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cer. In particularly preferred aspects, the prediction is performed using a
model based on machine learning wherein the model has a minimum prede-
termined accuracy gain and wherein a thusly identified model provides the
identity and weight factors for omics data used in the outcome prediction.
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SYSTEMS AND METHODS FOR RESPONSE PREDICTION TO
CHEMOTHERAPY IN HIGH GRADE BLADDER CANCER

[0001] This application claims priority to US provisional application with the serial number
62/105697, which was filed 20-Jan-15, and US provisional application with the serial number
62/127546, which was filed 03-Mar-15, both of which are incorporated by reference herein.

Field of the Invention

[0002] The field of the invention is in silico systems and methods for prediction of treatment

outcome for chemotherapy in bladder cancer.

Background of the Invention

[0003] The background description includes information that may be useful in understanding
the present invention. It is not an admission that any of the information provided herein is
prior art or relevant to the presently claimed invention, or that any publication specifically or

implicitly referenced is prior art.

[0004] All publications herein are incorporated by reference to the same extent as if each
individual publication or patent application were specifically and individually indicated to be
incorporated by reference. Where a definition or use of a term in an incorporated reference is
inconsistent or contrary to the definition of that term provided herein, the definition of that

term provided herein applies and the definition of that term in the reference does not apply.

[0005] Selection of pharmaceutical treatment options for cancer has historically been limited
to empirical data and histological findings to so match a drug to a particular cancer type.
More recently, advances in molecular medicine have allowed a more personalized approach
in the choice of chemotherapy, taking into account presence or absence of specific receptors
on a cell, mutational status of signaling molecules, etc. While such improvements have
translated at least in some cases to increased survival time, response to a chemotherapeutic
drug is in all or almost all cases not entirely predictable. Moreover, once a patient is
committed to a specific treatment regimen, changes in treatment protocol are often not

advised and/or poorly tolerated by the patient.

[0006] To help predict likely treatment outcome for pharmaceutical interventions, various

computational systems and methods have been developed. Most notably, WO 2014/193982
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describes systems and methods in which pathway elements (corresponding to cellular in vivo
features) of a pathway model are modified in silico to simulate treatment of a cell with a
drug. The modified model can then be used to help predict the effect of the drug on one or
more pathways, and indirectly predict the effect of the drug on a diseased tissue. While such
system has provided remarkable predictive power in certain circumstances, such system was
based on cell culture data and as such did not fully reflect in vivo environments. Moreover,
simulation of the treatment was performed using a single model that was rooted in measured
and assumed attributes and therefore relied on specific assumptions genuine to the model.
The described approach fails to provide insight into mitigating risks associated with the

specific assumptions of model.

[0007] To accommodate large quantities of data from complex in vivo systems, computer-
based machine learning technologies have been developed that can ingest large data sets that
exceed the capacity of human beings to assimilate. In general, machine learning algorithms
are often configured to identify patterns in training data sets so that the algorithms “learn™ or
become “trained” how to predict possible outcomes when presented with new input data.
Notably, there are numerous types of machine learning algorithms, each having their own
specific underlying mode of analysis (e.g., support vector machines, Bayesian statistics,
Random Forests, etc.), and with that inherent bias. An example for such analysis is presented
in US2004/0193019 to Wei in which discriminant analysis-based pattern recognition is used
to generate a prediction model that correlates biological profile information with treatment
outcome information. The so formed prediction model is then used to rank possible
responses to treatment. Wei simply builds prediction outcome models to make an assessment
of likely outcome based patient-specific profile information. Unfortunately, not all algorithms
will be suitable for predictive analysis of drug treatment as each algorithm has built in
assumptions that might not be valid for the specific disease and/or drug treatment.
Furthermore, models that are maximized for a particular prediction will not necessarily

provide the best accuracy as compared to a random event and/or other model.

[0008] To address such difficulties, US 2014/0199273 to Cesano et al. discusses selection of
specific models/statistical methods that are suitable for prediction or prognosis in a healthcare
setting. While Cesano discusses selection of suitable models, these models, once selected still

suffer from the same difficulties of inherent bias.
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[0009] Thus, even though various system and methods of treatment prediction are known in
the art, all or almost all of them suffer from various disadvantages. Therefore, there is still a
need for systems and methods that help to more accurately predict drug treatment response of

a cancer patient to an intended chemotherapy before commencing treatment.

Summary of The Invention

[0010] The inventor has discovered that a predictive model for treatment outcome for high-
grade bladder cancer can be derived from a collection of models that were prepared using
various machine learning algorithms trained on previously known high-grade bladder cancer
omics information that was associated with treatment outcome. Most preferably, prediction
accuracy is improved by identification of a model with high accuracy gain and selection of

omics parameters and associated weighting from the identified model.

[0011] In one aspect of the inventive subject matter, the inventor contemplates a method of
predicting treatment outcome for a patient having high-grade bladder cancer. In preferred
aspects contemplated methods include a step of obtaining a plurality of omics data from the
patient, and a further step of (a) using an accuracy gain metric to select at least a single model
for prediction of the treatment outcome of high grade bladder cancer treatment or (b)
selecting at least a single model on the basis of a previously determined accuracy gain metric
for prediction of the treatment outcome of high grade bladder cancer treatment. Models may
be selected from among a large number, for example, from among at least 10 trained models
or from among at least 100 trained models or even more. In yet another step, an analysis
engine then calculates a prediction outcome (e.g., complete response to treatment, partial
response to treatment, stable non-response to treatment, and progressive non-response to

treatment) using the single model and the plurality of omics data from the patient.

[0012] Most typically, the omics data include whole genome differential objects, exome
differential objects, SNP data, copy number data, RNA transcription data, protein expression
data, and/or protein activity data, and it is further preferred that the accuracy gain metric may
be an accuracy gain, an accuracy gain distribution, an area under curve metric, an R® metric, a
p-value metric, a silhouette coefficient, and/or a confusion matrix. While not limiting the
inventive subject matter, it is also contemplated that the accuracy gain metric of the single
model is within the upper quartile of all models, or within the top 5% of all models, or

wherein the accuracy gain metric of the single model exceeds all other models.
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[0013] In further contemplated aspects, the single model may be generated using a machine
learning algorithm that uses a classifier selected form the group consisting of NMFpredictor
(linear), SVMlight (linear), SVMlight first order polynomial kernel (degree-d polynomial),
SVMlight second order polynomial kernel (degree-d polynomial), WEKA SMO (linear),
WEKA j48 trees (trees-based), WEKA hyper pipes (distribution-based), WEKA random
forests (trees-based), WEKA naive Bayes (probabilistic/bayes), WEKA JRip (rules-based),
glmnet lasso (sparse linear), glmnet ridge regression (sparse linear), and glmnet elastic nets

(sparse linear).

[0014] Most preferably, the step of calculating comprises a step of selecting features of the
single model having minimum absolute predetermined weights (e.g., within the top quartile
of all weights in the single model). While numerous features may be suitable, it is
contemplated that the step of calculating uses at least 10 distinct selected features in the
single model. In particularly preferred methods for high-grade bladder cancer, the features of
the single model are RNA transcription values for genes selected from the group consisting of
PCDHGA4, PCDHGB1, HSP90OAB2P, SPAGY9, DDI2, TOP1P2, AGAP1, BBS9, FNIP2,
LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129, SARS, RBM28, NACC2, GTPBPS,
PRKAR2A, CDKS8, FAM24B, CRK, RAB2A, SMAD2, ELP2, WWP1, KIF5B, RPL39,
PSENI, SURF4, TTC35, TOMI1, TES, VWAL, GOLGA2, ARHGAP21, FLI37201,
KIAA1429, AZIN1, SCAMP2, H1F0, PYCR1, SEC24D, FLNB, PATL1, HDLBP, RRBP1,
OXR1, GLB1, NPEPPS, KIF1C, DDB1, and GSN. Moreover, it is contemplated that the
RNA transcription values for the genes are calculated with respective factors, that the
respective factors are weighted, and that (using absolute values), the weights are in the order
of PCDHGA4, PCDHGB1, HSP9OAB2P, SPAGY, DDI2, TOP1P2, AGAP1, BBS9, FNIP2,
LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129, SARS, RBM28, NACC2, GTPBPS,
PRKAR2A, CDKS8, FAM24B, CRK, RAB2A, SMAD2, ELP2, WWP1, KIF5B, RPL39,
PSENI, SURF4, TTC35, TOMI1, TES, VWAL, GOLGA2, ARHGAP21, FLI37201,
KIAA1429, AZIN1, SCAMP2, H1F0, PYCR1, SEC24D, FLNB, PATL1, HDLBP, RRBP1,
OXR1, GLB1, NPEPPS, KIF1C, DDB1, and GSN.

[0015] Viewed from a different perspective, the inventors therefore also contemplate a
method of predicting treatment outcome for a patient having high-grade bladder cancer. Such
methods will preferably include a step of obtaining plurality of RNA transcription data of the

patient, and a further step of calculating, by an analysis engine and using the plurality of
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RNA transcription data of the patient, a treatment outcome score using a model. Most
typically, the model uses RNA transcription values for genes selected from the group
consisting of PCDHGA4, PCDHGB1, HSP9OAB2P, SPAGY, DDI2, TOP1P2, AGAPI,
BBS9, ENIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129, SARS, RBM28, NACC2,
GTPBPS, PRKAR2A, CDKS8, FAM24B, CRK, RAB2A, SMAD2, ELP2, WWP1, KIF5B,
RPL39, PSENI, SURF4, TTC35, TOMI, TES, VWAI1, GOLGA2, ARHGAP21, FLI37201,
KIAA1429, AZIN1, SCAMP2, H1F0, PYCR1, SEC24D, FLNB, PATL1, HDLBP, RRBP1,
OXR1, GLB1, NPEPPS, KIF1C, DDB1, and GSN.

