Elektrostatische vullingsgraadmeetinrichting met flexibele elektrode.

De uitvinding heeft betrekking op een meetinrichting voor het meten van de mate van vulling van een vat, omvattende tenminste een tenminste een tenminste in de nabijheid van het vat geplaatste meetelektrode en een met de meetelektrode en met een tegenelektrode verbonden meetschakeling voor het meten van de capaciteit tussen meetelektrode en aarde, waarbij de meetelektrode op een isolerende drager is geplaatst en dat de combinatie van drager en meetelektrode aansluitend op de vatwand is aangebracht. Door de meetelektrode aansluitend op de wand te plaatsen vormt deze geen apart lichaam meer in het vat, zodat de hiermee gemoeide nadelen worden vermijden. Volgens een voorkeursuitvoeringsvorm is de vatwand van elektrisch isolerend materiaal, zoals kunststof of glas vervaardigd en is de meetelektrode direct op de vatwand geplaatst. Hierbij bestaat de mogelijkheid de meetelektrode aan de binnenzijde of aan de buitenzijde van de vatwand aan te brengen.
ELEKTROSTATISCHE VULLINGSGRAADMEETINRICHTING
MET FLEXIBELE ELEKTRODE

De onderhavige uitvinding heeft betrekking op een
meetinrichting voor het meten van de mate van vulling van een
vat, omvattende ten minste één tenminste in de nabijheid van
het vat geplaatste meetelektrode en een met de meetelektrode
en met eentegenelektrode verbonden meetschakeling voor het
meten van de capaciteit tussen meetelektrode en
tegenelektrode aarde.

Dergelijke inrichtingen zijn algemeen bekend. Zij maken
gebruik van het feit dat de diëlektrische constante van
stoffen waarmee het vat gevuld wordt, afwijkt van de
diëlektrische constante van lucht. Een dergelijke
meetinrichting meet de capaciteit tussen de meetelektrode en
de tegenelektrode, waarbij de inhoud van het vat is opgenomen
in het betreffende elektrische veld. De diëlektrische
constanten van de in dit veld aanwezige materialen hebben een
invloed op de capaciteitswaarde. Deze capaciteitswaarde is
afhankelijk van de mate van vulling, zodat door het meten van
de capaciteitswaarde de mate van vulling kan worden
vastgesteld.

Bij tot de stand van de techniek behorende
meetinrichtingen wordt veelal gebruik gemaakt van een
meetelektrode in de vorm van een bijvoorbeeld centraal in het
vat aangebrachte pen. De met de pen verbonden meetinrichting
meet de capaciteit tussen de pen en tegenelektrode, welke
tegenelektrode overigens veelal door de vatwand wordt
gevormd.

Het aanbrengen van een dergelijke elektrode in de vorm
van een apart, bijvoorbeeld aan de bodem of aan het deksel
van het vat bevestigd lichaam is niet in alle gevallen wenselijk; bijvoorbeeld bij de behandeling van voedingsmiddelen of farmaceutische produkten levert het een extra element op dat moet worden gereinigd, en dat een potentiële bron voor verontreinigingen vormt.

Anderzijds vormt deze aparte elektrode een onderdeel dat bij eventuele reinigingswerkzaamheden gemakkelijk kan worden beschadigd, hetgeen de vervolgens uit te voeren meethandelingen kan beïnvloeden.

Het doel van de onderhavige uitvinding is het verschaffen van een dergelijke meetinrichting, waarbij bovengenoemde nadelen worden vermeden.

Dit doel wordt bereikt door een dergelijke meetinrichting, waarbij de meetelektrode op een drager is geplaatst en de combinatie van drager en de meetelektrode aansluitend op de wand van het vat is aangebracht.

Door de meetelektrode aansluitend op de wand te plaatsen vormt deze geen apart lichaam meer in het vat, zodat de hiermee gemoeide nadelen worden vermeden.

