0 02/077846 Al

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 October 2002 (03.10.2002)

PCT

A0 0 OO

(10) International Publication Number

WO 02/077846 Al

(51) International Patent Classification”. GO6F 15/167,

15/16, 15/177, 12/14, GO6T 1/20

(21) International Application Number: PCT/JP02/02605
(22) International Filing Date: 19 March 2002 (19.03.2002)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

09/815,554 22 March 2001 (22.03.2001) US

(71) Applicant: SONY COMPUTER ENTERTAINMENT
INC. [JP/JP]; 1-1, Akasaka 7-chome, Minato-ku, Tokyo
107-0052 (JP).

(72) Inventors: SUZUOKI, Masakazu; c/o SONY COM-
PUTER ENTERTAINMENT INC., 1-1, Akasaka 7-chome,

Minato-ku, Tokyo 107-0052 (JP). YAMAZAKI, Takeshi;
c/o Sony Computer Entertainment America, Inc., 919 East
Hillsdale Blvd., 2nd Floor, Foster City, CA 94404-2175
(US).

(74) Agent: SUZUKI, Seigoh; Shiba NK Bldg. 4th Floor, 22-7,
Shiba 3-chome, Minato-ku, Tokyo 105-0014 (JP).

(81) Designated States (national): AU, BR, CA, CN, IN, KR,
MX, NZ, RU, SG.

(84) Designated States (regional): European patent (BE, CH,
DE, DK, ES, FI, FR, GB, IT, NL, SE).

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: SYSTEM AND METHOD FOR DATA SYNCHRONIZATION FOR A COMPUTER ARCHITECTURE FOR BROAD-

BAND NETWORKS

Sync. Write ERROR

Sync. Read

Sync. Write

Sync. Write

1882

Sync. Read ERROR

1880

Sync. Read

Blocking

1884

(57) Abstract: A computer architecture and programming model for high speed processing over broadband networks are provided.
The architecture employs a consistent modular structure, a common computing module and uniform software cells. The common
computing module includes a control processor, a plurality of processing units, a plurality of local memories from which the process-
ing units process programs, a direct memory access controller and a shared main memory. A synchronized system and method for
the coordinated reading and writing of data to and from the shared main memory by the processing units also are provided. A hard-
ware sandbox structure is provided for security against the corruption of data among the programs being processed by the processing
units. The uniform software cells contain both data and applications and are structured for processing by any of the processors of

the network.

10

15

20

25

WO 02/077846 PCT/JP02/02605

1
DESCRIPTION

SYSTEM AND METHOD FOR DATA SYNCHRONIZATION FOR

A COMPUTER ARCHITECTURE FOR BROADBAND NETWORKS

Technical Field
The present invention relates to an architecture for computer processors and computer
networks and, in particular, to an architecture for computer processors and computer
networks in a broadband environment. The present invention further relates to a

programming model for such an architecture.

Background Art

The computers and computing devices of current computer networks, e.g., local area
networks (LANs) used in office networks and global networks such as the Internet, were
designed principally for stand-alone computing. The sharing of data and application
programs ("applications") over a computer network was not a principal design goal of these
computers and computing devices. These computers and computing devices also typically
were designed using a wide assortment of different processors made by a variety of different
manufacturers, e.g., Motorola, Intel, Texas Instruments, Sony and others. Each of these
processors has its own particular instruction set and instruction set architecture (ISA), i.e., its
own particular set of assembly language instructions and structure for the principal
computational units and memory units for performing these instructions. A programmer is
required to understand, therefore, each processor's instruction set and ISA to write
applications for these processors. This heterogeneous combination of computers and

computing devices on today's computer networks complicates the processing and sharing of

10

15

20

25

WO 02/077846 PCT/JP02/02605

2
data and applications. Multiple versions of the same application often are required, moreover,

to accommodate this heterogeneous environment.

The types of computers and computing devices connected to global networks,
particularly the Internet, are extensive. In addition to personal computers (PCs) and servers,
these computing devices include cellular telephones, mobile computers, personal digital
assistants (PDAs), set top boxes, digital televisions and many others. The sharing of data and
applications among this assortment of computers and computing devices presents substantial
i)roblems.

A number of techniques have been employed in an attempt to overcome these
problems. These techniques include, among others, sophisticated interfaces and complicated
programming techniques. These solutions often require substantial increases in processing
power to implement. They also often result in a substantial increase in the time required to
process applications and to transmit data over networks.

Data typically are transmitted over the Internet separately from the corresponding
applications. This approach avoids the necessity of sending the application with each set of
transmitted data corresponding to the application. While this approach minimizes the amount
of bandwidth needed, it also often causes frustration among users. The correct application, or
the most current application, for the transmitted data may not be available on the client's
computer. This approach also requires the writing of a multiplicity of versions of each
application for the multiplicity of different ISAs and instruction sets employed by the
processors on the network.

The Java model attempts to solve this problem. This model employs a small
application ("applet") complying with a strict security protocol. Applets are sent from a
server computer over the network to be run by a client computer ("client"). To avoid having

to send different versions of the same applet to clients employing different ISAs, all Java

10

15

20

25

WO 02/077846 PCT/JP02/02605

3
applets are run on a client's Java virtual machine. The Java virtual machine is software

emulating a computer having a Java ISA and Java instruction set. This software, however,
runs on the client's ISA and the client's instruction set. A version of the Java virtual machine
is provided for each different ISA and instruction set of the clients. A multiplicity of
different versions of each applet, therefore, is not required. Each client downloads only the
correct Java virtual machine for its particular ISA and instruction set to run all Java applets.

Although providing a solution to the problem of having to write different versions of
an application for each different ISA and instruction set, the Java processing model requires
an additional layer of software on the client's computer. This additional layer of software
significantly degrades a processor's processing speed. This decrease in speed is particularly
significant for real-time, multimedia applications. A downloaded Java applet also may
contain viruses, processing malfunctions, etc. These viruses and malfunctions can corrupt a
client's database and cause other damage. Although a security protocol employed in the Java
model attempts to overcome this problem by implementing a software "sandbox," ie., a
space in the client's memory beyond which the Java applet cannot write data, this software-
driven security model is often insecure in its implementation and requires even more
processing.

Real-time, multimedia, network applications are becoming increasingly important.
These network applications require extremely fast processing speeds. Many thousands of
megabits of data per second may be needed in the future for such applications. The current
architecture of networks, and particularly that of the Internet, and the programming model
presently embodied in, e.g., the Java model, make reaching such processing speeds extremely
difficult.

Therefore, a new computer architecture, a new architecture for computer networks

and a new programming model are required. This new architecture and programming model

10

15

20

25

WO 02/077846 PCT/JP02/02605

4
should overcome the problems of sharing data and applications among the various members

of a network without imposing added computational burdens. This new computer
architecture and programming model also should overcome the security problems inherent in

sharing applications and data among the members of a network.

Disclosure of Invention

In one aspect, the present invention provides a new architecture for computers,
computing devices and computer networks. In another aspect, the present invention provides
a new programming model for these computers, computing devices and computer networks.

In accordance with the present invention, all members of a computer network, i.e., all
computers and computing devices of the nétwork, are constructed from a common computing
module. This common computing module has a consistent struc£ure and preferably employs
the same ISA. The members of the network can be, e.g., clients, servers, PCs, mobile
computers, game machines, PDAs, set top boxes, appliances, digital televisions and other
devices using computer processors. The consistent modular structure enables efficient, high
speed processing of applications and data by the network's members and the rapid
transmission of applications and data over the network. This structure also simplifies the
building of members of the network of various sizes and processing power and the
preparation of applications for processing by these members. In addition, according to one
embodiment of the present invention, there is provided a computer network comprising a
plurality of processors connected to said network, each of said processors comprising a
plurality of first processing units having the same instruction set architecture and a second
processing unit for controlling said first processing units, said first processing units being
operable to process software cells transmitted over said network, each of said software cells

comprising a program compatible with said instruction set architecture, data associated with

10

15

20

WO 02/077846 PCT/JP02/02605

5
said program and an identifier uniquely identifying said software cell among all of said

software cells transmitted over said network. Preferably, the identifier is an identification
number uniquely identifying said software cell among all of said software cells transmitted
over said network.

In another aspect, the present invention provides a mew programming model for
transmitting data and applications over a network and for processing data and applications
among the network's members. This programming model employs a software cell
transmitted over the network for processing by any of the network's members. Each software
cell has the same structure and can contain both applications and data. As a result of the high
speed processing and transmission speed provided by the modular computer architecture,
these cells can be rapidly processed. The code for the applications preferably is based upon
the same common instruction set and ISA. Each software cell preferably contains a global
identification (global ID) and information describing the amount of computing resources
required for the cell's processing. Since all computing resources have the same basic
structure and employ the same ISA, the particular resource performing this processing can be
located anywhere on the network and dynamically assigned.

The basic processing module is a processor element (PE). A PE preferably comprises
a processing unit (PU), a direct memory access controller (DMAC) and a plurality of
attached processing units (APUs). In a preferred embodiment, a PE comprises eight APUs.
The PU and the APUs interact with a shared dynamic random access memory (DRAM)
preferably having a cross-bar architecture. The PU schedules and orchestrates the processing
of data and applications by the APUs. The APUs perform this processing in a parallel and
independent manner. The DMAC controls accesses by the PU and the APUs to the data and

applications stored in the shared DRAM.

10

15

20

WO 02/077846 PCT/JP02/02605

6
In accordance with this modular structure, the number of PEs employed by a member

of the network is based upon the processing power required by that member. For example, a
server may employ four fEs, a workstation may employ two PEs and a PDA may employ
one PE. The number of APUs of a PE assigned to processing a particular software cell
depends upon the complexity and magnitude of the programs and data within the cell.

In a preferred embodiment, a plurality of PEs are associated with a shared DRAM.
The DRAM preferably is segregated into a plurality of sections, and each of these sections is
segregated into a plurality of memory banks. In a particularly preferred embodiment, the
DRAM comprises sixty-four memory banks, and each bank has one megabyte of storage
capacity. Each section of the DRAM preferably is controlled by a bank controller, and each
DMAC of a PE preferably accesses each bank controller. The DMAC of each PE in this
embodiment, therefore, can access any portion of the shared DRAM.

In another aspect, the present invention provides a synchronized system and method
for an APU's reading of data from, and the writing of data to, the shared DRAM. This
system avoids conflicts among the multiple APUs and multiple PEs sharing the DRAM. In
accordance with this system and method, an area of the DRAM is designated for storing a
plurality of full-empty bits. Each of these full-empty bits corresponds to a designated area 6f
the DRAM. The synchronized system is integrated into the hardware of the DRAM and,
therefore, avoids the computational overhead of a data synchronization scheme implemented
in software.

The present invention also implements sandboxes within the DRAM to provide
security against the corruption of data for a program being processed by one APU from data
for a program being processed by another APU. Each sandbox defines an area of the shared

DRAM beyond which a particular APU, or set of APUs, cannot read or write data.

10

15

20

25

WO 02/077846 PCT/JP02/02605

7
In another aspect, the present invention provides a system and method for the PUs'

issuance of commands to the APUs to initiate the APUs' processing of applications and data.
These commands, called APU remote procedure calls (ARPCs), enable the PUs to orchestrate
and coordinate the APUs' parallel processing of applications and data without the APUs
performing the role of co-processors.

In another aspect, the present invention provides a system and method for establishing
a dedicated pipeline structure for the processing of streaming data. In accordance with this
system and method, a coordinated group of APUs, and a coordinated group of memory
sandboxes associated with these APUs, are established by a PU for the processing of these
data. The pipeline's dedicated APUs and memory sandboxes remain dedicated to the pipeline
during periods that the processing of data does not occur. In other words, the dedicated
APUs and their associated sandboxes are placed in a reserved state during these periods.

In another aspect, the present invention provides an absolute timer for the processing
of tasks. This absolute timer is independent of the frequency of the clocks employed by the
APUs for the processing of applications and data. Applications are written based upon the
time period for tasks defined by the absolute timer. If the frequency of the clocks employed
by the APUs increases because of, e.g., enhancements to the APUs, the time period for a
given task as defined by the absolute timer remains the same. This scheme enables the
implementation of enhanced processing times by newer versions of the APUs without
disabling these newer APUs from processing older applications written for the slower
processing times of older APUs.

The present invention also provides an alternative scheme to permit newer APUs
having faster processing speeds to process older applications written for the slower
processing speeds of older APUs. In this alternative scheme, the particular instructions or

microcode employed by the APUs in processing these older applications are analyzed during

10

15

20

25

WO 02/077846 PCT/JP02/02605

8
processing for problems in the coordination of the APUs' parallel processing created by the

enhanced speeds. "No operation" ("NOOP") instructions are inserted into the instructions
executed by some of these APUs to maintain the sequential completion of processing by the
APUs expected by the program. By inserting these NOOPs into these instructions, the
correct timing for the APUs' execution of all instructions are maintained.

In another aspect, the present invention provides a chip package containing an

integrated circuit into which is integrated an optical wave guide.

Brief Description of Drawings

FIG. 1 illustrates the overall architecture of a computer network in accordance with
the present invention.

FIG. 2 is a diagram illustrating the structure of a processor element (PE) in
accordance with the present invention.

FIG. 3 is a diagram illustrating the structure of a broadband engine (BE) in
accordance with the present invention.

