
(19) United States
US 20080077591A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0077591 A1
Gupta et al. (43) Pub. Date: Mar. 27, 2008

(54) COMPUTER PROGRAM PRODUCT FOR (52) U.S. Cl. ... T07/8
CONDUCTING ALOCK FREE READ

(76) Inventors: Monish Gupta, Santa Clara, CA
(US); Scott David Lashley, (57) ABSTRACT
Portland, OR (US) The present invention expounds upon the ANSI “read com

mitted' isolation level by allowing readers to read commit
Correspondence Address: ted data without waiting for a concurrent writer to the data
Kunzler and Associates to finish. The method returns a last committed version of the
David J. McKenzie data as it existed prior to changes made by the concurrent
Suite 600, 8 East Broadway writer. Only two versions of any data record are required to
Salt Lake City, UT 84111 be stored in the record data store, the last committed version

and the current version. The last committed version may be
(21) Appl. No.: 11/534,564 generated from an undo log record. Locating the appropriate

undo log record may be accomplished by storing a log
(22) Filed: Sep. 22, 2006 sequence number in a lock data structure associated with the

O O requested data record. A transaction flag may also stored in
Publication Classification the lock data structure to facilitate generating the last

(51) Int. Cl. committed version. The method may also utilize one or more
G06F 7/30 (2006.01) locks to detect a concurrent writer to the requested data.

100
Ya

Record Management Module

Record Datastore
130

Last Committed
Version
132

110

LOCK Data
Structure(s)

140

Log Sequence
Number
142

Recovery Log
150

Undo Log Record(s)
152

Additional LSN
156

Transaction Flag
144

Patent Application Publication

1OO

ReCOrd Datastore
130

Last Committed
Version
132

Record Management Module
110

LOCk Data
Structure(s)

140

Log Sequence
Number
142

Transaction Flag
144

FIG. 1

Mar. 27, 2008 Sheet 1 of 3 US 2008/0077591 A1

Recovery Log
150

Undo Log Record(s)
152

Additional LSN
156

Patent Application Publication Mar. 27, 2008 Sheet 2 of 3

Number

204

208

210

212

FIG. 2

US 2008/0077591 A1

200
M

Patent Application Publication Mar. 27, 2008 Sheet 3 of 3 US 2008/0077591 A1

300

302

Receive Read Request

304 310

NO
Return Requested Record Requested Record

LOCked?

306 Yes

Generate Last Committed
Version

3O8

Return Last Committed
Version

FIG. 3

US 2008/0077591 A1

COMPUTER PROGRAMI PRODUCT FOR
CONDUCTING ALOCK FREE READ

BACKGROUND OF THE INVENTION

0001 1. Field of the Invention
0002. This invention relates to data stores used for stor
ing, retrieving, or updating records and more particularly
relates to conducting a lock free read of those records.
0003 2. Description of the Related Art
0004. The use of data stores for data archive and manipu
lation is ubiquitous. It is conceivable that in the near future,
the vast majority of businesses will rely on at least one form
of a data store to bank their records. Because these data
stores are relied on so heavily by businesses, the need for
accurate and reliable reading of the records is essential.
While the use of data stores is increasing, there are still
problems associated with reading the vital records they
store. Although the integrity of data stores has been pro
gressed by applying ACID (Atomicity, Consistency, Isola
tion, and Durability) properties, these properties do not
impose restrictions regarding read queries. As a result,
several problems exist with read queries directed to a data
StOre.

