a2 United States Patent

Parke et al.

US011055807B2

US 11,055,807 B2
Jul. 6, 2021

(10) Patent No.:
45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

METHOD AND SYSTEM FOR A
TRANSACTIONAL BASED DISPLAY
PIPELINE TO INTERFACE WITH
GRAPHICS PROCESSING UNITS

Applicant: Apple Inc., Cupertino, CA (US)

Inventors: Bruce A. Parke, Tracy, CA (US);
Maria A. Tovar, Atherton, CA (US)

Assignee: Apple Inc., Cupertino, CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 22 days.

Appl. No.: 15/979,139

Filed: May 14, 2018

Prior Publication Data
US 2018/0357746 Al Dec. 13, 2018
Related U.S. Application Data

Provisional application No. 62/518,401, filed on Jun.
12, 2017.

Int. CL.

GO6T 120 (2006.01)

GO6F 9/46 (2006.01)

GO6F 9/54 (2006.01)

GO6F 9/448 (2018.01)

GO6F 16/901 (2019.01)

U.S. CL

CPC ... GO6T 1/20 (2013.01); GOGF 9/448

(2018.02); GO6F 9/466 (2013.01); GO6F
9/546 (2013.01); GO6F 16/9017 (2019.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,839,410 B1* 112010 Brown GO6T 15/04
345/541
8,001,531 B1* 82011 Rideout GO6F 11/3664
709/217

(Continued)

OTHER PUBLICATIONS

Foley, T., Hanrahan, P. 2011, “Spark: Modular, Composable Shaders
for Graphics Hardware,” ACM Trans. Graph. 30, 4, Article 107 (Jul.
2011), 12 pages, DOI=10.1145/1964921.1965002 http://doi.acm.
org/10.1145/1964921.1965002.

(Continued)

Primary Examiner — Sarah Le
(74) Attorney, Agent, or Firm — Blank Rome LLP

(57) ABSTRACT

Interfacing with a graphics processing unit (GPU) in a
computer system in a transactional manner is disclosed.
Discovering feature data regarding the GPU includes deter-
mining if the GPU understands transactional-based commu-
nication and may be determined by query or by using a look
up table (LUT) containing one or more configuration iden-
tifiers. Transactions include information including directives
to be performed by the GPU and data on which to perform
the directives. Transactions may be provided through an
application program interface from a user level software
module or possibly at the kernel level of an operating
system. Transactions may be applied as atomic operations at
a discrete point in time to prevent visible glitching or other
undesirable display artifacts from being discernable on a
display device (e.g., directly connected monitor or remote
display device).

28 Claims, 7 Drawing Sheets

CISPLAY PIPELINE (HIGH LEVEL)

it

185 1~
ATION 12
APPUCATION [‘P:AL(;?,"?" A S 130
’ y
o5t -
106 11~ PUEL SORNAT BTHER
. APPLITATION PG AMIFER ¥ EIER
R T e B Yt 135
1G5 FRRSHERT OPLRATIONS l /
107 ASSENELY
- ROPLTATION R
Am.;\.m v -
105 l Y
‘) HRIKE
D] BUEER
l /MS
E
PR
PACLESSHG

156

C

DSTLAY

US 11,055,807 B2

Page 2
(56) References Cited
U.S. PATENT DOCUMENTS
8,854,383 B2 10/2014 Tsai
9,064,322 B1* 6/2015 GOGF 3/1438
2008/0001960 Al* 1/2008 . GO6T 15/04
345/582
2010/0110089 A1* 5/2010 Paltashev GO6T 1/20
345/522
2011/0242118 Al 10/2011 Bolz
2012/0162234 Al 6/2012 Blinzer
2015/0348224 Al 12/2015 Avkarogullari
2016/0259757 Al* 9/2016 Metzgen GOG6F 9/3851
2017/0004647 Al* 1/2017 Grossman .. GO6T 1/60
2017/0140572 Al 5/2017 Apodaca

OTHER PUBLICATIONS

Fung, et al., “Hardware Transactional Memory for GPU Architec-
tures,” MICRO ’11, Dec. 3-7, 2011, Porto Alegre, Brazil.

International Search Report and Written Opinion received in PCT
Application No. PCT/US2018/035115 dated Aug. 3, 2018.

Sandy, Matt “DirectX 127, Mar. 20, 2014 (Mar. 20, 2014), pp. 1-19,
XP002742458, URL:http://blogs.msdn.com/b/directx/archive/2014/
03/20/directx-i2.aspx.
Widawsky, Ben “i915 Hardware Contexts (and some bits about
batchbuffers)”, Jan. 1, 2013 (Jan. 1, 2013), XP055495361, URL :https://
bwidawsk net/blog/index.php/2013/01/i9 15-hardware-contexts-and-
sorne-bits-about-batchbuffers.

* cited by examiner

U.S. Patent Jul. 6,2021 Sheet 1 of 7 US 11,055,807 B2

DISPLAY PIPELINE {HIGH LEVEL)
100

~

165
T '\
APPLICATION 120
A?mimw BACRING \ / 130
STORE o
106 HHE~ PIXEL FORMAT DITHER/
APRLICATION PISEL TRANSFER fe—»} FILTER
APELICATION
g BACKING "1 RASTERIZATION 135
STORE FRAGMENT OPERATIONS i /
107 \J ASSEHBLY
APPLICATION APPLICATION BUFHER
BACKING 140

) FRAME
2

" STORE | /
/

BUFFER
145
A4
GRU
BACKEND
PROCESSIKG
158
DISPLAY

FiG. 1

US 11,055,807 B2

Sheet 2 of 7

Jul. 6, 2021

U.S. Patent

Z Bid
AVYEE 00
097 Wy9 152 WO
N NI \
h\Y] WS 3
— Ay — IS
K4S K)N 5
1174
TSR LT AR T
AT TMONH PN it
T3 1N v voaugs || FOLENBEAN | oI
gy ’ HOONIA e 1142
967 T
mm/\ 8401 KUK Vi -
NG ey dorTENNe | |sownmver
13431 TINY ¥ o AN B
ETEER et , 0~ T
. i i
, P OONIMINTS IR0 | | INIMINISTNE0 |
340 300U
PECTRY Lo
PR B - 1148103407 D
\ L TH
$1L 1 HOTIRNS
YIRS MOANIAL 557304,

U.S. Patent

300

~

Jul. 6, 2021 Sheet 3 of 7

US 11,055,807 B2

HARDWARE DISCOVERY PHASE
305

\ 4

INITIALIZATION PHASE
310

A4

GATHER CAPABILITES
315

Y

RUNTIME PHASE
320

ANALYZE AVAILABLE CAPABILITES
325

Y

CREATE TRANSACTION
330

v

BIND TRANSACTION AND DATA
335

A4

SUBMIT TRANSACTION
340

v

VENDOR IMPLEMENTATION APPLIES STATETO

HARDWARE
345

\ 4

TERMINATION PHASE
350

FiG. 3

US 11,055,807 B2

Sheet 4 of 7

Jul. 6, 2021

U.S. Patent

B

S¥

\

v 'Bid

}

s

i

s e pausiug

” 00§
B - R

e R R e

Ao

By

,,,,, | Bupusg

yem

-

NG semn HeE

Yoo
adigheydsigionyg

A el - S

—epus uopoesuey |V

E3

390}
,,, e BSG UONOBSURN, | IOIRIBEOOYON

US 11,055,807 B2

Sheet 5 of 7

Jul. 6, 2021

U.S. Patent

& D4
58%dAg LVHA LAY §Sydig 13
+ + +
39y |« !.m.mml < 19y Y € 454
UEVREREITE UEINERELS) Q33003 31034940 ETREERIH]
1N {+H N | ROIDVSHYEL