FIG. 4 is a diagram illustrating the structure of an attached processing unit (APU) in
accordance with the present invention.

FIG. 5 is a diagram illustrating the structure of a processor element, visualizer (VS)
and an optical interface in accordance with the present invention.

FIG. 6 is a diagram illustrating one combination of processor elements in accordance
with the present invention.

FIG. 7 illustrates another combination of processor elements in accordance with the
present invention.

FIG. 8 illustrates yet another combination of processor elements in accordance with

the present invention.

10

15

20

WO 02/077846 PCT/JP02/02605

9
FIG. 9 illustrates yet another combination of processor elements in accordance with

the present invention.

FIG. 10 illustrates yet another combination of processor elements in accordance with
the present invention.

FIG. 11A illustrates the integration of optical interfaces within a chip package in
accordance with the present invention.

FIG. 11B is a diagram of one configuration of processors using the optical interfaces
of FIG. 11A.

FIG. 11C is a diagram of another configuration of processors using the optical
interfaces of FIG. 11A.

FIG. 12A illustrates the structure of a memory system in accordance with the present
invention.

FIG. 12B illustrates the writing of data from a first broadband engine to a second
broadband engine in accordance with the present invention.

FIG. 13 is a diagram of the structure of a shared memory for a processor element in
accordance with the present invention.

FIG. 14A illustrates one structure for a bank of the memory shown in FIG. 13.

FIG. 14B illustrates another structure for a bank of the memory shown in FIG. 13.

FIG. 15 illustrates a structure for a direct memory access controller in accordance
with the present invention.

FIG. 16 illustrates an alternative structure for a direct memory access controller in
accordance with the present invention.

FIGS. 17A - 170 illustrate the operation of data synchronization in accordance with

the present invention.

10

15

20

WO 02/077846 PCT/JP02/02605

10
FIG. 18 is a three-state memory diagram illustrating the various states of a memory

location in accordance with the data synchronization scheme of the present invention.

FIG. 19 illustrates the structure of a key control table for a hardware sandbox in
accordance with the present invention.

FIG. 20 illustrates a scheme for storing memory access keys for a hardware sandbox
in accordance with the present invention.

FIG. 21 illustrates the structure of a memory access control table for a hardware
sandbox in accordance with the present invention.

FIG. 22 is a flow diagram of the steps for accessing a memory sandbox using the key
control table of FIG. 19 and the memory access control table of FIG. 21.

FIG. 23 illustrates the structure of a software cell in accordance with the present
invention.

FIG. 24 is a flow diagram of the steps for issuing remote procedure calls to APUs in
accordance with the present invention.

FIG. 25 illustrates the structure of a dedicated pipeline for processing streaming data
in accordance with the present invention.

FIG. 26A - 26B are flow diagrams of the steps performed by the dedicated pipeline of
FIG. 25 in the processing of streaming data in accordance with the present invention.

FIG. 27 illustrates an alternative structure for a dedicated pipeline for the processing
of streaming data in accordance with the present invention.

FIG. 28 illustrates a scheme for an absolute timer for coordinating the parallel

processing of applications and data by APUs in accordance with the present invention.

Best Mode for Carrying Out the Invention

10

15

20

25

WO 02/077846 PCT/JP02/02605

11
The overall architecture for a computer system 101 in accordance with the present

invention is shown in FIG. 1.

As illustrated in this figure, system 101 includes network 104 to which is connected a
plurality of computers and computing devices. Network 104 can be a LAN, a global network,
such as the Internet, or any other computer network.

The computers and computing devices connected to network 104 (the network's
"members") include, e.g., client computers 106, server computers 108, personal digital
assistants (PDAs) 110, digital television (DTV) 112 and other wired or wireless computers
and computing devices. The processors employed by the members of network 104 are
constructed from the same common computing module. These processors also preferably all
have the same ISA and perform processing in accordance with the same instruction set. The
number of modules included within any particular processor depends upon the processing
power required by that processor.

For example, since servers 108 of system 101 perform more processing of data and
applications than clients 106, servers 108 contain more computing modules than clients 106.
PDAs 110, on the other hand, perform the least amount of processing. PDAs 110, therefore,
contain the smallest number of computing modules. DTV 112 performs a level of processing
between that of clients 106 and servers 108. DTV 112, therefore, contains a number of
computing modules between that of clients 106 and servers 108. As discussed below, each
computing module contains a processing controller and a plurality of identical processing
units for performing parallel processing of the data and applications transmitted over network
104.

This homogeneous configuration for system 101 facilitates adaptability, processing
speed and processing efficiency. Because each member of system 101 performs processing

using one or more (or some fraction) of the same computing module, the particular computer

10

15

20

25

WO 02/077846 PCT/JP02/02605

12
or computing device performing the actual processing of data and applications is unimportant.

The processing of a particular application and data, moreover, can be shared among the
network's members. By uniquely identifying the cells comprising the data and applications
processed by system 101 throughout the system, the processing results can be transmitted to
the computer or computing device requesting the processing regardless of where this
processing occurred. Because the modules performing this processing have a common
structure and employ a common ISA, the computational burdens of an added layer of
software to achieve compatibility among the processors is avoided. This architecture and
programming model facilitates the processing speed necessary to execute, e.g., real-time,
multimedia applications.

To take further advantage of the processing speeds and efficiencies facilitated by
system 101, the data and applications processed by this system are packaged into uniquely
identified, uniformly formatted software cells 102. Each software cell 102 contains, or can
contain, both applications and data. Each software cell also contains an ID to globally
identify the cell throughout network 104 and system 101. This uniformity of structure for the
software cells, and the software cells' unique identification throughout the network, facilitates
the processing of applications and data on any computer or computing device of the network.
For example, a client 106 may formulate a software cell 102 but, because of the limited
processing capabilities of client 106, transmit this software cell to a server 108 for processing.
Software cells can migrate, therefore, throughout network 104 for processing on the basis of
the availability of processing resources on the network.

The homogeneous structure of processors and software cells of system 101 also
avoids many of the problems of today's heterogeneous networks. For example, inefficient
programming models which seek to permit processing of applications on any ISA using any

instruction set, e.g., virtual machines such as the Java virtual machine, are avoided. System

10

15

20

25

WO 02/077846 PCT/JP02/02605

13
101, therefore, can implement broadband processing far more effectively and efficiently than

today's networks.

The basic processing module for all members of network 104 is the processor element
(PE). FIG. 2 illustrates the structure of a PE. As shown in this figure, PE 201 comprises a
processing unit (PU) 203, a direct memory access controller (DMAC) 205 and a plurality of
attached processing units (APUs), namely, APU 207, APU 209, APU 211, APU 213, APU
215, APU 217, APU 219 and APU 221. A local PE bus 223 transmits data and applications
among the APUs, DMAC 205 and PU 203. Local PE bus 223 can have, e.g., a conventional
architecture or be implemented as a packet switch network. Implementation as a packet
switch network, while requiring more hardware, increases available bandwidth.

PE 201 can be constructed using various methods for implementing digital logic. PE
201 preferably is constructed, however, as a single integrated circuit employing a’
complementary metal oxide semiconductor (CMOS) on a silicon substrate. Alternative
materials for substrates include gallium arsinide, gallium aluminum arsinide and other so-
called III-B compounds employing a wide variety of dopants. PE 201 also could be
implemented using superconducting material, e.g., rapid single-flux-quantum (RSFQ) logic.

PE 201 is closely associated with a dynamic random access memory (DRAM) 225
through a high bandwidth memory connection 227. DRAM 225 functions as the main
memory for PE 201. Although a DRAM 225 preferably is a dynamic random access memory,
DRAM 225 could be implemented using other means, e.g., as a static random access memory
(SRAM), a magnetic random access memory (MRAM), an optical memory or a holographic
memory. DMAC 205 facilitates the transfer of data between DRAM 225 and the APUs and
PU of PE 201. As further discussed below, DMAC 205 designates for each APU an
exclusive area in DRAM 225 into which only the APU can write data and from which only

the APU can read data. This exclusive area is designated a "sandbox."

10

15

20

25

WO 02/077846 PCT/JP02/02605

14
PU 203 can be, e.g., a standard processor capable of stand-alone processing of data

and applications. In operation, PU 203 schedules and orchestrates the processing of data and
applications by the APUs. The APUs preferably are single instruction, multiple data (SIMD)
processors. Under the control of PU 203, the APUs perform the processing of these data and
applications in a parallel and independent manner. DMAC 205 controls accesses by PU 203
and the APUs to the data and applications stored in the shared DRAM 225. Although PE 201
preferably includes eight APUs, a greater or lesser number of APUs can be employed in a PE
depending upon the processing power required. Also, a number of PEs, such as PE 201, may
be joined or packaged together to provide enhanced processing power.

For example, as shown in FIG. 3, four PEs may be packaged or joined together, e.g.,
within one or more chip packages, to form a single processor for a member of network 104.
This configuration is designated a broadband engine (BE). As shown in FIG. 3, BE 301
contains four PEs, namely, PE 303, PE 305, PE 307 and PE 309. Communications among
these PEs are over BE bus 311. Broad bandwidth memory connection 313 provides
communication between shared DRAM 315 and these PEs. In lieu of BE bus 311,
communications among the PEs of BE 301 can occur through DRAM 315 and this memory
connection.

Input/output (I/O) interface 317 and external bus 319 provide communications
between broadband engine 301 and the other members of network 104. Each PE of BE 301
performs processing of data and applications in a parallel and independent manner analogous
to the parallel and independent processing of applications and data performed by the APUs of
a PE.

FIG. 4 illustrates the structure of an APU. APU 402 includes local memory 406,
registers 410, four floating point units 412 and four integer units 414. Again, however,

depending upon the processing power required, a greater or lesser number of floating points

10

15

20

25

WO 02/077846 PCT/JP02/02605

15
units 512 and integer units 414 can be employed. In a preferred embodiment, local memory

406 contains 128 kilobytes of storage, and the capacity of registers 410 is 128 X 128 bits.
Floating point units 412 preferably operate at a speed of 32 billion floating point operations
per second (32 GFLOPS), and integer units 414 preferably operate at a speed of 32 billion
operations per second (32 GOPS).

Local memory 402 is not a cache memory. Local memory 402 is preferably
constructed as an SRAM. Cache coherency support for an APU is unnecessary. A PU may
require cache coherency support for direct memory accesses initiated by the PU. Cache
coherency support is not required, however, for direct memory accesses initiated by an APU
or for accesses from and to external devices.

| APU 402 further includes bus 404 for transmitting applications and data to and from
the APU. In a preferred embodiment, this bus is 1,024 bits wide. APU 402 further includes
internal busses 408, 420 and 418. In a preferred embodiment, bus 408 has a width of 256 bits
and provides communications between local memory 406 and registers 410. Busses 420 and
418 provide communications between, respectively, registers 410 and floating point units 412,
and registers 410 and integer units 414. In a preferred embodiment, the width of busses 418
and 420 from registers 410 to the floating point or integer units is 384 bits, and the width of
busses 418 and 420 from the floating point or integer units to registers 410 is 128 bits. The
larger width of these busses from registers 410 to the floating point or integer units than from
these units to registers 410 accommodates the larger data flow from registers 410 during
processing. A maximum of three words are needed for each calculation. The result of each
calculation, however, normally is only one word.

FIGS. 5-10 further illustrate the modular structure of the processors of the members
of network 104. For example, as shown in FIG. 5, a processor may comprise a single PE 502.

As discussed above, this PE typically comprises a PU, DMAC and eight APUs. Each APU

10

15

20

25

WO 02/077846 PCT/JP02/02605

16
includes local storage (LS). On the other hand, a processor may comprise the structure of

visualizer (VS) 505. As shown in FIG. 5, VS 505 comprises PU 512, DMAC 514 and four
APUs, namely, APU 516, APU 518, APU 520 and APU 522. The space within the chip
package normally occupied by the other four APUs of a PE is occupied in this case by pixel
engine 508, image cache 510 and cathode ray tube controller (CRTC) 504. Depending upon
the speed of communications required for PE 502 or VS 505, optical interface 506 also may
be included on the chip package.

Using this standardized, modular structure, numerous other variations of processors
can be constructed easily and efficiently. For example, the processor shown in FIG. 6
comprises two chip packages, namely, chip package 602 comprising a BE and chip package
604 comprising four VSs. Input/output (I/O) 606 provides an interface between the BE of
chip package 602 and network 104. Bus 608 provides communications between chip
package 602 and chip package 604. Input output processor (IOP) 610 controls the flow of
data into and out of I/O 606. 1/0 606 may be fabricated as an application specific integrated
circuit (ASIC). The output from the VSs is video signal 612.

FIG. 7 illustrates a chip package for a BE 702 with two optical interfaces 704 and 706
for providing ultra high speed communications to the other members of network 104 (or
other chip packages locally connected). BE 702 can function as, e.g., a server on network
104.

The chip package of FIG. 8 comprises two PEs 802 and 804 and two VSs 806 and
808. An I/O 810 provides an interface between the chip package and network 104. The
output from the chip package is a video signal. This configuration may function as, e.g., a
graphics work station.

