(12) STANDARD PATENT (11) Application No. AU 2019275553 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Method, apparatus and system for encoding and decoding a coding tree unit

(61) International Patent Classification(s)

HO4N 19/129 (2014.01) HO4N 19/18 (2014.01)

HO4N 19/119 (2014.01) HO4N 19/60 (2014.01)

HO4N 19/12 (2014.01) HO4N 19/70 (2014.01)

HO4N 19/122 (2014.01) HO4N 19/96 (2014.01)
(21) Application No: 2019275553 (22) Date of Filing: 2019.12.03
(43) Publication Date: 2021.06.17

(43) Publication Journal Date: 2021.06.17
(44) Accepted Journal Date: 2022.10.06

(71) Applicant(s)
Canon Kabushiki Kaisha

(72) Inventor(s)
Rosewarne, Christopher James

(74) Agent/ Attorney
Spruson & Ferguson, GPO Box 3898, Sydney, NSW, 2001, AU

(56) Related Art
US 2019/0306521 A1

03 Dec 2019

2019275553

Abstract

METHOD, APPARATUS AND SYSTEM FOR ENCODING AND DECODING A

CODING TREE UNIT

A system and method of decoding a coding unit from a coding tree unit of an image frame from
a video bitstream. The method comprises determining a scan pattern for a transform block of
the coding unit, wherein the scan pattern traverses the transform block by progressing through a
plurality of non-overlapping collections of sub-blocks of residual coefficients, the scan pattern
progressing from a current collection to a next collection of the plurality of collections after
completing scanning of the current collection; decoding residual coefficients from the video
bitstream according to the determined scan pattern; determining a multiple transform selection
index for the coding unit, the determining comprising: decoding (1676) the multiple transform
selection index from the video bitstream if a last significant coefficient encountered along the
scan pattern is at or within a threshold cartesian location of the transform block, and
determining (1674) the multiple transform selection index to indicate that multiple transform
selection is not used if the last significant residual coefficient position of the transform block
along the scan pattern outside the threshold cartesian location; and transforming the decoded
residual coefficients by applying a transform according to the multiple transform selection

index to decode the coding unit

23954677_1

89¢ e 9t ¢ "bi
s19)1y doo|-u| |Mv Joyng sweld [~ O > uonewnsg uonop |
N 0.€ v.€ ﬁ/\ 8/¢
141> ol OaE
vLl = ayoeo s|dwes uonesuadwon
/r t+——> ooualg)ey — UONO u L 0ce
T~ 8ce zee| e |
—= XN
09¢€ —=
2G¢e T $9¢ uonoipaid
19} o|dwes
> * ewey-equ =
CRIEICIEN S0¢ Jequl 99¢
0G€
g 6% XNA Aﬂ| OZ ¢ wliojsuel} ¢ >
66¢ \/% 06¢ S Kewuy
— 68€ e
g¥¢€ Wlojsuel) H/\wmm 776
mmlmqv Arewnd asianu| - A%
F_ove _ ¢ mpeey Laie
Y€ wiojsuel Pl ove e =
Alepuooss asianu| % Jasnuenbaq sosnuenp | [= |e a 01c
7 88€ zye ™\ 88¢ Jouoned
oce X20|g
weaJsiq N p . eee -
8E¢ 68€ V 98¢ eleq
m Jopooug Adosu7 [€ gg¢e ™ 10)09|9S 9po [« sweiq | Leyy
<
610C3°2d €0 €SSSLC610C

23953837_1

03 Dec 2019

2019275553

METHOD, APPARATUS AND SYSTEM FOR ENCODING AND DECODING A
CODING TREE UNIT

TECHNICAL FIELD

[0001] The present invention relates generally to digital video signal processing and, in
particular, to a method, apparatus and system for encoding and decoding a block of video
samples. The present invention also relates to a computer program product including a
computer readable medium having recorded thereon a computer program for encoding and

decoding a block of video samples.

BACKGROUND

[0002] Many applications for video coding currently exist, including applications for
transmission and storage of video data. Many video coding standards have also been developed
and others are currently in development. Recent developments in video coding standardisation
have led to the formation of a group called the “Joint Video Experts Team” (JVET). The Joint
Video Experts Team (JVET) includes members of Study Group 16, Question 6 (SG16/Q6) of
the Telecommunication Standardisation Sector (ITU-T) of the International Telecommunication
Union (ITU), also known as the “Video Coding Experts Group” (VCEG), and members of the
International Organisations for Standardisation / International Electrotechnical Commission
Joint Technical Committee 1 / Subcommittee 29 / Working Group 11 (ISO/IEC
JTC1/SC29/WG11), also known as the “Moving Picture Experts Group” (MPEG).

[0003] The Joint Video Experts Team (JVET) issued a Call for Proposals (C{P), with responses
analysed at its 10" meeting in San Diego, USA. The submitted responses demonstrated video
compression capability significantly outperforming that of the current state-of-the-art video
compression standard, i.e.: “high efficiency video coding” (HEVC). On the basis of this
outperformance it was decided to commence a project to develop a new video compression
standard, to be named ‘versatile video coding’ (VVC). VVC is anticipated to address ongoing
demand for ever-higher compression performance, especially as video formats increase in
capability (e.g., with higher resolution and higher frame rate) and address increasing market
demand for service delivery over WANSs, where bandwidth costs are relatively high. Use cases
such as immersive video necessitate real-time encoding and decoding of such higher formats,
for example cube-map projection (CMP) may use an 8K format even though a final rendered

‘viewport’ utilises a lower resolution. VVC must be implementable in contemporary silicon

23954677_1

03 Dec 2019

2019275553

2

processes and offer an acceptable trade-off between the achieved performance versus the
implementation cost. The implementation cost can be considered for example, in terms of one
or more of silicon area, CPU processor load, memory utilisation and bandwidth. Higher video
formats may be processed by dividing the frame area into sections and processing each section
in parallel. A bitstream constructed from multiple sections of the compressed frame that is still
suitable for decoding by a “single-core” decoder, i.e., frame-level constraints, including bit-rate,

are apportioned to each section according to application needs.

[0004] Video data includes a sequence of frames of image data, each frame including one or
more colour channels. Generally, one primary colour channel and two secondary colour
channels are needed. The primary colour channel is generally referred to as the ‘luma’ channel
and the secondary colour channel(s) are generally referred to as the ‘chroma’ channels.
Although video data is typically displayed in an RGB (red-green-blue) colour space, this colour
space has a high degree of correlation between the three respective components. The video data
representation seen by an encoder or a decoder is often using a colour space such as YCbCr.
YCbCr concentrates luminance, mapped to ‘luma’ according to a transfer function, ina Y
(primary) channel and chroma in Cb and Cr (secondary) channels. Due to the use of a
decorrelated YCbCr signal, the statistics of the luma channel differ markedly from those of the
chroma channels. A primary difference is that after quantisation, the chroma channels contain
relatively few significant coefficients for a given block compared to the coefficients for a
corresponding luma channel block. Moreover, the Cb and Cr channels may be sampled
spatially at a lower rate (subsampled) compared to the luma channel, for example half
horizontally and half vertically - known as a ‘4:2:0 chroma format’. The 4:2:0 chroma format
is commonly used in ‘consumer’ applications, such as internet video streaming, broadcast
television, and storage on Blu-Ray™ disks. Subsampling the Cb and Cr channels at half-rate
horizontally and not subsampling vertically is known as a ‘4:2:2 chroma format’. The 4:2:2
chroma format is typically used in professional applications, including capture of footage for
cinematic production and the like. The higher sampling rate of the 4:2:2 chroma format makes
the resulting video more resilient to editing operations such as colour grading. Prior to
distribution to consumers, 4:2:2 chroma format material is often converted to the 4:2:0 chroma
format and then encoded for distribution to consumers. In addition to chroma format, video is
also characterised by resolution and frame rate. Example resolutions are ultra-high definition
(UHD) with a resolution of 3840x2160 or ‘8K’ with a resolution of 7680x4320 and example
frame rates are 60 or 120Hz. Luma sample rates may range from approximately 500 mega

samples per second to several giga samples per second. For the 4:2:0 chroma format, the

23954677_1

03 Dec 2019

2019275553

3

sample rate of each chroma channel is one quarter the luma sample rate and for the 4:2:2

chroma format, the sample rate of each chroma channel is one half the luma sample rate.

[0005] The VVC standard is a ‘block based’ codec, in which frames are firstly divided into a
square array of regions known as ‘coding tree units’ (CTUs). Where a frame is not integer
divisible into CTUs the CTUs along the left and bottom edge may be truncated in size to match
the frame size. CTUs generally occupy a relatively large area, such as 128x128 luma samples.
However, CTUs at the right and bottom edge of each frame may be smaller in area. Associated
with each CTU is a ‘coding tree’ which may be a single tree for both the luma channel and the
chroma channels (a ‘shared tree’) and may include ‘forks’ into separate trees (or ‘dual trees’)
each for the luma channel and the chroma channels. A coding tree defines a decomposition of
the area of the CTU into a set of blocks, also referred to as ‘coding units’ (CUs). The CBs are
processed for encoding or decoding in a particular order. Separate coding trees for luma and
chroma generally commence at the 64x64 luma sample granularity, above this a shared tree
exists. As a consequence of the use of the 4:2:0 chroma format, a separate coding tree structure
commencing at 64x64 luma sample granularity includes a collocated chroma coding tree with
32x32 chroma sample area. The designation ‘“unit’ indicates applicability across all colour
channels of the coding tree from which the block is derived. A single coding tree results in
coding units having a luma coding block and two chroma coding blocks. The luma branch of'a
separate coding tree results in a coding units, each having a luma coding block, and the chroma
branch of a separate coding tree results in a coding units, each having a pair of chroma blocks.
The above-mentioned CUs are also associated with ‘prediction units’ (PUs), and ‘transform
units’ (TUs), each of which apply to all colour channels of the coding tree from which the CU
is derived. Similarly, coding blocks are associated with prediction blocks (PBs) and transform
blocks (TBs), each of which apply to a single colour channel. A single tree with CUs spanning
the colour channels of 4:2:0 chroma format video data result in chroma coding blocks having

half the width and height of the corresponding luma coding blocks.