0005 For example, under the lock based “read commit
ted' isolation level, a request to read a record that is
currently being written to may result in a deadlock. The
“read committed' isolation level does not require a query to
hold a lock on the record for the duration of its transaction.
However, it is required to hold a lock on the record for a
short duration or at least test the record for an available lock.
As a result, multiple concurrent transactions executing under
this isolation level may result in problems such as deadlocks.
0006 “Repeatable read is another isolation level that
locks a record when it executes a transaction. This lock
remains for the duration of the transaction. Because the lock
is held for a longer period, a query to access the record may
result in a timeout or even a deadlock.
0007 Attempts have been made to remedy these conse
quences of data store access. One Such remedy is a 'snap
shot' isolation level. The “snapshot' isolation level returns
an image of the data store as it existed at a specific point in
time. Because strict restrictions are not imposed on read
requests, stale versions of the data store can be returned as
an acceptable solution so long as all updates occur on the
latest version. Multiple versions of the data store are typical
retained with the "snapshot' isolation level; however, as
more versions are stored, this remedy becomes more com
plex and is detrimental to system performance.
0008. From the foregoing discussion, it should be appar
ent that a need exists for a method that conducts a lock free
read. Beneficially, such a method would provide a simplistic
Solution to prevent deadlocks and timeouts when accessing
data records and be less inhibiting on system performance
than current solutions.

SUMMARY OF THE INVENTION

0009. The present invention has been developed in
response to the present state of the art, and in particular, in
response to the problems and needs in the art that have not
yet been fully solved by currently available methods for
conducting lock free reads. Accordingly, the present inven
tion has been developed to provide a method for conducting

Mar. 27, 2008

a lock free read that overcomes many or all of the above
discussed shortcomings in the art.
0010. In one embodiment, the method for conducting a
lock free read includes incorporating a last committed log
sequence number and a transaction flag into currently used
lock data structures. The last committed log sequence num
ber points to an undo log record corresponding to a records
committed modification that would be necessary for gener
ating a last committed version of the record.
0011. The method facilitates safely modifying the record
by using the lock data structure to gain an exclusive lock
using a standard two-phase locking procedure. With this
standard two-phase locking procedure, if a transaction wants
to write an object, it must request an exclusive lock on the
object. Additionally, a transaction may not request additional
locks on an object once it releases a lock, and it may release
locks at any time. Finally, the method facilitates returning
the last committed version of the record when a read request
occurs concurrently with a write request that has locked the
record.
0012. The method may also include pointing the log
sequence number of the lock data structure to the undo log
record from which the last committed version can be gen
erated. Also, the transaction flag may be used to indicate
whether the transaction owning the lock has inserted,
updated, or deleted the record. The lock owned by the
transaction can be held for the duration of the write trans
action.
0013 The undo log record pointed to by the log sequence
number of the lock data structure can contain a complete
“before image of the record, or it might only contain delta
information. If the undo log record contains delta informa
tion, the new, uncommitted version of the record is also used
to generate the last committed version. Additionally, when
only delta information is contained within the undo log
record, additional log sequence number fields may be added
to each undo log record involved in a transaction to link
them when the transaction makes multiple updates to the
same record or makes at least one update followed by
deletion of the record. The aforementioned process is
referred to as per-row back-linking.
0014. In another embodiment, the method for conducting
a lock free read includes storing information to generate a
last committed version of a modified record and generating
the last committed version of a modified record. Storing
information occurs when the record has been distinctly
modified. This information may be recalled and used to
generate the last committed version of the record in response
to a read request for a record that is currently being modified.
One or more transaction flags may be maintained and used
to indicate whether the modified record was inserted into,
updated in, or deleted from a record data store. The trans
action flag may be stored in various locations including the
same location as the information to generate the last com
mitted version of the modified record.
0015 The presented methods effectively implement a
modified form of the ANSI “read committed' isolation level,
which modification allows for conducting lock free reads.
The methods improve on the current “read committed
isolation level by returning the last committed version of a
requested record. The last committed version may be created
on an “as needed basis, such as, when a read operation
requests a row currently undergoing a write operation.
Consequently, only two versions of a row need be stored at