FIG. 9 illustrates yet another configuration. This configuration contains one-half of

the processing power of the configuration illustrated in FIG. 8. Instead of two PEs, one PE

10

15

20

WO 02/077846 PCT/JP02/02605

17
902 is provided, and instead of two VSs, one VS 904 is provided. I/O 906 has one-half the

bandwidth of the I/O illustrated in FIG. 8. Such a processor also may function, however, as a
graphics work station.

A final configuration is shown in FIG. 10. This processor consists of only a single
VS 1002 and an I/O 1004. This configuration may function as, e.g., a PDA.

FIG. 11A illustrates the integration of optical interfaces into a chip package of a
processor of network 104. These optical interfaces convert optical signals to electrical
signals and electrical signals to optical signals and can be constructed from a variety of
materials including, e.g., gallium arsinide, aluminum gallium arsinide, germanium and other
elements or compounds. As shown in this figure, optical interfaces 1104 and 1106 are
fabricated on the chip package of BE 1102. BE bus 1108 provides communication among
the PEs of BE 1102, namely, PE 1110, PE 1112, PE 1114, PE 1116, and these optical
interfaces. Optical interface 1104 includes two ports, namely, port 1118 and port 1120, and
optical interface 1106 also includes two ports, namely, port 1122 and port 1124. Ports 1118,
1120, 1122 and 1124 are connected to, respectively, optical wave guides 1126, 1128, 1130
and 1132. Optical signals are transmitted to and from BE 1102 through these optical wave
guides via the ports of optical interfaces 1104 and 1106.

A plurality of BEs can be connected together in various configurations using such
optical wave guides and the four optical ports of each BE. For example, as shown in
FIG. 11B, two or more BEs, e.g., BE 1152, BE 1154 and BE 1156, can be connected serially
through such optical ports. In this example, optical interface 1166 of BE 1152 is connected
through its optical ports to the optical ports of optical interface 1160 of BE 1154. In a similar
manner, the optical ports of optical interface 1162 on BE 1154 are connected to the optical

ports of optical interface 1164 of BE 1156.

10

15

20

25

WO 02/077846 PCT/JP02/02605

18
A matrix configuration is illustrated in FIG. 11C. In this configuration, the optical

interface of each BE is connected to two other BEs. As shown in this figure, one of the
optical ports of optical interface 1188 of BE 1172 is connected to an optical port of optical
interface 1182 of BE 1176. The other optical port of optical interface 1188 is connected to an
optical port of optical interface 1184 of BE 1178. In a similar manner, one optical port of
optical interface 1190 of BE 1174 is connected to the other optical port of optical interface
1184 of BE 1178. The other optical port of optical interface 1190 is connected to an optical
port of optical interface 1186 of BE 1180. This matrix configuration can be extended in a
similar manner to other BEs.

Using either a serial configuration or a matrix configuration, a processor for network
104 can be constructed of any desired size and power. Of course, additional ports can be
added to the optical interfaces of the BEs, or to processors having a greater or lesser number
of PEs than a BE, to form other configurations.

FIG. 12A illustrates the control system and structure for the DRAM of a BE. A
similar control system and structure is employed in processors having other sizes and
containing more or less PEs. As shown in this figure, a cross-bar switch connects each
DMAC 1210 of the four PEs comprising BE 1201 to eight bank controls 1206. Each bank
control 1206 controls eight banks 1208 (only four are shown in the figure) of DRAM 1204.
DRAM 1204, therefore, comprises a total of sixty-four banks. In a preferred embodiment,
DRAM 1204 has a capacity of 64 megabytes, and each bank has a capacity of 1 megabyte.
The smallest addressable unit within each bank, in this preferred embodiment, is a block of
1024 bits.

BE 1201 also includes switch unit 1212. Switch unit 1212 enables other APUs on
BEs closely coupled to BE 1201 to access DRAM 1204. A second BE, therefore, can be

closely coupled to a first BE, and each APU of each BE can address twice the number of

10

15

20

25

WO 02/077846 PCT/JP02/02605

19 .
memory locations normally accessible to an APU. The direct reading or writing of data from

or to the DRAM of a first BE from or to the DRAM of a second BE can occur through a
switch unit such as switch unit 1212.

For example, as shown in FIG. 12B, to accomplish such writing, the APU of a first
BE, e.g., APU 1220 of BE 1222, issues a write command to a memory location of a DRAM
of a second BE, e.g., DRAM 1228 of BE 1226 (rather than, as in the usual case, to
DRAM 1224 of BE 1222). DMAC 1230 of BE 1222 sends the write command through
cross-bar switch 1221 to bank control 1234, and bank control 1234 transmits the command to
an external port 1232 connected to bank control 1234. DMAC 1238 of BE 1226 receives the
write command and transfers this command to switch unit 1240 of BE 1226. Switch
unit 1240 identifies the DRAM address contained in the write command and sends the data
for storage in this address through bank control 1242 of BE 1226 to bank 1244 of DRAM
1228. Switch unit 1240, therefore, enables both DRAM 1224 and DRAM 1228 to function
as a single memory space for the APUs of BE 1222.

FIG. 13 shows the configuration of the sixty-four banks of a DRAM. These banks are
arranged into eight rows, namely, rows 1302, 1304, 1306, 1308, 1310, 1312, 1314 and 1316
and eight columns, namely, columns 1320, 1322, 1324, 1326, 1328, 1330, 1332 and 1334.
Each row is controlled by a bank controller. Each bank controller, therefore, controls eight
megabytes of memory.

FIGS. 14A and 14B illustrate different configurations for storing and accessing the
smallest addressable memory unit of a DRAM, e.g., a block of 1024 bits. In FIG. 14A,
DMAC 1402 stores in a single bank 1404 eight 1024 bit blocks 1406. In FIG. 14B, on the
other hand, while DMAC 1412 reads and writes blocks of data containing 1024 bits, these
blocks are interleaved between two banks, namely, bank 1414 and bank 1416. Each of these

banks, therefore, contains sixteen blocks of data, and each block of data contains 512 bits.

10

15

20

WO 02/077846 PCT/JP02/02605

20
This interleaving can facilitate faster accessing of the DRAM and is useful in the processing

of certain applications.

FIG. 15 illustrates the architecture for a DMAC 1504 within a PE. As illustrated in
this figure, the structural hardware comprising DMAC 1506 is distributed throughout the PE
such that each APU 1502 has direct access to a structural node 1504 of DMAC 1506. Each
node executes the logic appropriate for memory accesses by the APU to which the node has
direct access.

FIG. 16 shows an alternative embodiment of the DMAC, namely, a non-distributed
architecture. In this case, the structural hardware of DMAC 1606 is centralized. APUs 1602
and PU 1604 communicate with DMAC 1606 via local PE bus 1607. DMAC 1606 is
connected through a cross-bar switch to a bus 1608. Bus 1608 is connected to DRAM 1610.

As discussed above, all of the multiple APUs of a PE can independently access data
in the shared DRAM. As a result, a first APU could be operating upon particular data in its
local storage at a time during which a second APU requests these data. If the data were
provided to the second APU at that time from the shared DRAM, the data could be invalid
because of the first APU’s ongoing processing which could change the data’s value. If the
second processor received the data from the shared DRAM at that time, therefore, the second
processor could generate an erroneous result. For example, the data could be a specific value
for a global variable. If the first processor changed that value during its processing, the
second processor would receive an outdated value. A scheme is necessary, therefore, to
synchronize the APUs' reading and writing of data from and to memory locations within the
shared DRAM. This scheme must prevent the reading of data from a memory location upon
which another APU currently is operating in its local storage and, therefore, which are not

current, and the writing of data into a memory location storing current data.

10

15

20

WO 02/077846 PCT/JP02/02605

21
To overcome these problems, for each addressable memory location of the DRAM, an

additional segment of memory is allocated in the DRAM for storing status information
relating to the data stored in the memory location. This status information includes a
full/empty (F/E) bit, the identification of an APU (APU ID) requesting data from the memory
location and the address of the APU's local storage (LS address) to which the requested data
should be read. An addressable memory location of the DRAM can be of any size. In a
preferred embodiment, this size is 1024 bits.

The setting of the F/E bit to 1 indicates that the data stored in the associated memory
location are current. The setting of the F/E bit to 0, on the other hand, indicates that the data
stored in the associated memory location are not current. If an APU requests the data when
this bit is set to 0, the APU is prevented from immediately reading the data. In this case, an
APU ID identifying the APU requesting the data, and an LS address identifying the memory
location within the local storage of this APU to which the data are to be read when the data
become current, are entered into the additional memory segment.

An additional memory segment also is allocated for each memory location within the
local storage of the APUs. This additional memory segment stores one bit, designated the
"busy bit." The busy bit is used to reserve the associated LS memory location for the storage
of specific data to be retrieved from the DRAM. If the busy bit is set to 1 for a particular
memory location in local storage, the APU can use this memory location only for the writing
of these specific data. On the other hand, if the busy bit is set to 0 for a particular memory
location in local storage, the APU can use this memory location for the writing of any data.

Examples of the manner in which the F/E bit, the APU ID, the LS address and the
busy bit are used to synchronize the reading and writing of data from and to the shared

DRAM of a PE are illustrated in FIGS. 17A-170.

10

15

20

25

WO 02/077846 PCT/JP02/02605

22
As shown in FIG. 17A, one or more PEs, e.g., PE 1720, interact with DRAM 1702.

PE 1720 includes APU 1722 and APU 1740. APU 1722 includes control logic 1724, and
APU 1740 includes control logic 1742. APU 1722 also includes local storage 1726. This
local storage includes a plurality of addressable memory locations 1728. APU 1740 includes
local storage 1744, and this local storage also includes a plurality of addressable memory
locations 1746. All of these addressable memory locations preferably are 1024 bits in size.

An additional segment of memory is associated with each LS addressable memory
location. For example, memory segments 1729 and 1734 are associated with, respectively,
local memory locations 1731 and 1732, and memory segment 1752 is associated with local
memory location 1750. A "busy bit," as discussed above, is stored in each of these additional
memory segments. Local memory location 1732 is shown with several Xs to indicate that
this location contains data.

DRAM 1702 contains a plurality of addressable memory locations 1704, including
memory locations 1706 and 1708. These memory locations preferably also are 1024 bits in
size. An additional segment of memory also is associated with each of these memory
locations. For example, additional memory segment 1760 is associated with memory
location 1706, and additional memory segment 1762 is associated with memory location
1708. Status information relating to the data stored in each memory location is stored in the
memory segment associated with the memory location. This status information includes, as
discussed above, the F/E bit, the APU ID and the LS address. For example, for memory
location 1708, this status information includes F/E bit 1712, APU ID 1714 and LS address
1716.

Using the status information and the busy bit, the synchronized reading and writing of
data from and to the shared DRAM among the APUs of a PE, or a group of PEs, can be

achieved.

10

15

20

25

WO 02/077846 PCT/JP02/02605

23
FIG. 17B illustrates the initiation of the synchronized writing of data from LS

memory location 1732 of APU 1722 to memory location 1708 of DRAM 1702. Control
1724 of APU 1722 initiates the synchronized writing of these data. Since memory location
1708 is empty, F/E bit 1712 is set to 0. As a result, the data in LS location 1732 can be
written into memory location 1708. If this bit were set to 1 to indicate that memory
location 1708 is full and contains current, valid data, on the other hand, control 1722 would
receive an error message and be prohibited from writing data into this memory location.

The result of the successful synchronized writing of the data into memory
location 1708 is shown in FIG. 17C. The written data are stored in memory location 1708,
and F/E bit 1712 is set to 1. This setting indicates that memory location 1708 is full and that
the data in this memory location are current and valid.

FIG. 17D illustrates the initiation of the synchronized reading of data from memory
location 1708 of DRAM 1702 to LS memory location 1750 of local storage 1744. To initiate
this reading, the busy bit in memory segment 1752 of LS memory loéation 1750 is set to 1 to
reserve this memory location for these data. The setting of this busy bit to 1 prevents APU
1740 from storing other data in this memory location.

As shown in FIG. 17E, control logic 1742 next issues a synchronize read command
for memory location 1708 of DRAM 1702. Since F/E bit 1712 associated with this memory
location is set to 1, the data stored in memory location 1708 are considered current and valid.
As a result, in preparation for transferring the data from memory location 1708 to LS
memory location 1750, F/E bit 1712 is set to 0. This setting is shown in FIG. 17F. The
setting of this bit to 0 indicates that, following the reading of these data, the data in memory
location 1708 will be invalid.

As shown in FIG. 17G, the data within memory location 1708 next are read from

memory location 1708 to LS memory location 1750. FIG. 17H shows the final state. A copy

10

15

20

WO 02/077846 PCT/JP02/02605

24
of the data in memory location 1708 is stored in LS memory location 1750. F/E bit 1712 is

set to O to indicate that the data in memory location 1708 are invalid. This invalidity is the
result of alterations to these data to be made by APU 1740. The busy bit in memory segment
1752 also is set to 0. This setting indicates that LS memory location 1750 now is available to
APU 1740 for any purpose, ie., this LS memory location no longer is in a reserved state
waiting for the receipt of specific data. LS memory location 1750, therefore, now can be
accessed by APU 1740 for any purpose.