[0006] Notwithstanding the above distinction between ‘units’ and ‘blocks’, the term ‘block’
may be used as a general term for areas or regions of a frame for which operations are applied

to all colour channels.

[0007] For each CU a ‘prediction unit’ (or ‘PU’) of the contents (sample values) of the
corresponding area of frame data is generated. Further, a representation of the difference (or

‘spatial domain’ residual) between the prediction and the contents of the area as seen at input to

23954677_1

03 Dec 2019

2019275553

4

the encoder is formed. The difference in each colour channel may be transformed and coded as
a sequence of residual coefficients, forming one or more TUs for a given CU. The applied
transform may be a Discrete Cosine Transform (DCT) or other transform, applied to each block
of residual values. This transform is applied separably, that is the two-dimensional transform is
performed in two passes. The block is firstly transformed by applying a one-dimensional
transform to each row of samples in the block. Then, the partial result is transformed by
applying a one-dimensional transform to each column of the partial result to produce a final
block of transform coefficients that substantially decorrelates the residual samples. Transforms
of various sizes are supported by the VVC standard, including transforms of rectangular-shaped
blocks, with each side dimension being a power of two. Transform coefficients are quantised
for entropy encoding into a bitstream. An additional non-separable transform stage may also be

applied. Finally, transform application may be bypassed.

[0008] VVC features an intra-frame prediction and inter-frame prediction. Intra-frame
prediction involves the use of previously processed samples in a frame being used to generate a
prediction of a current block of samples in the frame. Inter-frame prediction involves
generating a prediction of a current block of samples in a frame using a block of samples
obtained from a previously decoded frame. The block of samples obtained from a previously
decoded frame is offset from the spatial location of the current block according to a motion
vector, which often has filtering being applied. Intra-frame prediction blocks can be (i) a
uniform sample value (“DC intra prediction”), (ii) a plane having an offset and horizontal and
vertical gradient (“planar intra prediction”), (iii) a population of the block with neighbouring
samples applied in a particular direction (“angular intra prediction”) or (iv) the result of a
matrix multiplication using neighbouring samples and selected matrix coefficients. Further
discrepancy between a predicted block and the corresponding input samples may be corrected
to an extent by encoding a ‘residual’ into the bitstream. The residual is generally transformed
from the spatial domain to the frequency domain to form residual coefficients (in a ‘primary
transform’ domain), which may be further transformed by application of a ‘secondary
transform’ (to produce residual coefficients in a ‘secondary transform domain’). Residual
coefficients are quantised according to a quantisation parameter, resulting in a loss of accuracy
of the reconstruction of the samples produced at the decoder but with a reduction in bitrate in

the bitstream.

[0009] The quantisation parameter may vary from frame to frame and within each frame.

Varying the quantisation parameter within a frame is typical for ‘rate controlled’ encoders. Rate

23954677_1

08 Sep 2022

2019275553

controlled encoders attempt to produce a bitstream with a substantially constant bitrate
regardless of the statistics of the received input samples, such as noise properties, degree of
motion. Since bitstreams are typically conveyed over networks with limited bandwidth, rate
control is a widespread technique to ensure reliable performance over a network regardless of
variation of the original frames input to an encoder. Where frames are encoded in parallel
sections, flexibility in usage of rate control is desirable, as different sections may have different
requirements in terms of desired fidelity.
[00010] Implementation costs, for example any of memory usage, level of accuracy, and
efficiency of communication and the like are also important.

SUMMARY
[00011] It is an object of the present invention to substantially overcome, or at least ameliorate,
one or more disadvantages of existing arrangements.
[00011a] One aspect of the present disclosure provides a method of decoding a coding unit from
a bitstream, the coding unit being divided, using a tree structure, from a coding tree unit of an
image, the coding unit being capable of having a luma component and chroma components, and
the chroma components including a Cb component and a Cr component, the method comprising:
decoding from the bitstream, a luma transform skip flag for the luma component in a case where
the coding unit has the luma component, the luma transform skip flag indicating whether a luma
transform process for the luma component is skipped; decoding, from the bitstream, a first chroma
transform skip flag for the Cb component and a second chroma transform skip flag for the Cr
component in a case where the coding unit has the chroma components, the first chroma transform
skip flag indicating whether a first chroma transform process for the Cb component is skipped,
and the second chroma transform skip flag indicating whether a second chroma transform process
for the Cr component is skipped; and determining an LFNST (Low Frequency Non-separable
Transform) index, wherein, in a case where (i) the luma transform process, the first chroma
transform process, and the second chroma transform process are skipped and (ii) the coding unit
is divided from the coding tree unit using a single tree structure, the LFNST index is not decoded
from the bitstream and the LENST index is determined such that the LENST index indicates that
an LFNST process is not used, even if a transform block in the coding unit contains a non-zero
coefficient in which the LFNST process is applicable, wherein, in a case where (i) the luma
transform process is skipped and (ii) the coding unit is divided from the coding tree unit using a
dual tree structure for the luma component, the LFNST index is not decoded from the bitstream
and the LFNST index is determined such that the LFNST index indicates that the LENST process

is not used, even if a transform block in the coding unit contains a non-zero coefficient in which

40413821_1

08 Sep 2022

2019275553

5a

the LENST process is applicable, wherein, in a case where (i) the first chroma transform process
and the second chroma transform process are skipped and (ii) the coding unit is divided from the
coding tree unit using a dual tree structure for the chroma components, the LENST index is not
decoded from the bitstream and the LENST index is determined such that the LFNST index
indicates that the LENST process is not used, even if a transform block in the coding unit contains
a non-zero coefficient in which the LENST process is applicable, wherein, in a case where (i) the
luma transform process is skipped, (i) the first chroma transform process and the second chroma
transform process are not skipped and (iii) the coding unit is divided from the coding tree unit
using a single tree structure, the LENST index is capable of being decoded from the bitstream,
and wherein a ternary split is capable of being used to divide the coding tree unit into coding units.
[00011b] Another aspect of the present disclosure provides a method of encoding a coding unit
into a bitstream, the coding unit being divided, using a tree structure, from a coding tree unit of
an image, the coding unit being capable of having a luma component and chroma components,
and the chroma components including a Cb component and a Cr component, the method
comprising: encoding, into the bitstream, a luma transform skip flag for the luma component in
a case where the coding unit has the luma component, the luma transform skip flag indicating
whether a luma transform process for the luma component is skipped; encoding, into the
bitstream, a first chroma transform skip flag for the Cb component and a second chroma
transform skip flag for the Cr component in a case where the coding unit has the chroma
components, the first chroma transform skip flag indicating whether a first chroma transform
process for the Cb component is skipped, and the second chroma transform skip flag indicating
whether a second chroma transform process for the Cr component is skipped; and determining
an LFNST (Low Frequency Non-separable Transform) index, wherein, in a case where (i) the
luma transform process, the first chroma transform process, and the second chroma transform
process are skipped and (ii) the coding unit is divided from the coding tree unit using a single
tree structure, the LENST index 1s not encoded into the bitstream and the LFNST index is
determined such that the LENST index indicates that an LFNST process is not used, even if a
transform block in the coding unit contains a non-zero coefficient in which the LFNST process
is applicable, wherein, in a case where (i) the luma transform process is skipped and (ii) the
coding unit is divided from the coding tree unit using a dual tree structure for the luma
component, the LENST index is not encoded into the bitstream and the LFNST index is
determined such that the LENST index indicates that the LFNST process is not used, even if a
transform block in the coding unit contains a non-zero coefficient in which the LFNST process

is applicable, wherein, in a case where (i) the first chroma transform process and the second

40413821_1

08 Sep 2022

2019275553

5b

chroma transform process are skipped and (ii) the coding unit is divided from the coding tree
unit using a dual tree structure for the chroma components, the LFNST index is not encoded into
the bitstream and the LENST index is determined such that the LFNST index indicates that the
LENST process is not used, even if a transform block in the coding unit contains a non-zero
coefficient in which the LFNST process is applicable, wherein, in a case where (i) the luma
transform process is skipped, (ii) the first chroma transform process and the second chroma
transform process are not skipped and (iii) the coding unit is divided from the coding tree unit
using a single tree structure, the LFNST index is capable of being encoded into the bitstream,
and wherein a ternary split is capable of being used to divide the coding tree unit into coding
units.

[00011c] Another aspect of the present disclosure provides an apparatus for decoding a coding
unit from a bitstream, the coding unit being divided, using a tree structure, from a coding tree
unit of an image, the coding unit being capable of having a luma component and chroma
components, and the chroma components including a Cb component and a Cr component, the
apparatus comprising: a first decoding unit configured to decode, from the bitstream, a luma
transform skip flag for the luma component in a case where the coding unit has the luma
component, the luma transform skip flag indicating whether a luma transform process for the
luma component is skipped; a second decoding unit configured to decode, from the bitstream, a
first chroma transform skip flag for the Cb component and a second chroma transform skip flag
for the Cr component in a case where the coding unit has the chroma components, the first
chroma transform skip flag indicating whether a first chroma transform process for the Cb
component is skipped, and the second chroma transform skip flag indicating whether a second
chroma transform process for the Cr component is skipped; and a determining unit configured to
determine an LENST (low frequency non-separable transform) index, wherein, in a case where
(1) the luma transform process, the first chroma transform process, and the second chroma
transform process are skipped and (ii) the coding unit is divided from the coding tree unit using
a single tree structure, the LENST index is not decoded from the bitstream and the LENST index
is determined such that the LFNST index indicates that an LENST process is not used, even if a
transform block in the coding unit contains a non-zero coefficient in which the LFNST process
is applicable, wherein, in a case where (i) the luma transform process is skipped and (ii) the
coding unit is divided from the coding tree unit using a dual tree structure for the luma
component, the LENST index is not decoded from the bitstream and the LENST index is
determined such that the LENST index indicates that the LENST process is not used, even if a

transform block in the coding unit contains a non-zero coefficient in which the LFNST process

40413821_1

08 Sep 2022

2019275553

5¢

is applicable, wherein, in a case where (i) the first chroma transform process and the second
chroma transform process are skipped and (ii) the coding unit is divided from the coding tree
unit using a dual tree structure for the chroma components, the LFNST index is not decoded
from the bitstream and the LFNST index is determined such that the LENST index indicates that
the LENST process is not used, even if a transform block in the coding unit contains a non-zero
coefficient in which the LFNST process is applicable, wherein, in a case where (i) the luma
transform process is skipped, (ii) the first chroma transform process and the second chroma
transform process are not skipped and (iii) the coding unit is divided from the coding tree unit
using a single tree structure, the LFNST index is capable of being decoded from the bitstream,
and wherein a ternary split is capable of being used to divide the coding tree unit into coding
units.

