发明名称
一种柔性透明电极及其制备方法

摘要
本发明公开了一种柔性透明电极，包括透明聚合物衬底和附着在透明衬底上的银纳米线薄膜和石墨烯薄膜的叠层。本发明银纳米线薄膜和石墨烯薄膜通过层达到了意想不到的协同效应，所制备的柔性透明电极，具有较高的透光率，较小的电阻和很好的柔韧性。
1. 一种柔性透明电极，其特征在于：包括透明聚合物衬底和附着在透明衬底上的银纳米线薄膜和石墨烯薄膜的叠层。

2. 如权利要求1所述的柔性透明电极，其特征在于：所述银纳米线薄膜和石墨烯薄膜的叠层的结构为：\(\left(\text{Ag-G} \right)_n, \left(\text{G-Ag} \right)_n, \left(\text{G-Ag-G} \right)_n \)或\(\left(\text{Ag-G-Ag} \right)_n \)，其中，Ag表示为银纳米线薄膜，G表示为石墨烯薄膜，n表示为层数，其值为1-10。

3. 如权利要求1或2所述的柔性透明电极，其特征在于：所述每层银纳米线薄膜的厚度为5-300nm。

4. 如权利要求1或2所述的柔性透明电极，其特征在于：所述每层石墨烯薄膜的厚度为0.2-20nm。

5. 如权利要求1或2所述的柔性透明电极，其特征在于：所述银纳米线薄膜和石墨烯薄膜的叠层厚度为5-320nm。

6. 如权利要求1或2所述的柔性透明电极，其特征在于：所述石墨烯薄膜由化学气相沉积制备或由氧化石墨烯还原制备。

7. 如权利要求1或2所述的柔性透明电极，其特征在于：所述银纳米线薄膜为通过旋涂、喷涂、自组装、喷墨打印或丝网印刷方法制备。

8. 如权利要求1或2所述的柔性透明电极，其特征在于：透明聚合物衬底为聚对苯二甲酸乙二醇酯衬底、聚酰亚胺衬底、聚二甲基硅氧烷衬底、聚甲基丙烯酸甲酯衬底或聚碳酸酯衬底。

9. 权利要求1-8任意一项所述的柔性透明电极的制备方法，其特征在于：所述银纳米线薄膜的制备为：将银纳米线均匀分散在乙醇、异丙醇或氯化二甲基酰胺溶液中，得银纳米线溶液，将银纳米线溶液采取喷涂、悬涂、自组装、喷墨打印或丝网印刷方式制备银纳米线薄膜。

10. 如权利要求9所述的柔性透明电极的制备方法，其特征在于：所述银纳米线溶液浓度为0.01-10mg/ml。
一种柔性透明电极及其制备方法

技术领域
[0001] 本发明涉及一种柔性透明电极及其制备方法。

背景技术
[0002] 氧化铟锡（ITO）作为透明导电薄膜被广泛应用各种光电器件，包括图像传感器、太阳能电池 (OPV)、液晶显示器、有机电致发光 (OLED) 和触摸屏面板。随着市场需求量的增加和产品质量提高的要求，这些金属氧化物暴露出一系列问题：(1) 铟元素可开采量有限；(2) 它们在酸性或碱性条件下不稳；(3) 它们的离子扩散对聚合物层造成污染；(4) 它们的非柔性特性无法满足柔性器件的要求；(5) 在远红外区透明性能不好。因此开发新型透明导电薄膜具有重要的理论和实际意义。

