
US011055807B2

(12) United States Patent (10) Patent No .: US 11,055,807 B2
(45) Date of Patent : Jul . 6 , 2021 Parke et al .

(56) References Cited (54) METHOD AND SYSTEM FOR A
TRANSACTIONAL BASED DISPLAY
PIPELINE TO INTERFACE WITH
GRAPHICS PROCESSING UNITS

U.S. PATENT DOCUMENTS

7,839,410 B1 * 11/2010 Brown

(71) Applicant : Apple Inc. , Cupertino , CA (US)
G06T 15/04

345/541
G06F 11/3664

709/217
8,001,531 B1 * 8/2011 Rideout

(72) Inventors : Bruce A. Parke , Tracy , CA (US) ;
Maria A. Tovar , Atherton , CA (US) (Continued)

(73) Assignee : Apple Inc. , Cupertino , CA (US) OTHER PUBLICATIONS

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 22 days .

Foley , T. , Hanrahan , P. 2011 , “ Spark : Modular , Composable Shaders
for Graphics Hardware , " ACM Trans . Graph . 30 , 4 , Article 107 (Jul .
2011) , 12 pages , DOI = 10.1145 / 1964921.1965002 http : //doi.acm .
org / 10.1145 / 1964921.1965002 .

(Continued) (21) Appl . No .: 15 / 979,139

(22) Filed : May 14 , 2018 Primary Examiner Sarah Le
(74) Attorney , Agent , or Firm - Blank Rome LLP

(65) Prior Publication Data

US 2018/0357746 A1 Dec. 13 , 2018
Related U.S. Application Data

(60) Provisional application No. 62 / 518,401 , filed on Jun .
12 , 2017 .

up (51) Int . Ci .
G06T 1/20 (2006.01)
G06F 9/46 (2006.01)
G06F 9/54 (2006.01)
G06F 9/448 (2018.01)
GOOF 16/901 (2019.01)

(52) U.S. CI .
CPC GO6T 1/20 (2013.01) ; G06F 9/448

(2018.02) ; G06F 9/466 (2013.01) ; G06F
9/546 (2013.01) ; G06F 16/9017 (2019.01)

(58) Field of Classification Search
None
See application file for complete search history .

(57) ABSTRACT
Interfacing with a graphics processing unit (GPU) in a
computer system in a transactional manner is disclosed .
Discovering feature data regarding the GPU includes deter
mining if the GPU understands transactional - based commu
nication and may be determined by query or by using a look

table (LUT) containing one or more configuration iden
tifiers . Transactions include information including directives
to be performed by the GPU and data on which to perform
the directives . Transactions may be provided through an
application program interface from a user level software
module or possibly at the kernel level of an operating
system . Transactions may be applied as atomic operations at
a discrete point in time to prevent visible glitching or other
undesirable display artifacts from being discernable on a
display device (e.g. , directly connected monitor or remote
display device) .

28 Claims , 7 Drawing Sheets
DISPLAY PIPELINE (+ 1GH LEVEL

108

105

120
APPUCATION APPLICATION

BACKING
STORE

130

106 DITHER
SITES APPUCATION

;

APPLICATION
BACKING
STOSE

BIXE E FORNAT
PIXEL RAMIFER
RASTERIZANIC

TRASMEXT OPERAJGNS
135

107 ASSENSY
SUNTER APPUCATION APPLICATION

BACKING
STOSE

40

FRAME
il BUFFER

145

CON
BACXENO

PROCESSING

150

DISPLAY

US 11,055,807 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

8,854,383 B2
9,064,322 B1 *

2008/0001960 A1 *

10/2014 Tsai
6/2015 Wyatt
1/2008 Chen

G06F 3/1438
G06T 15/04

345/582
G06T 1/20

345/522
2010/0110089 A1 * 5/2010 Paltashev

2011/0242118 A1
2012/0162234 A1
2015/0348224 A1
2016/0259757 A1 *
2017/0004647 Al *
2017/0140572 A1

10/2011 Bolz
6/2012 Blinzer
12/2015 Avkarogullari
9/2016 Metzgen
1/2017 Grossman
5/2017 Apodaca

G06F 9/3851
G06T 1/60

OTHER PUBLICATIONS

Fung , et al . , “ Hardware Transactional Memory for GPU Architec
tures , ” MICRO ’11 , Dec. 3-7 , 2011 , Porto Alegre , Brazil .
International Search Report and Written Opinion received in PCT
Application No. PCT / US2018 / 035115 dated Aug. 3 , 2018 .
Sandy , Matt “ DirectX 12 ” , Mar. 20 , 2014 (Mar. 20 , 2014) , pp . 1-19 ,
XP002742458 , URL : http : //blogs.msdn.com/b/directx/archive/2014/
03 / 20 / directx - i2.aspx .
Widawsky , Ben “ 915 Hardware Contexts (and some bits about
batchbuffers) ” , Jan. 1 , 2013 (Jan. 1 , 2013) , XP055495361 , URL : https : //
bwidawsk.net/blog/index.php/2013/01/i915-hardware-contexts-and
sorne - bits - about - batchbuffers .

* cited by examiner

U.S. Patent Jul . 6 , 2021 Sheet 1 of 7 US 11,055,807 B2

DISPLAY PIPELINE (HIGH LEVEL)
100

APPLICATION
130

STORE

DITHER /

APPUCATION
2

APPLICATION
BACXING

PIXEL FORMAT
PIXEL TRANSFER
RASTERIIATION

FRAGMENT OPERATIONS

ASSEMBLY
APPLICATION

140
STORE

FRAME
BUFFER

GPU

PROCESSING

150

DISPLAY

205

210

200

" PROCESS " WINDOW SERVER

U.S. Patent

SKYLIGHT

215

QUARE

221

COREDISPLAY

IOGRAPHICS USER MODE DRIVER

OPRESENTMENT
TOPRESENTMENT

Jul . 6 , 2021

220

220

USER LEVEL

2257

230

KERNEL LEVEL

OGRAPHICS

JOACCELERATOR
235

TOACCELERATOR FAMILY

235 236
237

230

VENDOR IMPLEMENTATION

VENDOR DRIVER

IMPLEMENTATION

Sheet 2 of 7

KERNEL LEVEL HARDWARE LEVEL

GPU

250

DISPLAY

DISPLAY

GPU DISPLAY PIPELINE 251

AM

260

260

US 11,055,807 B2

FIG . 2

U.S. Patent Jul . 6 , 2021 Sheet 3 of 7 US 11,055,807 B2 2

300

HARDWARE DISCOVERY PHASE
305

INITIALIZATION PHASE
310

GATHER CAPABILITES

RUNTIME PHASE
320

ANALYZE AVAILABLE CAPABILITES
325

CREATE TRANSACTION
330

BIND TRANSACTION AND DATA
335

SUBMIT TRANSACTION
340

VENDOR IMPLEMENTATION APPLIES STATE TO
HARDWARE

345

TERMINATION PHASE
350

FIG . 3

U.S. Patent

w

IOAccelerator
transaction begin

IOAccelDisplayPipe

Jul . 6 , 2021

validate Transaction

workloop , 410 }

Read

perform Transaction
-425
is TransactionComplete

Sheet 4 of 7

Pending

} } w

Complete

445

405

US 11,055,807 B2

405

FIG . 4

GAMMA BYPASS FOLLOWED BY DATA

TRANSACTION

2

U.S. Patent

UNCORRECTED RGB

CORRECTED 868

UNCORRECTED 868

SET BYPASS

UNSET BYPASS

Jul . 6 , 2021

550

BYPASS AND DATA AS SEPARATE TRANSACTIONS

TRANSACTION

... N

... N + 2 INCORRECTED

CORRECTED

CORRECTED

CORRECTED

UNCORRECTED RGB

Sheet 5 of 7

RGB

SET BYPASS

UNSET BYPASS

US 11,055,807 B2

FIG . 5

600

SPEAKERS 640

USER INTERFACE 615

U.S. Patent

DISPLAY 610

AUDIO

MICROPHONE 630

PROCESSOR 605

635

Jul . 6 , 2021

LENS 680

SENSOR ELEMENT 690

DEVICE SENSORS 625

GRAPHICS HARDWARE 620

IMAGE CAPTURE CIRCUITRY 650

Sheet 6 of 7

670

COMM'N CIRCUITRY 645

VIDEO CODEC 655

MEMORY 660

STORAGE 665

US 11,055,807 B2

FIG . 6

EXAMPLE CONFIGURATION IDS FOR THE SAME HARDWARE CONFIGURATION

U.S. Patent

ConfigurationID

Configuration Specification / Database

0x106b 1625 0009 0001 OxiQob 1626 0009 0002 Ox1060 . 1624 0009 0004 0x106b 1621 0009 0010 0x106b 1626 0009 0020 0x1000 1629 0009 0100