[00011d] Another aspect of the present disclosure provides an apparatus for encoding a coding
unit into a bitstream, the coding unit being divided, using a tree structure, from a coding tree
unit of an image, the coding unit being capable of having a luma component and chroma
components, and the chroma components including a Cb component and a Cr component, the
apparatus comprising: a first encoding unit configured to encode, into the bitstream, a luma
transform skip flag for the luma component in a case where the coding unit has the luma
component, the luma transform skip flag indicating whether a luma transform process for the
luma component is skipped; a second encoding unit configured to encode, into the bitstream, a
first chroma transform skip flag for the Cb component and a second chroma transform skip flag
for the Cr component in a case where the coding unit has the chroma components, the first
chroma transform skip flag indicating whether a first chroma transform process for the Cb
component is skipped, and the second chroma transform skip flag indicating whether a second
chroma transform process for the Cr component is skipped; and a determining unit configured to
determine an LENST (low frequency non-separable transform) index, wherein, in a case where
(1) the luma transform process, the first chroma transform process, and the second chroma
transform process are skipped and (ii) the coding unit is divided from the coding tree unit using
a single tree structure, the LENST index is not encoded into the bitstream and the LENST index
is determined such that the LFNST index indicates that an LFNST process is not used, even if a
transform block in the coding unit contains a non-zero coefficient in which the LFNST process
is applicable, wherein, in a case where (i) the luma transform process is skipped and (ii) the
coding unit is divided from the coding tree unit using a dual tree structure for the luma
component, the LENST index is not encoded into the bitstream and the LFNST index is
determined such that the LENST index indicates that the LFNST process is not used, even if a

40413821_1

08 Sep 2022

2019275553

5d

transform block in the coding unit contains a non-zero coefficient in which the LFNST process
is applicable, wherein, in a case where (i) the first chroma transform process and the second
chroma transform process are skipped and (ii) the coding unit is divided from the coding tree
unit using a dual tree structure for the chroma components, the LFNST index is not encoded into
the bitstream and the LENST index is determined such that the LFNST index indicates that the
LENST process is not used, even if a transform block in the coding unit contains a non-zero
coefficient in which the LFNST process is applicable, wherein, in a case where (1) the luma
transform process is skipped, (ii) the first chroma transform process and the second chroma
transform process are not skipped and (iii) the coding unit is divided from the coding tree unit
using a single tree structure, the LFNST index is capable of being encoded into the bitstream,
and wherein a ternary split is capable of being used to divide the coding tree unit into coding
units.

[00011e] Another aspect of the present disclosure provides a non-transitory computer readable
storage medium containing computer-executable instructions which causes a computer to
perform the method according to the above aspect.

[00011f] Another aspect of the present disclosure provides a non-transitory computer readable
storage medium containing computer-executable instructions which causes a computer to
perform the method according to the above aspect.

[00012] One aspect of the present invention provides a method a of decoding coding unit from a
coding tree unit of an image frame from a video bitstream, the method comprising: determining
a scan pattern for a transform block of the coding unit, wherein the scan pattern traverses the
transform block by progressing through a plurality of non-overlapping collections of sub-blocks
of residual coefficients, the scan pattern progressing from a current collection to a next
collection of the plurality of collections after completing scanning of the current collection;
decoding residual coefficients from the video bitstream according to the determined scan
pattern; determining a multiple transform selection index for the coding unit, the determining
comprising: decoding the multiple transform selection index from the video bitstream if a last
significant coefficient encountered along the scan pattern is at or within a threshold cartesian
location of the transform block, and determining the multiple transform selection index to
indicate that multiple transform selection is not used if the last significant residual coefficient
position of the transform block along the scan pattern outside the threshold cartesian location;
and transforming the decoded residual coefficients by applying a transform according to the

multiple transform selection index to decode the coding unit.

40413821_1

08 Sep 2022

2019275553

S5e

[00013] According to another aspect, the selected scan pattern scans residual coefficients in

each sub-block in a backward diagonal manner.

40413821_1

03 Dec 2019

2019275553

6

[00014] According to another aspect, the selected scan pattern scans sub-blocks in each

collection in a backward diagonal manner.

[00015] According to another aspect, the selected scan pattern scans the collections in a

backward diagonal manner.

[00016] According to another aspect, the selected scan pattern scans the collections in a

backward raster manner.

[00017] According to another aspect, the multiple transform selection index being zero

indicates application of a DCT-2 inverse transform horizontally and vertically.

[00018] According to another aspect, the multiple transform selection index being greater than
zero indicates one of DST-7 or DCT-8 inverse transforms to be applied horizontally and one of

DST-7 or DCT-8 inverse transforms to be applied vertically.

[00019] According to another aspect, each collection is a two-dimensional array of sub-blocks

having a width and height of at most four sub-blocks.

[00020] Another aspect of the prsent invention provides a non-transitory computer readable
medium having a computer program stored thereon to implement a method of decoding a
coding unit from a coding tree unit of an image frame from a video bitstream, the method
comprising: determining a scan pattern for a transform block of the coding unit, wherein the
scan pattern traverses the transform block by progressing through a plurality of non-overlapping
collections of sub-blocks of residual coefficients, the scan pattern progressing from a current
collection to a next collection of the plurality of collections after completing scanning of the
current collection; decoding residual coefficients from the video bitstream according to the
determined scan pattern; determining a multiple transform selection index for the coding unit,
the determining comprising: decoding the multiple transform selection index from the video
bitstream if a last significant coefficient encountered along the scan pattern is at or within a
threshold cartesian location of the transform block, and determining the multiple transform
selection index to indicate that multiple transform selection is not used if the last significant
residual coefficient position of the transform block along the scan pattern outside the threshold
cartesian location; and transforming the decoded residual coefficients by applying a transform

according to the multiple transform selection index to decode the coding unit.

23954677_1

03 Dec 2019

2019275553

7

[00021] Another aspect of the prsent invention provides a system, comprising: a memory;
and a processor, wherein the processor is configured to execute code stored on the memory for
implementing a method of decoding a coding unit from a coding tree unit of an image frame
from a video bitstream, the method comprising: determining a scan pattern for a transform
block of the coding unit, wherein the scan pattern traverses the transform block by progressing
through a plurality of non-overlapping collections of sub-blocks of residual coefficients, the
scan pattern progressing from a current collection to a next collection of the plurality of
collections after completing scanning of the current collection; decoding residual coefficients
from the video bitstream according to the determined scan pattern; determining a multiple
transform selection index for the coding unit, the determining comprising: decoding the
multiple transform selection index from the video bitstream if a last significant coefficient
encountered along the scan pattern is at or within a threshold cartesian location of the transform
block, and determining the multiple transform selection index to indicate that multiple
transform selection is not used if the last significant residual coefficient position of the
transform block along the scan pattern outside the threshold cartesian location; and
transforming the decoded residual coefficients by applying a transform according to the

multiple transform selection index to decode the coding unit.

[00022] Another aspect of the prsent invention provides a video decoder, configured to: receive
an image frame from a bitstream; determine a coding unit of a coding tree from a coding tree
unit of the image frame; determine a scan pattern for a transform block of the coding unit,
wherein the scan pattern traverses the transform block by progressing through a plurality of
non-overlapping collections of sub-blocks of residual coefficients, the scan pattern progressing
from a current collection to a next collection of the plurality of collections after completing
scanning of the current collection; decode residual coefficients from the video bitstream
according to the determined scan pattern; determine a multiple transform selection index for the
coding unit, the determining comprising: decoding the multiple transform selection index from
the video bitstream if a last significant coefficient encountered along the scan pattern is at or
within a threshold cartesian location of the transform block, and determining the multiple
transform selection index to indicate that multiple transform selection is not used if the last
significant residual coefficient position of the transform block along the scan pattern outside the
threshold cartesian location; and transform the decoded residual coefficients by applying a

transform according to the multiple transform selection index to decode the coding unit.

23954677_1

03 Dec 2019

2019275553

8

[00023] Another aspect of the prsent invention provides a method of decoding a coding unit of
a coding tree from a coding tree unit of an image frame from a video bitstream, the coding unit
having a luma colour channel and at least one chroma colour channel, the method comprising;:
decoding a luma transform skip flag from the video bitstream for a luma transform block of the
coding unit; decoding at least one chroma transform skip flag from the video bitstream, each
decoded chroma transform skip flag corresponding to one of at least one chroma transform
block of the coding unit; determining a secondary transform index, the determining comprising:
decoding a secondary transform index from the video bitstream if at least one of the luma
transform skip flag and the at least one chroma transform skip flags indicates that a transform
of the respective transform block is not to be skipped, and determining the secondary transform
index to indicate that a secondary transform is not to be applied if all of the luma transform skip
flag and the at least one chroma transform skip flags indicate transforms of the respective
transform blocks are to be skipped; and transforming the luma transform block and the at least
one chroma transform blocks according to the decoded luma transform skip flag, the at least
one chroma transform skip flags, and the determined secondary transform index to decode the

coding unit.