FIGS. 171-170 illustrate the synchronized reading of data from a memory location of
DRAM 1702, e.g., memory location 1708, to an LS memory location of an APU's local
storage, e.g., LS memory location 1752 of local storage 1744, when the F/E bit for the
memory location of DRAM 1702 is set to O to indicate that the data in this memory location
are not current or valid. As shown in FIG. 171, to initiate this transfer, the busy bit in
memory segment 1752 of LS memory location 1750 is set to 1 to reserve this LS memory
location for this transfer of data. As shown in FIG. 17J, control logic 1742 next issues a
synchronize read command for memory location 1708 of DRAM 1702. Since the F/E bit
associated with this memory location, F/E bit 1712, is set to 0, the data stored in memory
location 1708 are invalid. As a result, a signal is transmitted to control logic 1742 to block
the immediate reading of data from this memory location.

As shown in FIG. 17K, the APU ID 1714 and LS address 1716 for this read command
next are written into memory segment 1762. In this case, the APU ID for APU 1740 and the
LS memory location for LS memory location 1750 are written into memory segment 1762.
When the data within memory location 1708 become current, therefore, this APU ID and LS
memory location are used for determining the location to which the current data are to be

transmitted.

10

15

20

WO 02/077846 PCT/JP02/02605

25
- The data in memory location 1708 become valid and current when an APU writes

data into this memory location. The synchronized writing of data into memory location 1708
from, e.g., memory location 1732 of APU 1722, is illustrated in FIG. 17L. This synchronized
writing of these data is permitted because F/E bit 1712 for this memory location is set to 0.
As shown in FIG. 17M, following this writing, the data in memory location 1708
become current and valid. APU ID 1714 and LS address 1716 from memory segment 1762,
therefore, immediately are read from memory segment 1762, and this information then is
deleted from this segment. F/E bit 1712 also is set to 0 in anticipation of the immediate
reading of the data in memory location 1708. As shown in FIG. 17N, upon reading
APUID 1714 and LS address 1716, this information immediately is used for reading the
valid data in memory location 1708 to LS memory location 1750 of APU 1740. The final
state is shown in FIG. 170. This figure shows the valid data from memory location 1708
copied to memory location 1750, the busy bit in memory segment 1752 set to O and F/E
bit 1712 in memory segment 1762 set to 0. The setting of this busy bit to O enables LS
memory location 1750 now to be accessed by APU 1740 for any purpose. The setting of this
F/E bit to 0 indicates that the data in memory location 1708 no longer are current and valid.
FIG. 18 summarizes the operations described above and the various states of a
memory location of the DRAM based upon the states of the F/E bit, the APU ID and the LS
address stored in the memory segment corresponding to the memory location. The memory
location can have three states. These three states are an empty state 1880 in which the F/E bit
is set to 0 and no information is provided for the APU ID or the LS address, a full state 1882
in which the F/E bit is set to 1 and no information is provided for the APU ID or LS address
and a blocking state 1884 in which the F/E bit is set to 0 and information is provided for the

APU ID and LS address.

10

15

20

25

WO 02/077846 PCT/JP02/02605

26
As shown in this figure, in empty state 1880, a synchronized writing operation is

permitted and results in a transition to full state 1882. A synchronized reading operation,
however, results in a transition to the blocking state 1884 because the data in the memory
location, when the memory location is in the empty state, are not current.

In full state 1882, a synchronized reading operation is permitted and results in a
transition to empty state 1880. On the other hand, a synchronized writing operation in full
state 1882 is prohibited to prevent overwriting of valid data. If such a writing operation is
attempted in this state, no state change occurs and an error message is transmitted to the
APU's corresponding control logic.

In blocking state 1884, the synchronized writing of data into the memory location is
permitted and results in a transition to empty state 1880. On the other hand, a synchronized
reading operation in blocking state 1884 is prohibited to prevent a conflict with the earlier
synchronized reading operation which resulted in this state. If a synchronized reading
operation is attempted in blocking state 1884, no state change occurs and an error message is
transmitted to the APU's corresponding control logic.

The scheme described above for the synchronized reading and writing of data from
and to the shared DRAM also can be used for eliminating the computational resources
normally dedicated by a processor for reading data from, and writing data to, external devices.
This input/output (I/O) function could be performed by a PU. However, using a modification
of this synchronization scheme, an APU running an appropriate program can perform this
function. For example, using this scheme, a PU receiving an interrupt request for the
transmission of data from an I/O interface initiated by an external device can delegate the
handling of this request to this APU. The APU then issues a synchronize write command to
the /O interface. This interface in turn signals the external device that data now can be

written into the DRAM. The APU next issues a synchronize read command to the DRAM to

10

15

20

25

WO 02/077846 PCT/JP02/02605

27
set the DRAM's relevant memory space into a blocking state. The APU also sets to 1 the

busy bits for the memory locations of the APU's local storage needed to receive the data. In
the blocking state, the additional memory segments associated with the DRAM's relevant
memory space contain the APU's ID and the address of the relevant memory locations of the
APU's local storage. The external device next issues a synchronize write command to write
the data directly to the DRAM's relevant memory space. Since this memory space is in the
blocking state, the data are immediately read out of this space into the memory locations of
the APU's local storage identified in the additional memory segments. The busy bits for
these memory locations then are set to 0. When the external device completes writing of the
data, the APU issues a signal to the PU that the transmission is complete.

Using this scheme, therefore, data transfers from external devices can be processed
with minimal computational load on the PU. The APU delegated this function, however,
should be able to issue an interrupt request to the PU, and the external device should have
direct access to the DRAM.

The DRAM of each PE includes a plurality of "sandboxes." A sandbox defines an
area of the shared DRAM beyond which a particular APU, or set of APUs, cannot read or
write data. These sandboxes provide security against the corruption of data being processed
by one APU by data being processed by another APU. These sandboxes also permit the
downloading of software cells from network 104 into a particular sandbox without the
possibility of the software cell corrupting data throughout the DRAM. In the present
invention, the sandboxes are implemented in the hardware of the DRAMs and DMACs. By
implementing these sandboxes in this hardware rather than in software, advantages in speed
and security are obtained.

The PU of a PE controls the sandboxes assigned to the APUs. Since the PU normally

operates only trusted programs, such as an operating system, this scheme does not jeopardize

10

15

20

WO 02/077846 PCT/JP02/02605

28
security. In accordance with this scheme, the PU builds and maintains a key control table.

This key control table is illustrated in FIG. 19. As shown in this figure, each entry in key
control table 1902 contains an identification (ID) 1904 for an APU, an APU key 1906 for that
APU and a key mask 1908. The use of this key mask is explained below. Key control table
1902 preferably is stored in a relatively fast memory, such as a static random access memory
(SRAM), and is associated with the DMAC. The entries in key control table 1902 are
controlled by the PU. When an APU requests the writing of data to, or the reading of data
from, a particular storage location of the DRAM, the DMAC evaluates the APU key 1906
assigned to that APU in key control table 1902 against a memory access key associated with
that storage location.

As shown in FIG. 20, a dedicated memory segment 2010 is assigned to each
addressable storage location 2006 of a DRAM 2002. A memory access key 2012 for the
storage location is stored in this dedicated memory segment. As discussed above, a further
additional dedicated memory segment 2008, also associated with each addressable storage
location 2006, stores synchronization information for writing data to, and reading data from,
the storage location.

In operation, an APU issues a DMA command to the DMAC. This command
includes the address of a storage location 2006 of DRAM 2002. Before executing this
command, the DMAC looks up the requesting APU's key 1906 in key control table 1902
using the APU's ID 1904. The DMAC then compares the APU key 1906 of the requesting
APU to the memory access key 2012 stored in the dedicated memory segment 2010
associated with the storage location of the DRAM to which the APU seeks access. If the two
keys do not match, the DMA command is not executed. On the other hand, if the two keys

match, the DMA command proceeds and the requested memory access is executed.

10

15

20

25

WO 02/077846 PCT/JP02/02605

(29
An alternative embodiment is illustrated in FIG. 21. In this embodiment, the PU also

maintains a memory access control table 2102. Memory access control table 2102 contains
an entry for each sandbox within the DRAM. In the particular example of FIG. 21, the
DRAM contains 64 sandboxes. Each entry in memory access control table 2102 contains an
identification (ID) 2104 for a sandbox, a base memory address 2106, a sandbox size 2108, a
memory access key 2110 and an access key mask 2110. Base memory address 2106 provides
the address in the DRAM which starts a particular memory sandbox. Sandbox size 2108
provides the size of the sandbox and, therefore, the endpoint of the particular sandbox.

FIG. 22 is a flow diagram of the steps for executing a DMA command using key
control table 1902 and memory access control table 2102. In step 2202, an APU issues a
DMA command to the DMAC for access to a particular memory location or locations within
a sandbox. This command includes a sandbox ID 2104 identifying the particular sandbox
for which access is requested. In step 2204, the DMAC looks up the requesting APU's key
1906 in key control table 1902 usiné the APU's ID 1904. In step 2206, the DMAC uses the
sandbox ID 2104 in the command to look up in memory access control table 2102 the
memory access key 2110 associated with that sandbox. In step 2208, the DMAC compares
the APU key 1906 assigned to the requesting APU to the access key 2110 associated with the
sandbox. In step 2210, a determination is made of whether the two keys match. If the two
keys do not match, the process moves to step 2212 where the DMA command does not
proceed and an error message is sent to either the requesting APU, the PU or both. On the
other hand, if at step 2210 the two keys are found to match, the process proceeds to step 2214
where the DMAC executes the DMA command.

The key masks for the APU keys and the memory access keys provide greater
flexibility to this system. A key mask for a key converts a masked bit into a wildcard. For

example, if the key mask 1908 associated with an APU key 1906 has its last two bits set to

10

15

20

25

WO 02/077846 PCT/JP02/02605

30
"mask," designated by, e.g., setting these bits in key mask 1908 to 1, the APU key can be

either a 1 or a 0 and still match the memory access key. For example, the APU key might
be 1010. This APU key normally allows access only to a sandbox having an access key
of 1010. If the APU key mask for this APU key is set to 0001, however, then this APU key
can be used to gain access to sandboxes having an access key of either 1010 or 1011.
Similarly, an access key 1010 with a mask set to 0001 can be accessed by an APU with an
APU key of either 1010 or 1011. Since both the APU key mask and the memory key mask
can be used simultaneously, numerous variations of accessibility by the APUs to the
sandboxes can be established.

The present invention also provides a new programming model for the processors of
system 101. This programming model employs software cells 102. These cells can be
transmitted to any processor on network 104 for processing. This new programming model
also utilizes the unique modular architecture of system 101 and the processors of system 101.

Software cells are processed directly by the APUs from the APU's local storage. The
APUs do not directly operate on any data or programs in the DRAM. Data and programs in
the DRAM are read into the APU's local storage before the APU processes these data and
programs. The APU's local storage, therefore, includes a program counter, stack and other
software elements for executing these programs. The PU controls the APUs by issuing direct
memory access (DMA) commands to the DMAC.

The structure of software cells 102 is illustrated in FIG. 23. As shown in this figure, a
software cell, e.g., software cell 2302, contains routing information section 2304 and
body 2306. The information contained in routing information section 2304 is dependent
upon the protocol of network 104. Routing information section 2304 contains header 2308,
destination ID 2310, source ID 2312 and reply ID 2314. The destination ID includes a

network address. Under the TCP/IP protocol, e.g., the network address is an Internet

10

15

20

WO 02/077846 PCT/JP02/02605

31
protocol (IP) address. Destination ID 2310 further includes the identity of the PE and APU

to which the cell should be transmitted for processing. Source ID 2314 contains a network
address and identifies the PE and APU from which the cell originated to enable the
destination PE and APU to obtain additional information regarding the cell if necessary.
Reply ID 2314 contains a network address and identifies the PE and APU to which queries
regarding the cell, and the result of processing of the cell, should be directed.

Cell body 2306 contains information independent of the network's protocol. The
exploded portion of FIG. 23 shows the details of cell body 2306. Header 2320 of cell
body 2306 identifies the start of the cell body. Cell interface 2322 contains information
necessary for the cell's utilization. This information includes global unique ID 2324, required
APUs 2326, sandbox size 2328 and previous cell ID 2330.

Global unique ID 2324 uniquely identifies software cell 2302 throughout network 104.
Global unique ID 2324 is generated on the basis of source ID 2312, e.g. the unique
identification of a PE or APU within source ID 2312, and the time and date of generation or
transmission of software cell 2302. Required APUs 2326 provides the minimum number of
APUs required to execute the cell. Sandbox size 2328 provides the amount of protected
memory in the required APUSs' associated DRAM necessary to execute the cell. Previous cell
ID 2330 provides the identity of a previous cell in a group of cells requiring sequential
execution, e.g., streaming data.

Implementation section 2332 contains the cell's core information. This information
includes DMA command list 2334, programs 2336 and data 2338. Programs 2336 contain
the programs to be run by the APUs (called "apulets"), e.g., APU programs 2360 and 2362,
and data 2338 contain the data to be processed with these programs. DMA command list

2334 contains a series of DMA commands needed to start the programs. These DMA

10

15

20

WO 02/077846 PCT/JP02/02605

32
commands include DMA commands 2340, 2350, 2355 and 2358. The PU issues these DMA

commands to the DMAC.