[0016] Most preferably, the plurality of RNA transcription data are obtained from polyA
RNA, and/or the treatment outcome score is indicative of a complete response to treatment, a
partial response to treatment, a stable non-response to treatment, or a progressive non-
response to treatment. As already noted above it is contemplated that the model was
generated using a machine learning algorithm that uses a classifier selected form the group
consisting of NMPFpredictor (linear), SVMlight (linear), SVMIight first order polynomial
kernel (degree-d polynomial), SVMIight second order polynomial kernel (degree-d
polynomial), WEKA SMO (linear), WEKA j48 trees (trees-based), WEKA hyper pipes
(distribution-based), WEKA random forests (trees-based), WEKA naive Bayes
(probabilistic/bayes), WEKA JRip (rules-based), glmnet lasso (sparse linear), glmnet ridge
regression (sparse linear), and glmnet elastic nets (sparse linear), and/or that the RNA
transcription values for the genes are calculated with respective factors, and wherein the
respective factors are weighted, using absolute values, in the order of PCDHGAA4,
PCDHGB1, HSP9OAB2P, SPAG9, DDI2, TOP1P2, AGAP1, BBS9, ENIP2, LOC647121,
NFIC, TGFBRAP1, EPRS, C90rf129, SARS, RBM28, NACC2, GTPBPS, PRKAR2A,
CDKS8, FAM24B, CRK, RAB2A, SMAD2, ELP2, WWPI, KIF5B, RPL39, PSEN1, SURF4,
TTC35, TOM1, TES, VWAL, GOLGA2, ARHGAP21, FLI37201, KIAA1429, AZINI1,
SCAMP2, H1FO, PYCRI1, SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLBI,
NPEPPS, KIF1C, DDB1, and GSN.

[0017] Consequently, the inventors also contemplate a method of predicting treatment
outcome for a patient having high-grade bladder cancer. Especially preferred such methods
include a step of obtaining plurality of RNA transcription data of the patient, wherein the
RNA transcription values are values for at least two genes selected from the group consisting

of PCDHGA4, PCDHGB1, HSP9OAB2P, SPAGY, DDI2, TOP1P2, AGAP1, BBS9, FNIP2,
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LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129, SARS, RBM28, NACC2, GTPBPS,
PRKAR2A, CDKS8, FAM24B, CRK, RAB2A, SMAD2, ELP2, WWP1, KIF5B, RPL39,
PSENI, SURF4, TTC35, TOMI1, TES, VWAL, GOLGA2, ARHGAP21, FLI37201,
KIAA1429, AZIN1, SCAMP2, H1F0, PYCR1, SEC24D, FLNB, PATL1, HDLBP, RRBP1,
OXR1, GLB1, NPEPPS, KIF1C, DDB1, and GSN; and a further step of using the RNA
transcription values in a model generated by a machine learning algorithm to so predict

treatment outcome for the patient.

[0018] While not limiting to the inventive subject matter, it is typically preferred that the
machine learning algorithm uses a classifier selected form the group consisting of
NMPFpredictor (linear), SVMlight (linear), SVMlight first order polynomial kernel (degree-d
polynomial), SVMlight second order polynomial kernel (degree-d polynomial), WEKA SMO
(linear), WEKA j48 trees (trees-based), WEKA hyper pipes (distribution-based), WEKA
random forests (trees-based), WEKA naive Bayes (probabilistic/bayes), WEKA JRip (rules-
based), glmnet lasso (sparse linear), glmnet ridge regression (sparse linear), and glmnet
elastic nets (sparse linear). Moreover, it is contemplated that the RNA transcription values for
the genes are calculated with respective factors, and that the respective factors are weighted,
using absolute values, in the order of PCDHGA4, PCDHGB1, HSP9OAB2P, SPAG9, DDI2,
TOP1P2, AGAP1, BBS9, FENIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129, SARS,
RBM28, NACC2, GTPBP5, PRKAR2A, CDKS8, FAM24B, CRK, RAB2A, SMAD2, ELP2,
WWP1, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOM1, TES, VWA1, GOLGA2,
ARHGAP21, FLJ37201, KIAA1429, AZIN1, SCAMP2, H1FO, PYCR1, SEC24D, FLNB,
PATLI1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDB1, and GSN.

[0019] Thus, the inventors also contemplate use of RNA transcription values for prediction
of the treatment outcome of high grade bladder cancer treatment, wherein the prediction uses
a single model obtained from a machine learning algorithm, and wherein the RNA
transcription values are for genes selected from the group consisting of PCDHGAA4,
PCDHGB1, HSP9OAB2P, SPAG9, DDI2, TOP1P2, AGAP1, BBS9, ENIP2, LOC647121,
NFIC, TGFBRAP1, EPRS, C90rf129, SARS, RBM28, NACC2, GTPBPS, PRKAR2A,
CDKS8, FAM24B, CRK, RAB2A, SMAD2, ELP2, WWPI, KIF5B, RPL39, PSEN1, SURF4,
TTC35, TOM1, TES, VWAL, GOLGA2, ARHGAP21, FLI37201, KIAA1429, AZINI1,
SCAMP2, H1FO, PYCRI1, SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLBI,
NPEPPS, KIF1C, DDB1, and GSN. Typically, but not necessarily, the RNA transcription
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values for the genes are calculated with respective factors, and wherein the respective factors
are weighted, using absolute values, in the order of PCDHGA4, PCDHGB1, HSP9OAB2P,
SPAG9, DDI2, TOP1P2, AGAP1, BBS9, ENIP2, LOC647121, NFIC, TGFBRAP1, EPRS,
C9orf129, SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDKS, FAM24B, CRK, RAB2A,
SMAD?2, ELP2, WWP1, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOM1, TES, VWAL,
GOLGA2, ARHGAP21, FLI37201, KIAA1429, AZIN1, SCAMP2, H1F0O, PYCRI,
SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDBI1, and
GSN.

[0020] Various objects, features, aspects and advantages of the inventive subject matter will
become more apparent from the following detailed description of preferred embodiments,
along with the accompanying drawing figures in which like numerals represent like

components.

Brief Description of The Drawing

[0021] Figure 1 is an exemplary table of features and feature weights derived from a model

with high accuracy gain using TCGA high-grade bladder cancer data.

[0022] Figure 2 is an exemplary heat map of RNA transcription values from TCGA high-

grade bladder cancer data for responders to drug treatment and non-responders.

Detailed Description

[0023] The inventive subject matter is directed to various computer systems and methods in
which genomic information for a relatively large class of patients suffering from a particular
neoplastic disease (e.g., bladder cancer) is subjected to a relatively large number of machine
learning algorithms to so identify a corresponding large number of predictive models. The
predictive models are then analyzed for accuracy gain, and the model(s) with the highest

accuracy gain will then be used to identify relevant omics factors for the prediction.

[0024] Thus, it should be especially appreciated that contemplated systems and methods are
neither based on prediction optimization of a singular model nor based on identification of
best correlations of selected omics parameters with a treatment prediction. Instead, it should
be recognized that contemplated systems and methods rely on the identification of omics

parameters and associated weighting factors that are derived from one or more
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implementations of machine learning algorithms that result in trained models having a
predetermined or minimum accuracy gain. Notably, the so identified omics parameters will
typically have no statistically predictive power by themselves and as such would not be used
in any omics based test system. However, where such identified omics parameters are used in
the context of a trained model that has high accuracy gain, multiple omics parameters will
provide a system with high predictive power, particularly when applied in the system using
weighting factors associated with the trained model. Of course, it should also be appreciated
that such model and omics parameters and weightings are unique to the particular training
sets and/or type of outcome prediction, and that other diseases (e.g., lung cancer) and/or
outcome predictions (e.g., survival time past 5 years) may lead to entirely different models,
omics parameters, and weightings. Thus, the inventor is considered to have discovered
weightings and/or trained models that have high predictive power associated with high-grade
bladder cancer. In addition, treatment prediction can be validated from the a priori identified
pathway(s) and/or pathway element(s), or identified pathways and/or pathway elements by in
silico modulation using known pathway modeling system and methods to so help confirm

treatment strategy predicted by the system.

[0025] It is therefore contemplated that the inventive subject matter is directed to various
systems and methods in which genomic information and associated meta data for a relatively
large class of patients suffering from a high-grade bladder cancer is subjected to multiple and
distinct machine learning algorithms. In one preferred aspect of the inventive subject matter,
RNA transcription values and associated meta data (e.g., treatment outcome) are subject to
training and validation splitting in a preprocessing step that then provides the data to different

machine-learning packages for analysis.