SHOUDVSHYEL 1IVHVAIS S VIV GHY SS¥di

SR L3R

¥ivd

4

4

§5ydAg 138

+

0y <
(3133440000

{

494 <

854

{EIRELEIY HETRELEINEH
f NOIDVINVUL

VIV 18 QIMOTION SSUdAY YUNVS

*

US 11,055,807 B2

Sheet 6 of 7

Jul. 6, 2021

U.S. Patent

g ‘54
o S [$s] 75}
S(ETe) 059
330D ARLINDED
IWHOLS AUOWIN OIdIA LD
Q N@ A A A A
/ y 4 Y y
A A A A A
A\ A
Y A\ 4 %
5 - AALINOUID BHNLAYD FOVII
THVMGUYH SYOSNIS 069
SOIHAYED IDIAIG INIWIT3
HOSNIS
089 SN i_I\
y y
1 H0SSI00Nd INOHIOUIIW
o1anY
019 "
AV 1dSIa 4
A 4 b 4
18 —
0vo
IOV I LN
N SYDIVILS

/ 009

US 11,055,807 B2

Sheet 7 of 7

Jul. 6, 2021

U.S. Patent

68100 %@ .ﬁﬁ w_@m

STIAIC INTYILA HOT SO1 NOUYNADHNGS T3 (/

o Loy VORRELIROLLTY
o, BHnnes)

Mo DS

ROUYSADUNGD JUYMONYH 3WYS JHL 404 501 HOUYEADHNGY N4

US 11,055,807 B2

1
METHOD AND SYSTEM FOR A
TRANSACTIONAL BASED DISPLAY
PIPELINE TO INTERFACE WITH
GRAPHICS PROCESSING UNITS

BACKGROUND

The present application generally relates to a transactional
display pipeline to interface with one or more graphics
processing units (GPUs).

Conventional display pipelines are not based on a trans-
actional interface to a GPU and do not utilize atomic display
feature processing. In a conventional display pipeline, the
feature request of the GPU and the data to be acted upon by
the GPU with that feature are provided independently. In
other words, the GPU is given a set of data and separately
given a command to apply to that data.

Further, historically displays have included one or more
blanking intervals such as a horizontal blanking interval and
a vertical blanking interval. In a raster graphics display, the
vertical blanking interval (VBI), also known as the vertical
interval or VBLANK, is the time between the end of the final
line of a frame or field and the beginning of the first line of
the next frame. During the VBI, the incoming data stream is
not displayed on the screen. In current displays there may
not be a required blanking interval because they are not
based on raster scanning. However, there may be a defined
dead period during which display memory may be updated
without updating the display so that a user is not presented
with undesirable artifacts of the update process.

SUMMARY

Various embodiments disclosed herein are generally
directed to methods and systems for a transactional interface
(e.g., display pipeline) to a graphics processing unit (GPU).
Transactions include a combination of feature and data
representing a unit of work for the GPU. Transactions may
be presented via a queue mechanism and processed in an
atomic fashion at a discrete point in time to avoid visible
artifacts on a display device. Transactions may be provided
from a user level program interface or may be created within
a kernel function of an operating system. GPU features and
capabilities may be determined via one or more query
functions to determine capabilities iteratively or by using a
look up table containing configuration identifiers tied to
specific capabilities of a GPU.

In one embodiment, a method for transactional interaction
with a GPU is described. The method may be implemented
in a system comprising a GPU and may include discovering
feature data regarding the GPU, binding the feature data
with transaction data according to directives received
through an application program interface (API) from a user
level software module, wherein the transaction data com-
prises information that influences the transformation of
pixels prior to presentation on a display device, and wherein
the feature data comprises information regarding the use of
features of the GPUj; submitting the transaction to a graphics
pipeline, the transaction including the transaction data
bound to the feature data; and processing the transaction by
using GPU features according to the feature data to process
the transaction data according to the transaction.

In another embodiment, the method may be embodied in
computer executable program code and stored in a non-
transitory storage device. In yet another embodiment, the
method may be implemented in a processing device having

10

15

20

25

30

35

40

45

50

55

60

65

2

a directly connected display (e.g., via cable) or a remotely
connected display (e.g., via network or wireless communi-
cation technology).

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows, in block diagram form, a high level
interaction of user level applications and their interaction
with a display pipeline to present data on a display device
according to one or more embodiments.

FIG. 2 shows, in block diagram form, an illustrative
software, kernel, and hardware level architecture diagram
according to one or more embodiments.

FIG. 3 shows, in flowchart form, a method for discovering
capabilities of a GPU and performing graphics processing
using encapsulated transactions submitted to the GPU
according to one or more embodiments.

FIG. 4 shows one possible timeline and associated queu-
ing implementation to process graphical transactions
according to one or more embodiments.

FIG. 5 shows two example diagrams, the first showing a
gamma bypass followed by data and the second showing
bypass and data as separate transactions according to one or
more embodiments.

FIG. 6 shows, in block diagram form, a simplified mul-
tifunctional device according to one or more embodiments.

FIG. 7 shows, in table form, examples of configuration
identifiers for the same hardware or different devices accord-
ing to one or more embodiments.

DETAILED DESCRIPTION

Disclosed are a system, computer readable media, and
method for providing a framework, generally referred to as
IOPresentment, and a set of APIs to interact with a GPU for
graphical processing using a transactional model. According
to one or more embodiments, the techniques include a
description of how graphics drivers support the display
pipeline to determine what colors are viewed on displays
and on printed materials. Features that may be supported by
the vendor’s (e.g., the GPU vendor’s) hardware include but
are not limited to: pixel format of the application data and
assembly buffer; scanout buffer characteristics (pixel format,
type, and depth); gamma correction tables; precision of what
is sent over the cable from the system to the display; and
display characteristics (dithering, depth, and color gamut).
In different embodiments it may be desirable that the graph-
ics driver should support several pixel formats, scanout
buffer configurations, gamma correction tables, and display
color modes and depths. Format conversions between buf-
fers and dithering between buffers should be supported. If
necessary, output from the scanout buffer may be converted
to a format supported by the display itself.

The following paragraphs address how to specify the
transition to a new display pipeline state as a transaction
(e.g., a transactional interface to a GPU). In this discussion,
references will be made to APIs designed to perform certain
functions. Examples of these APIs are provided throughout
this disclosure as appropriate to facilitate with explanation
of details for example embodiments.

The above-mentioned transaction contains a combination
of display pipeline data (e.g., pixels, gamma, or color
matrices) to be applied at a single point in time without
visible glitching on the display device. First the IOPresent-
ment framework will be introduced. Next will be a discus-
sion on the display pipeline transaction model and its API.
Finally, a description of the ConfigurationID will be pre-

US 11,055,807 B2

3

sented. The Configuration]D contains display pipeline
inputs, outputs, and behavior, so vendor drivers can express
specific features of their hardware and implementation that
do not fit within the descriptors of the hardware API query
command key as explained herein.

In the following description, for purposes of explanation,
numerous specific details are set forth in order to provide a
thorough understanding of the disclosed concepts. As part of
this description, some of this disclosure’s drawings repre-
sent structures and devices in block diagram form in order
to avoid obscuring the novel aspects of the disclosed
embodiments. Further, as part of this description, some of
this disclosure’s drawings may be provided in the form of a
flow diagram. The boxes in any particular flow diagram may
be presented in a particular order. However, it should be
understood that the particular flow of any flow diagram is
used only to exemplify one embodiment. In other embodi-
ments, any of the various components depicted in the flow
diagram may be deleted, or the components may be per-
formed in a different order, or even concurrently. In addition,
other embodiments may include additional steps not
depicted as part of the flow diagram. The language used in
this disclosure has been principally selected for readability
and instructional purposes, and may not have been selected
to delineate or circumscribe the disclosed subject matter.
Reference in this disclosure to “one embodiment” or to “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment, and multiple refer-
ences to “one embodiment” or to “an embodiment™ should
not be understood as necessarily all referring to the same
embodiment or to different embodiments.

It should be appreciated that in the development of any
actual implementation (as in any development project),
numerous decisions must be made to achieve the develop-
ers’ specific goals (e.g., compliance with system- and busi-
ness-related constraints), and that these goals will vary from
one implementation to another. It will also be appreciated
that such development efforts might be complex and time
consuming, but would nonetheless be a routine undertaking
for those of ordinary skill in the art of image capture having
the benefit of this disclosure.