[00024] Another aspect of the present invention provides a method of decoding a coding unit of
a coding tree from a coding tree unit of an image frame from a video bitstream, the coding unit
having at least one chroma colour channel, the method comprising: decoding at least one
chroma transform skip flag from the video bitstream, each chroma transform skip flag
corresponding to one of at least one chroma transform block of the coding unit; determining a
secondary transform index for the at least one chroma transform block of the coding unit, the
determining comprising: decoding the secondary transform index from the video bitstream if
any of the at least one chroma transform skip flags indicates a transform is to be applied to the
respective chroma transform block, and determining the secondary transform index to indicate
that a secondary transform is not to be applied if all of the chroma transform skip flags indicate
transforms of the respective transform blocks are to be skipped; and transforming each of the at
least one chroma transform blocks according to the respective chroma transform skip flag, and

the determined secondary transform index to decode the coding unit.

[00025] Another aspect of the present invention provides a non-transitory computer readable
medium having a computer program stored thereon to implement a method of decoding a
coding unit of a coding tree from a coding tree unit of an image frame from a video bitstream,

the coding unit having a luma colour channel and at least one chroma colour channel, the

23954677_1

03 Dec 2019

2019275553

9

method comprising: decoding a luma transform skip flag from the video bitstream for a luma
transform block of the coding unit; decoding at least one chroma transform skip flag from the
video bitstream, each decoded chroma transform skip flag corresponding to one of at least one
chroma transform block of the coding unit; determining a secondary transform index, the
determining comprising: decoding a secondary transform index from the video bitstream if at
least one of the luma transform skip flag and the at least one chroma transform skip flags
indicates that a transform of the respective transform block is not to be skipped, and
determining the secondary transform index to indicate that a secondary transform is not to be
applied if all of the luma transform skip flag and the at least one chroma transform skip flags
indicate transforms of the respective transform blocks are to be skipped; and transforming the
luma transform block and the at least one chroma transform blocks according to the decoded
luma transform skip flag, the at least one chroma transform skip flags, and the determined

secondary transform index to decode the coding unit.

[00026] Another aspect of the present invention provides a system, comprising: a memory; and
a processor, wherein the processor is configured to execute code stored on the memory for
implementing a method of decoding a coding unit of a coding tree from a coding tree unit of an
image frame from a video bitstream, the coding unit having at least one chroma colour channel,
the method comprising: decoding at least one chroma transform skip flag from the video
bitstream, each chroma transform skip flag corresponding to one of at least one chroma
transform block of the coding unit; determining a secondary transform index for the at least one
chroma transform block of the coding unit, the determining comprising: decoding the secondary
transform index from the video bitstream if any of the at least one chroma transform skip flags
indicates a transform is to be applied to the respective chroma transform block, and determining
the secondary transform index to indicate that a secondary transform is not to be applied if all
of the one or more chroma transform skip flags indicate transforms of the respective transform
blocks are to be skipped; and transforming each of the at least one chroma transform blocks
according to the respective chroma transform skip flag, and the determined secondary transform

index to decode the coding unit.

[00027] Another aspect of the present invention provides a video decoder, configured to:
receive an image frame from a bitstream; determine a coding unit of a coding tree from a
coding tree unit of the image frame, the coding unit having a luma colour channel and at least
one chroma colour channel; decode a luma transform skip flag from the video bitstream for a

luma transform block of the coding unit; decode at least one chroma transform skip flag from

23954677_1

03 Dec 2019

2019275553

10

the video bitstream, each decoded chroma transform skip flag corresponding to one of at least
one chroma transform block of the coding unit; determine a secondary transform index, the
determining comprising: decoding a secondary transform index from the video bitstream if at
least one of the luma transform skip flag and the at least one chroma transform skip flags
indicates that a transform of the respective transform block is not to be skipped, and
determining the secondary transform index to indicate that a secondary transform is not to be
applied if all of the luma transform skip flag and the at least one chroma transform skip flags
indicate transforms of the respective transform blocks are to be skipped; and transform the luma
transform block and the at least one chroma transform blocks according to the decoded luma
transform skip flag, the at least one chroma transform skip flags, and the determined secondary

transform index to decode the coding unit.

[00028] Other aspects are also disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

[00029] At least one embodiment of the present invention will now be described with reference

to the following drawings and appendices, in which:

[00030] Fig. 1 is a schematic block diagram showing a video encoding and decoding system;

[00031] Figs. 2A and 2B form a schematic block diagram of a general purpose computer
system upon which one or both of the video encoding and decoding system of Fig. 1 may be

practiced;

[00032] Fig. 3 is a schematic block diagram showing functional modules of a video encoder;

[00033] Fig. 4 is a schematic block diagram showing functional modules of a video decoder;

[00034] Fig. 5 is a schematic block diagram showing the available divisions of a block into one

or more blocks in the tree structure of versatile video coding;

[00035] Fig. 6 is a schematic illustration of a datatflow to achieve permitted divisions of a block

into one or more blocks in a tree structure of versatile video coding;

[00036] Figs. 7A and 7B show an example division of a coding tree unit (CTU) into a number
of coding units (CUs);

23954677_1

03 Dec 2019

2019275553

11

[00037] Figs. 8A, 8B, 8C, and 8D show forward and inverse non-separable secondary

transforms performed according to different sizes of transform blocks;

[00038] Fig. 9 shows a set of regions of application of the secondary transform for transform

blocks of various sizes;

[00039] Fig. 10 shows a syntax structure for a bitstream with multiple slices, each of which

includes multiple coding units;

[00040] Fig. 11 shows a syntax structure for a bitstream with a shared tree for luma and chroma

coding units of a coding tree unit;

[00041] Fig. 12 shows a syntax structure for a bitstream with a separate tree for luma and

chroma coding units of a coding tree unit;

[00042] Fig. 13 shows a method for encoding a frame into a bitstream including one or more

slices as sequences of coding units;
[00043] Fig. 14 shows a method for encoding a coding unit into a bitstream;

[00044] Fig. 15 shows a method for decoding a frame from a bitstream as sequences of coding

units arranged into slices;
[00045] Fig. 16 shows a method for decoding a coding unit from a bitstream; and
[00046] Fig. 17 shows a conventional scan pattern for 32x32 TBs;

[00047] Fig. 18 shows an example scan pattern for 32x32 TBs used in the arrangements

described;

[00048] Fig. 19 shows a TB of size 8x32 with division into collections for the arrangements

described; and

[00049] Fig. 20 shows a different example scan pattern for 32x32 TBs used in the arrangements
described.

23954677_1

03 Dec 2019

2019275553

12

DETAILED DESCRIPTION INCLUDING BEST MODE

[00050] Where reference is made in any one or more of the accompanying drawings to steps
and/or features, which have the same reference numerals, those steps and/or features have for
the purposes of this description the same function(s) or operation(s), unless the contrary

intention appears.

[00051] The syntax of the bitstream format of a video compression standard is defined as a
hierarchy of ‘syntax structures’. Each syntax structure defines a set of syntax elements, some of
which may be conditional on others. Compression efficiency is improved when the syntax only
allows combinations of syntax elements that correspond to useful combinations of tools.
Additionally, complexity is also reduced by prohibiting combinations of syntax elements that,
although possible for implementation, are deemed to offer insufficient compression advantage

for the resulting implementation cost.

[00052] Fig. 1 is a schematic block diagram showing functional modules of a video encoding
and decoding system 100. The system 100 signals primary and secondary transform parameters

such that compression efficiency gain is achieved.

[00053] The system 100 includes a source device 110 and a destination device 130. A
communication channel 120 is used to communicate encoded video information from the
source device 110 to the destination device 130. In some arrangements, the source device 110
and destination device 130 may either or both comprise respective mobile telephone handsets or
“smartphones”, in which case the communication channel 120 is a wireless channel. In other
arrangements, the source device 110 and destination device 130 may comprise video
conferencing equipment, in which case the communication channel 120 is typically a wired
channel, such as an internet connection. Moreover, the source device 110 and the destination
device 130 may comprise any of a wide range of devices, including devices supporting over-
the-air television broadcasts, cable television applications, internet video applications
(including streaming) and applications where encoded video data is captured on some

computer-readable storage medium, such as hard disk drives in a file server.

[00054] As shown in Fig. 1, the source device 110 includes a video source 112, a video
encoder 114 and a transmitter 116. The video source 112 typically comprises a source of
captured video frame data (shown as 113), such as an image capture sensor, a previously

captured video sequence stored on a non-transitory recording medium, or a video feed from a

23954677_1

03 Dec 2019

2019275553

13

remote image capture sensor. The video source 112 may also be an output of a computer
graphics card, for example displaying the video output of an operating system and various
applications executing upon a computing device, for example a tablet computer. Examples of
source devices 110 that may include an image capture sensor as the video source 112 include

smart-phones, video camcorders, professional video cameras, and network video cameras.

[00055] The video encoder 114 converts (or ‘encodes’) the captured frame data (indicated by
an arrow 113) from the video source 112 into a bitstream (indicated by an arrow 115) as
described further with reference to Fig. 3. The bitstream 115 is transmitted by the

transmitter 116 over the communication channel 120 as encoded video data (or “encoded video
information”). It is also possible for the bitstream 115 to be stored in a non-transitory storage
device 122, such as a “Flash” memory or a hard disk drive, until later being transmitted over the
communication channel 120, or in-lieu of transmission over the communication channel 120.
For example, encoded video data may be served upon demand to customers over a wide area

network (WAN) for a video streaming application.

[00056] The destination device 130 includes a receiver 132, a video decoder 134 and a display
device 136. The receiver 132 receives encoded video data from the communication

channel 120 and passes received video data to the video decoder 134 as a bitstream (indicated
by an arrow 133). The video decoder 134 then outputs decoded frame data (indicated by an
arrow 135) to the display device 136. The decoded frame data 135 has the same chroma format
as the frame data 113. Examples of the display device 136 include a cathode ray tube, a liquid
crystal display, such as in smart-phones, tablet computers, computer monitors or in stand-alone
television sets. It is also possible for the functionality of each of the source device 110 and the
destination device 130 to be embodied in a single device, examples of which include mobile
telephone handsets and tablet computers. Decoded frame data may be further transformed
before presentation to a user. For example, a ‘“viewport’ having a particular latitude and
longitude may be rendered from decoded frame data using a projection format to represent a

360° view of a scene.