[0026] It should be noted that the focus of the disclosed inventive subject matter is to enable
construction or configuration of a computing device(s) to operate on vast quantities of digital
data, beyond the capabilities of a human. Although the digital data can represent machine-
trained computer models of omics data and treatment outcomes, it should be appreciated that
the digital data is a representation of one or more digital models of such real-world items, not
the actual items. Rather, by properly configuring or programming the devices as disclosed
herein, through the instantiation of such digital models in the memory of the computing
devices, the computing devices are able to manage the digital data or models in a manner that

would be beyond the capability of a human. Furthermore, the computing devices lack a
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priori capabilities without such configuration. In addition, it should be appreciated that the
present inventive subject matter significantly improves/alleviates problems inherent to

computational analysis of complex omics calculations.

[0027] Viewed from a different perspective, it should be appreciated that the present systems
and methods in computer technology is being used to solve a problem inherent in computing
models for omics data. Thus, without computers, the problem, and thus the present inventive
subject matter, would not exist. More specifically, the disclosed approach results in one or
more optimized trained models having greater accuracy gain than other trained models that
are less capable, which results in less latency in generating predictive results based on patient

data.

[0028] It should be noted that any language directed to a computer should be read to include
any suitable combination of computing devices, including servers, interfaces, systems,
databases, agents, peers, engines, controllers, modules, or other types of computing devices
operating individually or collectively. One should appreciate the computing devices
comprise a processor configured to execute software instructions stored on a tangible, non-
transitory computer readable storage medium (e.g., hard drive, FPGA, PLA, solid state drive,
RAM, flash, ROM, etc.). The software instructions configure or otherwise program the
computing device to provide the roles, responsibilities, or other functionality as discussed
below with respect to the disclosed apparatus. Further, the disclosed technologies can be
embodied as a computer program product that includes a non-transitory computer readable
medium storing the software instructions that causes a processor to execute the disclosed
steps associated with implementations of computer-based algorithms, processes, methods, or
other instructions. In some embodiments, the various servers, systems, databases, or
interfaces exchange data using standardized protocols or algorithms, possibly based on
HTTP, HTTPS, AES, public-private key exchanges, web service APIs, known financial
transaction protocols, or other electronic information exchanging methods. Data exchanges
among devices can be conducted over a packet-switched network, the Internet, LAN, WAN,
VPN, or other type of packet switched network, circuit switched network, and/or cell

switched network.

[0029] As used in the description herein and throughout the claims that follow, when a
system, engine, server, device, module, or other computing element is described as

configured to perform or execute functions on data in a memory, the meaning of “configured
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to” or “programmed to” is defined as one or more processors or cores of the computing
element being programmed by a set of software instructions stored in the memory of the
computing element to execute the set of functions or operate on target data or data objects

stored in the memory.

[0030] For example, in the analysis of high-grade bladder cancer, a large number of genomic
data with respective meta data from patients diagnosed with high-grade bladder cancer were
processed to create training data sets that were then fed into a collection of model templates
(i.e., software implementations of machine learning algorithms). Using the data sets and
machine learning systems, corresponding trained models were created that were subsequently
analyzed (and ranked) for accuracy gain as further described below. From the model with the
highest accuracy gain, omics parameters and weighting factors for each of the parameters

were extracted and used as the predictive model.

[0031] More specifically, and using the above approach, the inventor investigated by analysis
of publicly available data (here: TCGA BLCA data) which of the high-grade bladder cancer
patients in the data would respond to chemotherapy, which could at least potentially eliminate
surgery. In this dataset, 116 drug treatment courses were tracked in 50 patients. Of these 116
treatments, 111 were chemotherapy agents, including Adriamycin, Avastin, Carboplatin,
Cisplatin, Docetaxel, Doxorubicin, Etopside, Gemcitabine, Ifosfamide, Methotrexate,
Paclitaxel and Vinblastine (or equivalent brand names for these drugs). Of these 111
chemotherapy treatments 78 had 'treatment best response’ recorded. If a patient had a
chemotherapy agent with Complete or Partial Response recorded, they were considered a
"chemotherapy responder". If they had Clinical Progressive or Stable disease, they were
considered a "chemotherapy non-responder”. A total of 33 patients had a chemotherapy
response recorded (15 non-responders and 18 responders). All 33 patients were confirmed to

be high-grade bladder cancer patients using further TCGA clinical information.

[0032] These data were used to generate 72 candidate predictive models of which patients
with high grade tumors could respond to chemotherapy. Each model was trained using k-fold
cross-validation by splitting the data set into training sets and validation sets. Twenty-four
predictive models were calculated for each of the available data sets using prediction model
templates available via scikit-learn (scikit-learn developers, online scikit-learn.org), using
various classifiers, including linear classifiers, NMF-based classifiers, graphical-based

classifiers, tree-based classifiers, Bayesian-based classifiers, and net-based classifiers,

10
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yielding 360 evaluation models. All of the so constructed evaluation models were then
subjected to accuracy gain analysis to identify the model building process with the highest
accuracy gain. In this example, accuracy gain was calculated by comparison of the correct
prediction percentage using the validation data set against the percentage (frequency) of
occurrence of the majority classifier (here: treatment is responsive). For example, where
responsive treatment frequency is 60% in the known data set and where the model correctly
predicts 85% of the treatment outcome as responsive, the accuracy gain is 25%. Notably,
over all models constructed, the best model building process was 88% accurate in cross-
validation testing folds (which was 33% better than majority) and used an elastic net
classifier. The final fully-trained model that used the most accurate build process was

selected from the 72 candidate models.

[0033] It should be appreciated that using such approach will rapidly generate a relatively
large number of trained models. For example, where n algorithms are used with m types of
input data sets using p fold cross validation, the overall number of trained models is n x m x
p- All of the so constructed models were then subjected to accuracy gain analysis to identify
the model with the highest accuracy gain. In this example, accuracy gain was calculated by
comparison of the correct prediction percentage using the validation data set against the
percentage (frequency) of occurrence of the majority classifier (here: treatment is
responsive). For example, where responsive treatment frequency is 60% in the known data
set and where the model correctly predicts 85% of the treatment outcome as responsive, the
accuracy gain is 25%. Notably, over all models constructed, the best model was 88% accurate
in cross-validation testing folds (which was 33% better than majority) and used an elastic net

classifier.

[0034] In this context it must be appreciated that each type of model includes inherent biases
or assumptions, which may influence how a resulting trained model would operate relative to
other types of trained models, even when trained on identical data. Accordingly, different
models will produce different predictions/accuracy gains when using the same training data
set. Heretofore, in an attempt to improve prediction outcome, single machine learning
algorithms were optimized to increase correct prediction on the same data set. However, due
to inherent bias of the algorithms, such optimization will not necessarily increase accuracy
(i.e., accurate prediction capability against ‘coin flip’) in predictability. Such bias can be

overcome by training numerous diverse models with different underlying principles and
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classifiers on disease-specific data sets with associated metadata and by selecting from the so

trained models those with desirable accuracy gain or robustness.

[0035] Once a desired model with high accuracy gain is selected, omic parameters with high
relevance can then be selected from the model to produce a predictive model with improved
accuracy of prediction. Figure 1 exemplarily depicts a collection of genes encoding an RNA
where the omics data from a patient are RNA transcription data (transcription strength). Here,
the predictive model was built as described above from the a priori known TGCA data using
RNA transcription levels from the gene expression panel. The best predictive model had 88%
accuracy in cross-validation testing folds and the top 53 genes with highest weighting factor
are shown. For example, the PCDHGA4 gene (Protocadherin Gamma Subfamily A, 4) had a
weighting factor of -121543.6202 with respect to the RNA expression, with further genes and
weighting factors listed below the PCDHGA4 gene. It should be appreciated that multiple,
different types of data beyond RNA transcription data were also used to create trained
models. The inventor discovered that using the RNA transcription data as training data
resulting in the best models (i.e., models having the highest accuracy gain) relative to other
trained models that were trained on other types of omic data (e.g., WGS, SNP copy number,

proteomics, etc.).

[0036] Figure 2 exemplarily illustrates a heat map for the actual patient data where each row
in the map corresponds to a single patient, and each column to a specific gene (here, the
genes listed in the graph of Figure 1. As can also be seen from the heat map, the patient data
are grouped into responders (categorized in CR: complete response and PR: partial response)
and non-responders (categorized in Prog: with disease progression and Stable: without
disease progression). Color depth/grayscale value corresponds to measured transcription level
and is expressed as color/gray scale value between -1.8 and 1.8. Taken with the weighting
factors of Figure 1, the final predictive score for each patient is the sum of the expression
value of Figure 2 for each gene multiplied by the weighting factor. Any final predictive score
above zero (red/grey with + symbol) is indicative of likely treatment response, while a final
predictive score below zero (blue/grey with - symbol) is indicative of a likely lack of
treatment response. As can be taken from the ‘topmodel signature’ (final predictive score),
only one false positive result was present in the ‘Responders’ category (top row in
Responders category) while the Non-Responders had two false negative results (bottom row

in Prog category, bottom row in Stable category).
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[0037] Moreover, with further reference to the heat map of Figure 2, it should be appreciated
that the statistical significance of each of the RNA transcription data would by itself not be
sufficient for an accurate prediction as shown in the bar graph at the bottom portion of the
map. Here the bars represent signed t-test values between the results of a responder group and
the non-responder group that were corrected for multiple hypothesis testing using Bonferroni
correction. As is readily apparent, only a limited set of data exhibited statistically significant
differences between responders and non-responders as is shown in the black bars (e.g., DDI2,
AGAP1, etc.) and white bar (RPL39). However, when at least some of the individual results
are taken together (particularly in combination with the calculated weighting), the predictive

power of the model will outperform most, if not all competing other models.