[0003] 目前，有望替代 ITO 的透明导电材料有掺杂 ZnO、导电聚合物（如，聚 3,4-乙烯二氧噻吩/聚苯乙烯磺酸，聚 3,4-乙撑二氧噻吩/聚苯乙烯磺酸盐）、碳纳米管、石墨烯、金属栅和银纳米线等。其中由于碳纳米管、石墨烯和银纳米线在柔性、稳定性和导电性等方面的优势而格外受人关注。利用化学气相沉积法制备的石墨烯已在触摸屏上得到了应用。但由于石墨烯在生长过程中难以避免引入缺陷，它的薄膜电阻大多在 500 Ω/□以上。由银纳米线制备的透明导电膜在可见光透光率为 90% 左右时可获得 100 Ω/□左右的薄膜电阻。美国莱斯大学研究人员通过把 CVD 生长的石墨烯贴在 Au、Cu 或 Al 金属栅上，获得了薄膜电阻在 5 至 30 Ω/□范围内的复合柔性透明电极（ACS Nano, 2011, 5, 6472-6479）。由于金属栅的制备工艺复杂，面临着尺寸规模和价格等方面的挑战，因此在应用方面仍存在着困难。美国德克萨斯大学奥斯丁分校的研究组把金纳米粒子、银纳米线和氧化石墨烯以均匀混合的形式复合，得到了透光率为 70%，电阻为 30 Ω/□左右的透明导电薄膜（ACS Nano, 2012, 6, 5157-5163）。该研究组还把少量的银纳米线铺在 CVD 生长的石墨烯膜上，有效地降低了石墨烯薄膜中晶畴之间的内电阻，使石墨烯薄膜的电阻由 1000 Ω/□降至 30-80 Ω/□（Nano Lett. 2012, 12, 5679-5683）。石墨烯和银纳米粒子、纳米线的复合结构在我国也得到了广泛的研究，多集中在用氧化石墨烯为前驱物制备石墨烯负载银纳米粒子。电子科技大学的研究人员提出了利用石墨烯填充银纳米线薄膜的空隙，形成混合交织结构，进而提高银纳米线薄膜的导电性和与基底的粘附性。上述报道中，银纳米线和石墨烯为混合相间的结构，各自没有形成独立的膜结构，其透光率及电阻等性能提升空间非常有限。

发明内容
[0004] 本发明的目的在于提供一种柔性透明电极及其制备方法。
[0005] 为解决上述技术问题，本发明的技术方案是：
[0006] 一种柔性透明电极，包括透明聚合物衬底和附着在透明衬底上的银纳米线薄膜和石墨烯薄膜的叠层。
[0007] 上述银纳米线薄膜和石墨烯薄膜之间既有明显的界限，又实现了二者在二维尺度
上的连接，且产生了意想不到的协同效应。

[0008] 为了满足各种需求，所述的银纳米线薄膜和石墨烯薄膜的叠层结构为（Ag-G）_n，
（G-Ag）_n，（G-G-Ag）_n或（Ag-G-Ag）_n，其中，Ag 表示为银纳米线薄膜，G 表示为石墨烯薄膜，n 表示为层数，其值为 1-10。

[0009] 为了保证柔性透明电极的透光率，所述每层银纳米线薄膜的厚度为 5-300nm；所述每层石墨烯薄膜的厚度为 0.2-20nm。

[0010] 为了同时兼顾柔性透明电极好的透光率和小的电阻，所述银纳米线薄膜和石墨烯薄膜的叠层厚度为 5-320nm。

[0011] 为了方便制备，同时保证产品性能，所述石墨烯薄膜为化学气相沉积法制备的石墨烯薄膜或由氧化石墨烯还原法制备的石墨烯薄膜，所述银纳米线薄膜为通过旋涂、喷涂、自组装、喷墨打印或丝网印刷方法制备。

[0012] 为了方便制备，保证产品性能，同时降低成本，所述透明聚合物衬底为聚对苯二甲酸乙二醇酯（PET）衬底、聚酰亚胺（PI）衬底、聚二甲基硅氧烷（PDMS）衬底、聚甲基丙烯酸甲酯（PMMA）衬底或聚碳酸酯（PC）衬底。

[0013] 上述的柔性透明电极的制备方法，所述银纳米线薄膜的制备为：将银纳米线均匀分散在乙醇、异丙醇或二甲基甲酰胺溶剂中，得银纳米线溶液，将银纳米线溶液采取喷涂、涂覆、自组装、喷墨打印或丝网印刷方式制备银纳米线薄膜；所述银纳米线溶液浓度为 0.01-10mg/ml。