[00057] Notwithstanding the example devices mentioned above, each of the source device 110
and destination device 130 may be configured within a general purpose computing system,
typically through a combination of hardware and software components. Fig. 2A illustrates such
a computer system 200, which includes: a computer module 201; input devices such as a

keyboard 202, a mouse pointer device 203, a scanner 226, a camera 227, which may be

23954677_1

03 Dec 2019

2019275553

14

configured as the video source 112, and a microphone 280; and output devices including a
printer 215, a display device 214, which may be configured as the display device 136, and
loudspeakers 217. An external Modulator-Demodulator (Modem) transceiver device 216 may
be used by the computer module 201 for communicating to and from a communications
network 220 via a connection 221. The communications network 220, which may represent the
communication channel 120, may be a (WAN), such as the Internet, a cellular
telecommunications network, or a private WAN. Where the connection 221 is a telephone line,
the modem 216 may be a traditional “dial-up” modem. Alternatively, where the connection 221
is a high capacity (e.g., cable or optical) connection, the modem 216 may be a broadband
modem. A wireless modem may also be used for wireless connection to the communications
network 220. The transceiver device 216 may provide the functionality of the transmitter 116
and the receiver 132 and the communication channel 120 may be embodied in the

connection 221.

[00058] The computer module 201 typically includes at least one processor unit 205, and a
memory unit 206. For example, the memory unit 206 may have semiconductor random access
memory (RAM) and semiconductor read only memory (ROM). The computer module 201 also
includes a number of input/output (I/O) interfaces including: an audio-video interface 207 that
couples to the video display 214, loudspeakers 217 and microphone 280; an I/O interface 213
that couples to the keyboard 202, mouse 203, scanner 226, camera 227 and optionally a joystick
or other human interface device (not illustrated); and an interface 208 for the external

modem 216 and printer 215. The signal from the audio-video interface 207 to the computer
monitor 214 is generally the output of a computer graphics card. In some implementations, the
modem 216 may be incorporated within the computer module 201, for example within the
interface 208. The computer module 201 also has a local network interface 211, which permits
coupling of the computer system 200 via a connection 223 to a local-area communications
network 222, known as a Local Area Network (LAN). As illustrated in Fig. 2A, the local
communications network 222 may also couple to the wide network 220 via a connection 224,
which would typically include a so-called “firewall” device or device of similar functionality.
The local network interface 211 may comprise an Ethernet™ circuit card, a Bluetooth™
wireless arrangement or an IEEE 802.11 wireless arrangement; however, numerous other types
of interfaces may be practiced for the interface 211. The local network interface 211 may also
provide the functionality of the transmitter 116 and the receiver 132 and communication

channel 120 may also be embodied in the local communications network 222.

23954677_1

03 Dec 2019

2019275553

15

[00059] The I/O interfaces 208 and 213 may afford either or both of serial and parallel
connectivity, the former typically being implemented according to the Universal Serial Bus
(USB) standards and having corresponding USB connectors (not illustrated). Storage

devices 209 are provided and typically include a hard disk drive (HDD) 210. Other storage
devices such as a floppy disk drive and a magnetic tape drive (not illustrated) may also be used.
An optical disk drive 212 is typically provided to act as a non-volatile source of data. Portable
memory devices, such optical disks (e.g. CD-ROM, DVD, Blu ray Disc™), USB-RAM,
portable, external hard drives, and floppy disks, for example, may be used as appropriate
sources of data to the computer system 200. Typically, any of the HDD 210, optical drive 212,
networks 220 and 222 may also be configured to operate as the video source 112, or as a
destination for decoded video data to be stored for reproduction via the display 214. The source
device 110 and the destination device 130 of the system 100 may be embodied in the computer

system 200.

[00060] The components 205 to 213 of the computer module 201 typically communicate via an
interconnected bus 204 and in a manner that results in a conventional mode of operation of the
computer system 200 known to those in the relevant art. For example, the processor 205 is
coupled to the system bus 204 using a connection 218. Likewise, the memory 206 and optical
disk drive 212 are coupled to the system bus 204 by connections 219. Examples of computers
on which the described arrangements can be practised include IBM-PC’s and compatibles, Sun

SPARCstations, Apple Mac™ or alike computer systems.

[00061] Where appropriate or desired, the video encoder 114 and the video decoder 134, as
well as methods described below, may be implemented using the computer system 200. In
particular, the video encoder 114, the video decoder 134 and methods to be described, may be
implemented as one or more software application programs 233 executable within the computer
system 200. In particular, the video encoder 114, the video decoder 134 and the steps of the
described methods are effected by instructions 231 (see Fig. 2B) in the software 233 that are
carried out within the computer system 200. The software instructions 231 may be formed as
one or more code modules, each for performing one or more particular tasks. The software may
also be divided into two separate parts, in which a first part and the corresponding code
modules performs the described methods and a second part and the corresponding code

modules manage a user interface between the first part and the user.

23954677_1

03 Dec 2019

2019275553

16

[00062] The software may be stored in a computer readable medium, including the storage
devices described below, for example. The software is loaded into the computer system 200
from the computer readable medium, and then executed by the computer system 200. A
computer readable medium having such software or computer program recorded on the
computer readable medium is a computer program product. The use of the computer program
product in the computer system 200 preferably effects an advantageous apparatus for

implementing the video encoder 114, the video decoder 134 and the described methods.

[00063] The software 233 is typically stored in the HDD 210 or the memory 206. The software
is loaded into the computer system 200 from a computer readable medium, and executed by the

computer system 200. Thus, for example, the software 233 may be stored on an optically

readable disk storage medium (e.g., CD-ROM) 225 that is read by the optical disk drive 212.

[00064] In some instances, the application programs 233 may be supplied to the user encoded
on one or more CD-ROMs 225 and read via the corresponding drive 212, or alternatively may
be read by the user from the networks 220 or 222. Still further, the software can also be loaded
into the computer system 200 from other computer readable media. Computer readable storage
media refers to any non-transitory tangible storage medium that provides recorded instructions
and/or data to the computer system 200 for execution and/or processing. Examples of such
storage media include floppy disks, magnetic tape, CD-ROM, DVD, Blu-ray Disc™, a hard
disk drive, a ROM or integrated circuit, USB memory, a magneto-optical disk, or a computer
readable card such as a PCMCIA card and the like, whether or not such devices are internal or
external of the computer module 201. Examples of transitory or non-tangible computer
readable transmission media that may also participate in the provision of the software,
application programs, instructions and/or video data or encoded video data to the computer
module 401 include radio or infra-red transmission channels, as well as a network connection to
another computer or networked device, and the Internet or Intranets including e-mail

transmissions and information recorded on Websites and the like.

[00065] The second part of the application program 233 and the corresponding code modules
mentioned above may be executed to implement one or more graphical user interfaces (GUIs)
to be rendered or otherwise represented upon the display 214. Through manipulation of
typically the keyboard 202 and the mouse 203, a user of the computer system 200 and the
application may manipulate the interface in a functionally adaptable manner to provide

controlling commands and/or input to the applications associated with the GUI(s). Other forms

23954677_1

03 Dec 2019

2019275553

17

of functionally adaptable user interfaces may also be implemented, such as an audio interface
utilizing speech prompts output via the loudspeakers 217 and user voice commands input via

the microphone 280.

[00066] Fig. 2B is a detailed schematic block diagram of the processor 205 and a
“memory” 234. The memory 234 represents a logical aggregation of all the memory modules

(including the HDD 209 and semiconductor memory 206) that can be accessed by the computer
module 201 in Fig. 2A.

[00067] When the computer module 201 is initially powered up, a power-on self-test (POST)
program 250 executes. The POST program 250 is typically stored in a ROM 249 of the
semiconductor memory 206 of Fig. 2A. A hardware device such as the ROM 249 storing
software is sometimes referred to as firmware. The POST program 250 examines hardware
within the computer module 201 to ensure proper functioning and typically checks the
processor 205, the memory 234 (209, 206), and a basic input-output systems software (BIOS)
module 251, also typically stored in the ROM 249, for correct operation. Once the POST
program 250 has run successfully, the BIOS 251 activates the hard disk drive 210 of Fig. 2A.
Activation of the hard disk drive 210 causes a bootstrap loader program 252 that is resident on
the hard disk drive 210 to execute via the processor 205. This loads an operating system 253
into the RAM memory 206, upon which the operating system 253 commences operation. The
operating system 253 is a system level application, executable by the processor 205, to fulfil
various high level functions, including processor management, memory management, device

management, storage management, software application interface, and generic user interface.

[00068] The operating system 253 manages the memory 234 (209, 206) to ensure that each
process or application running on the computer module 201 has sufficient memory in which to
execute without colliding with memory allocated to another process. Furthermore, the different
types of memory available in the computer system 200 of Fig. 2A must be used properly so that
each process can run effectively. Accordingly, the aggregated memory 234 is not intended to
illustrate how particular segments of memory are allocated (unless otherwise stated), but rather
to provide a general view of the memory accessible by the computer system 200 and how such

1s used.

[00069] As shown in Fig. 2B, the processor 205 includes a number of functional modules
including a control unit 239, an arithmetic logic unit (ALU) 240, and a local or internal

memory 248, sometimes called a cache memory. The cache memory 248 typically includes a

23954677_1

03 Dec 2019

2019275553

18

number of storage registers 244-246 in a register section. One or more internal busses 241
functionally interconnect these functional modules. The processor 205 typically also has one or
more interfaces 242 for communicating with external devices via the system bus 204, using a

connection 218. The memory 234 is coupled to the bus 204 using a connection 219.

[00070] The application program 233 includes a sequence of instructions 231 that may include
conditional branch and loop instructions. The program 233 may also include data 232 which is
used in execution of the program 233. The instructions 231 and the data 232 are stored in
memory locations 228, 229, 230 and 235, 236, 237, respectively. Depending upon the relative
size of the instructions 231 and the memory locations 228-230, a particular instruction may be
stored in a single memory location as depicted by the instruction shown in the memory

location 230. Alternately, an instruction may be segmented into a number of parts each of
which is stored in a separate memory location, as depicted by the instruction segments shown in

the memory locations 228 and 229.