CSC " B " CSC " C
Gamma " G Gamma " H

Linearization " L "

Jul . 6 , 2021

EXAMPLE CONFIGURATION IDS FOR DIFFERENT DEVICES

Sheet 7 of 7

ConfigurationID

Configuration Specification / Database

0x106b 160e 0009 0001 Qx106b 160e 0009 0002 0x106b 160e 0009 0010 Ox106b 16la 0009 0001 0x106b 161a 0009 0002 0x106b 1612 0009 0010

Gamma " G "
CSC " A " CSC " B "

Gamma " G "

US 11,055,807 B2

**
FIG . 7

5

US 11,055,807 B2
1 2

METHOD AND SYSTEM FOR A a directly connected display (e.g. , via cable) or a remotely
TRANSACTIONAL BASED DISPLAY connected display (e.g. , via network or wireless communi
PIPELINE TO INTERFACE WITH cation technology) .
GRAPHICS PROCESSING UNITS

BRIEF DESCRIPTION OF THE DRAWINGS
BACKGROUND

FIG . 1 shows , in block diagram form , a high level
The present application generally relates to a transactional interaction of user level applications and their interaction

display pipeline to interface with one or more graphics with a display pipeline to present data on a display device
processing units (GPUs) . 10 according to one or more embodiments .

Conventional display pipelines are not based on a trans FIG . 2 shows , in block diagram form , an illustrative
actional interface to a GPU and do not utilize atomic display software , kernel , and hardware level architecture diagram
feature processing . In a conventional display pipeline , the according to one or more embodiments .

feature request of the GPU and the data to be acted upon by 15 capabilities of a GPU and performing graphics processing FIG . 3 shows , in flowchart form , a method for discovering
the GPU with that feature are provided independently . In using encapsulated transactions submitted to the GPU other words , the GPU is given a set of data and separately according to one or more embodiments . given a command to apply to that data . FIG . 4 shows one possible timeline and associated queu Further , historically displays have included one or more ing implementation to process graphical transactions
blanking intervals such as a horizontal blanking interval and 20 according to one or more embodiments .
a vertical blanking interval . In a raster graphics display , the FIG . 5 shows two example diagrams , the first showing a
vertical blanking interval (VBI) , also known as the vertical gamma bypass followed by data and the second showing
interval or VBLANK , is the time between the end of the final bypass and data as separate transactions according to one or
line of a frame or field and the beginning of the first line of more embodiments .
the next frame . During the VBI , the incoming data stream is 25 FIG . 6 shows , in block diagram form , a simplified mul
not displayed on the screen . In current displays there may tifunctional device according to one or more embodiments .
not be a required blanking interval because they are not FIG . 7 shows , in table form , examples of configuration
based on raster scanning . However , there may be a defined identifiers for the same hardware or different devices accord
dead period during which display memory may be updated ing to one or more embodiments .
without updating the display so that a user is not presented 30
with undesirable artifacts of the update process . DETAILED DESCRIPTION

SUMMARY Disclosed are a system , computer readable media , and
method for providing a framework , generally referred to as

Various embodiments disclosed herein are generally 35 IOPresentment , and a set of APIs to interact with a GPU for
directed to methods and systems for a transactional interface graphical processing using a transactional model . According
(e.g. , display pipeline) to a graphics processing unit (GPU) . to one or more embodiments , the techniques include a
Transactions include a combination of feature and data description of how graphics drivers support the display
representing a unit of work for the GPU . Transactions may pipeline to determine what colors are viewed on displays
be presented via a queue mechanism and processed in an 40 and on printed materials . Features that may be supported by
atomic fashion at a discrete point in time to avoid visible the vendor's (e.g. , the GPU vendor's) hardware include but
artifacts on a display device . Transactions may be provided are not limited to : pixel format of the application data and
from a user level program interface or may be created within assembly buffer ; scanout buffer characteristics (pixel format ,
a kernel function of an operating system . GPU features and type , and depth) ; gamma correction tables ; precision of what
capabilities may be determined via one or more query 45 is sent over the cable from the system to the display ; and
functions to determine capabilities iteratively or by using a display characteristics (dithering , depth , and color gamut) .
look up table containing configuration identifiers tied to In different embodiments it may be desirable that the graph specific capabilities of a GPU . ics driver should support several pixel formats , scanout

In one embodiment , a method for transactional interaction buffer configurations , gamma correction tables , and display
with a GPU is described . The method may be implemented 50 color modes and depths . Format conversions between buf
in a system comprising a GPU and may include discovering fers and dithering between buffers should be supported . If
feature data regarding the GPU , binding the feature data necessary , output from the scanout buffer may be converted
with transaction data according to directives received to a format supported by the display itself .
through an application program interface (API) from a user The following paragraphs address how to specify the
level software module , wherein the transaction data com- 55 transition to a new display pipeline state as a transaction
prises information that influences the transformation of (e.g. , a transactional interface to a GPU) . In this discussion ,
pixels prior to presentation on a display device , and wherein references will be made to APIs designed to perform certain
the feature data comprises information regarding the use of functions . Examples of these APIs are provided throughout
features of the GPU ; submitting the transaction to a graphics this disclosure as appropriate to facilitate with explanation
pipeline , the transaction including the transaction data 60 of details for example embodiments .
bound to the feature data ; and processing the transaction by The above - mentioned transaction contains a combination
using GPU features according to the feature data to process of display pipeline data (e.g. , pixels , gamma , or color
the transaction data according to the transaction . matrices) to be applied at a single point in time without

In another embodiment , the method may be embodied in visible glitching on the display device . First the IOPresent
computer executable program code and stored in a non- 65 ment framework will be introduced . Next will be a discus
transitory storage device . In yet another embodiment , the sion on the display pipeline transaction model and its API .
method may be implemented in a processing device having Finally , a description of the ConfigurationID will be pre

US 11,055,807 B2
3 4

sented . The ConfigurationID contains display pipeline IOPresentmentFramework
inputs , outputs , and behavior , so vendor drivers can express As disclosed herein , a " display pipeline transaction ” rep
specific features of their hardware and implementation that resents encapsulation of a feature and the data required to
do not fit within the descriptors of the hardware API query perform a specific transition from the current display pipe
command key as explained herein . 5 line related state to a new display pipeline related state for

In the following description , for purposes of explanation , an associated IOAcclerator Family (See 225 of FIG . 2) . One
numerous specific details are set forth in order to provide a significant benefit of a transaction is to be able to flip from
thorough understanding of the disclosed concepts . As part of one scanout surface to another scanout surface in an atomic
this description , some of this disclosure's drawings repre- fashion , with display pipeline transaction data that can
sent structures and devices in block diagram form in order 10 describe transformations , pixel processing , and other fea
to avoid obscuring the novel aspects of the disclosed tures supported by the vendor's hardware . Atomicity delin
embodiments . Further , as part of this description , some of eates the latching of the transaction data so the transition is
this disclosure's drawings may be provided in the form of a done at a single point in time without any user - visible
flow diagram . The boxes in any particular flow diagram may artifacts (i.e. , glitching) . Application or hardware setup for
be presented in a particular order . However , it should be 15 the transaction may take several frames to occur .
understood that the particular flow of any flow diagram is Clients of a display pipeline transaction (e.g. , user appli
used only to exemplify one embodiment . In other embodi- cations and processes) use the IOPresentment framework to
ments , any of the various components depicted in the flow communicate with vendor driver implementations . In one
diagram may be deleted , or the components may be per- embodiment , IOPresentment is a user - mode driver (UMD)
formed in a different order , or even concurrently . In addition , 20 that provides a hardware - agnostic representation of the
other embodiments may include additional steps not underlying display pipeline hardware and the physical trans
depicted as part of the flow diagram . The language used in port , topology , and endpoint timings . In a second embodi
this disclosure has been principally selected for readability ment , IOPresentment is implemented as a kernel level
and instructional purposes , and may not have been selected interface providing similar capabilities . The level of imple
to delineate or circumscribe the disclosed subject matter . 25 mentation of IOPresentment within a software hierarchy is
Reference in this disclosure to " one embodiment ” or to " an a design choice .
embodiment ” means that a particular feature , structure , or With that background , we turn to FIG . 2 , which illustrates ,
characteristic described in connection with the embodiment in block diagram 200 , an illustrative software , kernel , and
is included in at least one embodiment , and multiple refer- hardware level architecture diagram according to one or
ences to " one embodiment ” or to “ an embodiment ” should 30 more embodiments . There are three levels depicted in block
not be understood as necessarily all referring to the same diagram 200. The highest level is the user level (sometimes
embodiment or to different embodiments . referred to as the application layer) and the lowest level is