US 2008/0077591 A1

any given time, the last committed version and the current
version. The method may be implemented on a per row basis
so it does not need to revert the entire contents of the data
store for every insert, update, or delete operation.
0016. In summary, the present invention prevents dead
locks and increases reliability and performance by returning
the last committed version of a row as needed and storing
only two versions of a row at any given time. Reference
throughout this specification to features, advantages, or
similar language does not imply that all of the features and
advantages that may be realized with the present invention
should be or are in any single embodiment of the invention.
Rather, language referring to the features and advantages is
understood to mean that a specific feature, advantage, or
characteristic described in connection with an embodiment
is included in at least one embodiment of the present
invention. Thus, discussion of the features and advantages,
and similar language, throughout this specification may, but
do not necessarily, refer to the same embodiment.
0017. Furthermore, the described features, advantages,
and characteristics of the invention may be combined in any
suitable manner in one or more embodiments. One skilled in
the relevant art will recognize that the invention may be
practiced without one or more of the specific features or
advantages of a particular embodiment. In other instances,
additional features and advantages may be recognized in
certain embodiments that may not be present in all embodi
ments of the invention.
0018. These features and advantages of the present inven
tion will become more fully apparent from the following
description and appended claims, or may be learned by the
practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

0019. In order that the advantages of the invention will be
readily understood, a more particular description of the
invention briefly described above will be rendered by ref
erence to specific embodiments that are illustrated in the
appended drawings. Understanding that these drawings
depict only typical embodiments of the invention and are not
therefore to be considered to be limiting of its scope, the
invention will be described and explained with additional
specificity and detail through the use of the accompanying
drawings, in which:
0020 FIG. 1 is a schematic block diagram illustrating
one embodiment of an environment for conducting a lock
free read in accordance with the present invention;
0021 FIG. 2 is a schematic flow chart diagram illustrat
ing one embodiment of a method for updating the log
sequence number and transaction flag in preparation for
conducting a lock free read in accordance with the present
invention; and
0022 FIG. 3 is a schematic flow chart diagram illustrat
ing one embodiment of a method for conducting a lock free
read in accordance with the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

0023 Many of the functional units described in this
specification have been labeled as modules, in order to more
particularly emphasize their implementation independence.
For example, a module may be implemented as a hardware
circuit comprising custom VLSI circuits or gate arrays,

Mar. 27, 2008

off-the-shelf semiconductors such as logic chips, transistors,
or other discrete components. A module may also be imple
mented in programmable hardware devices such as field
programmable gate arrays, programmable array logic, pro
grammable logic devices or the like.
0024 Modules may also be implemented in software for
execution by various types of processors. An identified
module of executable code may, for instance, comprise one
or more physical or logical blocks of computer instructions
which may, for instance, be organized as an object, proce
dure, or function. Nevertheless, the executables of an iden
tified module need not be physically located together, but
may comprise disparate instructions stored in different loca
tions which, when joined logically together, comprise the
module and achieve the stated purpose for the module.
0025 Indeed, a module of executable code may be a
single instruction, or many instructions, and may even be
distributed over several different code segments, among
different programs, and across several memory devices.
Similarly, operational data may be identified and illustrated
herein within modules, and may be embodied in any suitable
form and organized within any suitable type of data struc
ture. The operational data may be collected as a single data
set, or may be distributed over different locations including
over different storage devices, and may exist, at least par
tially, merely as electronic signals on a system or network.
0026 Reference throughout this specification to “one
embodiment,” “an embodiment,” or similar language means
that a particular feature, structure, or characteristic described
in connection with the embodiment is included in at least
one embodiment of the present invention. Thus, appearances
of the phrases “in one embodiment,” “in an embodiment.”
and similar language throughout this specification may, but
do not necessarily, all refer to the same embodiment.
0027. Furthermore, the described features, structures, or
characteristics of the invention may be combined in any
suitable manner in one or more embodiments. In the fol
lowing description, numerous specific details are provided,
Such as examples of programming, software modules, user
selections, network transactions, database queries, database
structures, hardware modules, hardware circuits, hardware
chips, etc., to provide a thorough understanding of embodi
ments of the invention. One skilled in the relevant art will
recognize, however, that the invention may be practiced
without one or more of the specific details, or with other
methods, components, materials, and so forth. In other
instances, well-known structures, materials, or operations
are not shown or described in detail to avoid obscuring
aspects of the invention.
0028 FIG. 1 is a schematic block diagram of an envi
ronment for conducting a lock free read in accordance with
the present invention. The depicted environment 100
includes a record management module 110, a memory 120,
a record data store 130, a last committed version 132, a lock
data structure 140, a log sequence number 142, a transaction
flag 144, a recovery log 150, an undo log record 152, and an
additional log sequence number 156. The operating envi
ronment 100 is one example of an operating environment
Suitable for conducting a lock free read in accordance with
the present invention.
0029. The record management module 110 may commu
nicate with the record data store 130 to retrieve and archive
data. In the depicted embodiment, the record management
module 110 resides outside of memory 120. In certain