[00071] In general, the processor 205 is given a set of instructions which are executed therein.
The processor 205 waits for a subsequent input, to which the processor 205 reacts to by
executing another set of instructions. Each input may be provided from one or more of a
number of sources, including data generated by one or more of the input devices 202, 203, data
received from an external source across one of the networks 220, 202, data retrieved from one
of the storage devices 206, 209 or data retrieved from a storage medium 225 inserted into the
corresponding reader 212, all depicted in Fig. 2A. The execution of a set of the instructions
may in some cases result in output of data. Execution may also involve storing data or

variables to the memory 234,

[00072] The video encoder 114, the video decoder 134 and the described methods may use
input variables 254, which are stored in the memory 234 in corresponding memory

locations 255, 256, 257. The video encoder 114, the video decoder 134 and the described
methods produce output variables 261, which are stored in the memory 234 in corresponding
memory locations 262, 263, 264. Intermediate variables 258 may be stored in memory

locations 259, 260, 266 and 267.

[00073] Referring to the processor 205 of Fig. 2B, the registers 244, 245, 246, the arithmetic
logic unit (ALU) 240, and the control unit 239 work together to perform sequences of micro-
operations needed to perform “fetch, decode, and execute” cycles for every instruction in the

instruction set making up the program 233. Each fetch, decode, and execute cycle comprises:

23954677_1

03 Dec 2019

2019275553

19

a fetch operation, which fetches or reads an instruction 231 from a memory

location 228, 229, 230;

a decode operation in which the control unit 239 determines which instruction has been

fetched; and

an execute operation in which the control unit 239 and/or the ALU 240 execute the

instruction.

[00074] Thereafter, a further fetch, decode, and execute cycle for the next instruction may be
executed. Similarly, a store cycle may be performed by which the control unit 239 stores or

writes a value to a memory location 232.

[00075] Each step or sub-process in the method of Figs. 13 to 16, to be described, is associated
with one or more segments of the program 233 and is typically performed by the register
section 244, 245, 247, the ALU 240, and the control unit 239 in the processor 205 working
together to perform the fetch, decode, and execute cycles for every instruction in the instruction

set for the noted segments of the program 233.

[00076] Fig. 3 is a schematic block diagram showing functional modules of the video

encoder 114. Fig. 4 is a schematic block diagram showing functional modules of the video
decoder 134. Generally, data passes between functional modules within the video encoder 114
and the video decoder 134 in groups of samples or coefficients, such as divisions of blocks into
sub-blocks of a fixed size, or as arrays. The video encoder 114 and video decoder 134 may be
implemented using a general-purpose computer system 200, as shown in Figs. 2A and 2B,
where the various functional modules may be implemented by dedicated hardware within the
computer system 200, by software executable within the computer system 200 such as one or
more software code modules of the software application program 233 resident on the hard disk
drive 205 and being controlled in its execution by the processor 205. Alternatively, the video
encoder 114 and video decoder 134 may be implemented by a combination of dedicated
hardware and software executable within the computer system 200. The video encoder 114, the
video decoder 134 and the described methods may alternatively be implemented in dedicated
hardware, such as one or more integrated circuits performing the functions or sub functions of
the described methods. Such dedicated hardware may include graphic processing units (GPUs),
digital signal processors (DSPs), application-specific standard products (ASSPs), application-

specific integrated circuits (ASICs), field programmable gate arrays (FPGAs) or one or more

23954677_1

03 Dec 2019

2019275553

20

microprocessors and associated memories. In particular, the video encoder 114 comprises
modules 310-386 and the video decoder 134 comprises modules 420-496 which may each be

implemented as one or more software code modules of the software application program 233.

[00077] Although the video encoder 114 of Fig. 3 is an example of a versatile video coding
(VVC) video encoding pipeline, other video codecs may also be used to perform the processing
stages described herein. The video encoder 114 receives captured frame data 113, such as a
series of frames, each frame including one or more colour channels. The frame data 113
includes two-dimensional arrays of luma (‘luma channel’) and chroma (‘chroma channel’)
samples arranged in a ‘chroma format’, for example 4:0:0, 4:2:0, 4:2:2, or 4:4:4 chroma format.
A block partitioner 310 firstly divides the frame data 113 into CTUs, generally square in shape
and configured such that a particular size for the CTUs is used. The size of the CTUs may be
64x64, 128x128, or 256x256 luma samples for example.

[00078] The block partitioner 310 further divides each CTU into one or more CUs according to
either a shared coding tree or to a luma coding tree and a chroma coding tree at a point where a
shared coding tree splits into luma and chroma branches. The luma channel may also be
referred to as a primary colour channel. Each chroma channel may also be referred to as a
secondary colour channel. The CUs have a variety of sizes, and may include both square and
non-square aspect ratios. Operation of the block partitioner 310 is further described with
reference to Figs. 13 and 14. However, in the VVC standard, CUs/CBs, PUs/PBs, and
TUs/TBs always have side lengths that are powers of two. Thus, a current CU, represented

as 312, is output from the block partitioner 310, progressing in accordance with an iteration
over the one or more blocks of the CTU, in accordance with the shared tree or the luma coding
tree and the chroma coding tree of the CTU. Options for partitioning CTUs into CBs are
further described below with reference to Figs. 5 and 6.

[00079] The CTUs resulting from the first division of the frame data 113 may be scanned in
raster scan order and may be grouped into one or more ‘slices’. A slice may be an ‘intra’ (or
‘I’) slice. An intra slice (I slice) contains no inter-predicted CUs, e.g. intra prediction is used
only. Alternatively, a slice may be uni- or bi-predicted (‘P’ or ‘B’ slice, respectively),
indicating additional availability of one or two reference blocks for predicting a CU, known as

‘uni-prediction’ and ‘bi-prediction’, respectively.

[00080] In an I slice, the coding tree of each CTU may diverge below the 64x64 level into two

separate coding trees, one for luma and another for chroma. Use of separate trees allows

23954677_1

03 Dec 2019

2019275553

21

different block structure to exist between luma and chroma within a luma 64x64 area of a CTU.
For example, a large chroma CB may be collocated with numerous smaller luma CBs and vice
versa. In a P or B slice, a single coding tree of a CTU defines a block structure common to
luma and chroma. The resulting blocks of the single tree may be intra predicted or inter

predicted.

[00081] For each CTU, the video encoder 114 operates in two stages. In the first stage
(referred to as a ‘search’ stage), the block partitioner 310 tests various potential configurations
of a coding tree. Each potential configuration of a coding tree has associated ‘candidate’ CUs.
The first stage involves testing various candidate CUs to select CUs providing relatively high
compression efficiency with relatively low distortion. The testing generally involves a
Lagrangian optimisation whereby a candidate CU is evaluated based on a weighted
combination of the rate (coding cost) and the distortion (error with respect to the input frame
data 113). The ‘best’ candidate CUs (the CUs with the lowest evaluated rate/distortion) are
selected for subsequent encoding into the bitstream 115. Included in evaluation of candidate
CUs is an option to use a CU for a given area or to further split the area according to various
splitting options and code each of the smaller resulting areas with further CUs, or split the areas
even further. As a consequence, both the coding tree and the CUs themselves are selected in

the search stage.

[00082] The video encoder 114 produces a prediction block (PU), indicated by an arrow 320,
for each CU, for example the CU 312. The PU 320 is a prediction of the contents of the
associated CU 312. A subtracter module 322 produces a difference, indicated as 324 (or
‘residual’, referring to the difference being in the spatial domain), between the PU 320 and the
CU 312. The difference 324 is a block-sized array of differences between corresponding
samples in the PU 320 and the CU 312 and is produced for each colour channel of the CU 312.
When primary and (optionally) secondary transforms are to be performed, the difference 324 is
transformed in the modules 326 and 330 to be passed to a quantiser module 334 for quantisation
via a multiplexer 333. When the transform is to be skipped, the difference 324 is passed
directly to the quantiser module 334 for quantisation via the multiplexer 333. The selection
between transform and transform skip is independently made for each TB associated with the
CU 312. The resulting quantised residual coefficients are represented as a TB (for each colour
channel of the CU 312), indicated by an arrow 336. The PU 320 and associated TB 336 are
typically chosen from one of many possible candidate CUs, for example based on evaluated

cost or distortion.

23954677_1

03 Dec 2019

2019275553

22

[00083] A candidate CU is a CU resulting from one of the prediction modes available to the
video encoder 114 for the associated PB and the resulting residual. When combined with the
predicted PB in the video decoder 114, addition of the TB 336 after conversion back to the
spatial domain reduces the difference between a decoded CU and the original CU 312, at the

expense of additional signalling in a bitstream.

[00084] Each candidate coding block (CU), that is prediction block (PU) in combination with
one transform block (TB) per colour channel of the CU, thus has an associated coding cost (or
‘rate’) and an associated difference (or ‘distortion’). The distortion of the CU is typically
estimated as a difference in sample values, such as a sum of absolute differences (SAD) or a
sum of squared differences (SSD). The estimate resulting from each candidate PU may be
determined by a mode selector 386 using the difference 324 to determine a prediction

mode 387. The prediction mode 387 indicates the decision to use a particular prediction mode
for the current CU, for example intra-frame prediction or inter-frame prediction. For intra-
predicted CUs belonging to a shared coding tree, independent intra prediction modes are
specified for the luma PB vs the chroma PBs. For intra-predicted CUs belonging to luma or
chroma branches of a dual coding tree, one intra prediction mode applies to the luma PB or the
chroma PBs, respectively. Estimation of the coding costs associated with each candidate
prediction mode and corresponding residual coding can be performed at significantly lower cost
than entropy coding of the residual. Accordingly, a number of candidate modes can be
evaluated to determine an optimum mode in a rate-distortion sense even in a real-time video

encoder.