Referring now to FIG. 1, block diagram 100 illustrates a
high level display pipeline and its associated components
according to one or more disclosed embodiment. Applica-
tions 105, 106, and 107 represent distinct user applications
executing at a user level of a computer system hierarchy.
Each of applications 105, 106, and 107 has an associated
application backing store 110, 111, and 112 respectively.
Each application backing store contains information pertain-
ing to graphical information that may be presented as
appropriate on display 150. Each of the application backing
stores 110, 111, and 112 are communicatively coupled to
GPU 120, which includes functions for pixel format, pixel
transfer, rasterization, and fragment operations. These func-
tions are examples only and GPU 120 is not limited to these
functions. A dither/filter function is illustrated at block 130
with a bi-directional communication channel to GPU 120.
Assembly buffer 135 is shown, in this embodiment, with
communication channels to the dither/filter function 130 and
GPU 120. Assembly buffer 135 may contain data in a float
pixel format. Frame buffer 140 receives data from assembly
buffer 135 in a frame buffer format after it has been
processed by the GPU. Block 145 illustrates GPU backend
processing, which may include dithering or gamma correc-
tion functions applied prior to ultimate display in display
format on display 150.

10

15

20

25

30

35

40

45

50

55

60

65

4

IOPresentmentFramework

As disclosed herein, a “display pipeline transaction” rep-
resents encapsulation of a feature and the data required to
perform a specific transition from the current display pipe-
line related state to a new display pipeline related state for
an associated IOAcclerator Family (See 225 of FIG. 2). One
significant benefit of a transaction is to be able to flip from
one scanout surface to another scanout surface in an atomic
fashion, with display pipeline transaction data that can
describe transformations, pixel processing, and other fea-
tures supported by the vendor’s hardware. Atomicity delin-
eates the latching of the transaction data so the transition is
done at a single point in time without any user-visible
artifacts (i.e., glitching). Application or hardware setup for
the transaction may take several frames to occur.

Clients of a display pipeline transaction (e.g., user appli-
cations and processes) use the IOPresentment framework to
communicate with vendor driver implementations. In one
embodiment, IOPresentment is a user-mode driver (UMD)
that provides a hardware-agnostic representation of the
underlying display pipeline hardware and the physical trans-
port, topology, and endpoint timings. In a second embodi-
ment, [OPresentment is implemented as a kernel level
interface providing similar capabilities. The level of imple-
mentation of IOPresentment within a software hierarchy is
a design choice.

With that background, we turn to FIG. 2, which illustrates,
in block diagram 200, an illustrative software, kernel, and
hardware level architecture diagram according to one or
more embodiments. There are three levels depicted in block
diagram 200. The highest level is the user level (sometimes
referred to as the application layer) and the lowest level is
the hardware level with a kernel level as an interface
between the two. This is a common logical hierarchy used to
describe computer systems but strict delineation of the levels
is not always fixed. In general, an operating system includes
portions that execute and interface between both the user
level and the kernel level. Vendor drivers (e.g., vendor
implementation 230 and vendor driver 237) interface
between kernel level portions (e.g., [Oaccelerator Family
225 and IOGraphics 235 that may be considered part of the
operating system) and actual hardware (e.g., GPU 250).
Hardware devices (e.g., GPU 250) may also have imbedded
software as an additional interface point prior to implement-
ing an actual hardware function. Note that IOFB 236 rep-
resents an Input Output Frame Buffer used to pass data
between IOGraphics 235 and vendor driver 237. IOFB 236
may also be directly accessible by hardware such as GPU
250.

As illustrated in block diagram 200, this example has a
window server process 205 configured to control output to
display devices from one or more user level applications
(not shown). Window server process 205 has multiple com-
ponents to perform different types of functions for these
applications (e.g., Skylight 210, Quartz 211, and CoreDis-
play 215). CoreDisplay 215 is pertinent for this example and
provides interface functions for applications to actual dis-
play devices 260. Note that display devices 260 may be
physical, virtual, directly connected, or remotely connected,
for the purposes of this discussion. Different disclosed
embodiments may be configured to talk to any manner of
display device. CoreDisplay 215 includes IOPresentment
220 configured as disclosed herein, and 10Graphics User
Mode Driver 221 which, for this example, is considered not
to be transactionally based. As shown, each of IOPresent-
ment 220 and IOGraphics User Mode Driver 221 provides
the interface between the user level and the kernel level and

US 11,055,807 B2

5

is configured to talk to either IOAccelerator Family 225 or
10Graphics 235 as appropriate. Note that any number of
IOPresentment 220 instances may exist within window
server 205, for example an instance per GPU 250 detected
for the system or an instance for each display (either real,
virtual, remote, etc.) detected by the operating system. Also
note that GPU 250 may be configured to talk to both vendor
driver 237 and vendor implementation 230 within the con-
text of this disclosure. Also note, within GPU 250 there may
be implemented a set of functions for linearization, color
space correction, gamma correction, etc. as shown by GPU
Display Pipeline 251. The output of GPU Display Pipeline
251, in this example, is responsible for what is ultimately
provided to display 260.

The polymorphic design and implementation of certain
disclosed embodiments of IOPresentment encapsulate the
discovery, communication, and management of transaction-
related resources targeted for visual consumption through a
display pipeline (See FIG. 3). IOPresentment is designed to
interface with real, physical devices associated with a GPU
and IOFrameBuffer and to enable and support non-
IOFrameBuffer associations and/or non-physical devices (or
non-local devices, like a device residing in a remote dis-
play).

Under one embodiment of IOPresentment, window server
205 owns the policy for content updates, except for self-
refresh (when the same data is repeatedly re-consumed to
prevent display decay). In this embodiment, IOPresentment
controls enabling and disabling mirroring and rotation, but
window server 205 owns the policy for when to perform
these operations. For rotation, window server 205 may also
specify the orientation. The underlying drivers, in this
embodiment, may need to implement the functionality
required to support mirroring and rotation in a transactional
fashion.

With reference to FIG. 3 and flowchart 300, IOPresent-
ment and its user clients pass through several phases that are
described according to one disclosed embodiment. An
IOPresentment Discovery Phase is shown at block 305. In
one embodiment, IOPresentment provides a single interface
for user clients to discover the number of logical displays
that are transaction-capable within the system and the asso-
ciation of these logical displays to physical devices. Accord-
ing to this embodiment, to properly support discovery of
GPU functions and transactional support, vendors are
required to implement the following APIs: IOAccelDisplay-
Pipe and an associated function and flag to indicate support
for the transactional display pipeline capability, IOAccelD-
isplayPipeTransaction and an associated function and flag to
indicate support for this API capability. Once support is
determined, the vendor must also provide an API to obtain
display pipeline data (e.g., I[OAccellDisplayPipeData).

An IOPresentment Initialization Phase is shown at block
310. In some disclosed embodiments, IOPresentment goes
through an initialization phase before it can be leveraged.
During initialization, the user clients may choose the desired
display target to apply transactions against. To enable IOPre-
sentment to create I0AccelDisplayPipe objects and other
required support structures for each desired display, the
vendor interface for that display must indicate support for
transactions and provide necessary interfaces to receive
transactions.

Gathering IOPresentment Capabilities

In this embodiment, as shown at block 315, IOPresent-
ment gathers the vendor and system capabilities via a variety
of interfaces for each logical display target and presents
these capabilities to the user client as a single dictionary that

10

15

20

25

30

35

40

45

50

55

60

65

6

represents a logical display. Vendors can access the capa-
bilities that are provided to IOPresentment via the appro-
priate API. These capabilities are valid for the associated
logical display from the time at which they are queried until
any subsequent reconfiguration event. Vendors are advised
to only provide capabilities information for those features
that are supported atomically, or where the associated fea-
ture can be applied to the hardware in a fashion that avoids
visual corruption. The user client may be configured to
provide a visual distraction when using features that are
supported in a non-atomic fashion. User clients utilize these
capabilities to determine what types of features and con-
figurations of features can be leveraged for a transaction.

1OPresentment Runtime Phase (Block 320)

In one example embodiment, during runtime, user clients
create a transaction, bind the transaction resource state to the
transaction, and ultimately submit the transaction for con-
sumption by the vendor implementation. A possible runtime
event flow of a transaction from the user client to vendor
driver implementation is illustrated in block 320. First, at
block 325, user clients analyze the capabilities and deter-
mine what, if any, feature (or configuration) can be lever-
aged. Block 330 indicates that user clients create a transac-
tion and then at block 335 bind surface(s) and/or transaction
resource state(s) to a transaction. At block 340, user clients
submit the transaction. At block 350, the vendor implemen-
tation of an API to submit or perform the transaction may be
called to apply the state to the hardware. At this point the run
time phase 320 is considered complete and flow continues to
block 350.