[0014] 本发明未特别限定的技术均为现有技术。

[0015] 本发明银纳米线薄膜和石墨烯薄膜通过叠层达到了意想不到的协同效应，所制备的柔性透明电极，具有较高的透光率、较小的电阻和很好的柔韧性。

附图说明

[0016] 图 1 为本发明（Ag-G）_n 形的柔性透明电极的结构示意图，其中 n 为 1。

[0017] 图 2 为本发明（G-Ag）_n 形的柔性透明电极的结构示意图，其中 n 为 1。

[0018] 图 3 为本发明（Ag-G-Ag）_n 形的柔性透明电极的结构示意图，其中 n 为 1。

[0019] 图 4 为本发明（Ag-G）_n 形的柔性电极扫描电镜图。

[0020] 图中，1 为银纳米线薄膜，2 为石墨烯薄膜，3 为柔性衬底。

具体实施方式

[0021] 为了更好地理解本发明，下面结合实施例进一步阐明本发明的内容，但本发明的内容不仅仅局限于下面的实施例。

[0022] 实施例 1

[0023] ①将聚对苯二甲酸乙二醇酯（PET）透明柔性衬底外层保护膜去除；

[0024] ②将银纳米线均匀分散在乙醇溶剂中，得浓度为 6mg/ml 的银纳米线溶液，采取喷涂方式在步骤①所得的柔性衬底上制备银纳米线薄膜，所得银纳米线薄膜的厚度为 20nm；

[0025] ③将 CVD 生长的石墨烯薄膜转移到银纳米线薄膜上，即在银纳米线薄膜上叠加石墨烯薄膜；
[0026] ④将叠加薄膜在 20℃的环境中放置 50 分钟, 除去叠加层中残存的溶剂, 形成
\((\text{Ag-G})_n\) 形式结构, 其中 \(n = 1\), 获得所述柔性电极。

[0027] ⑤获得的柔性电极厚度为 30nm, 其透光率为 85%, 对应的薄膜电阻 10(±5)
\(\Omega\) / □。

[0028] 实施例 2

[0029] ①将聚酰胺(PI) 透明柔性衬底外层保护膜去除, 用于粘胶机上；

[0030] ②将银纳米线均匀分散在异丙醇中, 得浓度为 0.5mg/ml 的银纳米线溶液, 采
取悬涂方式在步骤①所得的柔性衬底上上制备银纳米线薄膜, 所得银纳米线薄膜的厚度为
50nm；

[0031] ③将化学氧化法制备的石墨烯薄膜转移到银纳米线薄膜上, 在银纳米线薄膜上叠
加石墨烯薄膜。

[0032] ④将叠加薄膜在 120℃的环境中放置 10 分钟, 除去叠加层中残存的溶剂, 形成
\((\text{Ag-G})_n\) 形式结构, 其中 \(n = 1\), 获得所述柔性电极。

[0033] ⑤获得的柔性电极厚度为 52nm, 其透光率为 86%, 对应的薄膜电阻 9(±5)
\(\Omega\) / □。

[0034] 实施例 3

[0035] ①将聚二甲基硅氧烷(PDMS) 透明柔性衬底外层保护膜去除；

[0036] ②将银纳米线均匀分散在氮化二甲基丙酰胺(DMA)中, 得浓度为 2mg/ml 的银纳米
线溶液, 采取自组装方式在步骤①所得的柔性衬底上上制备银纳米线薄膜, 所得银纳米线
薄膜的厚度为 30nm；

[0037] ③将 CVD 生长的石墨烯薄膜转移到银纳米线薄膜上, 在银纳米线薄膜上叠加石墨
烯薄膜。

[0038] ④将叠加薄膜在 30℃的环境中放置 20 分钟, 除去叠加层中残存的溶剂, 形成
\((\text{Ag-G})_n\) 形式结构, 其中 \(n = 1\), 获得所述柔性电极。

[0039] ⑤获得的柔性电极厚度为 40nm, 其透光率为 87%, 对应的薄膜电阻 9(±5)
\(\Omega\) / □。

[0040] 实施例 4

[0041] ①将聚甲基丙烯酸甲酯(PMMA) 透明柔性衬底外层保护膜去除；

[0042] ②将 CVD 生长的石墨烯薄膜转移到 PET 薄膜上；

[0043] ③将银纳米线均匀分散在乙醇中, 得浓度为 3mg/ml 的银纳米线溶液, 在石墨烯模
膜上使用喷涂的方式叠加银纳米线薄膜, 银纳米线薄膜的厚度为 100nm；

[0044] ④将叠加薄膜在室温 30℃的环境中放置 20 分钟, 除去叠加层中残存的溶剂, 形
成 \((\text{6-Ag})_n\) 形式结构, 其中 \(n = 1\), 获得所述柔性电极。

[0045] ⑤获得的柔性电极厚度为 115nm, 其透光率为 84%, 对应的薄膜电阻 9(±5)
\(\Omega\) / □。

[0046] 实施例 5

[0047] ①将聚碳酸酯(UC) 透明柔性衬底外层保护膜去除；

[0048] ②将银纳米线均匀分散在乙醇中, 得浓度为 10mg/ml 的银纳米线溶液, 采取喷涂
方式在步骤①所得的柔性衬底上上制备银纳米线薄膜, 银纳米线薄膜厚度在 5nm；