It should be appreciated that in the development of any the hardware level with a kernel level as an interface
actual implementation (as in any development project) , between the two . This is a common logical hierarchy used to
numerous decisions must be made to achieve the develop- 35 describe computer systems but strict delineation of the levels
ers ' specific goals (e.g. , compliance with system- and busi- is not always fixed . In general , an operating system includes
ness - related constraints) , and that these goals will vary from portions that execute and interface between both the user
one implementation to another . It will also be appreciated level and the kernel level . Vendor drivers (e.g. , vendor
that such development efforts might be complex and time implementation 230 and vendor driver 237) interface
consuming , but would nonetheless be a routine undertaking 40 between kernel level portions (e.g. , IOaccelerator Family
for those of ordinary skill in the art of image capture having 225 and IOGraphics 235 that may be considered part of the
the benefit of this disclosure . operating system) and actual hardware (e.g. , GPU 250) .

Referring now to FIG . 1 , block diagram 100 illustrates a Hardware devices (e.g. , GPU 250) may also have imbedded
high level display pipeline and its associated components software as an additional interface point prior to implement
according to one or more disclosed embodiment . Applica- 45 ing an actual hardware function . Note that IOFB 236 rep
tions 105 , 106 , and 107 represent distinct user applications resents an Input Output Frame Buffer used to pass data
executing at a user level of a computer system hierarchy . between IOGraphics 235 and vendor driver 237. IOFB 236
Each of applications 105 , 106 , and 107 has an associated may also be directly accessible by hardware such as GPU
application backing store 110 , 111 , and 112 respectively . 250 .
Each application backing store contains information pertain- 50 As illustrated in block diagram 200 , this example has a
ing to graphical information that may be presented as window server process 205 configured to control output to
appropriate on display 150. Each of the application backing display devices from one or more user level applications
stores 110 , 111 , and 112 are communicatively coupled to (not shown) . Window server process 205 has multiple com
GPU 120 , which includes functions for pixel format , pixel ponents to perform different types of functions for these
transfer , rasterization , and fragment operations . These func- 55 applications (e.g. , Skylight 210 , Quartz 211 , and CoreDis
tions are examples only and GPU 120 is not limited to these play 215) . CoreDisplay 215 is pertinent for this example and
functions . A dither / filter function is illustrated at block 130 provides interface functions for applications to actual dis
with a bi - directional communication channel to GPU 120 . play devices 260. Note that display devices 260 may be
Assembly buffer 135 is shown , in this embodiment , with physical , virtual , directly connected , or remotely connected ,
communication channels to the dither / filter function 130 and 60 for the purposes of this discussion . Different disclosed
GPU 120. Assembly buffer 135 may contain data in a float embodiments may be configured to talk to any manner of
pixel format . Frame buffer 140 receives data from assembly display device . CoreDisplay 215 includes IOPresentment
buffer 135 in a frame buffer format after it has been 220 configured as disclosed herein , and IOGraphics User
processed by the GPU . Block 145 illustrates GPU backend Mode Driver 221 which , for this example , is considered not
processing , which may include dithering or gamma correc- 65 to be transactionally based . As shown , each of IOPresent
tion functions applied prior to ultimate display in display ment 220 and IOGraphics User Mode Driver 221 provides
format on display 150 . the interface between the user level and the kernel level and

US 11,055,807 B2
5 6

is configured to talk to either IOAccelerator Family 225 or represents a logical display . Vendors can access the capa
IOGraphics 235 as appropriate . Note that any number of bilities that are provided to IOPresentment via the appro
IOPresentment 220 instances may exist within window priate API . These capabilities are valid for the associated
server 205 , for example an instance per GPU 250 detected logical display from the time at which they are queried until
for the system or an instance for each display (either real , 5 any subsequent reconfiguration event . Vendors are advised
virtual , remote , etc.) detected by the operating system . Also to only provide capabilities information for those features
note that GPU 250 may be configured to talk to both vendor that are supported atomically , or where the associated fea
driver 237 and vendor implementation 230 within the con- ture can be applied to the hardware in a fashion that avoids
text of this disclosure . Also note , within GPU 250 there may visual corruption . The user client may be configured to
be implemented a set of functions for linearization , color 10 provide a visual distraction when using features that are
space correction , gamma correction , etc. as shown by GPU supported in a non - atomic fashion . User clients utilize these
Display Pipeline 251. The output of GPU Display Pipeline capabilities to determine what types of features and con
251 , in this example , is responsible for what is ultimately figurations of features can be leveraged for a transaction .
provided to display 260 . IOPresentment Runtime Phase (Block 320)
The polymorphic design and implementation of certain 15 In one example embodiment , during runtime , user clients

disclosed embodiments of IOPresentment encapsulate the create a transaction , bind the transaction resource state to the
discovery , communication , and management of transaction- transaction , and ultimately submit the transaction for con
related resources targeted for visual consumption through a sumption by the vendor implementation . A possible runtime
display pipeline (See FIG . 3) . IOPresentment is designed to event flow of a transaction from the user client to vendor
interface with real , physical devices associated with a GPU 20 driver implementation is illustrated in block 320. First , at
and IOFrameBuffer and to enable and support non- block 325 , user clients analyze the capabilities and deter
IOFrameBuffer associations and / or non - physical devices (or mine what , if any , feature (or configuration) can be lever
non - local devices , like a device residing in a remote dis- aged . Block 330 indicates that user clients create a transac
play) tion and then at block 335 bind surface (s) and / or transaction

Under one embodiment of IOPresentment , window server 25 resource state (s) to a transaction . At block 340 , user clients
205 owns the policy for content updates , except for self- submit the transaction . At block 350 , the vendor implemen
refresh (when the same data is repeatedly re - consumed to tation of an API to submit or perform the transaction may be
prevent display decay) . In this embodiment , IOPresentment called to apply the state to the hardware . At this point the run
controls enabling and disabling mirroring and rotation , but time phase 320 is considered complete and flow continues to
window server 205 owns the policy for when to perform 30 block 350 .
these operations . For rotation , window server 205 may also IOPresentment Termination Phase (Block 350)
specify the orientation . The underlying drivers , in this After use of IOPresentment has been completed , it may be
embodiment , may need implement the functionality desirable to provide a termination phase 350 and free
required to support mirroring and rotation in a transactional resources back to the system . To support termination , vendor
fashion . 35 implementation changes may not be required .