1OPresentment Termination Phase (Block 350)

After use of IOPresentment has been completed, it may be
desirable to provide a termination phase 350 and free
resources back to the system. To support termination, vendor
implementation changes may not be required.

Display Pipeline Transaction Model

Display Pipeline Transaction Model Terminology

The following terms are used to describe the transaction
model implementation for display pipeline operations
according to one embodiment.

Display Pipeline Transaction—The encapsulation of data
required to perform a transition to a new display pipeline
related state.

Display Pipeline Transaction Data—The data that is used
during the performance of a transaction, such as pixel data,
gamma tables, CSC matrices, pixel format, surface dimen-
sions, and transformation information.

Display Pipeline Feature Blocks—Display pipeline fea-
ture blocks describe at a high level the features and func-
tionality, such as gamma, CSC, linearization, etcetera, that
are found within the display pipeline or display plane.

Display Pipeline—The representation of a single logical
connection to an end-point (a.k.a. glass, simple display, or
complex display). A display pipeline contains several feature
blocks. A display pipeline has one or more display planes,
and by extension, a display pipeline contains one or more
feature blocks that describe high-level features and func-
tionality.

Display Plane—A buffer associated with a display pipe
that contains a representation of the Z-ordered pixels that are
presented to the end-user after the pixels have passed
through any of the display plane and pipeline features. A
display plane contains one or more feature blocks.

Transaction Resource States (see FIG. 4)

In one example embodiment, there are three transaction
resource states although any number of states may be
defined as required. The three states of this example include:

US 11,055,807 B2

7

Ready—a state that indicates the resources have had all
dependencies resolved, and all GPU generation has com-
pleted; Active—a state that indicates the transaction
resources are in use for active scanout; and Complete—a
state that indicates the resources are no longer in use for
active scanout.

Pipeline Flow Stages (see FIG. 4)

As illustrated in timeline 400 of FIG. 4, there are four
pipeline flow stages defined for a submitted transaction
according to one disclosed embodiment. Queue representa-
tions are shown as elements 415, 420, 425, 440, and 445 of
FIG. 4. As illustrated by element 415, a plurality of trans-
actions may be prepared at the client and validated for
submission. Once submitted, the states of the queue entries
progress through the four pipeline flow stages. Wait 420—
the stage that indicates the transaction has been queued
internally in IOAcceleratorFamily, which has successfully
passed a call to validateTransaction(), but has not yet been
provided to the vendor driver via either submitTrans-
action() or performTransaction(). Pending 425—The stage
that indicates the transaction has been provided to the
vendor driver via either submitTransaction() or per-
formTransaction() but has not been processed to the point
where the resources are actively being used for scanout, as
determined by receiving false from isTransactionComplete(
). Live 440—The stage that indicates that the resources are
now actively in use for scanout, as determined by receiving
true from isTransactionComplete(). Finished 445—The
stage that indicates the resources are no longer actively in
use for scanout, and that these resources can be freed.

Display Pipeline Transaction Objects

Transactions may be represented by 10AccelDisplayPi-
peTransaction objects that are created within IOAccelDis-
playPipe::transaction_begin() while the accelerator lock
405 is held. The current user client and accelerator are
associated with the transaction at creation. All data required
by the transaction are contained within a single transaction
object. Transaction objects, by design, are not dependent
upon other transaction objects. Transaction objects contain
all data (such as pixel data, gamma tables, CSC matrices,
pixel format, and surface dimensions) that is required to
perform a transition to a new display pipeline state. This
example embodiment supports two display planes (indexed
by 0 and 1) per display pipe.

Transaction Flow

FIG. 4 also shows how display pipeline transactions are
created and processed. All transactions are encapsulated
within a pair of user-client calls: transaction_begin and
transaction_end (see queue element 415). Between the begin
and end calls, the client can bind transaction data to a
transaction as required or desired. The transaction_begin
call creates an “under construction” transaction object and
places this object in the initial queue 415. After the desired
data has been bound, the user client calls transaction_end,
which dequeues the transaction and dispatches it to the
vendor implementation, where the transaction is processed
by the underlying hardware and drivers. Clients are free to
create a number of transactions, limited by the maximum
size of the queue. The client provides a submission time-
stamp that determines when a given transaction is processed
by the underlying implementation. This enables transactions
to be processed in any order.

The vendor driver first receives a call to validateTrans-
action() to validate the transaction. In this embodiment, this
is the only time during the transaction flow when the user
client can receive an error from the vendor driver regarding
the validity of the transaction and where the vendor driver

10

15

20

25

30

35

40

45

50

55

60

65

8

can safely reject the transaction. If the validation fails, the
user client can modify and resubmit the transaction. If the
validation succeeds, the transaction resources are prepared.
When all the dependencies are resolved for the transaction
resources and all GPU generation has been completed, the
transaction resource state is set to Ready (see element 405
indicating resource states in FIG. 4). At this time the vendor
may be requested to page the resources onto the GPU, if not
already present, via the standard IOAcceleratorFamily pag-
ing mechanism. An IOAccelEventMachine event is created
for the transaction that merges all the resource write events.
The transaction object is then provided to the vendor driver
via submitTransaction() while under the IOAccelerator lock
405 and within the IOAccelDisplayPipe work loop 410. If
the vendor implements submitTransaction(), the vendor
cannot fail to accept the transaction. The transaction object
flows into the Wait queue 420 while under the [OAccelerator
lock 405 and within the IOAccelDisplayPipe work loop 410.
If the vendor does not implement submitTransaction(), the
transaction object flows into the Wait queue 420, where the
vendor will be requested to perform the transaction via
performTransaction(). When the vendor driver is called via
performTransaction(), it is not under the IOAccelerator lock
405, but it is within the IOAccelDisplayPipe work loop 410.

The transaction object presented to the vendor driver via
either submitTransaction() or performTransaction() is
placed in the Pending queue 425. The transaction object
remains in the Pending queue 425 until the vendor returns
true from isTransactionComplete(), which indicates that:
The transaction in the Pending queue 425 has been moved
from a Ready state to an Active state, which indicates the
transaction resources are in use for scanout, The transaction
in the Live queue 440 has been moved to the Finished queue
445, The transaction in the Pending queue 425 has been
moved to the Live queue 440, and The Pending queue 425
is cleared.

The transaction in the Live queue 440 remains in that
queue until the next transaction pushes it from the Live
queue 440 to the Finished queue 445. Transactions in the
Finished queue 445 are cleaned up under both the IOAc-
celerator lock 405 and IOAccelDisplayPipe work loop 410.
Any transaction resources that are no longer in use for active
scanout (i.e., in the Complete state) may be cleaned up. In
some embodiments, CoreDisplay is required to use transac-
tions exclusively, so the vendor driver does not receive swap
requests between transactional and non-transactional imple-
mentations as a design choice.

Vendor Transaction Application

When submitTransaction() or performTransaction() is
called, the transaction object may be provided to the vendor
implementation. The vendor implementation can query the
object for the required resource state and act accordingly to
apply the transaction. In one example embodiment, when the
vendor implementation receives a request to process the
transaction, there are three courses of action:

1. After successfully processing the transaction, the ven-
dor implementation returns a success status.

2. performTransaction() only: If the vendor implemen-
tation cannot process the transaction at the current point in
time, it may return the error code ReturnNotReady. Return-
ing ReturnNotReady does not remove the transaction from
the Pending queue 425.

3. If the event test fails to report that the GPU is done
processing the resources, the timestamp interrupts may be
enabled. After enabling the stamp interrupts to catch any
race condition between stamp interrupt enable and the event
test, the event may be immediately retested for completion.

US 11,055,807 B2

9

After a second failed test that indicates the GPU is still not
done with the resources, the pending transaction may be left
in the Pending queue until the vendor’s implementation
signals that the GPU work associated with the transaction
resources has completed. In this embodiment, it is essential
that the vendor understands that, according to this embodi-
ment, no further transactions are processed until the vendor
driver signals the [OAccelDisplayPipe.