DMA command 2340 includes VID 2342, VID 2342 is the virtual ID of an APU
which is mapped to a physical ID when the DMA commands are issued. DMA command
2340 also includes load command 2344 and address 2346. Load command 2344 directs the
APU to read particular information from the DRAM into local storage. Address 2346
provides the virtual address in the DRAM containing this information. The information can
be, e.g., programs from programs section 2336, data from data section 2338 or other data.
Finally, DMA command 2340 includes local storage address 2348. This address identifies
the address in local storage where the information should be loaded. DMA commands 2350
contain similar information. Other DMA commands are also possible.

DMA command list 2334 also includes a series of kick commands, e.g., kick
commands 2355 and 2358. Kick commands are commands issued by a PU to an APU to
initiate the processing of a cell. DMA kick command 2355 includes virtual APU ID 2352,
kick command 2354 and program counter 2356. Virtual APU ID 2352 identifies the APU to
be kicked, kick command 2354 provides the relevant kick command and program
counter 2356 provides the address for the program counter for executing the program. DMA
kick command 2358 provides similar information for the same APU or another APU.

As noted, the PUs treat the APUs as independent processors, not co-processors. To
control processing by the APUs, therefore, the PU uses commands analogous to remote
procedure calls. These commands are designated "APU Remote Procedure Calls" (ARPCs).
A PU implements an ARPC by issuing a series of DMA commands to the DMAC. The
DMAC loads the APU program and its associated stack frame into the local storage of an

APU. The PU then issues an initial kick to the APU to execute the APU Program.

10

15

20

25

WO 02/077846 PCT/JP02/02605

33
FIG. 24 illustrates the steps of an ARPC for executing an apulet. The steps performed

by the PU in initiating processing of the apulet by a designated APU are shown in the first
portion 2402 of FIG. 24, and the steps performed by the designated APU in processing the
apulet are shown in the second portion 2404 of FIG. 24.

In step 2410, the PU evaluates the apulet and then designates an APU for processing
the apulet. In step 2412, the PU allocates space in the DRAM for executing the apulet by
issuing a DMA command to the DMAC to set memory access keys for the necessary sandbox
or sandboxes. In step 2414, the PU enables an interrupt request for the designated APU to
signal completion of the apulet. In step 2418, the PU issues a DMA command to the DMAC
to load the apulet from the DRAM to the local storage of the APU. In step 2420, the DMA
command is executed, and the apulet is read from the DRAM to the APU's local storage. In
step 2422, the PU issues a DMA command to the DMAC to load the stack frame associated
with the apulet from the DRAM to the APU's local storage. In step 2423, the DMA
command is executed, and the stack frame is read from the DRAM to the APU's local storage.
In step 2424, the PU issues a DMA command for the DMAC to assign a key to the APU to
allow the APU to read and write data from and to the hardware sandbox or sandboxes
designated in step 2412. In step 2426, the DMAC updates the key control table (KTAB) with
the key assigned to the APU. In step 2428, the PU issues a DMA command "kick" to the
APU to start processing of the program. Other DMA commands may be issued by the PU in
the execution of a particular ARPC depending upon the particular apulet.

As indicated above, second portion 2404 of FIG. 24 illustrates the steps performed by
the APU in executing the apulet. In step 2430, the APU begins to execute the apulet in
response to the kick command issued at step 2428. In step 2432, the APU, at the direction of
the apulet, evaluates the apulet's associated stack frame. In step 2434, the APU issues

multiple DMA commands to the DMAC to load data designated as needed by the stack frame

10

15

20

25

WO 02/077846 PCT/JP02/02605

34
from the DRAM to the APU's local storage. In step 2436, these DMA commands are

executed, and the data are read from the DRAM to the APU's local storage. In step 2438, the
APU executes the apulet and generates a result. In step 2440, the APU issues a DMA
command to the DMAC to store the result in the DRAM. In step 2442, the DMA command
is executed and the result of the apulet is written from the APU's local storage to the DRAM.
In step 2444, the APU issues an interrupt request to the PU to signal that the ARPC has been
completed.

The ability of APUs to perform tasks independently under the direction of a PU
enables a PU to dedicate a group of APUs, and the memory resources associated with a group
of APUs, to performing extended tasks. For example, a PU can dedicate one or more APUs,
and a group of memory sandboxes associated with these one or more APUs, to receiving data
transmitted over network 104 over an extended period and to directing the data received
during this period to one or more other APUs and their associated memory sandboxes for
further processing. This ability is particularly advantageous to processing streaming data
transmitted over network 104, e.g., streaming MPEG or streaming ATRAC audio or video
data. A PU can dedicate one or more APUs and their associated memory sandboxes to
receiving these data and one or more other APUs and their associated memory sandboxes to
decompressing and further processing these data. In other words, the PU can establish a
dedicated pipeline relationship among a group of APUs and their associated memory
sandboxes for processing such data.

In order for such processing to be performed efficiently, however, the pipeline's
dedicated APUs and memory sandboxes should remain dedicated to the pipeline during
periods in which processing of apulets comprising the data stream does not occur. In other
words, the dedicated APUs and their associated sandboxes should be placed in a reserved

state during these periods. The reservation of an APU and its associated memory sandbox or

10

15

20

25

WO 02/077846 PCT/JP02/02605

35
sandboxes upon completion of processing of an apulet is called a "resident termination." A

resident termination occurs in response to an instruction from a PU.

FIGS. 25, 26A and 26B illustrate the establishment of a dedicated pipeline structure
comprising a group of APUs and their associated sandboxes for the processing of streaming
data, e.g., streaming MPEG data. As shown in FIG. 25, the components of this pipeline
structure include PE 2502 and DRAM 2518. PE 2502 includes PU 2504, DMAC 2506 and a
plurality of APUs, including APU 2508, APU 2510 and APU 2512. Communications among
PU 2504, DMAC 2506 and these APUs occur through PE bus 2514. Wide bandwidth bus
2516 connects DMAC 2506 to DRAM 2518. DRAM 2518 includes a plurality of sandboxes,
e.g., sandbox 2520, sandbox 2522, sandbox 2524 and sandbox 2526.

FIG. 26A illustrates the steps for establishing the dedicated pipeline. In step 2610,
PU 2504 assigns APU 2508 to process a network apulet. A network apulet comprises a
program for processing the network protocol of network 104. In this case, this protocol is the
Transmission Control Protocol/Internet Protocol (TCP/IP). TCP/IP data packets conforming
to this protocol are transmitted over network 104. Upon receipt, APU 2508 processes these
packets and assembles the data in the packets into software cells 102. In step 2612, PU 2504
instructs APU 2508 to perform resident terminations upon the completion of the processing
of the network apulet. In step 2614, PU 2504 assigns PUs 2510 and 2512 to process MPEG
apulets. In step 2615, PU 2504 instructs APUs 2510 and 2512 also to perform resident
terminations upon the completion of the processing of the MPEG apulets. In step 2616, PU
2504 designates sandbox 2520 as a source sandbox for access by APU 2508 and APU 2510.
In step 2618, PU 2504 designates sandbox 2522 as a destination sandbox for access by APU
2510. In step 2620, PU 2504 designates sandbox 2524 as a source sandbox for access by
APU 2508 and APU 2512. In step 2622, PU 2504 designates sandbox 2526 as a destination

sandbox for access by APU 2512. In step 2624, APU 2510 and APU 2512 send synchronize

10

15

20

25

WO 02/077846 PCT/JP02/02605

36
read commands to blocks of memory within, respectively, source sandbox 2520 and source

sandbox 2524 to set these blocks of memory into the blocking state. The process finally
moves to step 2628 where establishment of the dedicated pipeline is complete and the
resources dedicated to the pipeline are reserved. APUs 2508, 2510 and 2512 and their
associated sandboxes 2520, 2522, 2524 and 2526, therefore, enter the reserved state.

FIG. 26B illustrates the steps for processing streaming MPEG data by this dedicated
pipeline. In step 2630, APU 2508, which processes the network apulet, receives in its local
storage TCP/IP data packets from network 104. In step 2632, APU 2508 processes these
TCP/IP data packets and assembles the data within these packets into software cells 102. In
step 2634, APU 2508 examines header 2320 (FIG. 23) of the software cells to determine
whether the cells contain MPEG data. If a cell does not contain MPEG data, then, in step
2636, APU 2508 transmits the cell to a general purpose sandbox designated within DRAM
2518 for processing other data by other APUs not included within the dedicated pipeline.
APU 2508 also notifies PU 2504 of this transmission.

On the other hand, if a software cell contains MPEG data, then, in step 2638, APU
2508 examines previous cell ID 2330 (FIG. 23) of the cell to identify the MPEG data stream
to which the cell belongs. In step 2640, APU 2508 chooses an APU of the dedicated pipeline
for processing of the cell. In this case, APU 2508 chooses APU 2510 to process these data.
This choice is based upon previous cell ID 2330 and load balancing factors. For example, if
previous cell ID 2330 indicates that the previous software cell of the MPEG data stream to
which the software cell belongs was sent to APU 2510 for processing, then the present
software cell normally also will be sent to APU 2510 for processing. In step 2642, APU |
2508 issues a synchronize write command to write the MPEG data to sandbox 2520. Since
this sandbox previously was set to the blocking state, the MPEG data, in step 2644,

automatically is read from sandbox 2520 to the local storage of APU 2510. In step 2646,

10

15

20

WO 02/077846 PCT/JP02/02605

37
APU 2510 processes the MPEG data in its local storage to generate video data. In step 2648,

APU 2510 writes the video data to sandbox 2522. Imn step 2650, APU 2510 issues a
synchronize read command to sandbox 2520 to prepare this sandbox to receive additional
MPEG data. In step 2652, APU 2510 processes a resident termination. This processing
causes this APU to enter the reserved state during which the APU waits to process additional
MPEG data in the MPEG data stream.

Other dedicated structures can be established among a group of APUs and their
associated sandboxes for processing other types of data. For example, as shown in FIG. 27, a
dedicated group of APUs, e.g., APUs 2702, 2708 and 2714, can be established for
performing geometric transformations upon three dimensional objects to generate two
dimensional display lists. These two dimensional display lists can be further processed
(rendered) by other APUs to generate pixel data. To perform this processing, sandboxes are
dedicated to APUs 2702, 2708 and 2414 for storing the three dimensional objects and the
display lists resulting from the processing of these objects. For example, source sandboxes
2704, 2710 and 2716 are dedicated to storing the three dimensional objects processed by,
respectively, APU 2702, APU 2708 and APU 2714. In a similar manner, destination
sandboxes 2706, 2712 and 2718 are dedicated to storing the display lists resulting from the
processing of these three dimensional objects by, respectively, APU 2702, APU 2708 and
APU 2714.

Coordinating APU 2720 is dedicated to receiving in its local storage the display lists
from destination sandboxes 2706, 2712 and 2718. APU 2720 arbitrates among these display
lists and sends them to other APUs for the rendering of pixel data.

The processors of system 101 also employ an absolute timer. The absolute timer

provides a clock signal to the APUs and other elements of a PE which is both independent of,

10

15

20

25

WO 02/077846 PCT/JP02/02605

38
and faster than, the clock signal driving these elements. The use of this absolute timer is

illustrated in FIG. 28.

As shown in this figure, the absolute timer establishes a time budget for the
performance of tasks by the APUs. This time budget provides a tirne‘ for completing these
tasks which is longer than that necessary for the APUs' processing of the tasks. As a result,
for each task, there is, within the time budget, a busy period and a standby period. All
apulets are written for processing on the basis of this time budget regardless of the APUSs'
actual processing time or speed.

For example, for a particular APU of a PE, a particular task may be performed during
busy period 2802 of time budget 2804. Since busy period 2802 is less than time budget 2804,
a standby period 2806 occurs during the time budget. During this standby period, the APU
goes into a sleep mode during which less power is c0nsumed‘by the APU.

" The results of processing a task are not expected by other APUs, or other elements of
a PE, until a time budget 2804 expires. Using the time budget established by the absolute
timer, therefore, the results of the APUS' processing always are coordinated regardless of the
APUs' actual processing speeds.

In the future, the speed of processing by the APUs will become faster. The time
budget established by the absolute timer, however, will remain the same. For example, as
shown in FIG. 28, an APU in the future will execute a task in a shorter period and, therefore,
will have a longer standby period. Busy period 2808, therefore, is shorter than busy period
2802, and standby period 2810 is longer than standby period 2806. However, since programs
are written for processing on the basis of the same time budget established by the absolute
timer, coordination of the results of processing among the APUs is maintained. As a result,
faster APUs can process programs written for slower APUs without causing conflicts in the

times at which the results of this processing are expected.

10

WO 02/077846 PCT/JP02/02605

39
In lieu of an absolute timer to establish coordination among the APUs, the PU, or one

or more designated APUs, can analyze the particular instructions or microcode being
executed by an APU in processing an apulet for problems in the coordination of the APUs'
parallel processing created by enhanced or different operating speeds. "No operation”
("NOOP") instructions can be inserted into the instructions and executed by some of the
APUs to maintain the proper sequential completion of processing by the APUs expected by
the apulet. By inserting these NOOPs into the instructions, the correct timing for the APUs'
execution of all instructions can be maintained.

Although the invention herein has been described with reference to particular
embodiments, it is to be understood that these embodiments are merely illustrative of the
principles and applications of the present invention. It is therefore to be understood that
numerous modifications may be made to the illustrative embodiments and that other
arrangements may be devised without departing from the spirit and scope of the present

invention as defined by the appended claims.