[00085] Lagrangian or similar optimisation processing can be employed to both select an
optimal partitioning of a CTU into CBs (by the block partitioner 310) as well as the selection of
a best prediction mode from a plurality of possible prediction modes. Through application of a
Lagrangian optimisation process of the candidate modes in the mode selector module 386, the
intra prediction mode 387, a secondary transform index 388, and a primary transform type 389,

and transform skip flags 390 (one for each TB) with the lowest cost measurement is selected.

[00086] In the second stage of operation of the video encoder 114 (referred to as a ‘coding’
stage), an iteration over the determined coding tree(s) of each CTU is performed in the video
encoder 114, For a CTU using separate trees, for each 64x64 luma region of the CTU, a luma
coding tree is firstly encoded followed by a chroma coding tree. Within the luma coding tree

only luma CBs are encoded and within the chroma coding tree only chroma CBs are encoded.

23954677_1

03 Dec 2019

2019275553

23

For a CTU using a shared tree, a single tree describes the CUs, i.e., the luma CBs and the

chroma CBs according to the common block structure of the shared tree.

[00087] The entropy encoder 338 supports both variable-length coding of syntax elements and
arithmetic coding of syntax elements. Portions of the bitstream such as ‘parameter sets’, for
example a sequence parameter set (SPS), a picture parameter set (PPS), and a picture header
(PH) use a combination of fixed-length codewords and variable-length codewords. Slices (also
referred to as contiguous portions) have a slice header that uses variable length coding followed
by slice data, which uses arithmetic coding. The picture header defines parameters specific to
the current slice, such as picture-level quantisation parameter offsets. The slice data includes
the syntax elements of each CTU in the slice. Use of variable length coding and arithmetic
coding requires sequential parsing within each portion of the bitstream. The portions may be
delineated with a start code to form ‘network abstraction layer units’ or ‘NAL units’.
Arithmetic coding is supported using a context-adaptive binary arithmetic coding process.
Arithmetically coded syntax elements consist of sequences of one or more ‘bins’. Bins, like
bits, have a value of ‘0’ or ‘1°. However, bins are not encoded in the bitstream 115 as discrete
bits. Bins have an associated predicted (or ‘likely’ or ‘most probable’) value and an associated
probability, known as a ‘context’. When the actual bin to be coded matches the predicted
value, a ‘most probable symbol’ (MPS) is coded. Coding a most probable symbol is relatively
inexpensive in terms of consumed bits in the bitstream 115, including costs that amount to less
than one discrete bit. When the actual bin to be coded mismatches the likely value, a ‘least
probable symbol’ (LPS) is coded. Coding a least probable symbol has a relatively high cost in
terms of consumed bits. The bin coding techniques enable efficient coding of bins where the
probability of a ‘0’ versus a ‘1’ is skewed. For a syntax element with two possible values (that
is, a ‘flag’), a single bin is adequate. For syntax elements with many possible values, a

sequence of bins is needed.

[00088] The presence of later bins in the sequence may be determined based on the value of
earlier bins in the sequence. Additionally, each bin may be associated with more than one
context. The selection of a particular context can be dependent on earlier bins in the syntax
element, the bin values of neighbouring syntax elements (i.e. those from neighbouring blocks)
and the like. Each time a context-coded bin is encoded, the context that was selected for that
bin (if any) is updated in a manner reflective of the new bin value. As such, the binary

arithmetic coding scheme is said to be adaptive.

23954677_1

03 Dec 2019

2019275553

24

[00089] Also supported by the video encoder 114 are bins that lack a context (‘bypass bins’).
Bypass bins are coded assuming an equiprobable distribution between a ‘0’ and a ‘1°. Thus,
each bin has a coding cost of one bit in the bitstream 115. The absence of a context saves
memory and reduces complexity, and thus bypass bins are used where the distribution of values
for the particular bin is not skewed. One example of an entropy coder employing context and
adaption is known in the art as CABAC (context adaptive binary arithmetic coder) and many

variants of this coder have been employed in video coding.

[00090] The entropy encoder 338 encodes the primary transform type 389, one transform skip
flag (i.e., 390) for each TB of the current CU and, if applicable to the current CU, the secondary
transform index 388, using a combination of context-coded and bypass-coded bins, and the
intra prediction mode 387. The secondary transform index 388 is signalled when the residual
associated with the transform block includes significant residual coefficients only in those
coefficient positions subject to transforming into primary coefficients by application of a

secondary transform.

[00091] A multiplexer module 384 outputs the PB 320 from an intra-frame prediction

module 364 according to the determined best intra prediction mode, selected from the tested
prediction mode of each candidate CB. The candidate prediction modes need not include every
conceivable prediction mode supported by the video encoder 114. Intra prediction falls into
three types. “DC intra prediction” involves populating a PB with a single value representing the
average of nearby reconstructed samples. “Planar intra prediction” involves populating a PB
with samples according to a plane, with a DC offset and a vertical and horizontal gradient being
derived from the nearby reconstructed neighbouring samples. The nearby reconstructed
samples typically include a row of reconstructed samples above the current PB, extending to the
right of the PB to an extent and a column of reconstructed samples to the left of the current PB,
extending downwards beyond the PB to an extent. “Angular intra prediction” involves
populating a PB with reconstructed neighbouring samples filtered and propagated across the PB
in a particular direction (or ‘angle’). In VVC 65 angles are supported, with rectangular blocks
able to utilise additional angles, not available to square blocks, to produce a total of 87 angles.
A fourth type of intra prediction is available to chroma PBs, whereby the PB is generated from
collocated luma reconstructed samples according to a ‘cross-component linear model” (CCLM)
mode. Three different CCLM modes are available, each mode using a different model derived
from the neighbouring luma and chroma samples. The derived model is used to generate a

block of samples for the chroma PB from the collocated luma samples.

23954677_1

03 Dec 2019

2019275553

25

[00092] Where previously reconstructed samples are unavailable, for example at the edge of the
frame, a default half-tone value of one half the range of the samples is used. For example, for
10-bit video a value of 512 is used. As no previously samples are available for a CB located at
the top-left position of a frame, angular and planar intra-prediction modes produce the same
output as the DC prediction mode, i.¢. a flat plane of samples having the half-tone value as

magnitude.

[00093] For inter-frame prediction a prediction block 382 is produced using samples from one
or two frames preceding the current frame in the coding order frames in the bitstream by a
motion compensation module 380 and output as the PB 320 by the multiplexer module 384.
Moreover, for inter-frame prediction, a single coding tree is typically used for both the luma
channel and the chroma channels. The order of coding frames in the bitstream may differ from
the order of the frames when captured or displayed. When one frame is used for prediction, the
block is said to be ‘uni-predicted’ and has one associated motion vector. When two frames are
used for prediction, the block is said to be ‘bi-predicted’ and has two associated motion vectors.
For a P slice, each CU may be intra predicted or uni-predicted. For a B slice, each CU may be
intra predicted, uni-predicted, or bi-predicted. Frames are typically coded using a ‘group of
pictures’ structure, enabling a temporal hierarchy of frames. Frames may be divided into
multiple slices, each of which encodes a portion of the frame. A temporal hierarchy of frames
allows a frame to reference a preceding and a subsequent picture in the order of displaying the
frames. The images are coded in the order necessary to ensure the dependencies for decoding

each frame are met.

[00094] The samples are selected according to a motion vector 378 and reference picture index.
The motion vector 378 and reference picture index applies to all colour channels and thus inter
prediction is described primarily in terms of operation upon PUs rather than PBs, i.e. the
decomposition of each CTU into one or more inter-predicted blocks is described with a single
coding tree. Inter prediction methods may vary in the number of motion parameters and their
precision. Motion parameters typically comprise a reference frame index, indicating which
reference frame(s) from lists of reference frames are to be used plus a spatial translation for
each of the reference frames, but may include more frames, special frames, or complex affine
parameters such as scaling and rotation. In addition, a pre-determined motion refinement

process may be applied to generate dense motion estimates based on referenced sample blocks.

23954677_1

03 Dec 2019

2019275553

26

[00095] Having determined and selected the PU 320, and subtracted the PU 320 from the
original sample block at the subtractor 322, a residual with lowest coding cost, represented

as 324, is obtained and subjected to lossy compression. The lossy compression process
comprises the steps of transformation, quantisation and entropy coding. The forward primary
transform module 326 applies a forward transform to the difference 324, converting the
difference 324 from the spatial domain to the frequency domain, and producing primary
transform coefficients represented by an arrow 328 according to the primary transform

type 389. The largest primary transform size in one dimension is either a 32-point DCT-2 or a
64-point DCT-2 transform. If the CB being encoded is larger than the largest supported
primary transform size expressed as a block size, i.e. 64x64 or 32x32, the primary

transform 326 is applied in a tiled manner to transform all samples of the difference 324. Where
each application of the transform operates on a TB of the difference 324 larger than 32x32, e.g.
64x64, all resulting primary transform coefficients 328 outside of the upper-left 32x32 area of
the TB are set to zero, i.e. discarded. For TBs of sizes up to 32x32 the primary transform

type 389 may indicate application of a combination of DST-7 and DCT-8 transforms
horizontally and vertically. The remaining primary transform coefficients 328 are passed to a

forward secondary transform module 330.

[00096] The secondary transform module 330 produces secondary transform coefficients 332 in
accordance with the secondary transform index 388. The secondary transform coefficients 332
are quantised by the module 334 according to a quantisation parameter associated with the CB
to produce residual coefficients 336. When the transform skip flag 390 indicates transform skip

is enabled for a TB, the difference 324 is passed to the quantiser 334 via the multiplexer 333.

[00097] The forward primary transform of the module 326 is typically separable, transforming
a set of rows and then a set of columns of each TB. The forward primary transform module 326
uses either a type-I1 discrete cosine transform (DCT-2) in the horizontal and vertical directions,
or, for luma TBS, combinations of a type-VII discrete sine transform (DST-7) and a type-VIII
discrete cosine transform (DCT-8) in either horizontal or vertical directions, according to the
primary transform type 389. Use of combinations of a DST-7 and DCT-8 is referred to as ‘multi
transform selection set’ (MTS) in the VVC standard. When DCT-2 is used the largest TB size is
either 3232 or 64x64, configurable in the video encoder 114 and signalled in the

bitstream 115. Regardless of the configured maximum DCT-2 transform size, only coefficients
in the upper-left 32x32 region of a TB are encoded into the bitstream 115. Any significant

coefficients outside of the upper-left 32x32 region of the TB are discarded (or ‘zeroed out’) and

23954677_1

03 Dec 2019

2019275553

27

are not encoded in the bitstream 115. MTS is only available for CUs of size up to 32x32 and
only coefficients in the upper-left 16x16 region of the associated luma TB are coded.
Individual TBs of the CU are either transformed or bypassed according to corresponding

transform skip flags 390.