If an invalid state or other limitation prevents the vendor
implementation from processing the transaction, the vendor
may reject the transaction with an appropriate error code.
The transaction is removed from the Pending queue 425, and
no further processing is attempted. Returning an error code
from submitTransaction() or performTransaction() results
in dropping the transaction, which may cause a poor user
experience. Before submitTransaction() or performTrans-
action() are called, the vendor may wish to call the
validateTransaction() API to prevent encountering error
conditions. After the vendor implementation returns a suc-
cess or an error code, the transaction is removed from the
Pending queue 425.

Display Pipeline Feature Block Operation (See FIG. 5)

In some cases, a display pipe may be able to support
L/CSC/G (linearization, color space correction, gamma), but
may not be able to provide atomic control of some blocks
(e.g., gamma). A driver may support a transaction that
ensures an atomic implementation to set (or unset) bypass
for one or more [/CSC/G display pipeline feature blocks,
and the driver must indicate that support in a capability flag.

The BypasslnlineData capability indicates that the data
associated with the bypassed feature must be sent in the
same transaction that enables the bypass, as shown in
example 500 of FIG. 5. The BypasslnlineData transaction
includes: The bypass enable, Corrected frame, and Pipeline
feature block data (such as Gamma LUT or CSC coeffi-
cients). For many implementations, a transaction is latched
to a blanking period. The BypasslnlineData transaction is
preferred to be atomic where an implementation supports
double buffering of the feature data (either in software or
hardware), or the implementation can program the hardware
with the feature data after the feature block has been placed
into a bypass mode.

If the BypassInlineData capability is not available for the
vendor driver, then CoreDisplay generates these transac-
tions, as seen in example 550 of FIG. 5. In example 550, a
first transaction with L/CSC/G flags sets bypass atomic
control of selected function block(s) with a corrected frame.
This may be followed by any number of subsequent trans-
actions, each with a corrected frame. The number of these
frames can be zero. Next is a transaction with pipeline
feature block data (such as Gamma LUT or CSC coeffi-
cients) and a corrected frame. Followed by a final transac-
tion with an uncorrected frame and flags to unset bypass.
These transactions may be latched to the blanking periods.

According to one example embodiment, the following
steps describe transaction support for pixel flow from apps
to the Window Server (205 of FIG. 2) to CoreDisplay (215
of FIG. 2) to the vendor implementation (230 of FIG. 2):

1. IOPresentment obtains the vendor driver capability
flags, including bypass and transaction capabilities.

2. If the vendor driver has the capability to perform all
pipeline feature block processing in a single atomic trans-
action, then CoreDisplay can generate a transaction that
sends an uncorrected frame of pixel data to the vendor driver
and lets it perform feature block processing and generate a
frame ready for display. (Feature block changes can also be
sent without frame data.)

10

20

25

30

35

40

45

50

55

60

65

10

3. If the vendor driver does not have the transaction
capability described in step 2 but does have the Bypassln-
lineData capability, then CoreDisplay should generate these
transactions:

a) A first transaction with corrected pixel data and
L/CSC/G flags to set bypass atomic control of selected
function block(s).

b) A second transaction with uncorrected pixel data (re-
sulting from the first transaction) and flags to unset
bypass.

4. If the vendor driver does not have the BypassInlineData
transaction capability described but does support the bypass
capability without data, then CoreDisplay should generate
these transactions:

a) A first transaction with L/CSC/G flags to set bypass

atomic control of selected function block(s).

b) A second transaction with corrected pixel data.

¢) A third transaction with uncorrected pixel data (result-
ing from the first two transactions) and flags to unset
bypass.

If the vendor driver does not have the transaction capa-
bility described in step 4, then the vendor driver is not used,
and a software solution processes the frame data. Drivers
ensure the transaction succeeds and is applied, or the vali-
dation fails. In case of failure, CoreDisplay applies equiva-
lent operations and submits a new transaction, which may
bypass the IOPresentment blocks. In those cases, CoreDis-
play may use IOPresentment to pre-apply the Night Shift
white point adjustment before sending those frames to
IOPresentment. For such frames, CoreDisplay is likely to
submit transactions to configure unused blocks, so that
frames bypass them.

Display Pipeline Transaction API

10AccelDisplayPipe Class API

To support certain disclosed embodiments, possible
embodiments of APIs are discussed here as examples only.
In one example, the vendor must implement the isTransac-
tionComplete method and either the performTransaction or
submitTransaction method. The vendor has the option to
implement the validateTransaction method to conduct trans-
action validation prior to submission. The vendor can
optionally extend the IOAccelDisplayPipeTransaction class
to include vendor-specific methods and member variables,
and implement corresponding changes to the newDisplay-
PipeTransaction method.

isTransactionComplete

Required implementation by vendor

Determines if a display pipeline transaction has com-
pleted.

(bool) isTransactionComplete
(I0AccelDisplayPipeTransaction*transaction)

Return Value

Returns true if transaction is in the Active state. Returns
false if transaction is not in the Active state. (For a
description of Active state, see section 10.2.1.)

To support this functionality correctly, vendors may need
to manage and track transaction data internally.

Parameters—transaction an object that encapsulates dis-
play pipeline operations.

newDisplayPipeTransaction

Optional implementation by vendor

Creates a new display pipeline transaction.

(I0AccelDisplayPipeTransaction™) newDisplayPipe-
Transaction (void)

Return Value

Returns an object that encapsulates a set of display
pipeline operations.

US 11,055,807 B2

11

Parameters—none

submitTransaction

Required implementation by vendor, if performTransac-
tion is not implemented Enqueue a transaction for
processing by the hardware under the IOAccelerator
lock and the I0AccelDisplayPipe workloop. Vendors
have to manage the fencing of the resources to the
display flip and have access to the transaction’s fEvent,
which is a merge of all the resource write events
associated with the transaction.

(IOReturn) submitTransaction
(I0AccelDisplayPipeTransaction*transaction)

Return Value

Return kIOReturnUnsupported if the transaction is to be
processed via performTransaction.

Return kIOReturnSuccess if the transaction is processed
successfully.

Returning any other error defined in IOKit/IOReturn.h
results in dropping the transaction.

The vendor must not fail this call. Depending on the
vendor architecture, the vendor may need to manage
the enqueue/dequeue of the transition internally to their
driver.

Parameters—transaction an object that encapsulates dis-
play pipeline operations.

performTransaction

Required implementation by vendor, if submitTransaction
is not implemented Enqueue a transaction for process-
ing by the hardware under the IOAccelDisplayPipe
workloop. The IOAccelerator lock is not taken when
this method is called.

(IOReturn) performTransaction
(I0AccelDisplayPipeTransaction*transaction)

Return Value

Returns kIOReturnSuccess if the transaction is processed
successfully.

Returns kIOReturnNotReady if the transaction cannot be
processed at the current point in time.

Returns some other error defined in IOKit/IOReturn.h if
the transaction cannot be processed at all. The trans-
action is removed from the queue, and the vendor has
no further opportunity to process the transaction. Effec-
tively, the transaction is dropped.

Parameters—transaction an object that encapsulates dis-
play pipeline operations.

validateTransaction

Optional implementation by vendor, but strongly recom-
mended

Validate a transaction before it has its resources prepared,
event created, and is enqueued. This is the only chance
for the vendor to intercept and validate vendor-specific
requirements. After validation, the transaction must be
processed without error.

If validateTransaction() is not implemented or if it is
implemented without sync validation, the implementa-
tion must support the fallback behavior described in
section 5.3.6.2 (Table 20). If transaction contains an
invalid sync type, validateTransaction() fails.

(IOReturn) validateTransaction
(I0AccelDisplayPipeTransaction*transaction)

Return Value

Returns kIOReturnSuccess if the transaction is validated.

Parameters—transaction an object that encapsulates dis-
play pipeline operations.

submitFlipBufferTransaction

The vendor does not implement this method

10

15

20

25

30

35

40

45

50

55

60

12

This submits a fixed-function transaction that results in an
allocation of a transaction object, the application of
fixed state (CSC identity matrix),

transaction object onto the tail of the transaction queue.

Return Value

none

Parameters—none

IOAccelEventMachine Class API

enableStamplInterrupt

disableStampInterrupt

Required implementation by vendor

Enable or disable delivery of GPU interrupts for time-
stamp updates to the IOAccelDisplayPipeTransaction
work loop.

