retainer (26). A pull rod (40) passes through the central opening in the bottom wall of the support and carries a clamping cone (42) which is made from a resilient material softer than the material of the balls (28). When the rod is pulled down, a conical surface (50) of the clamping cone (42) pushes the balls radially outwardly into contact with the inner periphery of the hard disk, so that the disk is clamped. The number of balls exceeds three, so that a uniform clamping force is provided on each ball. Because the cone is made from a resilient material, the balls clamp the disk with a uniform force without the necessity of manufacturing the parts with accurate tolerances.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>Code</th>
<th>Country Name</th>
<th>Code</th>
<th>Country Name</th>
<th>Code</th>
<th>Country Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AT</td>
<td>Austria</td>
<td>ES</td>
<td>Spain</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>FI</td>
<td>Finland</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>FR</td>
<td>France</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GA</td>
<td>Gabon</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GB</td>
<td>United Kingdom</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IT</td>
<td>Italy</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>JP</td>
<td>Japan</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td></td>
<td></td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
CLAMPING MECHANISM FOR COMPUTER HARD DISKS

Background--Field of Invention

The present invention relates to a mechanism for holding computer disks, particularly to mechanisms for clamping computer hard disks in disk drives, disk testers, etc.

Background--Description of Prior Art

In order accurately to measure the parameters of computer disks, it is very important that they be accurately installed and uniformly clamped on a disk tester. It is especially important for hard disks since their parameters are more critical and since they rotate at a high speed, i.e., in the
range of 3600 to 10,000 rpm, or higher.

Ball-type clamping mechanisms for clamping hard disks are known in the art. These comprise a support for the disk, a retainer which is installed on the support within the inner periphery of a disk opening and which carries clamping balls, a pressure cone which is connected to a pull rod which urges the cone's conical surface onto the clamping balls to push them radially outwardly so as to clamp the disk by pressing against the inner periphery of its central opening. Such a clamping mechanism is used, e.g., in disk tester Model S211 produced by Guzik Technical Enterprises, Sunnyvale, Ca.

In the mechanism described above, the cone is made from metal and the three clamping balls were uniformly arranged in a circumferential direction. However the use of only three balls, which were spaced at a relatively long distances from each other, caused non-uniform deflection of the inner periphery of the disk during clamping. Therefore buckling of the disk could be prevented only by using a very low clamping force, but this allowed the disk to slip. In addition, accurate measurement or checking of the clamping force was often required, so as to be sure the correct clamping force was present.

An attempt has been made to eliminate buckling of the disk by using more than three balls. Although it was easy to cause three balls to self-align with equal force on each ball, it was impossible to do this when more than three balls were used. To alleviate this problem and to provide accurate positioning of the balls and uniform clamping of the disk, it was necessary to make the cone, the balls, and the other parts with highly accurate dimensions. This increased the cost of the manufacture by lowering the yield, increasing the labor, and increasing the cost. This caused the price of the tester to be relatively high.

To obviate these disadvantages, an attempt has been made to form the balls from a soft material, such as polyurethane.
use of soft balls to some extent compensated for the lack of self-alignment, but frequent installation and removal of disks on the tester left indentations on the surfaces of the balls, so that the balls wore out and had to be replaced.

Objects and Advantages of the Invention
------------------------------------------

It is accordingly one object is to provide a ball-type disk clamping mechanism which has a uniform distribution of the clamping force without the need for accurate tolerances on the cone, balls, and other parts. Another object is to provide a ball-type disk clamping device in which the balls are not subject to wear. Still another object is to provide a disk clamping mechanism which does not require frequent checking of the clamping force. Yet another object is to provide a support mechanism for a disk or other rotatable member which is more economical, lighter in weight, more reliable, etc. Further objects and advantages will become apparent after consideration of the ensuing description and the accompanying drawing.

Brief Description of the Drawing
--------------------------------

The accompanying single figure of drawing is a side sectional view of a disk clamping mechanism according to the invention.