In het bijzonder wanneer de vatwand van geleidend materiaal is vervaardigd, zou men verwachten dat door de nabijheid van meetelektrode en de als tegenelektrode fungerende vatwand de capaciteit tussen beide elektroden hoofdzakelijk constant is omdat het overgrote deel van de veldlijnen zich immers zal uitstrekken door de verbinding tussen de vatwand en de elektrode, welke uiteraard onveranderbaar is, terwijl slechts een deel van de veldlijnen zich door de inhoud van het vat uitstrekt.

De ervaring heeft echter geleerd dat ook in deze configuratie betrouwbare en reproduceerbare meetresultaten worden verkregen omdat de meetinrichting zo nauwkeurig meet, dat ook veranderingen in het gebied met een kleine veldsterkte nauwkeurig worden bepaald.
Volgens een eerste voorkeursuitvoeringsvorm is de vatwand van elektrisch isolerend materiaal, zoals kunststof of glas vervaardigd, en is de meetelektrode direct op de vatwand geplaatst. Hierbij bestaat de mogelijkheid de meetelektrode aan de binnenzijde of aan de buitenzijde van de vatwand aan te brengen.

In deze configuratie bestaat vrijheid voor het aanbrengen van de tegenelektrode, zodat deze op een zodanige plaats kan worden aangebracht dat de inhoud van het vat een relatief grote invloed heeft op de betreffende capaciteitswaarde.

Volgens een andere voorkeursuitvoeringsvorm is het vat van elektrisch geleidend materiaal vervaardigd, is de meetelektrode aan de binnenzijde van het vat geplaatst en is de drager van de meetelektrode tussen het vat en de meetelektrode geplaatst.

Deze configuratie is in het bijzonder geschikt voor het meten van metalen vaten, waarbij het vat de tegenelektrode vormt.

Hierbij is de drager die van isolerend materiaal is vervaardigd, tussen de meetelektrode en de vatwand geplaatst. Alhoewel geenszins is uitgesloten dat de elektrode staafvormig is, is het bijzonder aantrekkelijk wanneer de meetelektrode vlak is en wanneer deze is opgenomen in een flexibele elektrodedrager. Hierbij wordt bij voorkeur voor de drager het materiaal gebruikt dat voor flexibele printplaten wordt gebruikt, en is de elektrode uitgevoerd als een op deze flexibele printplaat aangebrachte koperbaan of koperen eiland. Overigens worden andere dragers, zoals starre printplaten geenszins uitgesloten.

De capaciteitswaarden, die met de inrichting volgens de uitvinding worden gemeten, zijn kleine waarden. Om de invloed van de omgeving op deze capaciteitswaarden zo klein mogelijk te maken, wordt bij voorkeur een afscherming aangebracht,
waarbij de elektrodesensor aan zijn van inwendigee van het vat afgekeerde zijde van een afscherming is voorzien. Hiermee is het mogelijk uitwendige, storende invloeden zoveel mogelijk weg te nemen.

Uit de publicatie WO-A-96 24823 is een meetinrichting voor het elektrisch meten van de inhoud van een vat bekend, waarbij gebruik wordt gemaakt van zogenaamde actieve afscherming. Dit wil zeggen dat de geleiders, waarlangs het meetsignaal tussen de meetelektrode en de meetschakeling wordt getransporteerd, van een afscherming is voorzien, waarop een spanning wordt gehandhaafd, welke zoveel mogelijk gelijk is aan de spanning van de geleider, waarop het meetsignaal wordt getransporteerd. Alhoewel de betreffende inrichting in eerste instantie bedoeld is voor toepassing op de afscherming van draden waarlangs het meetsignaal wordt getransporteerd, is deze maatregel eveneens van toepassing op delen van de afscherming, welke zich in de nabijheid van de meetelektrode uitstrekken om de elektrode te beschermen tegen invloeden van buitenaf.