[0038] Moreover, it should also be appreciated that using a pathway modeling algorithm (see
e.g., WO 2011/139345, WO 2013/062505, WO 2014/059036, and WO 2014/193982) patient
data can be used to validate and/or simulate treatment before the patient undergoes actual
treatment, and such validation can then be reassessed using the best models for high-grade
bladder cancer. For example, highly weighted RNA transcription can be clamped off in silico
in the pathway modeling system, and activities are re-inferred, which in effect simulates in
silico the anticipated effect of a drug intervention in vivo. The prediction model can then be

used to reassess the newly inferred post-intervention data.

[0039] In further contemplated aspects of the inventive subject matter it should be recognized
that while the example above used RNA transcription data, one or more other (or additional)
omics data are also suitable for use in conjunction with the teachings herein. For example,
suitable alternative or additional omics data include whole genome differential object data,
exome differential object data, SNP data, copy number data, protein expression data, and/or
protein activity data. Likewise, meta data associated with the omics data need not be limited
to treatment outcome, but may include a large number of alternative patient or care-relevant
metrics. For example, contemplated metadata may include treatment cost, likelihood of
resistance, likelihood of metastatic disease, 5-year survival, suitability for immunotherapy,

patient demographic information, etc.

[0040] Similarly, it should be noted that the number of models created is not limiting to the
inventive subject matter and that (in general) higher numbers of models are preferred. Such
models are preferably based on multiple and distinct machine learning algorithms, and it

should be appreciated that all known machine learning algorithms are deemed suitable for use
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herein. For example, contemplated classifiers include one or more of a linear classifier, an
NMF-based classifier, a graphical-based classifier, a tree-based classifier, a Bayesian-based
classifier, a rules-based classifier, a net-based classifier, and a kNN classifier. However,
especially preferred algorithms will include those that use a classifier selected form the group
consisting of NMPFpredictor (linear), SVMlight (linear), SVMIight first order polynomial
kernel (degree-d polynomial), SVMIight second order polynomial kernel (degree-d
polynomial), WEKA SMO (linear), WEKA j48 trees (trees-based), WEKA hyper pipes
(distribution-based), WEKA random forests (trees-based), WEKA naive Bayes
(probabilistic/bayes), WEKA JRip (rules-based), glmnet lasso (sparse linear), glmnet ridge
regression (sparse linear), and glmnet elastic nets (sparse linear). Beyond the above
classifiers, additional suitable algorithms include various forms of neural networks (e.g.,
artificial neural networks, convolution neural networks, etc.), binary decision trees, or other
types of learning. Sources for such algorithms are readily available via TensorFlow (see

URL www.tensorflow.com), OpenAl (see URL www.openai.com), and Baidu (see URL

research.baidu.com/warp-ctc). Thus, the inventor contemplates that at least 5, at least 10, at
least 20, at least 50, at least 100, at least 500, at least 1,000, at least 5,000, or at least 10,000
trained models are created. Depending on the number of possible training data sets, the
number of validations, and the number of types of algorithms, the number of resulting trained

models could even exceed 1,000,000 trained models.

[0041] Once the models are created, model quality is assessed and most preferably models
are retained that have a prediction power that exceeds random selection. Viewed from a
different perspective, models will be assessed on their gain in accuracy. There are numerous
manners of assessing accuracy, and the particular choice may depend at least in part on the
algorithm used. For example, suitable metrics include an accuracy value, an accuracy gain, a
performance metric, or other measure of the corresponding model. Additional example
metrics include an area under curve metric, an Rz, a p-value metric, a silhouette coefficient, a
confusion matrix, or other metric that relates to the nature of the model or its corresponding

model template.

[0042] For example, accuracy of a model can be derived through use of known data sets and
corresponding known clinical outcome data. Thus, for a specific model template a number of
evaluation models can be built that are both trained and validated against the input known

data sets (e.g., k-fold cross validation). For example, a trained model can be trained based on
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80% of the input data. Once the evaluation model has been trained, the remaining 20% of the
genomic data can be run through the evaluation model to see if it generates prediction data
similar to or closet to the remaining 20% of the known clinical outcome data. The accuracy
of the trained evaluation model is then considered to be the ratio of the number of correct

predictions to the total number of outcomes.

[0043] For example, a RNA transcription data set/clinical outcome data set represents a
cohort of 500 patients. The data sets can then be partitioned into one or more groups of
evaluation training sets, e.g., containing 400 patient samples. Models are then created based
on the 400 patient samples, and the so trained models are validated by executing the model
on the remaining 100 patients’ transcription data set to generate 100 prediction outcomes.
The 100 prediction outcomes are then compared to the actual 100 outcomes from the patient
data in the clinical outcome data set. The accuracy of the trained model is the number of
correct prediction outcomes relative to the total number of outcomes. If, out of the 100
prediction outcomes, the trained evaluation model generates 85 correct outcomes that match
the actual or known clinical outcomes from the patient data, then the accuracy of the trained
evaluation model is considered 85%. Alternatively, where the observed outcome (e.g., drug
responder) has a frequency of 60% in the meta data of the RNA transcription data set, and
where the model generates 85 correct outcomes out of the 100 prediction outcomes, the
accuracy gain would be 25% (i.e., 25% above randomly observed results; predicted event

occurs at 60%, correct prediction at 85%, accuracy gain is 25%)

[0044] Depending on the number of models/ accuracy distribution, it should be appreciated
that the model used for prediction may be selected as the top model (having highest accuracy
gain, or highest accuracy score, etc.), or as being in the top n-tile (tertile, quartile, quintile,
etc.), or as being in the top n% of all models (top 5%, top 10%, etc.). Thus suitable models

have may have an accuracy gain metric that exceeds all other models.

[0045] With respect to the single model, it should be appreciated that the prediction based on
the top (or other selected single) model may be based on all of the omics data that were part
of the input data (i.e., uses all RNA expression levels used for training the models) or only a
fraction of the omics data. For example, where only fractions of the omics data are used for
final prediction, the omics data with the highest or minimum absolute predetermined weight
(e.g., top quartile of all weights in the single model) in the model will be generally preferred

as is shown in the selected features (genes) of Figure 1. Thus, suitable models will employ at
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least 5, or at least 10, or at least 20, or at least 50, or at least 100 features in the prediction.
Moreover, it should also be appreciated that where features are identified that have
substantial statistical significance between the treatment outcomes, these features may be
used, preferably in combination, in an gene expression array rather than in a predictive

algorithm (e.g., significant features in Figure 2).

[0046] It should be apparent to those skilled in the art that many more modifications besides
those already described are possible without departing from the inventive concepts herein.
The inventive subject matter, therefore, is not to be restricted except in the scope of the
appended claims. Moreover, in interpreting both the specification and the claims, all terms
should be interpreted in the broadest possible manner consistent with the context. In
particular, the terms “comprises” and “comprising” should be interpreted as referring to
elements, components, or steps in a non-exclusive manner, indicating that the referenced
elements, components, or steps may be present, or utilized, or combined with other elements,
components, or steps that are not expressly referenced. Where the specification claims refers
to at least one of something selected from the group consisting of A, B, C .... and N, the text
should be interpreted as requiring only one element from the group, not A plus N, or B plus
N, etc. Furthermore, and as used in the description herein and throughout the claims that
follow, the meaning of “a,” “an,” and “the” includes plural reference unless the context
clearly dictates otherwise. Also, as used in the description herein, the meaning of “in”

includes “in” and “on” unless the context clearly dictates otherwise.
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CLAIMS

What is claimed is:

1. A method of predicting treatment outcome for a patient having high-grade bladder cancer,
comprising:

obtaining a plurality of omics data from the patient;

using an accuracy gain metric to select a single model for prediction of the treatment
outcome of high grade bladder cancer treatment, or selecting a single model
on the basis of a previously determined accuracy gain metric for prediction of
the treatment outcome of high grade bladder cancer treatment;

calculating, by an analysis engine, a prediction outcome using the single model and

the plurality of omics data from the patient.

2. The method of claim 1 wherein the omics data are selected from the group consisting of
whole genome differential objects, exome differential objects, SNP data, copy number

data, RNA transcription data, protein expression data, and protein activity data.

3. The method of any one of the preceding claims wherein the accuracy gain metric is
selected form the group consisting of accuracy gain, accuracy gain distribution, an area
under curve metric, an Rz, a p-value metric, a silhouette coefficient, and a confusion

matrix.

4. The method of any one of the preceding claims wherein the single model is selected from

among at least 100 models.

5. The method of any one of the preceding claims wherein the accuracy gain metric of the

single model is within the upper quartile of all models.

6. The method of any one of the preceding claims wherein the accuracy gain metric of the

single model is within the top 5% of all models.

7. The method of any one of the preceding claims wherein the accuracy gain metric of the

single model exceeds all other models.

8. The method of any one of the preceding claims wherein the prediction outcome is
selected from the group consisting of complete response to treatment, partial response to

treatment, stable non-response to treatment, and pI'OgI'CSSiVC non-response to treatment.
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9.

10.

11.

12.

13.

14.