(void) enableStamplnterrupt (int32_t stamp_idx) (void)

disableStampInterrupt (int32_t stamp_idx)

Return Value

None

Parameters—stamp_idx The stamp index to enable/dis-
able

In certain embodiments, the vendor must implement
timestamp interrupts for use by the 10AccelDisplayPipe-
Transaction workloop. The transaction event is a merge of
the resource write events contained within the transaction,
and this transaction event is used to fence the GPU utiliza-
tion of the resources to the display flip. If the event test fails
to report that the GPU is done processing the resources, the
timestamp interrupts are enabled. After enabling the time-
stamp interrupts to catch any race condition between time-
stamp interrupt enable and the event test, the event is
immediately retested for completion. After a second failed
test that indicates the GPU is still not done with the
resources, the pending transaction is left in the Pending
queue until the vendor’s implementation signals the GPU
work associated with the transaction resources has com-
pleted. It is essential that the vendor understands that no
further transactions are processed until the vendor driver
calls IOAccelEventMachine::signalStamp() to signal the
I0AccelDisplayPipe.

Vendors that implement submitTransaction() have to
manage the fencing of the GPU resources to their display
engine updates. The fEvent is a protected member of the
I0AccelDisplayPipeTransaction class that allows vendor
drivers to access it.

10AccelDisplayPipeTransaction Class API

The following methods are provided as a reference and
should not be considered limiting in any manner.
getPipeColorMatrix

Returns the associated color matrix, if bound.

(sIOAccelDisplayPipeColorMatrix) getPipeColorMatrix
(void) const

Return Value

A 3x4 matrix of floats.

Parameters

None

Related Definitions

This returns color values in a sIOAccelDisplayPipeColor-
Matrix structure.

typedef struct IOAccelDisplayPipeColorMatrix

float red[4]; float
green[4]; float blue[4];
} sIOAccelDisplayPipeColorMatrix;

US 11,055,807 B2

13

getPipeColorMatrix Args

Returns the extended arguments associated with the color
matrix, if bound. (For details, see ConfigurationID in
section 10.4.)

(sIOAccelDisplayPipeColorMatrixArgs) getPipeColor-
MatrixArgs (void) const

Return Value

An object that describes the color matrix.

Parameters

None

Related Definitions

This returns values in a sIOAccelDisplayPipeColorMa-
trixArgs structure.

typedef struct IOAccelDisplayPipeColorMatrixArgs

uint64_t type; uint64_t
format;
uint64_t configurationID;
} sIOAccelDisplayPipeColorMatrix Args;

getPipePostGammaTable

Returns the associated post-CSC gamma table object
(similar to IOFBSetGamma), if bound. Vendor imple-
mentations may need to convert values to an appropri-
ate hardware format.

(I0AccelDisplayPipeGammaTable™®)
maTable (void) const

Return Value

A wrapper object contains post-CSC gamma entries in a
sIOAccelDisplayPipeGammaTableData structure.

Parameters—None

Related Definitions

The returned IOAccelDisplayPipeGammaTable object
contains a slOAccelDisplayPipeGammaTableData
structure that describes the gamma table.

getPipePostGam-

typedef struct IOAccelDisplayPipeGammaTableData
{
uint32__t count; uint32_t
pad0; uint64_t type;
uint64__t format;
uint64__t configurationID; float
entriesMin;
float entriesMax;
sIOAccelDisplayPipeGammaTableEntry entries[0];
} sIOAccelDisplayPipeGammaTableData;

The sIOAccelDisplayPipeGammaTableData structure has
a pointer to a table that consists of sIOAccelDisplay-
PipeGammaTableEntry entries.

typedef struct IOAccelDisplayPipeGammaTableEntry
float red; float green;
float blue; float
reserved;

} sIOAccelDisplayPipeGammaTableEntry;

getPipePreGammaTable

Returns the associated pre-CSC linearization gamma
table object, if bound. Vendor implementations may
need to convert values to an appropriate hardware
format.

(I0AccelDisplayPipeGammaTable™®)
maTable (void) const

Return Value

A table of floats that contains pre-CSC gamma entries.

getPipePreGam-

w

10

15

20

25

30

35

40

45

55

60

65

14

Parameters—None

Related Definitions

See getPipePostGammaTable.

getPlanelOSurface

Returns the IOSurface object associated with the plane
and stereo index. If bound, an I0Surface and/or IOAc-
celResource may represent the pixel data associated
with a transaction. For example, if the vendor imple-
ments submitFlipBufferTransaction, then no IOSurface
object exists for the associated transaction.

(IOSurface*) getPlanelOSurface (uint32_t planelndex,
uint32_t stereolndex) const

Return Value

The IOSurface associated with the plane and stereo index.

Parameters—planelndex the plane for this transaction;
stereolndex—the stereo index for this transaction

getPlaneResource

Returns the IOAccelResource object associated with the
plane and stereo index. If bound, an IOAccelResource
and/or 10Surface may represent the pixel data associ-
ated with a transaction.

(I0AccelResource*) getPlaneResource (uint32_t pla-
nelndex, uint32_t stereolndex) const

Return Value

The I0AccelResource associated with the plane and ste-
reo index.

Parameters—planelndex the plane for this transaction;
stereolndex—the stereo index for this transaction

getPlaneSrcRect

Returns the source rectangle for the resource associated
with the plane.

(sIOAccelDisplayRect) getPlaneSrcRect (uint32_t pla-
nelndex) const

Return Value

The source rectangle for the resource associated with the
plane.

Parameters—planelndex The plane for this transaction

Related Definitions

The returned sIOAccelDisplayRect structure specifies the
source rectangle.

typedef struct IOAccelDisplayRect

float x; float
y; float w;
float h;
} sIOAccelDisplayRect;

getTransactionDirtyBits

Returns the dirty bits that define what state has been
bound to the transaction. Vendor drivers can use these
to determine what information needs to be pulled from
the transaction object.

(uint64_t) getTransactionDirtyBits (void) const

Return Value

The dirty bits associated with the transaction.

Parameters—None

getTransactionID

Returns the ID associated with this transaction.

(uint32_t) getTransactionID (void) const

Return Value

The transaction ID.

Parameters—None

getTransactionOptions

Returns the options associated with the display pipe that
have been set for the transaction.

US 11,055,807 B2

15
(uint32_t) getTransactionOptions (void) const
Return Value
The transaction options.
Parameters—None
Related Definitions
getTransactionOptions returns elOAccelDisplayPipe-
TransactionOption option values.

enum elOAccelDisplayPipeTransactionOption

{
kIOAccelDisplayPipeTransactionSyncToVBL = 0x01,
kIOAccelDisplayPipeTransactionEnableDPB = 0x02,
kIOAccelDisplayPipeTransactionGammaBypass = 0x04,
kIOAccelDisplayPipeTransactionDPBWeak = 0x08,
kIOAccelDisplayPipeTransactionDPBStrong = 0x10,
kIOAccelDisplayPipeTransactionDPBModeMask =

kIOAccelDisplayPipeTransactionDPBWeak |
kIOAccelDisplayPipeTransactionDPBStrong,

kIOAccelDisplayPipeTransactionSyncToHBL = 0x20,
kIOAccelDisplayPipeTransactionColorMatrixBypass = 0x40,
kIOAccelDisplayPipeTransactionLinearizationBypass = 0x80,
kIOAccelDisplayPipeTransactionGammaBypassInlineData = 0x100,
kIOAccelDisplayPipeTransactionColorMatrixBypassInlineData =
0x200,
kIOAccelDisplayPipeTransactionLinearizationBypassInlineData =
0x400,
kIOAccelDisplayPipeTransactionGammaBypassDisable = 0x800,
kIOAccelDisplayPipeTransactionColorMatrixBypassDisable =
0x1000,
kIOAccelDisplayPipeTransactionLinearizationBypassDisable =
0x2000,