With reference to FIG . 3 and flowchart 300 , IOPresent- Display Pipeline Transaction Model
ment and its user clients pass through several phases that are Display Pipeline Transaction Model Terminology
described according to one disclosed embodiment . An The following terms are used to describe the transaction
IOPresentment Discovery Phase is shown at block 305. In model implementation for display pipeline operations
one embodiment , IOPresentment provides a single interface 40 according to one embodiment .
for user clients to discover the number of logical displays Display Pipeline Transaction — The encapsulation of data
that are transaction - capable within the system and the asso- required to perform a transition to a new display pipeline
ciation of these logical displays to physical devices . Accord- related state .
ing to this embodiment , to properly support discovery of Display Pipeline Transaction Data — The data that is used
GPU functions and transactional support , vendors are 45 during the performance of a transaction , such as pixel data ,
required to implement the following APIs : IOAccelDisplay- gamma tables , CSC matrices , pixel format , surface dimen
Pipe and an associated function and flag to indicate support sions , and transformation information .
for the transactional display pipeline capability , IOAccelD- Display Pipeline Feature Blocks Display pipeline fea
isplayPipe Transaction and an associated function and flag to ture blocks describe at a high level the features and func
indicate support for this API capability . Once support is 50 tionality , such as gamma , CSC , linearization , etcetera , that
determined , the vendor must also provide an API to obtain are found within the display pipeline or display plane .
display pipeline data (e.g. , IOAccellDisplayPipe Data) . Display Pipeline — The representation of a single logical
An IOPresentment Initialization Phase is shown at block connection to an end - point (a.k.a. glass , simple display , or

310. In some disclosed embodiments , IOPresentment goes complex display) . A display pipeline contains several feature
through an initialization phase before it can be leveraged . 55 blocks . A display pipeline has one or more display planes ,
During initialization , the user clients may choose the desired and by extension , a display pipeline contains one or more
display target to apply transactions against . To enable IOPre- feature blocks that describe high - level features and func
sentment to create IOAccelDisplayPipe objects and other tionality .
required support structures for each desired display , the Display Plane — A buffer associated with a display pipe
vendor interface for that display must indicate support for 60 that contains a representation of the Z - ordered pixels that are
transactions and provide necessary interfaces to receive presented to the end - user after the pixels have passed
transactions . through any of the display plane and pipeline features . A

Gathering IOPresentment Capabilities display plane contains one or more feature blocks .
In this embodiment , as shown at block 315 , IOPresent- Transaction Resource States (see FIG . 4)

ment gathers the vendor and system capabilities via a variety 65 In one example embodiment , there are three transaction
of interfaces for each logical display target and presents resource states although any number of states may be
these capabilities to the user client as a single dictionary that defined as required . The three states of this example include :

US 11,055,807 B2
7 8

Ready state that indicates the resources have had all can safely reject the transaction . If the validation fails , the
dependencies resolved , and all GPU generation has com- user client can modify and resubmit the transaction . If the
pleted ; Active a state that indicates the transaction validation succeeds , the transaction resources are prepared .
resources are in use for active scanout ; and Completea When all the dependencies are resolved for the transaction
state that indicates the resources are no longer in use for 5 resources and all GPU generation has been completed , the
active scanout . transaction resource state is set to Ready (see element 405

Pipeline Flow Stages (see FIG . 4) indicating resource states in FIG . 4) . At this time the vendor
As illustrated in timeline 400 of FIG . 4 , there are four may be requested to page the resources onto the GPU , if not

pipeline flow stages defined for a submitted transaction already present , via the standard IOAcceleratorFamily pag
according to one disclosed embodiment . Queue representa- 10 ing mechanism . An IOAccelEventMachine event is created
tions are shown as elements 415 , 420 , 425 , 440 , and 445 of for the transaction that merges all the resource write events .
FIG . 4. As illustrated by element 415 , a plurality of trans- The transaction object is then provided to the vendor driver
actions may be prepared at the client and validated for via submit Transaction () while under the IOAccelerator lock
submission . Once submitted , the states of the queue entries 405 and within the IOAccelDisplayPipe work loop 410. If
progress through the four pipeline flow stages . Wait 420— 15 the vendor implements submitTransaction () , the vendor
the stage that indicates the transaction has been queued cannot fail to accept the transaction . The transaction object
internally in IOAcceleratorFamily , which has successfully flows into the Wait queue 420 while under the IOAccelerator
passed a call to validate Transaction () , but has not yet been lock 405 and within the IOAccelDisplayPipe work loop 410 .
provided to the vendor driver via either submitTrans- If the vendor does not implement submitTransaction () , the
action () or perform Transaction () . Pending 425 — The stage 20 transaction object flows into the Wait queue 420 , where the
that indicates the transaction has been provided to the vendor will be requested to perform the transaction via
vendor driver via either submitTransaction () or per- performTransaction () . When the vendor driver is called via
formTransaction () but has not been processed to the point performTransaction () , it is not under the IOAccelerator lock
where the resources are actively being used for scanout , as 405 , but it is within the IOAccelDisplayPipe work loop 410 .
determined by receiving false from is Transaction Complete (25 The transaction object presented to the vendor driver via
) . Live 440 — The stage that indicates that the resources are either submitTransaction () or perform Transaction () is
now actively in use for scanout , as determined by receiving placed in the Pending queue 425. The transaction object
true from is Transaction Complete () . Finished 445 — The remains in the Pending queue 425 until the vendor returns
stage that indicates the resources are no longer actively in true from is Transaction Complete () , which indicates that :
use for scanout , and that these resources can be freed . 30 The transaction in the Pending queue 425 has been moved

Display Pipeline Transaction Objects from a Ready state to an Active state , which indicates the
Transactions may be represented by IOAccelDisplayPi- transaction resources are in use for scanout , The transaction

peTransaction objects that are created within IOAccelDis- in the Live queue 440 has been moved to the Finished queue
playPipe :: transaction_begin () while the accelerator lock 445 , The transaction in the Pending queue 425 has been
405 is held . The current user client and accelerator are 35 moved to the Live queue 440 , and The Pending queue 425
associated with the transaction at creation . All data required is cleared .
by the transaction are contained within a single transaction The transaction in the Live queue 440 remains in that
object . Transaction objects , by design , are not dependent queue until the next transaction pushes it from the Live
upon other transaction objects . Transaction objects contain queue 440 to the Finished queue 445. Transactions in the
all data (such as pixel data , gamma tables , CSC matrices , 40 Finished queue 445 are cleaned up under both the IOAc
pixel format , and surface dimensions) that is required to celerator lock 405 and IOAccelDisplayPipe work loop 410 .
perform a transition to a new display pipeline state . This Any transaction resources that are no longer in use for active
example embodiment supports two display planes (indexed scanout (i.e. , in the Complete state) may be cleaned up . In
by 0 and 1) per display pipe . some embodiments , CoreDisplay is required to use transac

Transaction Flow 45 tions exclusively , so the vendor driver does not receive swap
FIG . 4 also shows how display pipeline transactions are requests between transactional and non - transactional imple

created and processed . All transactions are encapsulated mentations as a design choice .
within a pair of user - client calls : transaction_begin and Vendor Transaction Application
transaction_end (see queue element 415) . Between the begin When submitTransaction () or performTransaction () is
and end calls , the client can bind transaction data to a 50 called , the transaction object may be provided to the vendor
transaction as required or desired . The transaction_begin implementation . The vendor implementation can query the
call creates an “ under construction ” transaction object and object for the required resource state and act accordingly to
places this object in the initial queue 415. After the desired apply the transaction . In one example embodiment , when the
data has been bound , the user client calls transaction_end , vendor implementation receives a request to process the
which dequeues the transaction and dispatches it to the 55 transaction , there are three courses of action :
vendor implementation , where the transaction is processed 1. After successfully processing the transaction , the ven
by the underlying hardware and drivers . Clients are free to dor implementation returns a success status .
create a number of transactions , limited by the maximum 2. performTransaction () only : If the vendor implemen
size of the queue . The client provides a submission time- tation cannot process the transaction at the current point in
stamp that determines when a given transaction is processed 60 time , it may return the error code ReturnNotReady . Return
by the underlying implementation . This enables transactions ing ReturnNotReady does not remove the transaction from
to be processed in any order . the Pending queue 425 .

The vendor driver first receives a call to validate Trans- 3. If the event test fails to report that the GPU is done
action () to validate the transaction . In this embodiment , this processing the resources , the timestamp interrupts may be
is the only time during the transaction flow when the user 65 enabled . After enabling the stamp interrupts to catch any
client can receive an error from the vendor driver regarding race condition between stamp interrupt enable and the event
the validity of the transaction and where the vendor driver test , the event may be immediately retested for completion .