Een andere voorkeursuitvoeringsvorm leert dat tenminste een deel van de meetschakeling in de elektrodesensor is opgenomen.

Het gebruik van een flexibele of starre printplaat voor het aanbrengen van de meetelektrode biedt tevens de mogelijkheid een deel van de schakeling op deze printplaat aan te brengen. Hiermee wordt het mogelijk de signalen, voordat zij naar het verwerkende deel van de meetschakeling worden gestuurd, op een zodanig signaalniveau of in een andere vorm te brengen, dat zij minder gevoelig zijn voor storingen.

Weer een andere voorkeursuitvoeringsvorm betreft een maatregel dat meetelektrode in segmenten is verdeeld, en dat
de verbindingslijn tussen de zwaartepunten van de segmenten zich parallel aan de meetrichting van het vat uitstrekt.

Volgens de tot nu toe gebruikelijke meetstructuur werd slechts de capaciteit van een enkele condensator, namelijk die tussen meetelektrode en tegenelektrode gemeten; deze meetmethode is uiteraard behoort met meetfouten, enerzijds als gevolg van het feit dat het verband tussen vullingsgraad en verandering van capaciteitswaarde niet in alle gevallen lineair is, anderzijds door het feit dat vaak niet bekend is, met welke stof men een vat wil vullen, zodat men vaak de diëlektrische constante van de in het vat te plaatsen stof niet kent.

Met de segmentering worden deze twee problemen sterk verminderd. De segmentering leidt op zich al tot een grotere nauwkeurigheid, omdat het niveau van de stof in het vat ook bepaalbaar is in relatie tot de grenzen tussen de segmenten. Bovendien leidt het gebruik van verscheidene segmenten tot de mogelijkheid de hiermede gemeten capaciteitswaarden onderling te correleren en daarmee afhankelijkheid van diëlektrische constanten te elimineren.

Hiertoe is de meetschakeling bij voorkeur ingericht voor het normeren van een elektrodesegment verkregen waarde met een van een ander elektrodesegment verkregen waarde.

Omdat de elektrodesegmenten elk via een eigen verbinding met de meetschakeling zijn verbonden, ontstaat ook in deze configuratie het voordeel van minder voor storing gevoelige signalen, wanneer elk van de elektrodesegmenten verbonden is met een eigen deel van de meetschakeling.

Bij deze configuratie ontstaat nog en verder voordeel wanneer het met een elektrodesegment verbonden deel van de meetschakeling is verbonden met een geleider van een zich langs de elektrodesegmenten uitstrekkende bus.
Hiermee wordt het voor de meetschakeling mogelijk de hiermee verbonden elektrodesegmenten stuk voor stuk uit te lezen. Dit kan zowel tegelijkertijd plaatsvinden, maar het kan ook in tijdmultiplex plaatsvinden. In het algemeen zal dit laatste het aantrekkelijkste zijn in verband met het feit dat in het algemeen snelheid van de meting geen hoge eis is, en hiermee veel geleiders worden bespaard. Bovendien kan deze laatste configuratie gemakkelijk worden aangepast aan de digitale meetsystemen.

Wanneer echter afzonderlijke lijnen worden toegepast, is het aantrekkelijk wanneer het verbindingspatroon van het met een elektrodesegment verbonden deel van de meetschakeling zich telkens na een vooraf bepaald aantal segmenten herhaalt.

Vervolgens zal de onderhavige uitvinding worden toegelicht aan de hand van bijgaande figuren, waarin voorstellen:

figuur 1: een schematisch, perspectivisch aanzicht van een eerste uitvoeringsvorm van de uitvinding;

figuur 2: een schematisch explosieaanzicht van een eerste uitvoeringsvorm van een meelektrode volgens de uitvinding;

figuur 3: een overeenkomstig aanzicht van een andere uitvoeringsvorm van een meelektrode volgens de onderhavige uitvinding;

figuur 4: een schematisch aanzicht van een eerste uitvoeringsvorm van een gesegmenteerde meelektrode volgens de uitvinding; en

figuur 5: een schematisch aanzicht van een tweede uitvoeringsvorm van een gesegmenteerde elektrode volgens de uitvinding.