The method of any one of the preceding claims wherein the single model was generated
using a machine learning algorithm that uses a classifier selected form the group
consisting of NMFpredictor (linear), SVMIlight (linear), SVMIight first order polynomial
kernel (degree-d polynomial), SVMlight second order polynomial kernel (degree-d
polynomial), WEKA SMO (linear), WEKA j48 trees (trees-based), WEKA hyper pipes
(distribution-based), WEKA random forests (trees-based), WEKA naive Bayes
(probabilistic/bayes), WEKA JRip (rules-based), glmnet lasso (sparse linear), glmnet

ridge regression (sparse linear), and glmnet elastic nets (sparse linear).

The method of any one of the preceding claims wherein the step of calculating comprises
a step of selecting features of the single model having minimum absolute predetermined

weights.

The method of claim 10 wherein the minimum absolute predetermined weights are within

the top quartile of all weights in the single model.

The method of any one of the preceding claims wherein the step of calculating uses at

least 10 distinct selected features in the single model.

The method of claim 10 wherein the features are RNA transcription values for genes
selected from the group consisting of PCDHGA4, PCDHGB1, HSP90AB2P, SPAGY,
DDI2, TOP1P2, AGAP1, BBS9, ENIP2, LOC647121, NFIC, TGFBRAP1, EPRS,
C9orf129, SARS, RBM28, NACC2, GTPBPS, PRKAR2A, CDKS, FAM24B, CRK,
RAB2A, SMAD2, ELP2, WWPI, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOMI1, TES,
VWAL, GOLGA2, ARHGAP21, FLI37201, KIAA1429, AZIN1, SCAMP2, H1FO,
PYCRI1, SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C,
DDBI1, and GSN.

The method of claim 13 wherein the RNA transcription values for the genes are
calculated with respective factors, and wherein the respective factors are weighted, using
absolute values, in the order of PCDHGA4, PCDHGB 1, HSPO9OAB2P, SPAGY, DDI2,
TOP1P2, AGAPI1, BBS9, FNIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129,
SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDKS8, FAM24B, CRK, RAB2A,
SMAD2, ELP2, WWPI1, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOMI1, TES, VWAL,
GOLGA2, ARHGAP21, FLJ37201, KIAA1429, AZIN1, SCAMP2, H1FO, PYCRI,

18



WO 2016/118527 PCT/US2016/013959

15.

16.

17.

18.

19.

20.

21.

22.

23.

SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDB1, and
GSN.

The method of claim 1 wherein the accuracy gain metric is selected form the group
consisting of accuracy gain, accuracy gain distribution, an area under curve metric, an R?,

a p-value metric, a silhouette coefficient, and a confusion matrix.

The method of claim 1 wherein the single model is selected from among at least 100

models.

The method of claim 1 wherein the accuracy gain metric of the single model is within the

upper quartile of all models.

The method of claim 1 wherein the accuracy gain metric of the single model is within the

top 5% of all models.

The method of claim 1 wherein the accuracy gain metric of the single model exceeds all

other models.

The method of claim 1 wherein the prediction outcome is selected from the group
consisting of complete response to treatment, partial response to treatment, stable non-

response to treatment, and pI'OgI'CSSiVC non-response to treatment.

The method of claim 1 wherein the single model was generated using a machine learning
algorithm that uses a classifier selected form the group consisting of NMFpredictor
(linear), SVMlight (linear), SVMlight first order polynomial kernel (degree-d
polynomial), SVMlight second order polynomial kernel (degree-d polynomial), WEKA
SMO (linear), WEKA j48 trees (trees-based), WEKA hyper pipes (distribution-based),
WEKA random forests (trees-based), WEKA naive Bayes (probabilistic/bayes), WEKA
JRip (rules-based), glmnet lasso (sparse linear), glmnet ridge regression (sparse linear),

and glmnet elastic nets (sparse linear).

The method of claim 1 wherein the step of calculating comprises a step of selecting

features of the single model having minimum absolute predetermined weights.

The method of claim 22 wherein the minimum absolute predetermined weights are within

the top quartile of all weights in the single model.
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24.

25.

26.

27.

The method of claim 1 wherein the step of calculating uses at least 10 distinct selected

features in the single model.

The method of claim 22 wherein the features are RNA transcription values for genes
selected from the group consisting of PCDHGA4, PCDHGB1, HSP90AB2P, SPAGY,
DDI2, TOP1P2, AGAP1, BBS9, ENIP2, LOC647121, NFIC, TGFBRAP1, EPRS,
C9orf129, SARS, RBM28, NACC2, GTPBPS, PRKAR2A, CDKS, FAM24B, CRK,
RAB2A, SMAD2, ELP2, WWPI, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOMI1, TES,
VWAL, GOLGA2, ARHGAP21, FLI37201, KIAA1429, AZIN1, SCAMP2, H1FO,
PYCRI1, SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C,
DDBI1, and GSN.

The method of claim 25 wherein the RNA transcription values for the genes are
calculated with respective factors, and wherein the respective factors are weighted, using
absolute values, in the order of PCDHGA4, PCDHGB 1, HSPO9OAB2P, SPAGY, DDI2,
TOP1P2, AGAPI1, BBS9, FNIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129,
SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDKS8, FAM24B, CRK, RAB2A,
SMAD2, ELP2, WWPI1, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOMI1, TES, VWAL,
GOLGA2, ARHGAP21, FLJ37201, KIAA1429, AZIN1, SCAMP2, H1FO, PYCRI,
SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDB1, and
GSN.

A method of predicting treatment outcome for a patient having high-grade bladder cancer,
comprising:
obtaining plurality of RNA transcription data of the patient; and
calculating, by an analysis engine and using the plurality of RNA transcription data of
the patient, a treatment outcome score using a model;
wherein the model uses RNA transcription values for genes selected from the group
consisting of PCDHGA4, PCDHGB1, HSP9OAB2P, SPAGY, DDI2, TOP1P2,
AGAPI, BBS9, FNIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C9orf129,
SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDKS8, FAM24B, CRK,
RAB2A, SMAD2, ELP2, WWP1, KIF5B, RPL39, PSEN1, SURF4, TTC35,
TOMI1, TES, VWA1, GOLGA2, ARHGAP21, FLI37201, KIAA1429,
AZIN1, SCAMP2, H1FO, PYCR1, SEC24D, FLNB, PATL1, HDLBP,
RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDB1, and GSN.
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28.

29.

30.

31.

32.

33.

The method of claim 27 wherein the plurality of RNA transcription data are obtained
from polyA RNA.

The method of claim 27 or 28 wherein the treatment outcome score is indicative of a
complete response to treatment, a partial response to treatment, a stable non-response to

treatment, or a progressive non-response to treatment.

The method of any one of claims 27 to 29 wherein the model was generated using a
machine learning algorithm that uses a classifier selected form the group consisting of
NMPFpredictor (linear), SVMlight (linear), SVMlight first order polynomial kernel
(degree-d polynomial), SVMlight second order polynomial kernel (degree-d polynomial),
WEKA SMO (linear), WEKA j48 trees (trees-based), WEKA hyper pipes (distribution-
based), WEKA random forests (trees-based), WEKA naive Bayes (probabilistic/bayes),
WEKA JRip (rules-based), glmnet lasso (sparse linear), glmnet ridge regression (sparse

linear), and glmnet elastic nets (sparse linear).

The method of any one of claims 27 to 30 wherein the RNA transcription values for the
genes are calculated with respective factors, and wherein the respective factors are
weighted, using absolute values, in the order of PCDHGA4, PCDHGB1, HSP9OAB2P,
SPAGY9, DDI2, TOP1P2, AGAP1, BBS9, ENIP2, LOC647121, NFIC, TGFBRAPI,
EPRS, C90rf129, SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDKS, FAM24B,
CRK, RAB2A, SMAD2, ELP2, WWP1, KIF5B, RPL39, PSEN1, SURF4, TTC35,
TOMI, TES, VWAI1, GOLGA2, ARHGAP21, FLJ37201, KIAA1429, AZIN1, SCAMP2,
HI1FO, PYCR1, SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS,
KIF1C, DDBI1, and GSN.

The method of claim 27 wherein the treatment outcome score is indicative of a complete
response to treatment, a partial response to treatment, a stable non-response to treatment,

ora progressive non-response to treatment.

The method of claim 27 wherein the model was generated using a machine learning
algorithm that uses a classifier selected form the group consisting of NMFpredictor
(linear), SVMlight (linear), SVMlight first order polynomial kernel (degree-d
polynomial), SVMlight second order polynomial kernel (degree-d polynomial), WEKA
SMO (linear), WEKA j48 trees (trees-based), WEKA hyper pipes (distribution-based),
WEKA random forests (trees-based), WEKA naive Bayes (probabilistic/bayes), WEKA
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34.

35.

JRip (rules-based), glmnet lasso (sparse linear), glmnet ridge regression (sparse linear),

and glmnet elastic nets (sparse linear).

The method of claim 27 wherein the RNA transcription values for the genes are
calculated with respective factors, and wherein the respective factors are weighted, using
absolute values, in the order of PCDHGA4, PCDHGB 1, HSPO9OAB2P, SPAGY, DDI2,
TOP1P2, AGAPI1, BBS9, FNIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129,
SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDKS8, FAM24B, CRK, RAB2A,
SMAD2, ELP2, WWPI1, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOMI1, TES, VWAL,
GOLGA2, ARHGAP21, FLJ37201, KIAA1429, AZIN1, SCAMP2, H1FO, PYCRI,
SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDB1, and
GSN.