US 11,055,807 B2
9 10

After a second failed test that indicates the GPU is still not 3. If the vendor driver does not have the transaction
done with the resources , the pending transaction may be left capability described in step 2 but does have the BypassIn
in the Pending queue until the vendor's implementation lineData capability , then CoreDisplay should generate these
signals that the GPU work associated with the transaction transactions :
resources has completed . In this embodiment , it is essential 5 a) A first transaction with corrected pixel data and
that the vendor understands that , according to this embodi- L / CSC / G flags to set bypass atomic control of selected
ment , no further transactions are processed until the vendor function block (s) .
driver signals the IOAccelDisplay Pipe . b) A second transaction with uncorrected pixel data (re

If an invalid state or other limitation prevents the vendor sulting from the first transaction) and flags to unset
implementation from processing the transaction , the vendor 10 bypass .
may reject the transaction with an appropriate error code . 4. If the vendor driver does not have the BypassInlineData
The transaction is removed from the Pending queue 425 , and transaction capability described but does support the bypass
no further processing is attempted . Returning an error code capability without data , then CoreDisplay should generate
from submitTransaction () or perform Transaction (results these transactions :
in dropping the transaction , which may cause a poor user 15 a) A first transaction with L / CSC / G flags to set bypass
experience . Before submitTransaction () or performTrans- atomic control of selected function block (s) .
action () are called , the vendor may wish to call the b) A second transaction with corrected pixel data .
validate Transaction () API to prevent encountering error c) A third transaction with uncorrected pixel data (result
conditions . After the vendor implementation returns a suc ing from the first two transactions) and flags to unset
cess or an error code , the transaction is removed from the 20 bypass .
Pending queue 425 . If the vendor driver does not have the transaction capa

Display Pipeline Feature Block Operation (See FIG . 5) bility described in step 4 , then the vendor driver is not used ,
In some cases , a display pipe may be able to support and a software solution processes the frame data . Drivers

L / CSC / G (linearization , color space correction , gamma) , but ensure the transaction succeeds and is applied , or the vali
may not be able to provide atomic control of some blocks 25 dation fails . In case of failure , CoreDisplay applies equiva
(e.g. , gamma) . A driver may support a transaction that lent operations and submits a new transaction , which may
ensures an atomic implementation set (or unset) bypass bypass the IOPresentment blocks . In those cases , CoreDis
for one or more L / CSC / G display pipeline feature blocks , play may use IOPresentment to pre - apply the Night Shift
and the driver must indicate that support in a capability flag . white point adjustment before sending those frames to

The BypassInlineData capability indicates that the data 30 IOPresentment . For such frames , CoreDisplay is likely to
associated with the bypassed feature must be sent in the submit transactions to configure unused blocks , so that
same transaction that enables the bypass , as shown in frames bypass them .
example 500 of FIG . 5. The BypassInline Data transaction Display Pipeline Transaction API
includes : The bypass enable , Corrected frame , and Pipeline IOAccelDisplayPipe Class API
feature block data (such as Gamma LUT or CSC coeffi- 35 To support certain disclosed embodiments , possible
cients) . For many implementations , a transaction is latched embodiments of APIs are discussed here as examples only .
to a blanking period . The Bypass InlineData transaction is In one example , the vendor must implement the is Transac
preferred to be atomic where an implementation supports tionComplete method and either the performTransaction or
double buffering of the feature data (either in software or submit Transaction method . The vendor has the option to
hardware) , or the implementation can program the hardware 40 implement the validate Transaction method to conduct trans
with the feature data after the feature block has been placed action validation prior to submission . The vendor can
into a bypass mode . optionally extend the IOAccelDisplayPipe Transaction class

If the BypassInlineData capability is not available for the to include vendor - specific methods and member variables ,
vendor driver , then CoreDisplay generates these transac- and implement corresponding changes to the new Display
tions , as seen in example 550 of FIG . 5. In example 550 , a 45 PipeTransaction method .
first transaction with L / CSC / G flags sets bypass atomic isTransactionComplete
control of selected function block (s) with a corrected frame . Required implementation by vendor
This may be followed by any number of subsequent trans- Determines if a display pipeline transaction has com
actions , each with a corrected frame . The number of these pleted .
frames can be zero . Next is a transaction with pipeline 50 (bool) is Transaction Complete
feature block data (such as Gamma LUT or CSC coeffi (IOAccelDisplayPipe Transaction * transaction)
cients) and a corrected frame . Followed by a final transac- Return Value
tion with an uncorrected frame and flags to unset bypass . Returns true if transaction is in the Active state . Returns
These transactions may be latched to the blanking periods . false if transaction is not in the Active state . (For a

According to one example embodiment , the following 55 description of Active state , see section 10.2.1 .)
steps describe transaction support for pixel flow from apps To support this functionality correctly , vendors may need
to the Window Server (205 of FIG . 2) to CoreDisplay (215 to manage and track transaction data internally .
of FIG . 2) to the vendor implementation (230 of FIG . 2) : Parameters — transaction an object that encapsulates dis

1. IOPresentment obtains the vendor driver capability play pipeline operations .
flags , including bypass and transaction capabilities . newDisplayPipe Transaction

2. If the vendor driver has the capability to perform all Optional implementation by vendor
pipeline feature block processing in a single atomic trans- Creates a new display pipeline transaction .
action , then CoreDisplay can generate a transaction that (IOAccelDisplay Pipe Transaction ") new DisplayPipe
sends an uncorrected frame of pixel data to the vendor driver Transaction (void)
and lets it perform feature block processing and generate a 65 Return Value
frame ready for display . (Feature block changes can also be Returns an object that encapsulates a set of display
sent without frame data .) pipeline operations .

60

-none

none

-none

10

15

20

US 11,055,807 B2
11 12

Parameters This submits a fixed - function transaction that results in an
submitTransaction allocation of a transaction object , the application of
Required implementation by vendor , if perform Transac- fixed state (CSC identity matrix) ,

tion is not implemented Enqueue a transaction for transaction object onto the tail of the transaction queue .
processing by the hardware under the IOAccelerator 5 Return Value
lock and the IOAccelDisplay Pipe workloop . Vendors
have to manage the fencing of the resources to the Parameters
display flip and have access to the transaction's fEvent , IOAccelEventMachine Class API
which is a merge of all the resource write events enableStampInterrupt
associated with the transaction . disableStamp Interrupt

(IOReturn) submitTransaction Required implementation by vendor
(IOAccelDisplayPipe Transaction * transaction) Enable or disable delivery of GPU interrupts for time

Return Value stamp updates to the IOAccelDisplayPipe Transaction
Return ki?ReturnUnsupported if the transaction is to be work loop .

processed via perform Transaction . (void) enableStampInterrupt (int32_t stamp_idx) (void)
Return kIOReturnSuccess if the transaction is processed disableStampInterrupt (int32_t stamp_idx)

successfully Return Value
Returning any other error defined in IOKit / IOReturn.h None

results in dropping the transaction . Parameters stamp_idx The stamp index to enable / dis
The vendor must not fail this call . Depending on the able

vendor architecture , the vendor may need to manage In certain embodiments , the vendor must implement
the enqueue / dequeue of the transition internally to their timestamp interrupts for use by the IOAccelDisplayPipe
driver . Transaction workloop . The transaction event is a merge of

Parameters — transaction an object that encapsulates dis- 25 the resource write events contained within the transaction ,
play pipeline operations . and this transaction event is used to fence the GPU utiliza

perform Transaction tion of the resources to the display flip . If the event test fails Required implementation by vendor , if submit Transaction to report that the GPU is done processing the resources , the
is not implemented Enqueue a transaction for process- timestamp interrupts are enabled . After enabling the time
ing by the hardware under the IOAccelDisplayPipe 30 stamp interrupts to catch any race condition between time
workloop . The IOAccelerator lock is not taken when stamp interrupt enable and the event test , the event is
this method is called . immediately retested for completion . After a second failed

(IOReturn) perform Transaction test that indicates the GPU is still not done with the
(IOAccelDisplayPipe Transaction * transaction) resources , the pending transaction is left in the Pending