1

The following IOAccelDisplayPipeTransaction methods are
currently unimplemented and unsupported.
getPipeScalerState
Currently unused
(sIOAccelDisplayPipeScaler) getPipeScalerState (void)
const;
Return Value
The scaler associated with the display pipe.
Parameters—None
getPlaneDstRect
Returns the destination rectangle for the associated plane.
(sIOAccelDisplayRect) getPlaneDstRect (uint32_t pla-
nelndex) const
Return Value
The destination rectangle for the resource associated with
the plane.
Parameters—planelndex The plane for this transaction
getPlaneGammaTable
Returns the gamma data for the associated plane.
(I0AccelDisplayPipeGammaTable®) getPlaneGammaT-
able (uint32_t planelndex) const
Return Value
The gamma table object associated to the specified plane,
if bound. Gamma table entries are provided as floats.
Vendor implementations may need to convert table
entry values to an appropriate hardware format.
Parameters—planelndex The plane for this transaction
getPlaneTransactionOptions
Returns the options (see getTransactionOptions) associ-
ated with the display plane that have been set for the
transaction.
(uint32_t) getPlaneTransactionOptions (uint32_t planeln-
dex) const
Return Value
The options associated with the plane that are set for the
transaction.
Parameters—planelndex The plane for this transaction

10

15

20

25

30

35

40

45

50

55

60

65

16
Related Definitions
See getTransactionOptions for returned elOAccelDis-
playPipeTransactionOption option values.
getTimeStamp

Currently unused

(uint64_t) getTimeStamp (void) const;

Return Value

The time of the transaction.

Parameters—None

Referring now to FIG. 6, a simplified functional block
diagram of illustrative multifunction device 600 is shown
according to one embodiment. Multifunction electronic
device 600 may include processor 605, display 610, user
interface 615, graphics hardware 620, device sensors 625
(e.g., proximity sensor/ambient light sensor, accelerometer
and/or gyroscope), microphone 630, audio codec(s) 635,
speaker(s) 640, communications circuitry 645, digital image
capture circuitry 650 video codec(s) 655 (e.g., in support of
digital image capture unit 650), memory 660, storage device
665, and communications bus 670. Multifunction electronic
device 600 may be, for example, a digital camera or a
personal electronic device such as a personal digital assistant
(PDA), personal music player, mobile telephone, or a tablet
computer.

Processor 605 may execute instructions necessary to carry
out or control the operation of many functions performed by
device 600 (e.g., such as the transactional interface for a
display pipeline as disclosed herein). Processor 605 may, for
instance, drive display 610 and receive user input from user
interface 615. User interface 615 may allow a user to interact
with device 600. For example, user interface 615 can take a
variety of forms, such as a button, keypad, dial, a click
wheel, keyboard, display screen and/or a touch screen.
Processor 605 may also, for example, be a system-on-chip
such as those found in mobile devices and may include a
dedicated GPU. Processor 605 may be based on reduced
instruction-set computer (RISC) or complex instruction-set
computer (CISC) architectures or any other suitable archi-
tecture and may include one or more processing cores.
Graphics hardware 620 may be special purpose computa-
tional hardware for processing graphics and/or assisting
processor 605 to process graphics information. In one
embodiment, graphics hardware 620 may include a pro-
grammable GPU.

Image capture circuitry 650 may include lens assembly
680. The lens assembly may have an associated sensor
element 690. Alternatively, two or more lens assemblies may
share a common sensor element. Image capture circuitry 650
may capture still and/or video images. Output from image
capture circuitry 650 may be processed, at least in part, by
video codec(s) 655 and/or processor 605 and/or graphics
hardware 620, and/or a dedicated image processing unit or
pipeline incorporated within image capture circuitry 650.
Images so captured may be stored in memory 660 and/or
storage 665.

Sensor and image capture circuitry 650 may capture still
and video images that may be processed in accordance with
this disclosure, at least in part, by video codec(s) 655 and/or
processor 605 and/or graphics hardware 620, and/or a dedi-
cated image processing unit incorporated within image
capture circuitry 650. Images so captured may be stored in
memory 660 and/or storage 665. Memory 660 may include
one or more different types of media used by processor 605
and graphics hardware 620 to perform device functions. For
example, memory 660 may include memory cache, read-
only memory (ROM), and/or random access memory
(RAM). Storage 665 may store media (e.g., audio, image

US 11,055,807 B2

17

and video files), computer program instructions or software,
preference information, device profile information, and any
other suitable data. Storage 665 may include one more
non-transitory storage mediums including, for example,
magnetic disks (fixed, floppy, and removable) and tape,
optical media such as CD-ROMs and digital video disks
(DVDs), and semiconductor memory devices such as Elec-
trically Programmable Read-Only Memory (EPROM), and
Electrically Erasable Programmable Read-Only Memory
(EEPROM). Memory 660 and storage 665 may be used to
tangibly retain computer program instructions or code orga-
nized into one or more modules and written in any desired
computer programming language. When executed by, for
example, processor 605 such computer program code may
implement one or more of the methods described herein.

ConfigurationID (See FIG. 7)

Third party vendors typically provide hardware specifi-
cations to software vendors that detail the hardware feature
set for their devices. These specifications provide the soft-
ware vendor with the details required to simulate hardware
functionality through other means (for example, shaders).
With the introduction of the IOAccelDisplayPipe transaction
model, vendors and software providers can mutually decide
to implement a vendor-supplied ConfigurationID that
defines a given vendor’s “configuration” and can capture
differing implementations of display pipeline features from
vendor-to-vendor and device-to-device. ConfigurationlD
describes complex features and functionality that cannot be
accurately described with the existing capabilities fields or
in a query function.

In one embodiment, the ConfiguratonID is a vendor-
defined uint64_t token that describes the hardware and the
specific feature. ConfigurationID is best described as an
out-of-code way to document in-code functionality, and the
vendor may implement ConfigurationID support as deter-
mined by the needs of the software vendor and the limita-
tions of the vendor’s hardware. Vendors must document the
ConfigurationID in sufficient detail to allow a software
vendor to leverage the configuration appropriately with
expected results. The exact details of the feature, such as its
limited, expected usage, are to be documented in a manner
that the software vendor may access them. The specifica-
tions, the ConfigurationID, and the association of the Con-
figurationID with a configuration describe to the software
vendor how to best leverage the hardware and how to
prepare the content being passed to the driver via IOPre-
sentment (transaction path) for the specific configuration of
Color Space Correction (CSC), Linearization, and/or
Gamma.

ConfigurationID Definition and Format

As an example, a ConfigurationID may be a 64-bit value
that consists of four 16-bit components: PCI Vendor 1D, PCI
Device ID, PCI Revision ID, and a vendor-supplied ID.
Providing the PCI Vendor ID, PCI Device ID, PCI Revision
1D, and vendor-supplied ID in this fashion allows a software
vendor to quickly perform the appropriate lookups and meet
the needs of both the software vendor and the vendor’s
choice of available functionality. Each vendor has its own
hardware feature set. An individual feature is tied to its
hardware and possibly specific revisions of their hardware.
The first three components (48 bits) of ConfigurationID are
tied to the vendor and the hardware device. The final
component (16 bits), vendor-supplied 1D, is unique to the
software managing the hardware. The values of the first 48
bits are determined by the hardware, but the vendor has
freedom on how to select the last 16 bits. ConfigurationIDs
must be unique and represent a single configuration of CSC,

10

15

20

25

30

35

40

45

50

55

60

65

18

Linearization, or Gamma. It is invalid to have a Configura-
tionlD of the same value that represents two different
configurations. ConfigurationIDs that only differ by the
vendor-supplied 1D (that is, have the same PCI Vendor 1D,
PCI Device ID, and PCI Revision ID, but a different value
in the last 16 bits) specify multiple software configurations
that are supported by a single hardware implementation. In
addition, the vendor may reserve bits in some logical fashion
to identify specific configurations of functionality. For
example, in Table 700, the vendor chooses to use the last 4
bits of the vendor-supplied ID to represent CSC configura-
tions, the next-to-last 4 bits to represent Gamma configura-
tions, and the next 4 bits to represent Linearization configu-
rations, where multiple families or revisions of devices share
the hardware functionality. Also, the vendor can impose the
vendor-supplied 1D bit organization across devices or revi-
sions. For example, table 750 shows two different devices
that have ConfigurationIDs that consistently represent the
same software configuration.