10

15

20

25

WO 02/077846 PCT/JP02/02605

40
CLAIMS

1. A method of processing data on a processor, said processor comprising
at least one processing unit, a first local memory associated with said one processing unit and
a main memory, said main memory including a plurality of memory locations, each said
memory location including an additional memory segment in said main memory associated
with said memory location and dedicated to storing state information regarding status states
of data stored in said memory location, said status states comprising a first status state and a
second status state, said method comprising:

in response to an instruction from said one processing unit, initiating writing
of first data from said first local memory to one of said memory locations;

evaluating the state information stored in the additional memory segment
associated with said one memory location;

if the state information stored in the additional memory segment associated
with said one memory location indicates the first status state, prohibiting the writing of said

first data.

2. The method of processing data of claim 1, further comprising, if the
state information stored in the additional memory segment associated with said one memory

location indicates the second status state, permitting the writing of said first data.

3. The method of processing data of claim 2, further comprising, if the
state information stored in the additional memory segment associated with said one memory
location indicates the second status state, writing said first data into said one memory
location and changing the state information stored in the additional memory segment

associated with said one memory location to indicate said first status state.

10

15

20

25

WO 02/077846 PCT/JP02/02605

41

4, The method of processing data of claim 1, wherein said status states
comprise a third status state, said state information comprising for said third status state an
address for a storage location in a local memory associated with a processing unit of said
processor, and further comprising, if the state informatjon stored in the additional memory
segment associated with said one memory location indicates the third status state, writing
said first data into said one memory location and thereafter automatically reading said first
data from said one memory location to the storage location of the local memory identified in
the state information stored in the additional memory segment associated with said one

memory location.

3. A method of processing data on a processor, said processor comprising
at least one processing unit, a first local memory associated with said one processing unit and
a main memory, said main memory including a plurality of memory locations, each said
memory location including an additional memory segment in said main memory associated
with said memory location and dedicated to storing state information regarding the status
states of data stored in said memory location, said status states comprising a first status state
and a second status state, said method comprising:

in response to an instruction from said one processing unit, initiating reading
of first data from said one memory location to said first local memory;

evaluating the state information stored in the additional memory segment
associated with said one memory location;

if the state information stored in the additional memory segment associated
with said one memory location indicates the first status state, permitting the reading of said

first data.

10

15

20

25

WO 02/077846 PCT/JP02/02605

42

6. The method of processing data of claim 5, further comprising, if the
state information stored in the additional memory segment associated with said one memory
location indicates the first status state, reading said first data from said one memory location
to said first local memory and changing the state information stored in the additional memory

segment associated with said one memory location to indicate said second status state.

7. The method of processing data of claim 5, further comprising, if the
state information stored in the additional memory segment associated with said one memory

location indicates the second status state, temporarily prohibiting the reading of said first data.

8. The method of processing data of claim 5, wherein said first local
memory comprises a plurality of local storage locations, each said local storage location
including an additional storage segment in said first local memory associated with said local
storage location and dedicated to storing reservation information regarding reservation states
for said local storage location, said reservation states including a first reservation state
indicating said local storage location is reserved for the storage of data and a second
reservation state indicating said local storage location is not reserved for the storage of data,
and further comprising, in response to said instruction from said onme processing unit,
changing the reservation information stored in the additional storage segment associated with
one of said local storage locations from the second reservation state to the first reservation

state.

9. The method of processing data of claim 8, wherein said status states

comprise a third status state, said state information comprising for said third status state an

10

15

20

25

WO 02/077846 PCT/JP02/02605

43
address for a storage location in a local memory associated with a processing unit of said

processor, and further comprising, if the state information stored in the additional memory
segment associated with said one memory location indicates the second status state, changing
the state information stored in the additional memory segment associated with said one
memory location to indicate the third status state and providing with said state information

the address of said one local storage location.

10. The method of processing data of claim 9, further comprising, if the
state information stored in the additional memory segment associated with said one memory
location indicates the third status state, writing second data into said one memory location,
changing the state information stored in the additional memory segment associated with said
one memory location to indicate the second status state, automatically reading said second
data from said one memory location to said one local storage location and changing the
reservation information stored in the additional storage segment associated with said one

local storage location to indicate said second reservation state.

11. The method of processing data of claim 5, wherein said status states
comprise a third status state, said state information comprising for said third status state an
address for a storage location in a local memory associated with a processing unit of said
processor, and further comprising, if the state information stored in the additional memory
segment associated with said one memory location indicates the third status state, prohibiting

the reading of said first data.

12. A system for processing data, comprising:

a processor comprising at least one processing unit;

10

15

20

WO 02/077846 PCT/JP02/02605

44
a first local memory associated with said one processing unit;

a main memory, said main memory including a plurality of memory locations,
each said memory location including an additional memory segment in said main memory
associated with said memory location and dedicated to storing state information regarding
status states of data stored in said memory location, said status states comprising a first status
state and a second status state;

means, responsive to an instruction from said one processing unit, for
initiating writing of first data from said first local memory to one of said memory locations;

means for evaluating the state information stored in the additional memory
segment associated with said one memory location;

means, if the state information stored in the additional memory segment
associated with said one memory location indicates the first status state, for prohibiting the

writing of said first data.

13. The system for processing data of claim 12, further comprising means,
if the state information stored in the additional memory segment associated with said one

memory location indicates the second status state, for permitting the writing of said first data.

14. The system for processing data of claim 13, further comprising means,
if the state information stored in the additional memory segment associated with said one
memory location indicates the second status state, for writing said first data into said one
memory location and changing the state information stored in the additional memory segment

associated with said one memory location to indicate said first status state.

5

10

15

20

25

WO 02/077846 PCT/JP02/02605

45
15. The system for processing data of claim 12, wherein said status states

comprise a third status state, said state information comprising for said third status state an
address for a storage location in a local memory associated with a processing unit of said
processor, and further comprising means, if the state information stored in the additional
memory segment associated with said one memory location indicates the third status state,
for writing said first data into said one memory location and thereafter automatically reading
said first data from said one memory location to the storage location of the local memory
identified in the state information stored in the additional memory segment associated with

said one memory location.

16. A system for processing data, comprising:

a processor comprising at least one processing unit;

a first local memory associated with said one processing unit;

a main memory, said main memory including a plurality of memory locations,
each said memory location including an additional memory segment in said main memory

_associated with said memory location and dedicated to storing state information regarding the

status states of data stored in said memory location, said status states comprising a first status
state and a second status state;

means, responsive to an instruction from said one processing unit, for
initiating reading of first data from said one memory location to said first local memory;

means for evaluating the state information stored in the additional memory
segment associated with said one memory location;

means, if the state information stored in the additional memory segment
associated with said one memory location indicates the first status state, for permitting the

reading of said first data.

10

15

20

25

WO 02/077846 PCT/JP02/02605

46

17. The system for processing data of claim 16, further comprising means,
if the state information stored in the additional memory segment associated with said one
memory location indicates the first status state, for reading said first data from said one
memory location to said first local memory and changing the state information stored in the
additional memory segment associated with said one memory location to indicate said second

status state.

18. The system for processing data of claim 16, further comprising means,
if the state information stored in the additional memory segment associated with said one
memory location indicates the second status state, for temporarily prohibiting the reading of

said first data.

19. The system for processing data of claim 16, wherein said first local
memory comprises a plurality of local storage locations, each said local storage location
including an additional storage segment in said first local memory associated with said local
storage location and dedicated to storing reservation information regarding reservation states
for said local storage location, said reservation states including a first reservation state
indicating said local storage location is reserved for the storage of data and a second
reservation state indicating said local storage location is not reserved for the storage of data,
and further comprising means, responsive to said instruction from said one processing unit,
for changing the reservation information stored in the additional storage segment associated
wiih one of said local storage locations from the second reservation state to the first

reservation state.

10

15

20

25

WO 02/077846 PCT/JP02/02605

47
20. The system for processing data of claim 19, wherein said status states

comprise a third status state, said state information comprising for said third status state an
address for a storage location in a local memory associated with a processing unit of said
processor, and further comprising means, if the state information stored in the additional
memory segment associated with said one memory location indicates the second status state,
for changing the state information stored in the additional memory segment associated with
said one memory location to indicate the third status state and providing with said state

information the address of said one local storage location.

21. The system for processing data of claim 20, further comprising means,
if the state information stored in the additional memory segment associated with said one
memory location indicates the third status state, for writing second data into said one memory
location, changing the state information stored in the additional memory segment associated
with said one memory location to indicate the second status state, automatically reading said
second data from said one memory location to said one local storage location and changing
the reservation information stored in the additional storage segment associated with said one

local storage location to indicate said second reservation state.

22. The system for processing data of claim 16, wherein said status states
comprise a third status state, said state information comprising for said third status state an
address for a storage location in a local memory associated with a processing unit of said
processor, and further comprising means, if the state information stored in the additional
memory segment associated with said one memory location indicates the third status state,

for prohibiting the reading of said first data.

10

15

20

WO 02/077846 PCT/JP02/02605

48
23. A system for processing data, comprising:

a processor comprising at least one processing unit;

a first local memory associated with said one processing unit;

a main memory, said main memory including a plurality of memory locations,
each said memory location including an additional memory segment in said main memory
associated with said memory location and dedicated to storing state information regarding
status states of data stored in said memory location, said status states comprising a first status
state and a second status state;

a memory controller operable, in response to an instruction from said one
processing unit, to initiate writing of first data from said first local memory to one of said
memory locations to evaluate the state information stored in the additional memory segment
associated with said one memory location, and, if the state information stored in the
additional memory segment associated with said one memory location indicates the first

status state, to prohibit the writing of said first data.

24. The system for processing data of claim 23, wherein said memory
controller is further operable, if the state information stored in the additional memory
segment associated with said one memory location indicates the second status state, to permit

the writing of said first data.

25. The system for processing data of claim 24, wherein said memory
controller is further operable, if the state information stored in the additional memory
segment associated with said one memory location indicates the second status state, to write

said first data into said one memory location and change the state information stored in the

10

15

20

25

WO 02/077846 PCT/JP02/02605

49
additional memory segment associated with said one memory location to indicate said first

status state.

26. The system for processing data of claim 23, wherein said status states
comprise a third status state, said state information comprising for said third status state an
address for a storage location in a local memory associated with a processing unit of said
processor, and said memory controller is further operable, if the state information stored in
the additional memory segment associated with said one memory location indicates the third
status state, to write said first data into said one memory location and thereafter automatically
read said first data from said one memory location to the storage location of the local
memory identified in the state information stored in the additional memory segment

associated with said one memory location.

27. A system for processing data, comprising:

a processor comprising at least one processing unit;

a first local memory associated with said one processing unit;

a main memory, said main memory including a plurality of memory locations,
each said memory location including an additional memory segment in said main memory
associated with said memory location and dedicated to storing state information regarding the
status states of data stored in said memory location, said status states comprising a first status
state and a second status state;

a memory controller operable, in response to an instruction from said one
processing unit, to initiate reading of first data from said one memory location to said first
local memory, to evaluate the state information stored in the additional memory segment

associated with said one memory location, and, if the state information stored in the

10

15

20

WO 02/077846 PCT/JP02/02605

50
additional memory segment associated with said one memory location indicates the first

status state, to permit the reading of said first data.

28. The system for processing data of claim 27, wherein said memory
controller is further operable, if the state information stored in the additional memory
segment associated with said one memory location indicates the first status state, to read said
first data from said one memory location to said first local memory and change the state
information stored in the additional memory segment associated with said one memory

location to indicate said second status state.

29. The system for processing data of claim 27, wherein said memory
controller is further operable, if the state information stored in the additional memory
segment associated with said one memory location indicates the second status state, to

temporarily prohibit the reading of said first data.

30. The system for processing data of claim 27, wherein said first local
memory comprises a plurality of local storage locations, each said local storage location
including an additional storage segment in said first local memory associated with said local
storage location and dedicated to storing reservation information regarding reservation states
for said local storage location, said reservation states including a first reservation state
indicating said local storage location is reserved for the storage of data and a second
reservation state indicating said local storage location is not reserved for the storage of data,
and said memory controller is further operable, in response to said instruction from said one

processing unit, to change the reservation information stored in the additional storage

10

15

20

25

WO 02/077846 PCT/JP02/02605

51
segment associated with one of said local storage locations from the second reservation state

to the first reservation state.

31. The system for processing data of claim 30, wherein said status states
comprise a third status state, said state information comprising for said third status state an
address for a storage location in a local memory associated with a processing unit of said
processor, and said memory controller is further operable, if the state information stored in
the additional memory segment associated with said one memory location indicates the
second status state, to change the state information stored in the additional memory segment
associated with said one memory location to indicate the third status state and provide with

said state information the address of said one local storage location.

32. The system for processing data of claim 31, wherein said memory
controller is further operable, if the state information stored in the additional memory
segment associated with said one memory location indicates the third status state, to write
second data into said one memory location, change the state information stored in the
additional memory segment associated with said one memory location to indicate the second
status state, automatically read said second data from said one memory location to said one
local storage location and change the reservation information stored in the additional storage
segment associated with said one local storage location to indicate said second reservation

state.