Return Value queue until the vendor's implementation signals the GPU
Returns kIOReturnSuccess if the transaction is processed work associated with the transaction resources has com

successfully . pleted . It is essential that the vendor understands that no
Returns kIOReturnNotReady if the transaction cannot be further transactions are processed until the vendor driver processed at the current point in time . calls IOAccelEventMachine :: signalStamp () to signal the
Returns some other error defined in IOKit / IOReturn.h if 40 IOAccelDisplayPipe .

the transaction cannot be processed at all . The trans Vendors that implement submitTransaction () have to
action is removed from the queue , and the vendor has manage the fencing of the GPU resources to their display no further opportunity to process the transaction . Effec engine updates . The fEvent is a protected member of the tively , the transaction is dropped . IOAccelDisplayPipe Transaction class that allows vendor

Parameters — transaction an object that encapsulates dis- 45 drivers to access it .
play pipeline operations . IOAccelDisplayPipe Transaction Class API

validate Transaction The following methods are provided as a reference and
Optional implementation by vendor , but strongly recom- should not be considered limiting in any manner .
mended getPipeColorMatrix

Validate a transaction before it has its resources prepared , 50 Returns the associated color matrix , if bound .
event created , and is enqueued . This is the only chance (SIOAccelDisplay PipeColorMatrix) getPipeColorMatrix
for the vendor to intercept and validate vendor - specific (void) const
requirements . After validation , the transaction must be Return Value
processed without error . A 3x4 matrix of floats .

If validateTransaction () is not implemented or if it is 55 Parameters
implemented without sync validation , the implementa- None
tion must support the fallback behavior described in Related Definitions
section 5.3.6.2 (Table 20) . If transaction contains an This returns color values in a sIOAccelDisplayPipeColor
invalid sync type , validate Transaction () fails . Matrix structure .

(IOReturn) validate Transaction 60
(IOAccelDisplayPipe Transaction * transaction)

Return Value typedef struct IOAccelDisplayPipeColorMatrix
Returns kIOReturnSuccess if the transaction is validated . {

float red [4] ; float Parameters transaction an object that encapsulates dis green [4] ; float blue [4] ; play pipeline operations . } SIOAccelDisplayPipeColorMatrix ; submitFlipBufferTransaction
The vendor does not implement this method

35

65

10

15

20

US 11,055,807 B2
13 14

getPipeColorMatrix Args Parameters — None
Returns the extended arguments associated with the color Related Definitions

matrix , if bound . (For details , see Configuration ID in See getPipe PostGamma Table .
section 10.4 .) getPlanel Surface (sIOAccelDisplayPipeColorMatrixArgs) getPipeColor- 5 Returns the IOSurface object associated with the plane
MatrixArgs (void) const and stereo index . If bound , an IOSurface and / or IOAC

Return Value celResource may represent the pixel data associated
An object that describes the color matrix . with a transaction . For example , if the vendor imple Parameters ments submitFlipBufferTransaction , then no IOSurface None object exists for the associated transaction . Related Definitions
This returns values in a sIOAccelDisplayPipeColorMa (IOSurface *) getPlaneIOSurface (uint32_t planeIndex ,

uint32_t stereoIndex) const trixArgs structure . Return Value
The IOSurface associated with the plane and stereo index .

typedef struct IOAccelDisplayPipeColorMatrixArgs Parameters , planeIndex the plane for this transaction ;
stereoIndex the stereo index for this transaction

uint64_t type ; uint64_t getPlaneResource format ;
uint64_t configuration ID ; Returns the IOAccelResource object associated with the

} sIOAccelDisplayPipeColorMatrixArgs ; plane and stereo index . If bound , an IOAccelResource
and / or IOSurface may represent the pixel data associ

getPipe PostGamma Table ated with a transaction .
Returns the associated post - CSC gamma table object (IOAccelResource *) getPlaneResource (uint32_t pla

(similar to IOFBSetGamma) , if bound . Vendor imple neIndex , uint32_t stereoIndex) const
Return Value mentations may need to convert values to an appropri- 25

ate hardware format . The IOAccelResource associated with the plane and ste
reo index . (IOAccelDisplayPipeGammaTable *) getPipe PostGam

maTable (void) const Parameters planeIndex the plane for this transaction ;
Return Value stereoIndex — the stereo index for this transaction
A wrapper object contains post - CSC gamma entries in a 30 getPlaneSrcRect

SIOAccelDisplayPipeGammaTableData structure . Returns the source rectangle for the resource associated
with the plane . Parameters — None

Related Definitions (sIOAccelDisplayRect) getPlaneSrcRect (uint32_t pla
The returned IOAccelDisplayPipeGammaTable object neIndex) const

Return Value contains SIOAccelDisplayPipeGamma TableData 35
structure that describes the gamma table . The source rectangle for the resource associated with the

plane .
ParametersplaneIndex The plane for this transaction

typedef struct IOAccelDisplay PipeGamma TableData Related Definitions
The returned sIOAccelDisplayRect structure specifies the

uint32_t count ; uint32_t source rectangle . pad0 ; uint64_t type ;
uint64_t format ;
uint64_t configurationID ; float
entriesMin ; typedef struct IOAccelDisplayRect typedef
float entriesMax ;
SIOAccelDisplay PipeGammaTableEntry entries [0] ; float x ; float

} sIOAccelDisplayPipeGammaTableData ; y ; float w ;
float h ;

} sIOAccelDisplay Rect ;
The sIOAccelDisplayPipeGammaTableData structure has

a pointer to a table that consists of sIOAccelDisplay get TransactionDirtyBits PipeGamma TableEntry entries . Returns the dirty bits that define what state has been
bound to the transaction . Vendor drivers can use these
to determine what information needs to be pulled from typedef struct IOAccelDisplay PipeGammaTableEntry

float red ; float green ; the transaction object .
float blue ; float (uint64_t) getTransactionDirty Bits (void) const
reserved ; Return Value } sIOAccelDisplayPipeGammaTableEntry ; The dirty bits associated with the transaction .

Parameters — None
getPipe PreGamma Table get TransactionID
Returns the associated pre - CSC linearization gamma 60 Returns the ID associated with this transaction .

table object , if bound . Vendor implementations may (uint32_t) getTransactionID (void) const
need to convert values to an appropriate hardware Return Value
format . The transaction ID .

(IOAccelDisplayPipeGamma Table *) getPipePreGam- Parameters — None
maTable (void) const getTransaction Options

Return Value Returns the options associated with the display pipe that
A table of floats that contains pre - CSC gamma entries . have been set for the transaction .

a

40

45

50

55

65

5

10

25

=

US 11,055,807 B2
15 16

(uint32_t) getTransaction Options (void) const Related Definitions
Return Value See getTransactionOptions for returned elOAccelDis
The transaction options . playPipe TransactionOption option values .
Parameters — None getTimeStamp
Related Definitions Currently unused
getTransaction Options returns IOAccelDisplayPipe (uint64_t) getTimeStamp (void) const ;
TransactionOption option values . Return Value

The time of the transaction .
Parameters — None

enum eIOAccelDisplayPipe Transaction Option Referring now to FIG . 6 , a simplified functional block
{ diagram of illustrative multifunction device 600 is shown KIOAccelDisplay Pipe TransactionSyncToVBL = 0x01 , according to one embodiment . Multifunction electronic kIOAccelDisplayPipe TransactionEnableDPB = 0x02 ,

KIOAccelDisplayPipe TransactionGammaBypass = 0x04 , device 600 may include processor 605 , display 610 , user
KIOAccelDisplay Pipe TransactionDPBWeak = 0x08 , interface 615 , graphics hardware 620 , device sensors 625
KIOAccelDisplay Pipe TransactionDPBStrong = 0x10 , 15 (e.g. , proximity sensor / ambient light sensor , accelerometer KIOAccelDisplay Pipe TransactionDPBModeMask = and / or gyroscope) , microphone 630 , audio codec (s) 635 , KIOAccelDisplayPipe TransactionDPBWeak |