De uitvinding is van toepassing op het meten van een vat 1, zoals in figuur 1 is afgebeeld. Het vat 1 omvat een bodem 2 en een vatwand 3. Het vat is in het onderhavige geval van een niet geleidend materiaal, zoals glas, vervaardigd. Een
dergelijke situatie doet zich bijvoorbeeld voor voor vaten, welke worden gevuld met stoffen die metalen aantasten.

Aan de buitenzijde van het vat is een meetelektrode 4 bevestigd, welke door middel van een kabel 5 verbonden is met een schematisch weergegeven meetschakeling 6.

De uitvinding maakt hierbij gebruik van het feit dat de capaciteit tussen de meetelektrode 4 en aarde in hoge mate afhankelijk is van de mate van vulling van het vat 1. Door het plaatsen van de elektrode aan de buitenzijde van het vat wordt de elektrode niet meer blootgesteld aan het materiaal, waarmee het vat 1 wordt gevuld. Bovendien blijven de wanden van het vat aan de binnenzijde onberoerd, zodat zij gemakkelijk kunnen worden gereinigd.

Het zal duidelijk zijn dat een dergelijke configuratie alleen mogelijk is bij een situatie, waarin het vat van niet geleidend materiaal is vervaardigd; wanneer het vat daarentegen van geleidend materiaal is vervaardigd, zal de elektrode tegen de binnenzijde van het vat geplaatst moeten worden. Uiteraard moet dan een isolerende laag worden aangebracht tussen de vatwand en de elektrode.

Wanneer een vat van isolerend materiaal wordt toegepast, kan de elektrode zowel aan de binnen- als aan de buitenzijde worden geplaatst. Deze mogelijkheid ontstaat door de elektrode flexibel uit te voeren; het is aantrekkelijk de elektrode uit te voeren als een "eiland" op een flexibele printplaat. De printplaat dient dan, in het bijzonder bij de toepassing op een metalen vatwand, als isolator.

Het is overigens tevens mogelijk de meetelektrode en een eventuele afscherming in een niet-geleidende vatwand te integreren.

Omdat de meting lagere capaciteitswaarden betreft, moeten externe invloeden zoveel mogelijk worden uitgesloten. Hiertoe is het van belang gebruik te maken van afscherming.
Zo toont figuur 2 een configuratie van een meetelektrode, welke van afscherming is voorzien. Deze configuratie omvat een eerste flexibele printplaat 7, waarop de eigenlijke meetelektrode 4 is aangebracht in de vorm van een eiland. Deze meetelektrode is met de inwendige ader 8 van een afgeschermde kabel 9 verbonden met de niet in de tekening weergegeven meetschakeling. Rondom de eigenlijke meetelektrode 4 is een spoor 10 aangebracht dat als afscherming fungeert. De afscherming 10 is verbonden met de afscherming 11 van de afgeschermde kabel 9. Rondom het afschermingsspoor is op de printplaat 7 een aardspoor 12 aangebracht dat met een afzonderlijke aardkabel 13 is verbonden.

De configuratie omvat verder een tweede printplaat 14, waarop een afschermingseiland 15 is aangebracht dat door middel van in de eerste printplaat 7 aangebrachte, niet in de tekening weergegeven, doorgemetselde gaten, galvanisch is verbonden met het afschermingsspoor 10. Rondom het afschermingseiland 15 is nog een aardspoor 16 aangebracht dat op overeenkomstige wijze verbonden is met het aardspoor 12. Beide flexibele printplaten 7,14 worden aan elkaar gehecht en tegen de vatwand 2 bevestigd. Hierbij zal de meetelektrode steeds naar de binnenzijde van het vat zijn gericht om de meting mogelijk te maken.