US 2008/0077591 A1

embodiments, the record management module 110 resides in
memory 120. In the depicted embodiment, memory 120 is
non-volatile.
0030. In the depicted embodiment, the record data store
130 stores the last committed version 132 of a data record.
The record data store 130 may provide read or write access
to records on a per record basis on demand. In one embodi
ment, the record data store 130 provides read or write access
to a plurality of records on demand. The record management
module 110 may communicate with the record data store
130 to retrieve and archive data records.
0031. In the depicted embodiment, the last committed
version 132 is stored in the record data store 130. The last
committed version 132 may comprise an image of a data
record at the record's last committed alteration. The last
committed version 132 may be generated and returned when
a read request for a record occurs concurrently with a write
request that has a lock on the record. Returning the last
committed version facilitates a lock-free read of the desired
record. In one embodiment, the last committed version 132
is generated from information obtained from an undo log
record 152. In certain embodiments, the last committed
version 132 is generated and returned responsive to a read
request of a record that is locked by a concurrent write
request.
0032. The lock data structure 140 may be comprised of
elements to identify the type of lock as well as the lock's
behavior. For example, the lock data structure may comprise
a locking mode, lock granularity, and transaction identifi
cation. In one embodiment, the lock data structure 140
comprises a log sequence number 142 and a transaction flag
144.

0033. The log sequence number 142 may be used to
reference the undo log record 152 necessary for generating
the last committed version 132. In one embodiment, the log
sequence number 142 is appended to the lock data structure
140. The log sequence number 142 may be a designated field
of the lock data structure 140. In certain embodiments, the
log sequence number may be stored in a location Suitable for
facilitating on demand data retrieval Such as the undo log
record.
0034. The transaction flag 144 may be used to identify
the operation that the transaction owning the lock will
impose on the data record. In certain embodiments, the
transaction flag 144 is one or more bits appended to the lock
data structure 140 to identify an insert, update, or delete
operation. In one embodiment, the transaction flag 144 is
represented as separate bits that indicate an insert, update, or
delete operation. In certain embodiments, the transaction
flag 144 may be stored in a location Suitable for facilitating
on demand data retrieval Such as the undo log record.
0035. The transaction flag 144 may be set according to
the transaction owning the lock. For example, if the trans
action is an insert operation, then the insert flag bit is set. In
one embodiment, the transaction flag 144 is set according to
the following: If the insert flag bit or delete flag bit is already
set, then no further action is required. Else, if the transaction
owning the lock is an insert operation, the insert flag bit is
set. Otherwise, if the transaction owning the lock is an
update or delete operation, then perform the applicable
option from the following two choices. If the update flag is
already set in the lock data structure 140, store the current
log sequence number 142 along with the undo log record
152 being written. Otherwise, set the delete flag bit or update

Mar. 27, 2008

flag bit according to the operation and store the log sequence
number 142 of the undo log record 152 in the lock data
structure 140.