The system and methods described above may be imple-
mented in software, hardware, firmware, or any combination
thereof. The processes are preferably implemented in one or
more computer programs executing on a computer or other
programmable device including a processor, a storage
medium readable by the processor, and input and output
devices. Each computer program can be a set of instructions
(program code) in a code module resident in the random
access memory of the computer. Until required by the
computer, the set of instructions may be stored in another
computer memory (e.g., in a hard disk drive, or in a
removable memory such as an optical disk, external hard
drive, memory card, or flash drive) or stored on another
computer system and downloaded via the Internet or other
network.

Having thus described several illustrative embodiments, it
is to be appreciated that various alterations, modifications,
and improvements will readily occur to those skilled in the
art. Such alterations, modifications, and improvements are
intended to form a part of this disclosure, and are intended
to be within the spirit and scope of this disclosure. While
some examples presented herein involve specific combina-
tions of functions or structural elements, it should be under-
stood that those functions and elements may be combined in
other ways according to the present disclosure to accomplish
the same or different objectives. In particular, acts, elements,
and features discussed in connection with one embodiment
are not intended to be excluded from similar or other roles
in other embodiments. Additionally, elements and compo-
nents described herein may be further divided into additional
components or joined together to form fewer components
for performing the same functions.

The scope of the disclosed subject matter should be
determined with reference to the appended claims, along
with the full scope of equivalents to which such claims are
entitled. In the appended claims, the terms “including” and
“in which” are used as the plain-English equivalents of the
respective terms “comprising” and “wherein.”

What is claimed is:

1. A system comprising:

a processor;

a graphics processing unit (GPU) communicatively
coupled to the processor, the GPU having selectable
GPU hardware features;

a first software module comprising instructions that when
executed by the processor configure the processor to
receive graphics related transaction directives from a
first user-level module via an application program

US 11,055,807 B2

19

interface, wherein the first user-level module enables a
user to select one of the selectable GPU hardware
features for the transaction;

the first software module including instructions that when

executed by the processor bind transaction data with
hardware feature data according to the graphics related
transaction directives,

wherein the transaction data comprises information that

influences the transformation of pixels prior to presen-
tation on a display device, and

wherein the hardware feature data comprises information

regarding the use of the selected GPU hardware fea-
ture;

a graphics pipeline of the GPU configured to:

receive from the first software module a transaction
comprising the transaction data bound to the hard-
ware feature data, and

transition to a new configuration of the graphics pipe-
line in accordance with the transaction at a single
point in time; and

a display for displaying a frame prepared using the new

configuration of the graphics pipeline.

2. The system of claim 1 wherein the transaction data
comprises one or more of pixel data, gamma tables, color
space correction (CSC) matrices, pixel format, surface
dimensions and transformation information.

3. The system of claim 1 wherein the hardware feature
data comprises one or more of GPU gamma features, GPU
color space correction (CSC) features, or GPU linearization
features.

4. The system of claim 1, wherein the first software
module includes instructions that when executed by the
processor cause the processor to utilize a queue mechanism
to manage the transaction data.

5. The system of claim 4, wherein the first software
module including instructions that when executed by the
processor cause the processor to concurrently interface with
a second user-level software module and the first user-level
software module and submit individual transactions for the
first and second user-level software modules to the queue
mechanism.

6. The system of claim 1, wherein the first software
module includes instructions that when executed by the
processor cause the processor to perform a query function to
obtain capability features of the GPU from which the
hardware feature data is obtained.

7. The system of claim 6, wherein the query function
initiate a call to an API that returns information describing
the GPU for capability information retrieved directly from
the GPU.

8. The system of claim 7, wherein the first software
module includes instructions to cause the processor to
initiate the query function a plurality of times to determine
capability information for different features.

9. The system of claim 6, wherein the query function
determines a configuration identifier uniquely indicating a
definition set of capabilities for the GPU.

10. The system of claim 1, wherein the graphics pipeline
is configured to process a queue of transactions through a
plurality of pipeline flow stages including wait, pending,
live, and finished.

11. The system of claim 1, wherein a plurality of instances
of the first software module are configured to execute
concurrently on the system.

12. The system of claim 11, wherein there is a one to one
correspondence between a number of instances of the first

10

20

25

30

40

45

50

55

60

65

20

software module and a number of instances of displays
configured to work in a transactional manner communica-
tively coupled to the system.

13. The system of claim 1, wherein the first software
module is configured to utilize a queue mechanism to
manage the transaction data and the first software module is
further configured to utilize a locking scheme to coordinate
the queue management with a vendor implementation asso-
ciated with the GPU.

14. The system of claim 1, wherein the transaction direc-
tives are received after a transaction validation phase
between a user client and a vendor driver, and after prepa-
ration of transaction resources.

15. A method comprising:

in a system including a graphics processing unit (GPU),

discovering feature data regarding the GPU;
binding the feature data with transaction data according to
transaction directives received through an application
program interface from a user level software module,
wherein the user level software module enables a user
to select a GPU hardware feature for the transaction;

wherein the transaction data comprises information that
influences the transformation of pixels prior to presen-
tation on a display device, and

wherein the feature data comprises information regarding

use of the selected GPU hardware feature;

submitting a transaction to a graphics pipeline of the

GPU, the transaction including the transaction data
bound to the feature data; and

transitioning to a new configuration of the graphics pipe-

line in accordance with the transaction at a single point
in time; and

preparing a frame for display on the display device based

on the new configuration of the graphics pipeline.
16. The method of claim 15, wherein discovering the
feature data comprises receiving one or more configuration
identifiers (IDs).
17. The method of claim 16, wherein discovering the
feature data further comprises applying the one or more
configuration IDs to a look up table and extracting the
feature data thereby.
18. The method of claim 17, wherein the look up table
comprises information describing one or more features of
the GPU and one or more corresponding configuration IDs
of the one or more configuration IDs.
19. The method of claim 17, wherein the lookup table
comprises information regarding features of a plurality of
GPUs.
20. The method of claim of claim 15, wherein submitting
the transaction comprises submitting the transaction to a
queueing mechanism configured to manage a plurality of
transactions.
21. The method of claim 15, wherein the transaction
directives are received after a transaction validation phase
between a user client and a vendor driver, and after prepa-
ration of transaction resources.
22. A non-transitory computer-readable medium storing
computer-readable code executable by one or more proces-
sors to cause the one or more processors to:
discover feature data regarding a graphics processing unit
(GPU);

bind the feature data with transaction data according to
transaction directives received through an application
program interface from a user level software module,
wherein the first user-level module enables a user to
select a GPU hardware feature for the transaction,

US 11,055,807 B2

21

wherein the transaction data comprises information that
influences the transformation of pixels prior to presen-
tation on a display device, and

wherein the feature data comprises information regarding

the use of the selected GPU hardware feature;

submit a transaction to a graphics pipeline of the GPU, the

transaction including the transaction data bound to the
feature data;

transition to a new configuration of the graphics pipeline

in accordance with the transaction at a single point in
time; and

prepare a frame for display on the display device based on

the new configuration of the graphics pipeline.

23. The non-transitory computer-readable medium of
claim 22, wherein the computer-readable code includes
code, when executed by the one or more processors, causes
the one or more processors to obtain the feature data, at least
in part, using one or more configuration identifiers (IDs).

24. The non-transitory computer-readable medium of
claim 22, wherein the computer-readable code, when
executed by the one or more processors, causes the one or
more processors to discover the feature data, at least in part,

22

by applying the one or more configuration IDs to a look up
table and extract feature data thereby.

25. The non-transitory computer-readable medium of
claim 24, wherein the look up table comprises information
describing one or more features of the GPU and one or more
corresponding configuration IDs of the one or more con-
figuration IDs.

26. The non-transitory computer-readable medium of
claim 24, wherein the lookup table comprises information
regarding features of a plurality of GPUs.

27. The non-transitory computer-readable medium of
claim 22, wherein the computer-readable code, when
executed by the one or more processors, causes the one or
more processors to submit the transaction to a queueing
mechanism configured to manage a plurality of transactions.

28. The non-transitory computer-readable medium of
claim 22, wherein the computer-readable code, when
executed by the one or more processors, causes the one or
more processors to receive the transaction directives after a
transaction validation phase between a user client and a
vendor driver, and after preparation of transaction resources.

#* #* #* #* #*