A method of predicting treatment outcome for a patient having high-grade bladder cancer,
comprising:
obtaining plurality of RNA transcription data of the patient;
wherein the RNA transcription values are values for at least two genes selected from
the group consisting of PCDHGA4, PCDHGB1, HSP9OAB2P, SPAGY, DDI2,
TOP1P2, AGAP1, BBS9, FENIP2, LOC647121, NFIC, TGFBRAP1, EPRS,
C9orf129, SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDKS, FAM24B,
CRK, RAB2A, SMAD2, ELP2, WWPI, KIF5B, RPL39, PSEN1, SURF4,
TTC35, TOM1, TES, VWAL, GOLGA2, ARHGAP21, FLJ37201,
KIAA1429, AZIN1, SCAMP2, H1F0, PYCRI1, SEC24D, FLNB, PATLI,
HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDB1, and GSN; and
using the RNA transcription values in a model generated by a machine learning

algorithm to so predict treatment outcome for the patient.

36. The method of claim 35 wherein the machine learning algorithm uses a classifier selected

form the group consisting of NMFpredictor (linear), SVMlight (linear), SVMlight first
order polynomial kernel (degree-d polynomial), SVMIlight second order polynomial
kernel (degree-d polynomial), WEKA SMO (linear), WEKA j48 trees (trees-based),
WEKA hyper pipes (distribution-based), WEKA random forests (trees-based), WEKA
naive Bayes (probabilistic/bayes), WEKA JRip (rules-based), glmnet lasso (sparse linear),

glmnet ridge regression (sparse linear), and glmnet elastic nets (sparse linear).

22



WO 2016/118527 PCT/US2016/013959

37.

38.

39.

40.

The method of claim 36 wherein the machine learning algorithm uses a glmnet elastic

nets (sparse linear) classifier.

The method of claim 35 wherein the RNA transcription values for the genes are
calculated with respective factors, and wherein the respective factors are weighted, using
absolute values, in the order of PCDHGA4, PCDHGB1, HSP9OAB2P, SPAGY9, DDI2,
TOP1P2, AGAP1, BBS9, ENIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129,
SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDKS8, FAM24B, CRK, RAB2A,
SMAD?2, ELP2, WWP1, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOM1, TES, VWAI,
GOLGA2, ARHGAP21, FLI37201, KIAA1429, AZIN1, SCAMP2, H1F0, PYCRI,
SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDB1, and
GSN.

Use of RNA transcription values for prediction of the treatment outcome of high grade
bladder cancer treatment, wherein the prediction uses a single model obtained from a
machine learning algorithm, and wherein the RNA transcription values are for genes
selected from the group consisting of PCDHGA4, PCDHGB1, HSP9OAB2P, SPAG9,
DDI2, TOP1P2, AGAP1, BBS9, FNIP2, LOC647121, NFIC, TGFBRAPI, EPRS,
C9orf129, SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDKS8, FAM24B, CRK,
RAB2A, SMAD2, ELP2, WWP1, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOM1, TES,
VWAL, GOLGA2, ARHGAP21, FLJ37201, KIAA1429, AZIN1, SCAMP2, H1FO,
PYCRI1, SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C,
DDBI1, and GSN.

The use of claim 39 wherein the RNA transcription values for the genes are calculated
with respective factors, and wherein the respective factors are weighted, using absolute
values, in the order of PCDHGA4, PCDHGB1, HSP90AB2P, SPAG9, DDI2, TOP1P2,
AGAPI1, BBS9, ENIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129, SARS,
RBM28, NACC2, GTPBPS5, PRKAR2A, CDKS, FAM24B, CRK, RAB2A, SMAD2,
ELP2, WWP1, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOMI1, TES, VWAL,
GOLGA2, ARHGAP21, FLI37201, KIAA1429, AZIN1, SCAMP2, H1F0, PYCRI,
SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDB1, and
GSN.
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41. The use of claim 39 wherein the machine learning algorithm uses a classifier selected
form the group consisting of NMFpredictor (linear), SVMlight (linear), SVMIlight first
order polynomial kernel (degree-d polynomial), SVMlIight second order polynomial
kernel (degree-d polynomial), WEKA SMO (linear), WEKA j48 trees (trees-based),
WEKA hyper pipes (distribution-based), WEKA random forests (trees-based), WEKA
naive Bayes (probabilistic/bayes), WEKA JRip (rules-based), glmnet lasso (sparse linear),

glmnet ridge regression (sparse linear), and glmnet elastic nets (sparse linear).

42. The use of claim 41 wherein the machine learning algorithm uses a glmnet elastic nets

(sparse linear).
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AMENDED CLAIMS
received by the International Bureau on 01 July 2016 (01.07.2016)

‘What is claimed is:

1. A method of predicting treatment outcome for a patient having high-grade bladder cancer,
comprising:

obtaining a plurality of omics data from the patient;

generating a plurality of models using a plurality of machine learning algorithms and
a priori omics data;

using an accuracy gain metric to select a single model from the plurality of models for
prediction of the treatment outcome of high grade bladder cancer treatment, or
selecting a single model from the plurality of models on the basis of a
previously determined accuracy gain metric for prediction of the treatment
outcome of high grade bladder cancer treatment; and

calculating, by an analysis engine, a prediction outcome using the single model and

the plurality of omics data from the patient.

2. The method of claim 1 wherein the omics data are selected from the group consisting of
whole genome differential objects, exome differential objects, SNP data, copy number

data, RNA. transcription data, protein expression data, and protein activity data.

3. The method of any one of the preceding claims wherein the accuracy gain metric is
selected form the group consisting of accuracy gain, accuracy gain distribution, an area
under curve metric, an R?, a p-value metric, a silhouette coefficient, and a confusion

matrix.

4. The method of any one of the preceding claims wherein the single model is selected from

among at least 100 models.

5. The method of any one of the preceding claims wherein the accuracy gain metric of the

single model is within the upper quartile of all models.

6. The method of any one of the preceding claims wherein the accuracy gain metric of the

single model is within the top 5% of all models.

7. The method of any one of the preceding claims wherein the accuracy gain metric of the

single model exceeds all other models.
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8.

10.

11.

12.

13.

The method of any one of the preceding claims wherein the prediction outcome is
selected from the group consisting of complete response to treatment, partial response to

treatment, stable non-response to treatment, and progressive non-response to treatment.

The method of any one of the preceding claims wherein the single model was generated
using a machine learning algorithm.that uses a classifier selected form the group
consisting of NMFpredictor (linear), SVMIight (linear), SVMlight first order polynomial
kernel (degree-d polynomial), SVMIight second order polynomial kernel (degree-d
polynomial), WEKA SMO (linear), WEKA j48 trees (trees-based), WEKA hyper pipes
(distribution-based), WEKA random forests (trees-based), WEKA naive Bayes
(probabilistic/bayes), WEKA JRip (rules-based), glmnet lasso (sparse linear), glmnet

ridge regression (sparse linear), and glmnet elastic nets (sparse linear).

The method of any one of the preceding claims wherein the step of calculating comprises
a step of selecting features of the single model having minimum absolute predetermined

weights,

The method of ¢claim 10 wherein the minimum absolute predetermined weights are within

the top quartile of all weights in the single model.

The method of any one of the preceding claims wherein the step of calculating uses at

least 10 distinct selected features in the single model.

The method of claim 10 wherein the features are RNA transcription values for genes
selected from the group consisting of PCDHGA4, PCDHGB 1, HSP90ARB2P, SPAGH,
DDI2, TOP1P2, AGAP1, BBS9, FNIP2, LOC647121, NFIC, TGFBRAP], EPRS,
C9orf129, SARS, RBM28, NACC2, GTPBPS, PRKAR2A, CDK 38, FAM24B, CRK,
RABZA, SMAD2, ELP2, WWPI1, KIFsB, RPL39, PSEN1, SURF4, TTC35, TOM1, TES,
VWAL, GOLGA2, ARHGAP21, FLJ37201, KIAA1429, AZIN1, SCAMP?;, HI1FQ,
PYCRI1, SEC24D, FLNRB, PATL], HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C,
DDBI, and GSN.

14. The method of claim 13 wherein the RNA. transcription values for the genes are

calculated with respective factors, and wherein the respective factors are weighted, using
absolute values, in the order of PCDHGA4, PCDHGB1, HSP90AB2P, SPAGY, DDI2,
TOP1P2, AGAP1, BBSY, FNIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129,
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SARS, RBM28, NACC2, GTPBPS, PRKAR2A, CDK8, FAM24B, CRK, RAB2A,
SMAD2, ELP2, WWP1, KIF5B, RPL39, PSEN], SURF4, TTC35, TOMI, TES, VWAL,
GOLGA2, ARHGAP21, F1LJ37201, KIAA 1429, AZINI, SCAMP2, H1F0, PYCRI,
SEC24D, FLNB, PATLI1, HDLBP, RRBP], OXR1, GLBI, NPEPPS, KIF1C, DDBI, and
GSN.

15. The method of claim 1 wherein the accuracy gain metric is selected form the group
consisting of accuracy gain, accuracy gain distribution, an area under curve metric, an R?,

a p-value metric, a silhouette coefficient, and a confusion matrix.

16. The method of claim 1 wherein the single model is selected from among at least 100

models.

17. The method of claim 1 wherein the accuracy gain metric of the single model is within an

upper quartile of all models.