0036. In one embodiment, the recovery log 150 com
prises a plurality of undo log records 152 and may include
other information to facilitate data recovery and durability
Such as log sequence numbers and redo log records. In the
depicted embodiment, the undo log records 152 include one
or more log sequence numbers that facilitate locating the
pertinent record. The undo log records 150 comprise infor
mation required to generate the last committed version 132.
0037. An undo log record 152 may store information
required to undo all in progress transactions of a record. In
one embodiment, the undo log record 152 stores alterations
of one transaction sequence performed on one record or on
a plurality of records. In certain embodiments, the undo log
record 152 stores alterations of a plurality of transaction
sequences performed on one record or on a plurality of
records. The undo log record 152 comprises a log sequence
number for locating and identifying the undo log record 152.
In the depicted embodiment, the undo log record 152
contains delta information for a requested record. In this
embodiment, the undo log record 152 receives an additional
log sequence number 156 when a transaction either makes
multiple updates to the record or makes at least one update
to the record followed by deleting the record. The additional
log sequence number 156 links a plurality of undo log
records 152 corresponding to a transaction that either makes
multiple updates to the same record or makes at least one
update to the record followed by deleting the record; the
preceding is further referred to as per-row back-linking.
0038. The last committed version 132 may be generated
and returned when a read request is received that conflicts
with a concurrent write request holding a lock on the desired
record. In such a situation, if the insert flag bit of the lock
data structure 140 is set, the record is unavailable to the
reader because the record was not committed at the time of
the read request, and therefore did not exist at the time of the
read request; as a result, no last committed version 132
needs to be generated. If the delete flag bit of the lock data
structure 140 is set, the log sequence number of the undo log
record 152 generated from the locking, delete transaction is
copied; the undo log record 152 is read; and the value
associated with the locking, delete transaction from the undo
log record 152 is copied into the local buffer.
0039. Further, if the update flag bit is set along with the
delete flag bit, applicable undo log records 152 are linked,
via per-row back-linking, to facilitate reading of all undo log
records 152 generated from the update transaction. Next, the
undo operations from the linked undo log records 152 are
applied on the value stored in the local buffer.
0040 Finally, if only the update flag bit is set, then the
current version of the record is read into the local buffer, the
log sequence number from the undo log record 152 gener
ated from the locking transaction is copied, and all undo
operations from each undo log record linked via per-row
back-linking are applied on the record Stored in the local
buffer.

0041. In certain embodiments, the undo log record 152
comprises a complete "before image of a requested record.
When a complete “before image of a requested record is
provided by the undo log record 152, generating and return
ing the last committed version 132 in response to a read
request of a locked record may be further optimized by

US 2008/0077591 A1

allowing only the first update in a transaction sequence to
update the log sequence number 142; Subsequent updates in
the transaction do not affect the log sequence number 142.
0042. The schematic flow chart diagrams that follow are
generally set forth as logical flow chart diagrams. As such,
the depicted order and labeled steps are indicative of one
embodiment of the presented method. Other steps and
methods may be conceived that are equivalent in function,
logic, or effect to one or more steps, or portions thereof, of
the illustrated method. Additionally, the format and symbols
employed are provided to explain the logical steps of the
method and are understood not to limit the scope of the
method. Although various arrow types and line types may be
employed in the flow chart diagrams, they are understood
not to limit the scope of the corresponding method. Indeed,
Some arrows or other connectors may be used to indicate
only the logical flow of the method. For instance, an arrow
may indicate a waiting or monitoring period of unspecified
duration between enumerated steps of the depicted method.
Additionally, the order in which a particular method occurs
may or may not strictly adhere to the order of the corre
sponding steps shown.
0043 FIG. 2 depicts one sequence 200 for updating the
log sequence number and transaction flag in preparation for
conducting a lock free read in accordance with the present
invention. The sequence 200 includes receiving 202 a write
request, exclusively locking 204 a record, generating 206
undo log records 152, updating 208 a transaction flag 144,
updating 210 log sequence number 142, and committing 212
changes. The sequence 200 teaches updating the log
sequence number 142 and transaction flag 144 in preparation
for conducting a lock free read in accordance with the
present invention.
0044 Receiving 202 a write request includes receiving a
transaction request to insert, update, or delete a record in the
record data store 130. Exclusively locking 204 a record is
part of the two-phase locking process. The write request may
establish an exclusive lock on the data record in order to
complete the transaction. Exclusively locking 204 a record
may last for the duration of the transaction.
0045 Generating 206 undo log records 152 may be
responsive to a write transaction. When a data record is
altered via an insert, update, or delete operation, undo log
records 152 are generated in the recovery log to facilitate
withstanding data loss and promote durability of the record
data store 130. Generating 206 undo log records 152
includes assigning a log sequence number 142 as an iden
tifier to each log record to facilitate prompt retrieval. Gen
erating 206 undo log records 152 may include providing
either delta or complete undo information within the record.
In one embodiment, undo log records 152 that comprise
delta information may receive an additional log sequence
number 156 to link all undo log records 152 generated when
a transaction makes multiple updates to the same record or
makes at least one update to the record followed by deleting
the record, per-row back-linking.
0046 Updating 208 the transaction flag 144, in one
embodiment, involves updating an insert flag bit, an update
flag bit, or a delete flag bit respective of the transaction
received. In addition, updating 208 the transaction flag 144
may occur according to the following: If the insert flag bit
or delete flag bit is already set, do not alter the transaction
flag 144. Else, if the transaction owning the lock is an insert
operation, the insert flag bit is set; else, if the transaction