In figuur 3 is een volgende uitvoeringsvorm van een configuratie van een meetelektrode weergegeven. Hierbij is op de printplaat 7 niet alleen een meetelektrode 4 aangebracht, evenals een afschermingsspoor 10, maar tevens een deel 17 van de meetschakeling 6. Dit deel 17 van de meetschakeling is bedoeld voor het op een hoger spanningsniveau brengen van het meteisignaal, zodat het minder gevoelig is voor storingen tijdens transport van de meetelektrode naar het resterende deel van de meetschakeling. Hiermee wordt de
storingsgevoeligheid sterk verminderd. Het zal duidelijk zijn
dat in figuur 3 slechts dat deel van de configuratie is
weergegeven dat is aangebracht op de flexibele printplaat 7;
ook in deze configuratie is een andere flexibele printplaat
voorzien 17, waarop de afschermende elementen zijn
aangebracht. Tevens is het mogelijk de elektroden in
segmenten te verdelen.

Alhoewel de segmentering van elektroden in principe ook
mogelijk is bij meetelektroden bij meer klassieke
constructies, maakt de onderhavige uitvinding een dergelijke
uitvoeringsvorm bijzonder simpel; men maakt gewoon
verschillende eilanden op een en dezelfde printplaat. Dan
ontstaat een configuratie, zoals in figuur 4 getoond is. De
meetelektrode wordt gevormd door vijf meetelektroden

4A,4B,4C,4D en 4E. Elk van deze elektroden is door middel van
een verbindingspoor 18A,18B,18C,18D, respectievelijk 18E
verbonden met het deel 17 van de meetschakeling. Verder zijn
rondom de meetelektroden 4A-4E en de verbindingssporen 18A-
18E afschermingssporen 19 aangebracht.

Evenals bij de voorgaande uitvoeringsvormen is het
hierbij mogelijk de afschermingssporen als een normaal
afschermingsspoor te laten functioneren. Het is echter veel
aantrekkelijker gebruik te maken van actieve afscherming,
zoals bekend is uit de internationale octrooiaanvraage

Ten slotte toont figuur 5 een soortgelijke configuratie,
waarbij bij elk van de elektrodesegmenten 4A-4E een apart
deel van de meetschakeling geplaatst is, welke genummerd zijn
volgens 20A-20E. Deze schakelingen meten de capaciteit van de
desbetreffende elektroden, waarna de informatie zodanig wordt
doorgegeven dat deze gemakkelijk wordt verwerkt door het
resterende deel van de meetschakeling dat zich buiten of op
enige afstand van de meetomgeving bevindt. Hierbij kan, zoals
in figuur 5 getoond is, gebruik gemaakt worden van een busschakeling, waarbij een aantal parallelle geleiders 21 de busschakeling vormt, maar er kan eveneens gebruik gemaakt worden van tijdverdelingsmultiplex of van frequentiemodulatie of van andere vormen van digitale signaalmodulatie voor het via een enkel geleiderpaar bereiken van elk van de deelmeetschakelingen 21.

Deze laatste configuratie van een bussysteem maakt het mogelijk een elektrode-configuratie "aan de meter" te vervaardigen en de noodzakelijke lengte af te snijden.

Vervolgens kan door middel van een initialisatie-procedure elk van de betreffende schakelingdelen worden geadresseerd.
1. Meetinrichting voor het meten van de mate van vulling van een vat, omvattende tenminste een tenminste in de nabijheid van het vat geplaatste meetelektrode en een met de meetelektrode en met een tegenelektrode verbonden meetschakeling voor het meten van de capaciteit tussen meetelektrode en aarde, *met het kenmerk*, dat de meetelektrode op een isolerende drager is geplaatst en dat de combinatie van drager en meetelektrode aansluitend op de vatwand is aangebracht.

2. Meetinrichting volgens conclusie 1, *met het kenmerk*, dat de vatwand van elektrisch isolerend materiaal is vervaardigd en dat de meetelektrode direct op de vatwand is geplaatst.