Reference Numerals Used in the Description and Drawings
--------------------------------------------------------

10 - support
12 - cavity of support
14 - inner wall of support opening

SUBSTITUTE SHEET
16 - upper surface of the support
18 - bottom wall
20 - computer hard disk
22 - disk opening
24 - inner edge of disk opening
26 - retainer
28 - clamping balls
30 - openings
34 - upper inner edge of the support opening
36 - upper inner edge of the disk opening
38 - central through opening of the support
40 - pull rod
42 - clamping cone
44 - lock washer
46 - conical body
48 - metal insert
49 - flange part of insert
50 - conical surface
52 - cylindrical surface

**Detailed Description of the Invention**

A disk clamping mechanism of the invention is shown in the drawing and comprises a cup-shaped disk support 10 which has an opening or cavity 12. Cavity 12 has inner wall 14, an upper surface 16, and a bottom wall 18. A computer hard disk 20, which is to be clamped for testing during rotation, rests on upper surface 16 of support 10, and has an opening 22 with inner edge 24. Opening 22 has a diameter which is equal to or slightly greater than that of cavity 12.

A cylindrical retainer 26 is inserted with a sliding fit into cavity 12. Retainer 26 rests on bottom wall 18 and carries clamping balls 28 which are located in through openings 30 formed in retainer 26. Balls 28 are uniformly spaced from each other in
a circumferential direction. The diameter of each opening 30 is
equal to or slightly exceeds the diameter of each ball 28; thus
the balls can protrude slightly outward from the retainer. The
outer diameter of the retainer itself is slightly smaller than
the diameter of opening 22 of disk 20.

When no hard disk is positioned on the support, balls 28 are
restrained from falling out from retainer 26 by an upper inner
derge 34 of support cavity 12. When hard disk 20 is so
positioned, the upper inner edge 36 of its opening 22 restraints
the balls. For this purpose, when the retainer rests on bottom
wall 18 of support 10, the longitudinal axis A of each opening 30
is slightly higher than the upper surface of hard disk 20 when
the disk rests on the support.

Retainer 26 has a wall thickness smaller than the diameter
of the balls. For uniform clamping of disk 20, preferably more
than three clamping balls 28 are provided in corresponding
openings 30. In the illustrated example, retainer 26 supports
six clamping balls within six openings 30.

Bottom wall 18 of support 10 has a through central opening
38. A pull rod 40 passes through opening 38 and supports on its
upper end a clamping cone 42 which is rigidly fixed to the pull
rod by a lock washer 44. Cone 42 is arranged so that its large
diameter end is above balls 28 and its small diameter end faces
the bottom wall of support 10. Thus the conical surface of the
cone normally rests on balls 28. Pull rod 40 is driven from a
drive device (not shown) which causes the rod to move up and
down, i.e., in the vertical or axial direction. Support 10
rotates together with parts installed on it with an accurate
speed of between 3000 and 10,000 rpm or more about an axis which
coincides with the longitudinal axis of rod 40, i.e., the support
rotates around an axis which passes through the center of central
opening 38.

An essential feature of the invention is that the outer
surface of cone 42 is made from a soft and resilient material, such as rubber or plastic. In the illustrated case, cone 42 consists of a resilient conical body 46 and a metal insert 48. Conical body 46 can be molded from polyurethane, and metal insert 48 from steel. Cone 42 has an outer surface which consists of an upper conical portion 50 and a lower cylindrical portion 52.

Metal insert 48 can be pressed into conical body 46 by a press fit, or the insert can be embedded in the material of the resilient conical body. Insert 48 is cylindrical with a closed bottom end having a central through hole for pull rod 40; its upper end has a flange part 49 which extends radially outward.

Cone 42 has a diameter such that when rod 40 is pulled down, that conical portion 50 rests on balls 28 and when pull rod 40 is pulled down, the conical surface of resilient conical body 46 pushes balls outwardly radially against disk 20.

Balls 28 can be made from a material harder than the cone, e.g., from hard plastic, having hardness exceeding 100 durometer, while the cone should have hardness of about 85 durometer or less.