Mar. 27, 2008

owning the lock is an update or delete operation, the
applicable following option is performed: If the update flag
bit is already set, the current log sequence number value is
stored into the undo log record 152 being written. Other
wise, the delete flag bit or update flag bit is set respective of
the operation and store the log sequence number 142 of the
undo log record 152 in the lock data structure 140.
0047. In the depicted embodiment, updating 208 the
transaction flag 144 initially includes modifying the lock
data structure to include one or more transaction flag bits. If
the lock data structure already comprises the flag bits, then
the method may modify them accordingly. In certain
embodiments, updating 208 the transaction flag 144 includes
maintaining the transaction flag 144 in a desirable location.
Such location may include the undo log record 152, the
record management module 110, or other location able to
facilitate on demand retrieval of information.
0048. Updating 210 the log sequence number 142 may
include appending the log sequence number 142 of an undo
log record 152 onto the lock data structure. In certain
embodiments, updating 210 the log sequence number 142
may include adjusting a field of the lock data structure. In
certain embodiments, updating 210 the log sequence number
142 includes maintaining the log sequence number 142 in a
desirable location. Such a location may include the undo log
record 152, the record management module 110, or other
location able to facilitate on demand retrieval of informa
tion. Committing 212 the changes may include the transac
tion terminating, the operation completing, and applying the
write alterations performed during the transaction. The
exclusive lock on the record may be released. After com
mitting 212 the changes, the record data store becomes the
most recent version of the record.
0049 FIG. 3 depicts one sequence for conducting a lock
free read in accordance with the present invention. The
sequence 300 includes receiving 302 a read request, decid
ing 304 whether the requested record is locked, generating
306 a last committed version, returning 308 a last committed
version, and returning 310 the requested record. The
sequence 300 teaches conducting a lock free read in accor
dance with the present invention.
0050 Receiving 302 a read request includes receiving a
transaction request to read a record in the record data store
130. The desired record may be held by an exclusive lock.
Deciding 304 whether the record is locked may be deter
mined by identifying if there is a concurrent write transac
tion accessing the record. This may be accomplished by
sending a request to the record and waiting for an acknowl
edgment or by checking a transaction flag associated with
the record.
0051. The log sequence number 142 identifies the undo
log record 152 needed for generating 306 the last committed
version 132. Generating 306 the last committed version 132
includes accessing the log sequence number 142 from the
lock data structure 140 to identify the necessary undo log
record 152. The undo log record 152 acquired for generating
306 the last committed version 132 may contain a complete
“before image of the record being written to. In certain
embodiments, the undo log record 152 contains only an
incomplete “before image, delta information, for the
record.
0052. When the undo log record 152 contains a complete
“before image of the record, all necessary information
regarding the desired record is contained within the undo log