[0049] ③将 CVD 生长的石墨烯薄膜转移到银纳米线薄膜上, 在银纳米线薄膜上叠加石墨
说明书

0050 ④再次采用喷涂方式在叠加层上附着纳米线薄膜，纳米线薄膜厚度为 5nm；
0051 ⑤将叠加薄膜在 120℃ 的环境中放置 10 分钟，除去叠加层中残存的溶剂，形成形式结构，其中 n = 1，获得所述柔性电极；
0052 ⑥获得的柔性电极厚度为 12nm，其透光率为 83%，对应的薄膜电阻 8(±5)Ω / □。
0053 实施例 6
0054 ①将聚对苯二甲酸乙二醇酯 (PET) 透明柔性衬底外层保护膜去除；
0055 ②将 CVD 生长的石墨烯薄膜转移到纳米线薄膜上，将石墨烯薄膜转移至洁净的 PET 聚合物薄膜上；
0056 ③将银纳米线均匀分散在乙醇中，得浓度为 1mg/ml 的银纳米线溶液，在石墨烯薄膜上使用喷涂的方式叠加银纳米线薄膜。银纳米线薄膜的厚度为 90nm；
0057 ④再次采用 CVD 生长的或者化学氧化法制备的石墨烯薄膜转移到银纳米线薄膜上；
0058 ⑤将叠加薄膜在 50℃ 的环境中放置 12 分钟，除去叠加层中残存的溶剂，形成形式结构，其中 n = 1，获得所述柔性电极；
0059 ⑥获得的柔性电极厚度为 95nm，其透光率为 83%，对应的薄膜电阻 8(±5)Ω / □。
0060 实施例 7
0061 ①将聚对苯二甲酸乙二醇酯 (PET) 透明柔性衬底外层保护膜去除；
0062 ②将银纳米线均匀分散在乙醇中，得浓度为 5mg/ml 的银纳米线溶液，采用喷涂方式在步骤①所得的柔性衬底上制备银纳米线薄膜，银纳米线薄膜厚度为 50nm；
0063 ③将 CVD 生长的石墨烯薄膜转移到银纳米线薄膜上，将石墨烯薄膜转移至纳米线薄膜上；
0064 ④再次采用喷涂方式在叠加层上附着纳米线薄膜，纳米线薄膜厚度为 50nm；
0065 ⑤再将采用 CVD 生长的或者化学氧化法制备的石墨烯薄膜转移到叠加薄膜上，再次叠加石墨烯薄膜；
0066 ⑥将叠加薄膜在 50℃ 的环境中放置 15 分钟，除去叠加层中残存的溶剂，形成形式结构，其中 n = 8，获得所述柔性电极；
0067 ⑦获得的柔性电极厚度为 102nm，其透光率为 78%，对应的薄膜电阻 6(±5)Ω / □。
0068 对比例 1
0069 ①将聚对苯二甲酸乙二醇酯 (PET) 透明柔性衬底外层保护膜去除；
0070 ②将 CVD 生长的石墨烯转移至 PET 上，石墨烯薄膜的厚度为 10nm，透光率为 90～96%，薄膜电阻在 400 ～ 1200Ω / □。
0071 对比例 2
0072 ①将聚对苯二甲酸乙二醇酯 (PET) 透明柔性衬底外层保护膜去除；
0073 ②将银纳米线均匀分散在乙醇中，得浓度为 6mg/ml 的银纳米线溶液，采用喷涂方式在洁净的聚合物基板上制备银纳米线薄膜，银纳米线薄膜厚度为 20nm；
0074 ③获得的柔性电极其透光率为 83%，对应的薄膜电阻 40Ω / □。
0075 对比例 3
[0076] 根据Nano Lett. 2012, 12, 5679-5683报道，将银纳米线散布在石墨烯上，其修饰后的石墨烯在90%透光率的情况下其薄膜电阻在24（±3.6）Ω/□。但其使用的石墨烯转移方式需要高温（350°C），无法应用在聚合物柔性薄膜上。

[0077] 对比例4

[0078] 参考（专利申请号：201110096775. X、201110096846.6、201110096782. X、201110096791. 9）氧化石墨和银纳米线混合，然后旋涂在PE上，所获薄膜的透光率在75%附近，薄膜电阻30Ω/□。