Operation
---------

For testing hard disk 20, the disk is placed onto upper surface 16 of support 10. The disk is then clamped for testing by actuating pull rod 40 from a mechanism below (not shown). When rod 40 moves down, it also pulls down cone 42, so that resilient conical portion 50 of the cone presses against balls 28 with forces \( F \) which are perpendicular to conical surface 50 at the points of contact between this surface and the balls. Force \( F \) on each ball has a horizontal component \( F_H \) and a vertical component \( F_V \). Component \( F_H \) pushes each ball into contact with upper inner edge 36 of hard disk 20. Because the number of balls exceed
three, the disk is clamped with a uniform force and is protected from buckling. Since conical body 46 is made from a resilient and soft material, it will compensate the tolerances and provide uniform distribution of the clamping force on all balls even though their number is higher than three.

Summary, Ramification, Scope

Thus it has been shown that the ball-type disk clamping mechanism of the invention provides a uniform clamping force, and possibility of manufacturing the balls and retainer without accurate dimensional and positioning tolerances. Because each time the disk is clamped with an accurate force, the force measurement operation becomes unnecessary. As the balls are made from the material harder than the material of the cone, they are not subject to wear.

Although the invention has been shown and described in the form of the specific embodiment, it is understood that its parts, material and configurations were given only as examples, and that many other modifications of the disk clamping mechanism are possible. For example, the clamping cone can be used without the metal insert and can be molded entirely from plastic or rubber, or the insert can be made from a rigid plastic which is harder than the material of the resilient conical body. There can be fewer or more than six balls in the retainer. The cone can be attached to the pull rod by means of a threaded connection, or by any other suitable method. The mechanism of the invention can be used for clamping parts other than computer disks on devices other than disk drives, or disk testers. For example, it can be used as a chuck for holding workpieces which require accurate clamping and positioning. Therefore the scope of the invention should be determined, not by the example given, but by the appended claims and their legal equivalents.
WHAT WE CLAIM IS:

1. A clamping mechanism for a hard computer disk having a central opening comprising:
   a disk support having a cylindrical opening, side walls, a bottom wall, an upper surface which supports a hard disk to be clamped, and a central opening in said bottom wall, said cylindrical opening of said support having a diameter equal to said central opening of said hard disk, said clamping mechanism being attached to an element rotating around an axis which passes through the center of said central opening;
   a cylindrical retainer slindingly inserted into said cylindrical opening of said support and resting on said bottom wall of said support, said retainer having more than three through openings in a side wall thereof, said openings being uniformly spaced in a circumferential direction, said openings having longitudinal axes located higher than the upper surface of said hard disk when said disk rests onto said upper surface of said support;
   a plurality of rigid balls slindingly located in said respective through openings of said retainer, said balls having diameters exceeding the thickness of said side wall of said retainer;
   a pull rod element capable of moving in the longitudinal direction, said rod having an end which passes though said central opening of said bottom wall into said cylindrical retainer;
   a resilient conical element which is rigidly attached to said protruding end of said pull rod, said resilient conical element having its large diameter end located above said balls and its small diameter end facing said bottom wall of said support, so that normally the conical surface of said conical element rests on said balls, said resilient conical element being made from a material which is softer than said balls.

2. The clamping mechanism of Claim 1 wherein said balls are made from nylon, and said resilient conical element is made from
polyurethane.

3. The clamping mechanism of Claim 1 wherein said conical element consists of a hollow conical body made from a resilient material and an insert which is made from a material harder than said resilient body and is inserted into said hollow portion of said conical body.

4. The clamping mechanism of Claim 3 wherein said insert is made from metal and said resilient body is made from plastic.

5. The clamping mechanism of Claim 4 wherein said plastic is polyurethane.

5. The clamping mechanism of Claim 1 wherein the number of said balls is six.

6. The clamping mechanism of Claim 1 wherein said conical element has an outer surface which consists of a conical portion located in the area of contact with said balls and a cylindrical portion located below said conical portion.

7. The clamping mechanism of Claim 1 wherein said resilient conical element has hardness below 85 durometer, and said balls have hardness above 100 durometer.