KIOAccelDisplayPipe TransactionDPBStrong , speaker (s) 640 , communications circuitry 645 , digital image
KIOAccelDisplayPipe TransactionSyncToHBL = 0x20 , capture circuitry 650 video codec (s) 655 (e.g. , in support of
KIOAccelDisplay Pipe TransactionColorMatrixBypass = 0x40 , digital image capture unit 650) , memory 660 , storage device
KIOAccelDisplay Pipe TransactionLinearizationBypass = 0x80 , 20 665 , and communications bus 670. Multifunction electronic kIOAccelDisplay Pipe TransactionGammaBypassInline Data = 0x100 ,
KIOAccelDisplayPipe TransactionColorMatrixBypass InlineData device 600 may be , for example , a digital camera or a
0x200 , personal electronic device such as a personal digital assistant
KIOAccelDisplay Pipe TransactionLinearizationBypassInline Data (PDA) , personal music player , mobile telephone , or a tablet
0x400 , computer . kIOAccelDisplay PipeTransactionGammaBypassDisable = 0x800 ,
kIOAccelDisplayPipe TransactionColorMatrixBypass Disable Processor 605 may execute instructions necessary to carry
Ox1000 , out or control the operation of many functions performed by
kIOAccelDisplay Pipe TransactionLinearizationBypassDisable device 600 (e.g. , such as the transactional interface for a
0x2000 , display pipeline as disclosed herein) . Processor 605 may , for } ; instance , drive display 610 and receive user input from user

30 interface 615. User interface 615 may allow a user to interact
The following IOAccelDisplayPipe Transaction methods are with device 600. For example , user interface 615 can take a
currently unimplemented and unsupported . variety of forms , such as a button , keypad , dial , a click
getPipeScaler State wheel , keyboard , display screen and / or a touch screen .

Currently unused Processor 605 may also , for example , be a system - on - chip
(sIOAccelDisplayPipeScaler) getPipeScalerState (void) 35 such as those found in mobile devices and may include a

const ; dedicated GPU . Processor 605 may be based on reduced
Return Value instruction - set computer (RISC) or complex instruction - set
The scaler associated with the display pipe . computer (CISC) architectures or any other suitable archi
Parameters — None tecture and may include one or more processing cores .

get PlaneDstRect 40 Graphics hardware 620 may be special purpose computa
Returns the destination rectangle for the associated plane . tional hardware for processing graphics and / or assisting
(sIOAccelDisplayRect) getPlaneDstRect (uint32_t pla- processor 605 to process graphics information . In one

neIndex) const embodiment , graphics hardware 620 may include a pro
Return Value grammable GPU .
The destination rectangle for the resource associated with 45 Image capture circuitry 650 may include lens assembly

the plane . 680. The lens assembly may have an associated sensor
Parameters — planeIndex The plane for this transaction element 690. Alternatively , two or more lens assemblies may

getPlaneGammaTable share a common sensor element . Image capture circuitry 650
Returns the gamma data for the associated plane . may capture still and / or video images . Output from image
(IOAccelDisplayPipeGamma Table *) getPlaneGamma T- 50 capture circuitry 650 may be processed , at least in part , by

able (uint32_t planeIndex) const video codec (s) 655 and / or processor 605 and / or graphics
Return Value hardware 620 , and / or a dedicated image processing unit or
The gamma table object associated to the specified plane , pipeline incorporated within image capture circuitry 650 .

if bound . Gamma table entries are provided as floats . Images so captured may be stored in memory 660 and / or
Vendor implementations may need to convert table 55 storage 665 .
entry values to an appropriate hardware format . Sensor and image capture circuitry 650 may capture still

Parameters — planeIndex The plane for this transaction and video images that may be processed in accordance with
getPlane Transaction Options this disclosure , at least in part , by video codec (s) 655 and / or
Returns the options (see getTransactionOptions) associ- processor 605 and / or graphics hardware 620 , and / or a dedi

ated with the display plane that have been set for the 60 cated image processing unit incorporated within image
transaction . capture circuitry 650. Images so captured may be stored in

(uint32_t) getPlaneTransactionOptions (uint32_t planeIn- memory 660 and / or storage 665. Memory 660 may include
dex) const one or more different types of media used by processor 605

Return Value and graphics hardware 620 to perform device functions . For
The options associated with the plane that are set for the 65 example , memory 660 may include memory cache , read

transaction . only memory (ROM) , and / or random access memory
ParametersplaneIndex The plane for this transaction (RAM) . Storage 665 may store media (e.g. , audio , image

US 11,055,807 B2
17 18

and video files) , computer program instructions or software , Linearization , or Gamma . It is invalid to have a Configura
preference information , device profile information , and any tionID of the same value that represents two different
other suitable data . Storage 665 may include one more configurations . ConfigurationIDs that only differ by the
non - transitory storage mediums including , for example , vendor - supplied ID (that is , have the same PCI Vendor ID ,
magnetic disks (fixed , floppy , and removable) and tape , 5 PCI Device ID , and PCI Revision ID , but a different value
optical media such as CD - ROMs and digital video disks in the last 16 bits) specify multiple software configurations
(DVDs) , and semiconductor memory devices such as Elec- that are supported by a single hardware implementation . In
trically Programmable Read - Only Memory (EPROM) , and addition , the vendor may reserve bits in some logical fashion
Electrically Erasable Programmable Read - Only Memory to identify specific configurations of functionality . For
(EEPROM) . Memory 660 and storage 665 may be used to 10 example , in Table 700 , the vendor chooses to use the last 4
tangibly retain computer program instructions or code orga- bits of the vendor - supplied ID to represent CSC configura
nized into one or more modules and written in any desired tions , the next - to - last 4 bits to represent Gamma configura
computer programming language . When executed by , for tions , and the next 4 bits to represent Linearization configu
example , processor 605 such computer program code may rations , where multiple families or revisions of devices share
implement one or more of the methods described herein . 15 the hardware functionality . Also , the vendor can impose the

ConfigurationID (See FIG . 7) vendor - supplied ID bit organization across devices or revi
Third party vendors typically provide hardware specifi- sions . For example , table 750 shows two different devices

cations to software vendors that detail the hardware feature that have ConfigurationIDs that consistently represent the
set for their devices . These specifications provide the soft- same software configuration .
ware vendor with the details required to simulate hardware 20 The system and methods described above may be imple
functionality through other means (for example , shaders) . mented in software , hardware , firmware , or any combination
With the introduction of the IOAccelDisplayPipe transaction thereof . The processes are preferably implemented in one or
model , vendors and software providers can mutually decide more comp programs executing on a computer or other
to implement a vendor - supplied ConfigurationID that programmable device including a processor , a storage
defines a given vendor's " configuration ” and can capture 25 medium readable by the processor , and input and output
differing implementations of display pipeline features from devices . Each computer program can be a set of instructions
vendor - to - vendor and device - to - device . ConfigurationID (program code) in a code module resident in the random
describes complex features and functionality that cannot be access memory of the computer . Until required by the
accurately described with the existing capabilities fields or computer , the set of instructions may be stored in another
in a query function . 30 computer memory (e.g. , in a hard disk drive , or in a

In one embodiment , the Configuraton ID is a vendor- removable memory such as an optical disk , external hard
defined uint64_t token that describes the hardware and the drive , memory card , or flash drive) or stored on another
specific feature . Configuration ID is best described as an computer system and downloaded via the Internet or other
out - of - code way to document in - code functionality , and the network .
vendor may implement ConfigurationID support as deter- 35 Having thus described several illustrative embodiments , it
mined by the needs of the software vendor and the limita- is to be appreciated that various alterations , modifications ,
tions of the vendor's hardware . Vendors must document the and improvements will readily occur to those skilled in the
Configuration ID in sufficient detail to allow a software art . Such alterations , modifications , and improvements are
vendor to leverage the configuration appropriately with intended to form a part of this disclosure , and are intended
expected results . The exact details of the feature , such as its 40 to be within the spirit and scope of this disclosure . While
limited , expected usage , are to be documented in a manner some examples presented herein involve specific combina
that the software vendor may access them . The specifica- tions of functions or structural elements , it should be under
tions , the ConfigurationID , and the association of the Con- stood that those functions and elements may be combined in
figuration D with a configuration describe to the software other ways according to the present disclosure to accomplish
vendor how to best leverage the hardware and how to 45 the same or different objectives . In particular , acts , elements ,
prepare the content being passed to the driver via IOPre- and features discussed in connection with one embodiment
sentment (transaction path) for the specific configuration of are not intended to be excluded from similar or other roles
Color Space Correction (CSC) , Linearization , and / or in other embodiments . Additionally , elements and compo
Gamma . nents described herein may be further divided into additional