33. The system for processing data of claim 27, wherein said status states
comprise a third status state, said state information comprising for said third status state an

address for a storage location in a local memory associated with a processing unit of said

WO 02/077846 PCT/JP02/02605

52
processor, and said memory controller is further operable, if the state information stored in

the additional memory segment associated with said one memory location indicates the third

status state, to prohibit the reading of said first data.

PCT/JP02/02605

WO 02/077846

1147

oLl oLt / ALQ
va
19D /<n_a / m 199 18D

) 75 19D

JEVVELS
182} 19| [I1IeD
10| jI20f Ik
ER e R
ERIERIESES

S

801

801
N\, denes

EelEeIERI R
ERIER IR
EREe | e
1_9) {112} [iIL9| I’

MIOMION 20t

»\ﬂmo " JiIeY
201 zo1

(eyeqg+weiboid) 108(qO (18D

ol

10}

jusio

| J9ziensip

_

i1eD

RIS

|52

18]} II*D

Wsio

N\
901

| 19zijensip |

28]

19 [II*D

1D

Dl 18D

904

PCT/JP02/02605

WO 02/077846

2/47

¢ 9Old

122 Nndv

6lC Nndv
|

LG ndvy
-

GlLe Nndv
_

¥ ndv
-

L2 Ndv
-

602 ndv
202~ L

502 ™ Nndv
D T

Wvaa /_lu\ > owina
122 _\ _

/ nd

YA €0c
—
sng 3d

(4074

(3d) Jusway3 108599014

144

PCT/JP02/02605

WO 02/077846

3/47

;——-—h

ndvy

ndv
ndv
Nndv
Ndv
ndv
Ndv
ndv

JVINQ

Nd

LIE

sng
3d

o/l /

6LE

€0

»/Sm

PCT/JP02/02605

WO 02/077846

4/47

v Old

iy gly
] 5
4
\ 5
Jun) Jabajuj ﬂm w.
4
\ \r«
iﬂﬂm 1a)sibay - Aoway
~ Hun juod bueol / [007 /_ll
L
/
i
\ .
cty oLy 80v 90b

[41]4

ocvy

14014

PCT/JP02/02605

WO 02/077846

5/47

908 —¢

1do

Jdo

i[do

1do

[do

[do

1do

1dO

[do

1do

}do

1do

1do

1do

1do

1do

1do

1do

o

Jdo

1do

1do

1do

do

jonuo)

v0S

S Old

oils

O2R- 1)

80G

ayoen
abew

[AA]

aulbug
1axid

NdV S| |—50s

Ndv (ST

Nndv|S1

Ndv (S| || wvuan

O<_>_E1

nd |

Ndv

ST

Nndv

S

Ndv |{S7]

Nndv

S

Ndv

S

ndv

S

ndv

S

ndv

S

OVING

nd

20S
\

NWvdddo

PCT/JP02/02605

WO 02/077846

6/47

9 'old

Aows\
cl9 809 jeuisixy
< [oo JI{[owo J||[owwo] Tﬁmo] _ navfs] _ nav _ nav _ ndv
OSPIA | | navsUll{[navisill | oevislf | nav
ayoen syoen ayoen syoen & = | _N.-QCQ_._OQ
abewy abew) sbewy efew) _ :n(@ F :a(@_ _ :a(mw“._u_ _ :a(ﬂ_
auibugy oaubug aubug auiBu3 _ :&(@ _ :n(ﬂ_ _ ..E(Enl_ _ :1(@_ —>
1) foxig oxid _ :n<_ww_ ﬁ :&ﬂ_ ﬁ :n<E_ _ :u<@_ oISy |,
_ :m<@._ [:a«.@_ _ :nmm_ [:a<m_ bl :ﬁ_w.m_ _ :mc_ww_ navfsT| navls)| "™ oy —>
nav[s _ :%_ﬂm_ _ :m.«ﬁu; _n :n<_ww_ _ :%mmw_ _ :a<_ww_ _ :a<g _ :a(ﬂ_
[navBIl[|| nevisdl || E(WM_ nav _ :&@_ _ :%m_ A | navEi)]
: i [_ovwa]| |[_ovwa gy}i || ovwa It {[owna W]
ndv ndv T:ai.ww_ _ :aiww_
¥ ¥ Y ¥ dOi 0L9
{ _ovwa]| |[ovwa wy]f {[ovwa Wyl [ovwa wyj nd nd nd nd
[:A_L [nd T nd)] _na_]
WvHa WYNa o0
09 209

PCT/JP02/02605

WO 02/077846

7147

L '9Old

3ur Jaqi 3ur Jeqi4
[eando leondo

el [

_ :%ﬂ_ _ :a<ﬂ_

[nevid) | d , Kowas

RGNS > Jewseixg
[l oavBA [navisI|]| nevd)

_ _

{ {

P

EE “ o<““<m_ww_ o<:_>_n“_<ﬂ_ :aiwww_ :miwu_ [l

E?m_ t *._ ovind ! ﬁ oviNG t ._uQ RS

nNd Nnd nd —J nd
lonuod [oluo)
- N
o0f” N
14472

NE\

PCT/JP02/02605

WO 02/077846

8/47

8 Old

Aouwsy
[BUISIXT

[om0 || [om0 || _ :¢<M“ | navfsT

OFPA N e .4 apny || LB |[_navEN jesaydua .

soour ||| s8eun || [oav)| [nave) .

subuz aubu3 _ :&—wu__ _ :u<_ww_ ——>

) L= o el | o,

¥ i Jlsy

h:%@_ _ :a<@._ __ :A_(_ww_ [:n<_ww_ j on

[navisilf || :u<_ww_ _ :%_Mw_ _ :%_wm__ —>

[t [l | | |

[t [t (¥ =

| ovwa t | o<_>_n*._ nd nd dol

[nAd)| I _na_}

/S S S S

908

v08

c08

WO 02/077846 PCT/JP02/02605

9/47

902 904
906

<+—1 /0
<+—— ASIC

Peripheral

Video

Extgmal
Memory

FIG. 9

WO 02/077846

10/47

1004 1002

<«—— 10
<«—] AsIC

Peripheral

Video

FIG. 10

PCT/JP02/02605

WO 02/077846

PCT/JP02/02605

1102
e

11/47
& >
=
N <~
= |
-\ \é
O/l [eando -
©
o~ g_l
)
= w
- a
[s0)
)
o =
- w
o
e
:\ w
o
—
O/l reando

1118
y

1104—

1126

1128

FIG. 11A

PCT/JP02/02605

gi1 Ol

9SL1 vSLl A1 32

12147

[11]
Uu
U

WO 02/077846

oLl 99l

PCT/JP02/02605

WO 02/077846

13/47

Ol 'Old

— vLLL
™]
\HU J =
LLL 8L mw Omvv\
8 / clil
] —
— — \
9lLt c8ll— —

88Ll

PCT/JP02/02605

14/47

WO 02/077846

velk Old

Al
80¢C1
A A
x| x| x| [Wvdd _H:M— x| [x
c c C ot - s | -
[O O (4] (3] (8] 4] (1]
0| (0| |m| |0 m| |m| (m| |m
SANANSeSARERSASNERcNRARRNSNSANREARES ﬂ ﬁ!
: 8x
90Z1— |0}UOD) Mueq jojuo) yueg F—oozt
8x m gx gx gx gx
zizi-H| yowms | |
ey i| OWING OvINg OVING OVING | — oz
g%
ames BERE aESSﬁ
\ z18<|z]|2(|2l e~ |2|2|l[2] &= |2||2| [2]&* 2|2
< |<|/{®]l<| ||| |<||®] || |<||>
L1021
oLe oLzL oiLct

PCT/JP02/02605

WO 02/077846

15/47

dacl oid

BANK

Xl I¥| (X
Z| | Z] | Z
<| || | <
M () (0

|OU0S Nueyg

——y2CL

G102
////1
82ZL— 1A
nsnnse [o1jU0D ueg
oveL Yaums
)Il..'llll> _ [J X R REFRRRNY]
OVINa
|\ wMNP Aunsae
9zelL S = I I
o o.
<€ ‘An ﬁ
UoUMS
|
ogel

SJUM JOBIID ~———P

0ceL

PCT/JP02/02605

WO 02/077846

16/47

giel

vicl

clel

oLel

80¢l

90¢!t

vocl

cogl

€l old

Wvdd

yueg|pjueg| pjueg| pjueg| jueg||yueg| Mueg| pueg ﬁ Nndv
w_ I I 1} T T T .M

yueg|yueg||yueg| hueg||yueg| pueg||yueg| Hueg =ﬁ Ndv
w. I I I 1 I I FIM DQ(
sueg| |yueg|yueg|Huea| Hueg||yueg| Hueg| ueg

w 1 I T I T I T T m a :&(
sueg| |yueg| |yueg| Hueg| [yueg| Hueg| |yueg| |yueg

wh 1 T I I ' ‘. -M - :m<
yueg i pjueg| bjueg| pjueg| pjuegi pjueg| pjueg| jhueg

w. 1 I I 1 I T .Alh u Dl(
yueg|yueg| yueg|Mueg| Hueg| Hueg| pueg| Hueg v
w. I 1 I 1 .. I .IIH

siueg | yueg||yueg||yuea| uea| pueg| Hueg|Hueg L nav
WI. I E— 1 I I I .m

sueg|yueg|yueg| | yueg| pueg| ueg|pueg| Hueg | nd
‘.-.‘. \: \Nv \: \: \kﬁ \-. x.lw <

/ / / / / / / /
veel 2eel ogel 8c¢el 9c¢el veelr ééel ocet

PCT/JP02/02605

WO 02/077846

17147

Vvl Old

A00749 118 vZol
- >

YovL—

7%

rd

JNva

yovi

OO TMN-

77777/’

covL

PCT/JP02/02605

WO 02/077846

18/47

»H0014 118 ¢1LS

>

0000000000

Obvi—

ANvE

7777/

avl -

Old

A001a 18 ¢2ls

- -

Pivl——

ANVE

[454"

PCT/JP02/02605

WO 02/077846

19/47

9054 ——»

Gl Oid

¥0S1L

051

ndv ——cC0G1
ndvy ——<¢0S1
ndv ——<c¢0G|
nd

PCT/JP02/02605

WO 02/077846

20/47

ool 11////

Wwvda

9l Old

¢08L —

09} ——

(o}

Ndv

ndv

ZON

8091

OviNa

Nd

9091

— 2091

¥091

PCT/JP02/02605

WO 02/077846

21147

V.ii "©Old

N
jueg NvHA
T
o @
b4 2
: :
90.1 =1 osut
\\\ l‘a
_ereq

S, ovil

ssaippy 1/ Jai :m\,Qum

oLl vLi) cLil

0zlL
~_ ad
ovLL
Nndv \
abeio)g [B20] —F—pilL
rasyAR 9zLL
s ndv K
¢ abelo)g |eoo7 —1]
|
eled - 9 : e
\
vELL
joJjuo) XXX
~ 62.)
ejeq d
7
Zrll E\P //]1 8eLL
L jonuon
ZeLL—]

PCT/JP02/02605

WO 02/077846

22/47

8041

g/1 Old

dd

0Lk~
jueg Nvdd Nndv
abelo)g |eo20
: m . ndv
H c H
T ®
r... wﬂ:ﬂﬁﬁgw mmm._ou—w |eao
- X X X
P A :
- ered ejeg d : \\
XXX
joqjuoD
o eleQ d
SSalppy S’ ai ndv /3a/d
veLL louos
r4W1}

¢CLL—

[AAZ

PCT/JP02/02605

WO 02/077846

23/47

801

jueg Wvdd

osee
smels

X

>

X

g

_eyed

v
-

oLl ©Olid

3d

b

ssaippy ST Qi :n_wtw\.._

(47

Ndv

abelo}g jeson

Nndv

abelo)g jeo07

eleq

g

[oNU0D

eleqg

JOJJU0D

PCT/JP02/02605

WO 02/077846

24/47

8011

[41 742
R

- jueg Wvdd

snjels

XXX 7

eleq

0G.L

}

ssaippy STl :n_\ﬁmn_

cill

azi oid

3d
oLl
ndv \
abelolg |eo0] —}—rs1
474

ndv

abelo)g jeoo]

ejeq

jonuon

eleq

d

jonuo)

PCT/JP02/02605

WO 02/077846

25/47

8041

[AVIA%
RN

jueg WvHd

snjelg

X

x

r
o~

‘/ 0SSk

\\\)
ejeq

peay
9ZIUOIYSUAS

EVAROIE

dd

ovLL

ndv _—

abelo)g |eoo]

-~

esLL
ndv

abe.0)g |B007

eleqg

d

josuon

ssalppy S

o
al :%Qm_t

[AFA°

-

~

cvil

eled

d

joljuon

PCT/JP02/02605

WO 02/077846

26/47

80.1

Nom.v]/

jueg Nvdd

smels

XXX ,

p
.~ eyeq

0S.1

sselppy S

Wo
al :wﬁm\“_

[4¥A°

421 ©ld

dd

oviL

ndy _—

abelio}g |e207]

<«

2521
Ndvy

ejeqg

jonuo)

abelo)g |e207]

eleq

d

(31 [1eYe)

PCT/JP02/02605

WO 02/077846

27147

801

9.1 Old

No\.T/ 3d
jueqg NvHA Ndv \ovt
abelo)s |eo07
- 474}
: 2 . Nndyv
. B ejeq peay :
XX abelo)g [eoo
g T XXX |V | .
\ ejeqg ejeqd g m
|jouo)