8. A clamping mechanism for clamping hard computer disks with central openings on a disk tester comprising:
   a cylindrical disk support having a cylindrical opening, a side wall, a bottom wall, an upper surface which supports a hard disk to be clamped, and a central opening in said bottom wall, said cylindrical opening of said support having a diameter equal to said central opening of said hard disk, said clamping mechanism being attached to an element of said tester rotating around an axis which passes through the center of said central opening;
a cylindrical retainer slidingly inserted into said cylindrical opening of said support and resting on said bottom wall of said support, said retainer having more than three through openings in a side wall, said openings being uniformly spaced in a circumferential direction, said openings having longitudinal axes located higher than the upper surface of said hard disk when said disk rests onto said upper surface of said support;

a plurality of rigid balls slidingly located in said through openings of said retainer, said balls having diameters exceeding the thickness of said side wall of said retainer, so that edges of said balls can protrude beyond the outer periphery of said retainer and come into contact with said opening of said hard disk;

a pull rod capable of moving in the longitudinal direction, said rod having an end which passes though said central opening of said bottom wall into said cylindrical retainer;

a resilient conical element which is rigidly attached to said protruding end of said rod-like element, said resilient conical element having a large diameter part located above said balls and a small diameter part facing said bottom wall of said support, so that normally the conical surface of said conical element rests on said balls, said resilient conical element being made from a material which is softer than said balls.

9. The clamping mechanism of Claim 8 wherein said balls are made from nylon, and said resilient conical element is made from polyurethane.

10. The clamping mechanism of Claim 8 wherein said conical element consists of a hollow conical body made from a resilient material and an insert which is made from a material harder than said resilient body and is inserted into said hollow portion of said conical body.

11. The clamping mechanism of Claim 10 wherein said insert is made from metal and said resilient body is made from plastic.
12. The clamping mechanism of Claim 11 wherein said plastic is polyurethane.

13. The clamping mechanism of Claim 12 wherein the number of said balls is six.

14. The clamping mechanism of Claim 8 wherein said conical element has an outer surface which consists of a conical portion located in the area of contact with said balls and a cylindrical portion located below said conical portion.

15. The clamping mechanism of Claim 8 wherein said resilient conical element has hardness below 85 durometer, and said balls have hardness above 100 durometer.
### DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>FR,A,2443116 (YUGEN KAISHA WATANABE KENKYUSHO) 27 June 1980 see page 9, line 20 - page 11, line 16; figures</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>FR,A,2078456 (GEBR.BÜHLER) 05 November 1971 see page 2, lines 18 - 32; figures 1, 2</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US,A,3857526 (W.A.DISCHERT) 31 December 1974 see column 2, line 9 - column 4, line 50; figures</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>PATENT ABSTRACTS OF JAPAN vol. 8, no. 23 (P-251)(1460) 31 January 1984, &amp; JP-A-58 179972 (MATSUSHITA DENKI SANGYO) 21 October 1983, see the whole document</td>
<td>1</td>
</tr>
</tbody>
</table>

---

**Notes:**

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document not published on or after the international filing date
- "T" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combinations being obvious to a person skilled in the art.
- "A" document member of the same patent family
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>IBM TECHNICAL DISCLOSURE BULLETIN. vol. 20, no. 12, May 1978, NEW YORK US pages 5354 - 5356; B.P.QUINTON: &quot;Spindle assembly for record disk test apparatus&quot; see pages 5354 - 5356; figures ***</td>
<td>1, 8</td>
</tr>
<tr>
<td>A</td>
<td>IBM TECHNICAL DISCLOSURE BULLETIN. vol. 21, no. 8, January 1979, NEW YORK US page 3080 K.JOOS: &quot;Self-centering disk drive&quot; see page 3080; figures ***</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US,A,4618900 (Y.SAITO) 21 October 1986 ***</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>EP,A,159100 (PHILIPS) 23 October 1985 ***</td>
<td></td>
</tr>
</tbody>
</table>
### ANNEX TO THE INTERNATIONAL SEARCH REPORT
**ON INTERNATIONAL PATENT APPLICATION NO. PCT/US 89/02752**
SA 29739

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDOC file on 09/10/89. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DE-A, C 2945610</td>
<td>12-06-80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A, B 2038072</td>
<td>16-07-80</td>
</tr>
<tr>
<td>FR-A-2078456</td>
<td>05-11-71</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US-A-3857526</td>
<td>31-12-74</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US-A-4618900</td>
<td>21-10-86</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA-A- 1228031</td>
<td>13-10-87</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A- 3566933</td>
<td>26-01-89</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4649532</td>
<td>10-03-87</td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82