3. Meetinrichting volgens conclusie 1, *met het kenmerk*, dat de vatwand van elektrisch geleidend materiaal is vervaardigd, dat de meetelektrode aan de binnenzijde van de vatwand is geplaatst en dat de drager van de meetelektrode tussen de vatwand en de meetelektrode is geplaatst.

4. Meetinrichting volgens conclusie 1, 2 of 3, *met het kenmerk*, dat de meetelektrode vlak is, dat deze is opgenomen in een flexibele elektrodesensor.

5. Meetinrichting volgens conclusie 4, *met het kenmerk*, dat de elektrodesensor aan zijn van het inwendige van het vat afgekeerde zijde van een afscherming is voorzien.

6. Meetinrichting volgens conclusie 5, *met het kenmerk*, dat de afscherming is gekoppeld met een schakeling voor het op de afscherming handhaven van een spanning welke zo veel mogelijk identiek is aan de op de meetelektrode heersende spanning.
7. Meetinrichting volgens conclusies 4, 5 of 6, met het kenmerk, dat tenminste een deel van de meetschakeling in de elektrodesensor is opgenomen.

8. Meetinrichting volgens een van de voorafgaande conclusies, met het kenmerk, dat de meetelektrode in segmenten is verdeeld en dat de verbindingslijn tussen de zwaartepunten van de segmenten zich parallel aan de meetrichting van het vat uitstrekkt.

9. Meetinrichting volgens conclusie 8, met het kenmerk, dat de meetschakeling is ingericht voor het achtereenvolgens uitlezen van de spanning op elk van de meetelektroden.

10. Meetinrichting volgens conclusie 9, met het kenmerk, dat de meetschakeling is ingericht voor het normeren van de van een elektrodesegment verkregen waarde met een van een ander elektrodesegment verkregen waarde.

11. Meetinrichting volgens conclusie 8, 9 of 10, met het kenmerk, dat elk van de elektrodesegmenten is verbonden met een eigen deel van de meetschakeling.

12. Meetinrichting volgens conclusie 11, met het kenmerk, dat de het met een elektrodesegment verbonden deel van de meetschakeling verbonden is met een geleider van een zich langs de elektrodesegmenten uitstrekkende bus.

13. Meetinrichting volgens conclusie 12, met het kenmerk, dat het verbindingspatroon van het met een elektrodesegment verbonden deel van de meetschakeling zich telkens na een voorafbepaald aantal segmenten herhaalt.
SAMENWERKINGSVERDRAG (PCT)
RAPPORT BETREFFENDE NIEUWHEIDSONDERZOEK VAN INTERNATIONAAL TYPE

<table>
<thead>
<tr>
<th>IDENTIFICATIE VAN DE NATIONALE AANVRAGE</th>
<th>KENMERK VAN DE AANVRAGER OF VAN DE GEMACHTIGDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nederlands aanvraag nr. 1021746</td>
<td>G/AW33/CS</td>
</tr>
<tr>
<td>Indieningsdatum</td>
<td>25 oktober 2002</td>
</tr>
<tr>
<td>Ingeroepen voorrangsdatum</td>
<td></td>
</tr>
</tbody>
</table>

Aanvrager (Naam)
Siemens Milltronics Process Instruments BV

Datum van het verzoek voor een onderzoek van Internationaal type

Door de instantie voor Internationaal Onderzoek (ISA) aan het verzoek voor een onderzoek van internationaal type toegestemd nr.
SN 40233 NL

I. CLASSIFICATIE VAN HET ONDERWERP (bij toepassing van verschillende classificaties, alle classificatiesymbolen opgeven)

Volgens de internationale classificatie (IPC)

Int. Cl.7: G01F23/26

II. ONDERZOCHTE GEBIEDEN VAN DE TECHNIEK

<table>
<thead>
<tr>
<th>Classificatiesysteem</th>
<th>Classificatiesymbolen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Int. Cl.7:</td>
<td>G01F</td>
</tr>
</tbody>
</table>