18. The methad of ¢laim 1 wherein the accuracy gain metric of the single model is within a

top 5% of all models.

19. The method of ¢laim 1 wherein the accuracy gain metric of the single model exceeds all

other models.

20. The method of claim 1 wherein the prediction outcome is selected from the group
consisting of complete response to treatment, partial response to treatment, stable non-

response to treatment, and progressive non-response to treatment.

21. The method of claim 1 whetein the single model was generated using a machine learning
algorithm that uses a classifier selected form the group consisting of NMFpredictor
(linear), SVMlight (lincar), SVMlight first order polynomial kernel (degree-d
polynomial), SVMlight second order polynomial kernel (degree-d polynomial), WEKA
SMO (linear), WEKA j48 trees (trees-based), WEKA hyper pipes (distribution-based),
WEKA random forests (trees-based), WEKA naive Bayes (probabilistic/bayes), WEKA
JRip (rules-based), glmnet lasso (sparse linear), glmnet\ ridge regression (sparse linear),

and glmnet elastic nets (sparse linear).

22. The method of claim 1 wherein the step of calculating comprises a step of selecting

features of the single model having minimum absolute predetermined weights.
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23.

24,

25.

The method of claim 22 wherein the minimum absolute predetermined weights are within

a top quartile of all weights in the single model.

The method of claim 1 wherein the step of calculating uses at least 10 distinct selected

featutes in the single model.

The method of claim 22 wherein the features are RNA transcription values for genes
selected from the group consmtmg of PCDHGA4, PCDHGB1, HSP90AB2P, SPAGY,
DDI2, TOP1P2, AGAP1, BBSS, FNIP2, LOC647121, NFIC, TGFBRAPI, EPRS
C9orf129, SARS, RBM28, NACC2, GTPBPS, PRKAR2A, CDK8, FAM24B, CRK,
RAB2A, SMAD2, ELP2, WWPI1, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOMI1, TES,
VWAL, GOLGA2, ARHGAP21, FLJ37201, KIAA1429, AZIN1, SCAMP2, H1F0,
PYCRI, SEC24D, FLNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C,
DDBI, and GSN.

26. The method of claim 25 wherein the RNA transcription values for the genes are

caleulated with respective factors, and wherein the respective factors are weighted, using
absolute values, in the order of PCDHGA4, PCDHGB1, HSP90AB2P, SPAGY, DDI2,
TOP1P2, AGAP], BBS9, FNIP2, LOC647121, NFIC, TGFBRAP1, EPRS, CYorfl129,
SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDK8, FAM24B, CRK, RAR2A,
SMAD2, ELP2, WWPI, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOMI, TES, VWAL,
GOLGA2, ARHGAP21, FLI37201, K1IAA1429, AZIN1, SCAMP2, H1F0, PYCRI,
SEC24D, FLNB, PATLI, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDBI, and
GSN.

27. A method of predicting treatment outcome for a patient having high-grade bladder cancer,

comprising:

obtaining plurality of RNA transcription data of the patient; and

calculating, by an analysis engine and using the plurality of RNA transcription data of
the patient, a treatment outcome score using a model;

wherein the mode] uses RNA transcription values for genes selected from the group
consisting of PCDHGA4, PCDHGB1, HSP90AB2P, SPAGY, DDI2, TOP1P2,
AGAP1, BBS9, FNIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C90rf129,
SARS, RBM28, NACC2, GTPBPS, PRKAR2A, CDKS, FAM24B, CRK,
RAB2A, SMAD?2, ELP2, WWP1, KIF5B, RPL39, PSEN1, SURF4, TTC3S5,
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TOM1, TES, VWAL, GOLGA2, ARHGAP21, FLJ37201, KIAA 1429,
AZIN1, SCAMP2, HIF(0, PYCRI1, SEC24D, FLNB, PATL1, HDLBP, OXR1,
GLBI1, NPEPPS, KIF1C, DDRBI, and GSN.

28. The method of ¢laim 27 wherein the plurality of RNA transcription data are obtained

from polyA RNA.

29. The method of ¢claim 27 or 28 wherein the treatment outcome score is indicative of a

complete response to treatment, a partial response to treatment, a stable non-response to

treatment, or a progressive non-response to treatment.

30. The method of any one of claims 27 to 29 wherein the model was generated using a

3L

machine learning algorithm that uses a classifier selected form the group consisting of
NMPFpredictor (linear), SVMlight (linear), SVMlight first order polynomial kernel
(degree-d polynomial), SVMlight second order polynomial kernel (degree-d polynomial),
WEKA SMO (linear), WEKA j48 trees (trees-based), WEKA hyper pipes (distribution-
based), WEKA random forests (trees-based), WEKA naive Bayes (probabilistic/bayes),
WEKA. JRip (rules-based), glmnet lasso (sparse linear), glmnet ridge regression (sparse

linear), and glmnet elastic nets (sparse linear).

The method of any one of claims 27 to 30 wherein the RNA transcription values for the
genes are caleulated with respective factors, and wherein the respective factors are
weighted, using absolute values, in the order of PCDHGA4, PCDHGR1, HSP90AB2P,
SPAGY, DDI2, TOP1P2, AGAF1, BBS9, FNIP2, LOC647121, NFIC, TGFBRAP1,
EPRS, C90rf129, SARS, RBM28, NACC2, GTPBP5, PRKAR2A, CDK8, FAM24B,
CRK, RAB2A, SMAD2, ELP2, WWP1, KIF5B, RPL39, PSEN1, SURF4, TTC35,
TOMI, TES, VWAL, GOLGA2, ARHGAP2], FLI37201, KIAA 1429, AZIN1, SCAMFP2,
HIF0, PYCRI1, SEC24D, FLNB, PATL], HDLBP, RRBFP1, OXR1, GLBI, NPEPPS,
KIFIC, DDB], and GSN.

32. The method of claim 27 wherein the treatment outcome score is indicative of a complete

33.

response to treatment, a partial response to treatment, a stable non-response to treatment,

or a progressive non-response to treatment.

The method of ¢laim 27 wherein the model was generated using a machine learning

algorithm that uses a classifier selected form the group consisting of NMFpredictor
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(linear), SVMlight (linear), SVMlight first order polynomial kernel (degree-d
polynomial), SVMlight second order polynomial kernel (degree-d polynomial), WEKA
SMO (linear), WEKA j48 trees (trees-based), WEKA hyper pipes (distribution-based),
WEKA random forests (trees-based), WEKA naive Bayes (probabilistic/bayes), WEKA
JRip (rules-based), glmnet lasso (sparse linear), glmnet ridge regression (sparse linear),

and glmnet elastic nets (sparse linear).

34. The method of claim 27 wherein the RNA transcription values for the genes are
calculated with respective factors, and wherein the respective factors are weighted, using
absolute values, in the order of PCDHGA4, PCDHGB1, HSP90AB2P, SPAGY, DDI2,
TOP1P2, AGAPL, BBS9, ENIP2, LOC647121, NFIC, TGFBRAPI, EPRS, C9orf129,
SARS, RBM28, NACC2, GTPBPS, PRKAR2A, CDK8, FAM24B, CRK, RAB2A,
SMAD2, ELP2, WWP], KIF5B, RPL39, PSEN1, SURF4, TTC35, TOMI, TES, VWAL,
GOLGA2Z, ARHGAP21, FLJ37201, KIAA 1429, AZIN1, SCAMP2, HIF0, PYCR],
SEC24D, FILNB, PATL1, HDLBP, RRBP1, OXRI, GLBI, NPEPI;S, KIF1C, DDBI, and
GSN.

35. A method of predicting treatment outcome for a patient having high-grade bladder cancer,
comprising;

obtaining a plurality of RNA transcription values of the patient;

wherein the RNA transcription values are values for at least two genes selected from
the group consisting of PCDHGA4, PCDHGB1, HSP20AR2P, SPAGY, DDI2,
TOP1P2, AGAFP1, BBS9, FNIP2, LOC647121, NFIC, TGFBRAPI, EPRS,
C9orf129, SARS, RBM28, NACC2, GTPBPS, PRKAR2A, CDK8, FAM24B,
CRK, RAB2A, SMAD2, ELP2, WWP1, KIF5B, RPL39, PSENI, SURF4,
TTC35, TOMI, TES, VWAL, GOLGA2, ARHGAP21, FLJ37201,
KIAA1429, AZIN1, SCAMP2, H1F0, PYCRI1, SEC24D, FLNB, PATLI,
HDLBP, RRBP], OXR1, GLB1, NPEPPS, KIFIC, DDB1, and GSN; and

using the RNA. transcription values in a model generated by a machine leamning

algorithm to so predict treatment outcome for the patient.

36. The method of claim 35 wherein the machine learning algorithm uses a classifier selected
form the group consisting of NMFpredictor (linear), SVMlight (linear), SVMlight first
order polynomial kernel (degree-d polynomial), SVMIight second order polynomial
kernel (degree-d polynomial), WEKA SMO'(lincar), WEKA j48 trees (trees-based),
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WEKA hyper pipes (distribution-based), WEKA random forests (trees-based), WEKA
naive Bayes (probabilistic/bayes), WEKA JRip (rules-based), glmnet lasso (sparse linear),

glmnet ridge regression (sparse linear), and glmnet eiastic nets (sparse linear).