ConfigurationID Definition and Format 50 components or joined together to form fewer components
As an example , a Configuration ID may be a 64 - bit value for performing the same functions .

that consists of four 16 - bit components : PCI Vendor ID , PCI The scope of the disclosed subject matter should be
Device ID , PCI Revision ID , and a vendor - supplied ID . determined with reference to the appended claims , along
Providing the PCI Vendor ID , PCI Device ID , PCI Revision with the full scope of equivalents to which such claims are
ID , and vendor - supplied ID in this fashion allows a software 55 entitled . In the appended claims , the terms “ including ” and
vendor to quickly perform the appropriate lookups and meet “ in which ” are used as the plain - English equivalents of the
the needs of both the software vendor and the vendor's respective terms " comprising ” and “ wherein . ”
choice of available functionality . Each vendor has its own What is claimed is :
hardware feature set . An individual feature is tied to its 1. A system comprising :
hardware and possibly specific revisions of their hardware . 60 a processor ;
The first three components (48 bits) of ConfigurationID are a graphics processing unit (GPU) communicatively
tied to the vendor and the hardware device . The final coupled to the processor , the GPU having selectable
component (16 bits) , vendor - supplied ID , is unique to the GPU hardware features ;
software managing the hardware . The values of the first 48 a first software module comprising instructions that when
bits are determined by the hardware , but the vendor has 65 executed by the processor configure the processor to
freedom on how to select the last 16 bits . ConfigurationIDs receive graphics related transaction directives from a
must be unique and represent a single configuration of CSC , first user - level module via an application program

10

15

US 11,055,807 B2
19 20

interface , wherein the first user - level module enables a software module and a number of instances of displays
user to select one of the selectable GPU hardware configured to work in a transactional manner communica
features for the transaction ; tively coupled to the system .

the first software module including instructions that when 13. The system of claim 1 , wherein the first software
executed by the processor bind transaction data with 5 module is configured to utilize a queue mechanism to
hardware feature data according to the graphics related manage the transaction data and the first software module is
transaction directives , further configured to utilize a locking scheme to coordinate

wherein the transaction data comprises information that the queue management with a vendor implementation asso
influences the transformation of pixels prior to presen- ciated with the GPU .
tation on a display device , and 14. The system of claim 1 , wherein the transaction direc

wherein the hardware feature data comprises information tives are received after a transaction validation phase
regarding the use of the selected GPU hardware fea- between a user client and a vendor driver , and after prepa
ture ; ration of transaction resources .

a graphics pipeline of the GPU configured to : 15. A method comprising :
receive from the first software module a transaction in a system including a graphics processing unit (GPU) ,

comprising the transaction data bound to the hard- discovering feature data regarding the GPU ;
ware feature data , and binding the feature data with transaction data according to

transition to a new configuration of the graphics pipe- transaction directives received through an application
line in accordance with the transaction at a single 20 program interface from a user level software module ,
point in time ; and wherein the user level software module enables a user

a display for displaying a frame prepared using the new to select a GPU hardware feature for the transaction ;
configuration of the graphics pipeline . wherein the transaction data comprises information that

2. The system of claim 1 wherein the transaction data influences the transformation of pixels prior to presen
comprises one or more of pixel data , gamma tables , color 25 tation on a display device , and
space correction (CSC) matrices , pixel format , surface wherein the feature data comprises information regarding
dimensions and transformation information . use of the selected GPU hardware feature ;

3. The system of claim 1 wherein the hardware feature submitting a transaction to a graphics pipeline of the
data comprises one or more of GPU gamma features , GPU GPU , the transaction including the transaction data
color space correction (CSC) features , or GPU linearization 30 bound to the feature data ; and
features . transitioning to a new configuration of the graphics pipe

4. The system of claim 1 , wherein the first software line in accordance with the transaction at a single point
module includes instructions that when executed by the in time ; and
processor cause the processor to utilize a queue mechanism preparing a frame for display on the display device based
to manage the transaction data . on the new configuration of the graphics pipeline .

5. The system of claim 4 , wherein the first software 16. The method of claim 15 , wherein discovering the
module including instructions that when executed by the feature data comprises receiving one or more configuration
processor cause the processor to concurrently interface with identifiers (IDs) .
a second user - level software module and the first user - level 17. The method of claim 16 , wherein discovering the
software module and submit individual transactions for the 40 feature data further comprises applying the one or more
first and second user - level software modules to the queue configuration IDs to a look up table and extracting the
mechanism . feature data thereby .

6. The system of claim 1 , wherein the first software 18. The method of claim 17 , wherein the look up table
module includes instructions that when executed by the comprises information describing one or more features of
processor cause the processor to perform a query function to 45 the GPU and one or more corresponding configuration IDs
obtain capability features of the GPU from which the of the one or more configuration IDs .
hardware feature data is obtained . 19. The method of claim 17 , wherein the lookup table

7. The system of claim 6 , wherein the query function comprises information regarding features of a plurality of
initiate a call to an API that returns information describing GPUs .
the GPU for capability information retrieved directly from 50 20. The method of claim of claim 15 , wherein submitting
the GPU . the transaction comprises submitting the transaction to a

8. The system of claim 7 , wherein the first software queueing mechanism configured to manage a plurality of
module includes instructions to cause the processor to transactions .
initiate the query function a plurality of times to determine 21. The method of claim 15 , wherein the transaction
capability information for different features . 55 directives are received after a transaction validation phase

9. The system of claim 6 , wherein the query function between a user client and a vendor driver , and after prepa
determines a configuration identifier uniquely indicating a ration of transaction resources .
definition set of capabilities for the GPU . 22. A non - transitory computer - readable medium storing

10. The system of claim 1 , wherein the graphics pipeline computer - readable code executable by one or more proces
is configured to process a queue of transactions through a 60 sors to cause the one or more processors to :
plurality of pipeline flow stages including wait , pending , discover feature data regarding a graphics processing unit
live , and finished . (GPU) ;

11. The system of claim 1 , wherein a plurality of instances bind the feature data with transaction data according to
of the first software module are configured to execute transaction directives received through an application
concurrently on the system . program interface from a user level software module ,

12. The system of claim 11 , wherein there is a one to one wherein the first user - level module enables a user to
correspondence between a number of instances of the first select a GPU hardware feature for the transaction ,

35

65

US 11,055,807 B2
21 22

wherein the transaction data comprises information that by applying the one or more configuration IDs to a look up
influences the transformation of pixels prior to presen- table and extract feature data thereby .
tation on a display device , and 25. The non - transitory computer - readable medium of

wherein the feature data comprises information regarding claim 24 , wherein the look up table comprises information
the use of the selected GPU hardware feature ; 5 describing one or more features of the GPU and one or more

submit a transaction to a graphics pipeline of the GPU , the corresponding configuration IDs of the one or more con
transaction including the transaction data bound to the figuration IDs .
feature data ; 26. The non - transitory computer - readable medium of

transition to a new configuration of the graphics pipeline claim 24 , wherein the lookup table comprises information
in accordance with the transaction at a single point in 10 regarding features of a plurality of GPUs .
time ; and 27. The non - transitory computer - readable medium of

prepare a frame for display on the display device based on claim 22 , wherein the computer - readable code , when
the new configuration of the graphics pipeline . executed by the one or more processors , causes the one or

23. The non - transitory computer - readable medium of more processors to submit the transaction to a queueing
claim 22 , wherein the computer - readable code includes 15 mechanism configured to manage a plurality of transactions .
code , when executed by the one or more processors , causes 28. The non - transitory computer - readable medium of
the one or more processors to obtain the feature data , at least claim 22 , wherein the computer - readable code , when
in part , using one or more configuration identifiers (IDs) . executed by the one or more processors , causes the one or

24. The non - transitory computer - readable medium of more processors to receive the transaction directives after a
claim 22 , wherein the computer - readable code , when 20 transaction validation phase between a user client and a
executed by the one or more processors , causes the one or vendor driver , and after preparation of transaction resources .
more processors to discover the feature data , at least in part , *