Onderzochte andere documentatie dan de minimum documentatie, voor zover dergelijke documenten in de onderzochte gebieden zijn opgenomen

III. ☐ GEEN ONDERZOEK MOGELIJK VOOR BEPAALDE CONCLUSIES (opmerkingen op aanvullingsblad)

IV. ☐ GBREK AAN EENHEID VAN UITVINDING (opmerkingen op aanvullingsblad)
VERSLAG VAN HET NIEUWHEIDSONDERZOEK VAN INTERNATIONAL TYPE

Nummer van het verzoek om een nieuwheidsonderzoek: NL 1021746

A. CLASSIFICATIE VAN HET ONDERWERP

IPC 7 G01F23/26

Volgens de Internationale Classificatie van octrooien (IPC) of zowel volgens de nationale classificatie als volgens de IPC.

B. ONDERZOCHTE GEBIEDEN VAN DE TECHNIEK

Onderzochede minimum documentatie (classificatie gevolgd door classificatiesymbolen)

IPC 7 G01F

Onderzochede andere documentatie dan de minimum documentatie, voor dergelijke documenten, voor zover dergelijke documenten in de onderzochte gebieden zijn opgenomen

Tijdens het internationaal nieuwheidsonderzoek geraadpleegde elektronische gegevensbestanden (naam van de gegevensbestanden en, waar uitvoerbaar, gebruikte trefwoorden)

C. VAN BELANG GEACHTTE DOCUMENTEN

<table>
<thead>
<tr>
<th>Categorie</th>
<th>Geciteerde documenten, eventueel met aanwijzing van speciaal van belang zijnde passages</th>
<th>Van belang voor conclusie nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 6 125 696 A (NICKOLIN THOMAS M ET AL) 3 Oktober 2000 (2000-10-03) kolom 15, regel 54 - kolom 18, regel 55; figuren 9-12</td>
<td>1,3,4, 7-13, 5,6</td>
</tr>
<tr>
<td>Y</td>
<td>US 4 749 988 A (BERMAN ALLAN ET AL) 7 Juni 1988 (1988-06-07) het gehele document</td>
<td>1, 5,6</td>
</tr>
<tr>
<td>X</td>
<td>DE 299 17 910 U (ALMFIEIER PRAEZISION AG BAUGRUP) 27 Januari 2000 (2000-01-27) bladzijde 3, regel 17 - regel 27; conclusies 1,2; figuur 1</td>
<td>1,2, 3-13</td>
</tr>
</tbody>
</table>

Leden van dezelfde octrooifamilie zijn vermeld in een bijlage

Datum waarop het nieuwheidsonderzoek van internationaal type werd voltold: 1 Juli 2003

Verzenddatum van het rapport van het nieuwheidsonderzoek van internationaal type:

De bevoegde ambtenaar: Boerrigter, H

Formulier PCT/A/202 (tweede blad) (juli 1992)
<table>
<thead>
<tr>
<th>In het rapport genoemd octrooigaaf</th>
<th>Datum van publicatie</th>
<th>Overeenkomend(e) geschrijf(en)</th>
<th>Datum van publicatie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US 5406843 A</td>
<td>18-04-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 8090894 A</td>
<td>22-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9512112 A1</td>
<td>04-05-1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5613399 A</td>
<td>25-03-1997</td>
</tr>
<tr>
<td>US 4749988 A</td>
<td>07-06-1988</td>
<td>GEEN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 3302378 A</td>
<td>16-08-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 1106026 A1</td>
<td>28-07-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 2755517 A1</td>
<td>11-01-1979</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 1585188 A</td>
<td>25-02-1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 53999973 A</td>
<td>31-08-1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 185841 A</td>
<td>25-05-1982</td>
</tr>
</tbody>
</table>