37. The method of claim 36 wherein the machine learning algorithm uses a glmnet elastic

nets (sparse linear) classifier,

38. The method of claim 35 wherein the RNA transcription values for the genes are
calculated with respective factors, and wherein the respective factors are weighted, using
absolute values, in the order of PCDHGA4, PCDHGB1, HSP90AB2P, SPAGS, DD)]2,
TOP1P2, AGAP1, BBSY, FNIP2, LOC647121, NFIC, TGFBRAPL, EPRS, C9rf]29,
SARS, RBM28, NACC2, GTPBP3S, PRKAR2A, CDK8, FAM24B, CRK, RAB2A,
SMAD2, ELP2, WWPI, KIF5B, RPL39, PSEN1, SURF4, TTC35, TOM]1, TES, VWAL,
GOLGA2, ARHGAP21, FLJ37201, KIAA1429, AZIN1, SCAMP2, HIF0, PYCRI,
SEC24D, FLNB, PATLI, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDB], and
GSN.

39. Use of a plurality of RNA transcription values for prediction of a treatment outcome of
high grade bladder cancer treatment, wherein the prediction uses a single model 6btaincd
from a plurality of machine learning algorithms, and wherein the RNA transcription
values are for genes selected from the group consisting of PCDHGA4, PCDHGBI,
HSP90AB2P, SPAGY, DDI2, TOP1P2, AGAP], BBSY, FNIP2, LOC647121, NFIC,
TGFBRAPI, EPRS, C9orf129, SARS, RERM28§, NACC2, GTPBPS, PRKAR2A, CDKS,
FAM24B, CRK, RAB2A, SMAD2, ELP2, WWP1, KIF5B, RPL39, PSEN1, SURF4,
TTC35, TOML1, TES, VWAL, GOLGA2, ARHGAP21, FLJ37201, KIAA1429, AZINI,
SCAMP2, H1F0, PYCR], SEC24D, FLNB, PATL1, HDLBP, OXR1, GLB], NPEPPS,
KIFiC, DDBI, and GSN.

40. The use of claim 39 wherein the RNA transcription values for the genes are calculated
with respective factors, and wherein the respective factors are weighted, using absolute
values, in the order of PCDHGA4, PCDHGBI1, HSP90AB2P, SPAGY, DDI2, TOP1P2,
AGAP1, BBS9, FNIP2, LOC647121, NFIC, TGFBRAP1, EPRS, C9orf]29, SARS,
RBM28, NACC2, GTPBPS, PRKAR2A, CDK8, FAM24B, CRK, RAB2A, SMAD2,
ELP2, WWP1, KIF58, RPL39, PSEN], SURF4, TTC35, TOM1, TES, VWAL,
GOLGA2, ARHGAP21, FLI37201, KIAA1429, AZIN1, SCAMP2, H1F(, PYCRI,

31

PCT/US2016/013959



WO 2016/118527 PCT/US2016/013959

SEC24D, FUNB, PATL1, HDLBP, RRBP1, OXR1, GLB1, NPEPPS, KIF1C, DDBI, and
GSN.

41, The use of claim 39 wherein the machine learning algorithm uses a classifier selected
form the group consisting of NMFpredictor (linear), SVMIight (linear), SVMIight first
order polynomial kernel (degree-d polynomial), SVMlight second order polynomial
kernel (degree-d polynomial), WEKA SMO (linear), WEKA j48 trees (trees-based),
WEKA hyper pipes (distribution-based), WEKA random forests (trees-based), WEKA
naive Bayes (probabilistic/bayes), WEKA JRip (rules-based), ghnpet lasso (sparse linear),

glmnet ridge regression (sparse linear), and glmnet elastic nets (sparse linear).

42. The use of claim 41 wherein the machine learning algorithm uses a glmnet elastic nets

(sparse lincar).

32



WO 2016/118527

FIG. 1

FEATURE WEIGHTS

1/2

PCDHGA4

PCDHGB1

%

Z
7,

HSPO0OAB2P

v

SPAGS

DDI2

7,
7,
Z,

TOP1P2

2,

AGAP1

%

BBSS

FNIP2

LOC647121

NFIC

TGFBRAP1

EPRS

CYorf129

SARS

RBM28

NACC2

GTPBP5

PRKARZA

CDK8

FAM24B

CRK

RABZA

SMADZ2

ELP2

WWPE1

KIF5B

RPL39

PSEN1

SURF4

TTC35

TOM1

TES

VWAT

GOLGAZ2

ARHGAP21

FLJ37201

KIAA1429

AZINA

SCAMP2

H1FO

PYCR1

SEC24D

FLNB

PATLA

HDLBP

RRBP1

OXR1

GLB1

NPEPPS

KiIF1C

DDB1

GSN

-182315.43 -109389.26 -36463.09 36463.09 109389.26

SUBSTITUTE SHEET (RULE 26)

WEIGHT

PCT/US2016/013959

-121543.6206
-74644.8943
-44418.6153
-384538.3952
-33167.4115
30325.2953
-19650.2640
-17125.7265
-16003.9371
14542.1025
-0841.1106
-9613.9789
-8381.3394
-8444 6480
-8074.1971
-7917.6401
-7385.073¢
-6696.9650
-6616.4594
-5486.5921
6025.2537
-5723.0695
-5455.0560
-5003.1927
-4229.9985
-3197.8519
-3137.1724
2868.0036
-2849.0309
-2540.2632
-2362.7908
-2337.6140
-2304.8969
-1650.75896
-1628.5059
-1620.9684
1574.8497
-1556.0405
-1522.6493
-1437.4525
-1030.7763
-916.8040
-886.1046
-730.9311
-724.7770
-680.5160
-661.6769
525.5002
-419.6469
-333.0088
-320.9344
-273.4875
-225.5038

182315



WO 2016/118527 PCT/US2016/013959

opmaod
.

High Grade
Post-op Treatment

CR PR | Stable | Prog

Responders Non-responders

:;\Q\ RN R ;:\f TORP1P2

A I NN ‘ LOCB47121
FAM24B
RPL39
FLI37201
GSN
DDB1
KIF1C
NPEPPS
GLB1
OXR1
RRBP1
HDLBP
PATL 1
FLNB
SEC24D
PYCRH1
H1FO
SCAMP2
AZIN1
KIAA1429
ARHGAP21
GOLGAZ
VWA1
TES
TOM1
T7C35
SURF4
PSENT
KIF58
WWPA
ELP2
SMAD2
RAB2A
CRK
CDK8
PRKARZA
GTPBPS
NACC2
RBM28
SARS
Coort129
EPRS
TGFBRAP1
NFIC
FNIP2
BBSSY
AGAP1
DDI2
SPAGS
HSPO0AB2ZP
PCDHGB1
PCDHGA4

////////////////%””’W/////////W””"W%””’%”””””

FIG. 2

e
-1.603

15494

SUBSTITUTE SHEET (RULE 26)



INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2016/013959

A. CLASSIFICATION OF SUBJECT MATTER

GOGF 19/24(2011.01)i, GOG6F 19/22(2011.01)i, GOGF 19/18(2011.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 19/24; GOGF 19/00; C40B 40/06;, CO7H 21/00; C12Q 1/68; C12M 1/34; GO6F 19/22; GO6F 19/18

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

eKOMPASS(KIPO internal) & keywords: high grade bladder cancer, treatment outcome, omics data,
accuracy gain metric, single model, machine learning

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X WO 2014-043803 Al (GENOMEDX BIOSCIENCES, INC.) 27 March 2014 1-3,15-20,22-24
See paragraph [0019] and claims 1, 4, 8-9.

Y 21,25-26

A 27-29,32-42

Y WO 2013-090620 Al (GENOMEDX BIOSCIENCES, INC.) 20 June 2013 21,33,35-42
See paragraphs [00309], [00313], [00531]-[00556] and claim 115.

X WO 2012-009382 A2 (THE REGENTS OF THE UNIVERSITY OF COLORADO) 27-29,32,34
19 January 2012
See claims 1, 11.

Y 25-26,33,35-42

A WO 2005-008213 A2 (GENOMIC HEALTH, INC.) 27 January 2005 1-3,15-29,32-42
See claims 17-18, 24.

A US 2007-0128636 A1 (BAKER et al.) 07 June 2007 1-3,15-29,32-42
See claims 1-25.

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E"  earlier application or patent but published on or after the international
filing date

"L"  document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P"  document published prior to the international filing date but later
than the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
04 May 2016 (04.05.2016)

Date of mailing of the international search report

04 May 2016 (04.05.2016)

Name and mailing address of the [SA/KR
International Application Division
¢ Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Dagjeon, 35208, Republic of Korea

Facsimile No. +82-42-481-8578

Authorized officer

KIM, Seung Beom

Telephone No. +82-42-481-3371

Form PCT/ISA/210 (second sheet) (January 2015)




INTERNATIONAL SEARCH REPORT International application No.
PCT/US2016/013959

Box No. Il Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. m Claims Nos.: 11,13-14
) because they relate to patts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:
Claims 11,13-14 are referring to the multiple dependent claims which do not comply with PCT Rule 6.4(a).

3, Claims Nos.: 4-10,12,30-31
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III  Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. |:| As all required addtional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. |:| As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment
of any additional fees.

3. |:| As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4, |:| No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest |:| The additional search fees were accompanied by the applicant's protest and, where applicable, the
payment of a protest fee.
The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.
|:| No protest accompanied the payment of additional search fees.
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