US 2008/0077591 A1

record 152. When the undo log record 152 contains only
delta information for the record, the undo log records
information is applied to the new, uncommitted version of
the record to generate the last committed version 132.
0053 Generating 306 the last committed version 132
comprises the following: if the insert flag bit of the lock data
structure is set, the record is unavailable to the reader
because the record was not committed at the time of the read
request, and therefore did not exist at the time of the read
request; as a result, no last committed version 132 needs to
be generated. If the delete flag bit of the lock data structure
is set, the log sequence number 142 of the undo log record
152 generated from the locking, delete transaction is copied;
the undo log record 152 is read; and the value associated
with the locking, delete transaction from the undo log record
152 is copied into the local buffer.
0054 Further, if the update flag bit is set along with the
delete flag bit, applicable undo log records 152 are linked,
via per-row back-linking, to facilitate reading of all undo log
records 152 generated from the update transaction. Next, the
undo operations from the linked undo log records 152 are
applied on the value stored in the local buffer.
0055 Finally, if only the update flag bit is set, then the
current version of the record is read into the local buffer, the
log sequence number 142 from the undo log record 152
generated from the locking transaction is copied, and all
undo operations from each undo log record 152 linked via
per-row back-linking are applied onto the record stored in
the local buffer.
0056. In certain embodiments, the undo log record 152
comprises a complete "before image of a requested record.
When a complete “before image of a requested record is
provided by the undo log record, generating and returning
the last committed version in response to a read request of
a locked record may be further optimized by allowing only
the first update in a transaction sequence to update the log
sequence number 142; Subsequent updates in the transaction
do not affect the log sequence number 142.
0057 Returning 308 the last committed version 132
occurs when a read operation requests a record that is
locked. The step of generating 306 the last committed
version 132 copied the last committed version 132 for the
desired record in the local buffer. The last committed version
132 is then moved from the local buffer to the source
requesting the record.
0058. Returning 310 the requested record occurs when
the requested record is not held by a lock. A request to read
the record is granted a temporary lock on the record. The
record is accessed and returned. And the temporary lock is
released.
0059. The present invention may be embodied in other
specific forms without departing from its spirit or essential
characteristics. The described embodiments are to be con
sidered in all respects only as illustrative and not restrictive.
The scope of the invention is, therefore, indicated by the
appended claims rather than by the foregoing description.

Mar. 27, 2008

All changes which come within the meaning and range of
equivalency of the claims are to be embraced within their
Scope.

What is claimed is:
1. A computer program product comprising a computer

readable medium having computer usable program code
programmed for conducting a lock free read, the operations
of the computer program product comprising:

including a last committed log sequence number and a
transaction flag within a lock data structure;

pointing the last committed log sequence number to data
corresponding to a last committed version of a record;

modifying the record by using the lock data structure to
conduct a two-phase exclusive-lock locking procedure
on the record; and

returning the last committed version of the record in
response to a read request occurring concurrently with
modifying the record.

2. The computer program product of claim 1, wherein the
last committed log sequence number points to data within a
log record from where the last committed version can be
generated.

3. The computer program product of claim 1, wherein the
transaction flag indicates whether the transaction owning the
exclusive-lock has inserted, updated, or deleted the record.

4. The computer program product of claim 1, wherein the
data corresponding to a last committed version of a record
comprises delta information for the record.

5. The computer program product of claim 5, wherein the
operations further comprise appending an additional log
sequence number field onto an undo log record to link
corresponding undo log records.

6. The computer program product of claim 1, wherein the
data corresponding to a last committed version of a record
comprises complete information for the record.

7. The computer program product of claim 1, wherein the
operations further comprise setting the transaction flag to
indicate an update transaction in response to a first update of
a record within a transaction sequence.

8. A computer program product comprising a computer
readable medium having computer usable program code
programmed for conducting a lock free read, the operations
of the computer program product comprising:

storing information to generate a last committed version
of a modified record, wherein the modified record is
distinct from a current record; and

generating the last committed version of a record in
response to receiving a read request occurring concur
rently with modifying the record.

9. The computer program product of claim 9, wherein the
operations further comprise maintaining at least one trans
action flag to indicate whether the modified record was
inserted into, updated in, or deleted from a record data store.

k k k k k