L0

ssaippy ST dl :ﬂm\mmt

rAYAS

eleq

|oJ}u0D

PCT/JP02/02605

WO 02/077846

28/47

80L1

[AVVA"
N

jueg Nvdd
. 4
: &
: 5
0S.L
eeq y
0
Ssalppy S ai ndv /3/d

H.L ©Old

3d

ndv _—

ovLl

abelo)s |20

XXX (@)

eljed 9
csll

[osuoD

ndv

abelo)g |eo07

eleq

d

[ouo)

PCT/JP02/02605

WO 02/077846

29/47

8041

[A174°

jueg NvHd

smje)g

0

ejeq

0SZ1L

Ssalppy S

O
al :wﬁmm

[AYA%

1L ©Old

dd
nav
abelo)g |eool T vil
rA-JA}
s Ndv
* abeio)g |eo07
—‘ ®
ejeq q :
jofjuon
4 eled d
[ofuo0D
ra 1}

PCT/JP02/02605

WO 02/077846

30/47

801

oLLL

rZl Oid

Not./ 3dd
ovLiL
jueg NvHA Nndv \
abeio)g |e20
&1}
: m . ndvy
o m ”
\ abeli0)g |eoo0
A/ omt/
. - A
vl 3 pesy e
\..\ mﬁmo 2ZIUOIYOUAS mwwo m "
jofjuo)
e ele
(0] — yed d
ssalppy S1 /Qi Ndv/3/4 cril
|jofuo)
vLLl rAYA)

PCT/JP02/02605

WO 02/077846

31/47

[AVJAS

b VA E

8011

] A S

\ 3d
yueg Nvd ovLL
d a Ndv -
abelo)g |[eoo] ——rit
Zs2L
: m o Ndv
@ |- 29.1 ¢ abelo)g |e207
| 0SLL—1 | d :
ereq ea @ :
jo4juon
0000 iNdv0oad | O K “ed .
ssalppy S adl Ndv,/3/4 |jouoD
rAgA)

14 FAS

4 Y44

PCT/JP02/02605

WO 02/077846

32/47

80.1

SilL

1L Ol

20LL dd
e
jueg NVHA Ndv \ovt
abel0)s |e207
rAJA!
: | |- . ndv
® - 4
w [
e S—
XXX
P dn .
ejeq 05211 eled g :
XXX
(3111e]g)
0000 INdv03d | O \ eled
ssalppy ST /Al Ndv/3/4 cell
vell jonuo)
pLLL ZLLL —

PCT/JP02/02605

WO 02/077846

33/47

c0LL
=
jueg NvHdA
. @
: 5
: :
8021 x x x \...\\\. coll
\ 052
ereq
0
$saIppy ST dl Nndv /3/4

9LLL 14 A%

(4943

Wil Old

3d

oviL

ndv _—

abeli0)g [B207]

2sLL
Nndv

eled

joquo)

abeio)g |eo0o]

eleq

g

jo4juoD

PCT/JP02/02605

WO 02/077846

34/47

NZL Oid

.o.otj 3d
ovLL
jueg NvAd ndv \
abelolg [eo0
o 2621
: g . Ndv
¢ 3 eleq peay e
80/} o X X X abelo)g jeson]
. #. X X X s -
\..\\mﬁmo mﬂmo m m
jonuon
o ejeq q9
$Salppy S dl ndv/3/4
josuo)
oLLL — viLL ZLLL

PCT/JP02/02605

35/47

WO 02/077846

Ol ©Old
2oL T/ 3d
jueg Nvdd Ndv \ovmv
abelo)g jeoo]
2oLl
\ A1)
: m . ndv
° m u
\ abelo)g |20
8011
_ \ 0s/1 XXX O H .
T eleq] :
jonuonH
o ejeq g
SSaJppy S dl ndv/3/4
[ouo)
oL/l vLLL r4YA

PCT/JP02/02605

WO 02/077846

36/47

8l 9lId

881 peay OUAg 088l

Bunjooig

(>

JOHY3 peay oulg SJUM DUAS

SJUA\ OUAS

z88l DEoY “OUAS

HOHYI UM DUAS

WO 02/077846

37147

Key Control Table

1904 1906 1908

\o_/

0} APUKey | Key Mask

1] APUKey | Key Mask

2| APUKey | Key Mask

71 APU Key Key Mask

FIG. 19

PCT/JP02/02605

/ 1902

PCT/JP02/02605

WO 02/077846

38/47

0¢ oOlI4

\ c00¢

[A3474 /@

O4NI
HONAS

viva

oLoc

/ 800¢

A_wooom

PCT/JP02/02605

WO 02/077846

39/47

i Old

zoLe)A 012
yseyy Aoy ssedoy | Aoy sseooy aziS aseq leg
.
.
ysep Aoy sssooy | A8) sseooy az1g aseg v
YSe Aoy ssa0oy | A8 sse00y azis aseg 3
yse Aoy ssedoy | Aoy ssedoy ozIS sseg 0
/ / / \ ai
¢lic oLiec 90i¢

sjqe] |0fu0)) $S220Y AIOWSN

WO 02/077846

40/47

APU issues DMA

command

DMAC looks up
APU's key

DMAC looks up
memory access key

DMAC compares
APU key to

access key

2210

No

Yes

2214 —

DMAC executes
DMA command

FIG. 22

— 2202

— 2204

— 2206

2208

PCT/JP02/02605

Error signal
generated and
access prevented

2212

PCT/JP02/02605

WO 02/077846

41/47

zeez <

€2 Old

vivd

)i

weiboid Ndv

weibold NdVY

Od

omy

ain

Od

oD

ain

9see’

vgez/esed/

ippes

ippe

peo

din

IppeS]

ippe

peo|

P

gyee 9veT gw&mm

zeee <

713D snoiaauad Jo Q)

9ZIS Xogqpues

SNdVY ‘bal Jo ‘WnN

dl enbiun [qo|9

02€C —

1opeaH

20ec

eledg

swelboid Ndv

SpUBWIWOD VYNNG

JopesH

ail Aiday

q} 92in0S

QI uoneunsaq

lopesH

> 90€T

> 0T

PCT/JP02/02605

WO 02/077846

42/47

vove J

144 ¢4

Nd 0}
1sanbas jdnasojul

sonssi Ndv

vaw\

‘WVNa
o} offeiols
18204 woy
uspum jnsay

/

WYHQ ul unses
210}S 0} PUBLULLICD

ovve - YWQ sanssi Ndv

A

Hnnsas sepirosd
\ pue jaynde
8eveZ sassaooud Jejndy

|

vZ Old

9eve

a8eso)s

18201 0} WvdQ
woyj peas ejeq

h

veve |

9beiojs
jeoo} ui ejep
pEOy 0] SPUBLILWLOD
VIO Sidainw
sanssi Ndyv

A

zeve |

Wely Yorjs
$3JEN|EAd NV

4

ocve

19inde
JO uoynoaxXa
suibeq Ndv

t

T T e e e e = —————)

ende pejs
0] 3o puewILod
VYWQa sansst Nd

i

aqe) jonuod
Koy sajepdn OYG

\) cove

]

I

Aoy ufiisse
O} pUBLLILOD
YWQ senssi Nd

tsinde
PEO| 0} PUBLILLIOD
VNG senssi d

4

1

gecve

abeso}s 800)
0] WYQ wos}
peads awey Ie)S

NdV a8yj 10}
1senbas jdnuaju

Ue $jqeua Nd

y

1

aeve —

Susey yoB)S
Peo) 0} PUBLRLOD
VNG sensst Nd

Kowaw WyHa
sajedofie Nd

ﬂ

A

0cve

abeio)s
18301 0) WvuQ
woy peas Jejndy

sndv
1o uoneubisap
pue uojjen|eal /

t

8lve

vive

AR ¢4

oive

PCT/JP02/02605

WO 02/077846

43/47

9252 — |

vesz —

eese —

02SC —

GZ Old

374

ndv
asz—t |
ndv
olsz—1 |
nNdv
gosz—1 |
JYWGa
9052 l\\ o
y052 — 1
2052 7

WO 02/077846

2610

2612

44/47

PU assigns APU

apulet

to process network

:

to perfom
resident
temminations

PU instructs APU

!

2614 -_|

PU assigns
APUs to process
MPEG applets

|

2615

to perform
resident
terminations

PU instructs APUs

Y

2616~

PU designates a
source memory
sandbox

:

2618

PU designates a
destination
memory sandbox

L

FIG. 26A

PCT/JP02/02605

PU designates a
source memory
sandbox

2620

:

PU designates a
destination

memofy sandbox

Ve 2622

!

Decoding APU
sets up source
sandboxes with
synchronize read
commands

e 2624

B!

Establishment of
dedicated pipeline
complete

- 2628

WO 02/077846

PCT/JP02/02605

45/47
2630 Network APU v
. receives TCP/IP MPEG data
packets synchronize 2
wiittenfrom |~ 264
l network APU to
source sandbox.
TCPAP packets
2632] @ssembled into l
software ?gu by MPEG data
network automatically read 644
from source |- 2
Transmit sandbox to
to general decoding APU
purpose Other "9
sandbox l
Type of software
cell determined Decoding APU
2636 decodes MPEG |~ 2646
data into video
2634 data.
MPEG data cel l
Decoding APU
Previous cell 1D wiites video data | - 2648
ad by ne to destination
e fe two sandbox
2638 APU l
Decoding APU
sets up source
Netwoik APU sandboxwith |-~ 2650
chooses a synchronize read
decoding command
APU in the pipeline
2640 — for processing the l
MPEG data
Decoding APU
placed is resident | - 2652
termination
FIG. 26B

PCT/JP02/02605

WO 02/077846

46/47

¢ Old

18y Aejdsiq . yoelqo ag
81,7 —] (uoneunsap) (221nos) 9177
xogpues xoqpueg
| 4 |
14 XA .
ndv
381 Aejdsig y09lqo a¢
(uonjeunsap) (224n0s)
cNR/ eH2— " xogpues xoqpueg | 0h4C
| 4
Allwll _)-n_“ <] 6|||||I._
euibuzy 80,2 —__|
Buuspuoy 151 Aedsig _ ndv 309lqo ag
oL (uoneunsap) (221nos)
80.c— xoqpuesg xoqpueg [¥0i¢
4 |
| \ 2
cozg—1 Ndv

(uoneuuoysuel] A13pwi0an))

PCT/JP02/02605

WO 02/077846

47/47

8¢ Old

Aim..:_ 1 auiyoepy Aouanbai4 ybiH amnyn4
Agpuelg Asng 8NdVv
w
Agpuels Asng Agpuejs Asng |endv
R Asng Agpuejs iNdv
Agpuejs Asng Agqpuels fsng ondv
oz o > 8082
D ;
awi] dnayepm
Spoyy JoMod Mo’ muﬁmgpc.._ﬂw.m_w
4_ s
xsel
¢]
Aqpuels Asng LNdv
M
Agpueis Asng Agpuejs Asng Zndv
Asng Aqpuejs iNndv
Agpuels Asng Aqpueis Asng ondv

<

TOBPE SWIL goqy”/* TOBPNE WL [poeo™ 2052

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP02/02605

A.

CLASSIFICATION OF SUBJECT MATTER

Int.CI’ GO6F15/167, GO6F15/16, GO6F15/177, G06F12/i4, G06T1/20

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Int.CI

GO06F12/08-12/12, GO6F12/14, GO6T1/20

Minimum documentation searched (classification system followed by classification symbols)
GO6F15/16-15/177, GO6Fl3/38, GO6F12/00-12/06, GO6F13/16-13/18,

Japanese Utility Model Gazette 1926-1996,
Applications 1871-2002,
Containing the Utility Model 1996-2002

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Japanese Publication of Unexamined Utility Model
Japanese Registered Utility Model Gazette 1994-2002,

Japanese Gazette’

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X JP 63-19058 A (FUJITSU LIMITED) 1988.01.26, 1-7,12-18,
Full text; all drawings (Fanily: none) 23-29
Y 8,19,30
A 9-11,20-22,
31-33
Y JP 11-39215 A (Matsushita Electric 8,19,30
A Industrial Co., Ltd.) 1999.02.12, 10,21,32
Claims 1 to 6 (Family: none)
A JP 54-146555 A (NEC Corporation) 1979.11.15, 9-11,20-22,
Full text; all drawings (Family: nomne) 31-33
A JP 56-123051 A (OMRON TATEISHI ELECTRONICS 9-11,20-22,
CORPORATION) 1981.09.26, 31-33
Full text; all drawings (Family: none)

l____l Further documents are listed in the continuation of Box C.

I:I See patent family annex.

*
“A”

“R

w»

Q¥

w“py

Special categories of cited documents:

document defining the general state of the art which is not considered
to be of particular relevance -

earlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later than

the priority date claimed .

w

D'

wyr

later document published after the international filing date or priority
date and not in contlict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

11.06.02

Date of mailing of the international search report

2 july 2002 (02.07.02)

' Name and mailing address of the ISA/JP

Japan Patent Office

3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Authorized officer)
Yasushi SEIKI

9643

S

Telephone No. +81-3-3581-1101 Ext. 3545

Form PCT/ISA/210 (second sheet) (July 1998)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