[00098] The forward secondary transform of the module 330 is generally a non-separable
transform, which is only applied for the residual of intra-predicted CUs and may nonetheless
also be bypassed. The forward secondary transform operates either on 16 samples (arranged as
the upper-left 4x4 sub-block of the primary transform coefficients 328) or 48 samples (arranged
as three 4x4 sub-blocks in the upper-left 8x8 coefficients of the primary transform

coefficients 328) to produce a set of secondary transform coefficients. The set of secondary
transform coefficients may be fewer in number than the set of primary transform coefficients
from which they are derived. Due to application of the secondary transform to only a set of
coefficients adjacent to each other and including the DC coefficient, the secondary transform is

referred to as a ‘low frequency non-separable secondary transform’ (LFNST).

[00099] The residual coefficients 336 are supplied to the entropy encoder 338 for encoding in
the bitstream 115. Typically, the residual coefficients of each TB with at least one significant
residual coefficient of the TU are scanned to produce an ordered list of values, according to a
scan pattern. The scan pattern generally scans the TB as a sequence of 4x4 ‘sub-blocks’,
providing a regular scanning operation at the granularity of 4x4 sets of residual coefficients,
with the arrangement of sub-blocks dependent on the size of the TB. The scan within each sub-
block and the progression from one sub-block to the next typically follow a backward diagonal

scan pattern.

[000100] As described above, the video encoder 114 needs access to a frame representation
corresponding to the decoded frame representation seen in the video decoder 134. Thus, the
residual coefficients 336 are passed to a dequantiser 340 to produce dequantised residual
coefficients 342. The dequantised residual coefficients 342 are passed through an inverse
secondary transform module 344, operating in accordance with the secondary transform

index 388 to produce intermediate inverse transform coefficients, represented by an arrow 346.
The intermediate inverse transform coefficients 346 are passed to an inverse primary transform
module 348 to produce residual samples, represented by an arrow 399, of the TU. The

dequantised residual coefficients 342 are output by a multiplexer 349 as residual samples 350 if

23954677_1

03 Dec 2019

2019275553

28

the transform skip 390 indicates the transform bypass is to be performed. Otherwise, the

multiplexer 349 outputs the residual samples 399 as the residual samples 350.

[000101] The types of inverse transform performed by the inverse secondary transform
module 344 correspond with the types of forward transform performed by the forward
secondary transform module 330. The types of inverse transform performed by the inverse
primary transform module 348 correspond with the types of primary transform performed by
the primary transform module 326. A summation module 352 adds the residual samples 350

and the PU 320 to produce reconstructed samples (indicated by an arrow 354) of the CU.

[000102] The reconstructed samples 354 are passed to a reference sample cache 356 and an in-
loop filters module 368. The reference sample cache 356, typically implemented using static
RAM on an ASIC (thus avoiding costly off-chip memory access) provides minimal sample
storage needed to satisfy the dependencies for generating intra-frame PBs for subsequent CUs
in the frame. The minimal dependencies typically include a ‘line buffer’ of samples along the
bottom of a row of CTUs, for use by the next row of CTUs and column buffering the extent of
which is set by the height of the CTU. The reference sample cache 356 supplies reference
samples (represented by an arrow 358) to a reference sample filter 360. The sample filter 360
applies a smoothing operation to produce filtered reference samples (indicated by an

arrow 362). The filtered reference samples 362 are used by the intra-frame prediction

module 364 to produce an intra-predicted block of samples, represented by an arrow 366. For
each candidate intra prediction mode the intra-frame prediction module 364 produces a block of
samples, that is 366. The block of samples 366 is generated by the module 364 using
techniques such as DC, planar or angular intra prediction according to the intra prediction

mode 387.

[000103] The in-loop filters module 368 applies several filtering stages to the reconstructed
samples 354. The filtering stages include a ‘deblocking filter’ (DBF) which applies smoothing
aligned to the CU boundaries to reduce artefacts resulting from discontinuities. Another
filtering stage present in the in-loop filters module 368 is an ‘adaptive loop filter’ (ALF), which
applies a Wiener-based adaptive filter to further reduce distortion. A further available filtering
stage in the in-loop filters module 368 is a ‘sample adaptive offset’ (SAO) filter. The SAO
filter operates by firstly classifying reconstructed samples into one or multiple categories and,

according to the allocated category, applying an offset at the sample level.

23954677_1

03 Dec 2019

2019275553

29

[000104] Filtered samples, represented by an arrow 370, are output from the in-loop filters
module 368. The filtered samples 370 are stored in a frame buffer 372. The frame buffer 372
typically has the capacity to store several (for example up to 16) pictures and thus is stored in
the memory 206. The frame buffer 372 is not typically stored using on-chip memory due to the
large memory consumption required. As such, access to the frame buffer 372 is costly in terms
of memory bandwidth. The frame buffer 372 provides reference frames (represented by an

arrow 374) to a motion estimation module 376 and the motion compensation module 380.

[000105] The motion estimation module 376 estimates a number of ‘motion vectors’ (indicated
as 378), each being a Cartesian spatial offset from the location of the present CB, referencing a
block in one of the reference frames in the frame buffer 372. A filtered block of reference
samples (represented as 382) is produced for each motion vector. The filtered reference
samples 382 form further candidate modes available for potential selection by the mode
selector 386. Moreover, for a given CU, the PU 320 may be formed using one reference block
(‘uni-predicted’) or may be formed using two reference blocks (‘bi-predicted’). For the
selected motion vector, the motion compensation module 380 produces the PB 320 in
accordance with a filtering process supportive of sub-pixel accuracy in the motion vectors. As
such, the motion estimation module 376 (which operates on many candidate motion vectors)
may perform a simplified filtering process compared to that of the motion compensation
module 380 (which operates on the selected candidate only) to achieve reduced computational
complexity. When the video encoder 114 selects inter prediction for a CU the motion

vector 378 is encoded into the bitstream 115.

[000106] Although the video encoder 114 of Fig. 3 is described with reference to versatile
video coding (VVC), other video coding standards or implementations may also employ the
processing stages of modules 310-386. The frame data 113 (and bitstream 115) may also be
read from (or written to) memory 206, the hard disk drive 210, a CD-ROM, a Blu-ray disk™ or
other computer readable storage medium. Additionally, the frame data 113 (and bitstream 115)
may be received from (or transmitted to) an external source, such as a server connected to the

communications network 220 or a radio-frequency receiver.

[000107] The video decoder 134 is shown in Fig. 4. Although the video decoder 134 of Fig. 4 is
an example of a versatile video coding (VVC) video decoding pipeline, other video codecs may
also be used to perform the processing stages described herein. As shown in Fig. 4, the

bitstream 133 is input to the video decoder 134. The bitstream 133 may be read from

23954677_1

03 Dec 2019

2019275553

30

memory 206, the hard disk drive 210, a CD-ROM, a Blu-ray disk™ or other non-transitory
computer readable storage medium. Alternatively, the bitstream 133 may be received from an
external source such as a server connected to the communications network 220 or a radio-
frequency receiver. The bitstream 133 contains encoded syntax elements representing the

captured frame data to be decoded.

[000108] The bitstream 133 is input to an entropy decoder module 420. The entropy decoder
module 420 extracts syntax elements from the bitstream 133 by decoding sequences of ‘bins’
and passes the values of the syntax elements to other modules in the video decoder 134. The
entropy decoder module 420 uses variable-length and fixed length decoding to decode SPS,
PPS or slice header an arithmetic decoding engine to decode syntax elements of the slice data as
a sequence of one or more bins. Each bin may use one or more ‘contexts’, with a context
describing probability levels to be used for coding a ‘one’ and a ‘zero’ value for the bin. Where

multiple contexts are available for a given bin, a ‘context modelling’ or ‘context selection’ step

is performed to choose one of the available contexts for decoding the bin.

[000109] The entropy decoder module 420 applies an arithmetic coding algorithm, for example
‘context adaptive binary arithmetic coding’ (CABAC), to decode syntax elements from the
bitstream 133. The decoded syntax elements are used to reconstruct parameters within the
video decoder 134. Parameters include residual coefficients (represented by an arrow 424), a
quantisation parameter (not shown), a secondary transform index 474, and mode selection
information such as an intra prediction mode (represented by an arrow 458). The mode
selection information also includes information such as motion vectors, and the partitioning of
each CTU into one or more CUs. Parameters are used to generate PBs, typically in

combination with sample data from previously decoded CBs.

[000110] The residual coefficients 424 are passed to a dequantiser module 428. The
dequantiser module 428 performs inverse quantisation (or ‘scaling’) on the residual

coefficients 424, that is, in the primary transform coefficient domain, to create reconstructed
transform coefficients, represented by an arrow 432. The reconstructed transform

coefficients 432 are passed to an inverse secondary transform module 436. The inverse
secondary transform module 436 performs either a secondary transform is applied or no
operation is performed (bypass) according to a secondary transform type 474, decoded from the

bitstream 113 by the entropy decoder 420 in accordance with methods described with reference

23954677_1

03 Dec 2019

2019275553

31

to Figs. 15 and 16. The inverse secondary transform module 436 produces reconstructed

transform coefficients 440, that is primary transform domain coefficients.

[000111] The reconstructed transform coefficients 440 are passed to an inverse primary
transform module 444. The module 444 transforms the coefficients 440 from the frequency
domain back to the spatial domain according to a primary transform type 476 (or ‘mts_idx’),
decoded from the bitstream 133 by the entropy decoder 420. The result of operation of the
module 444 is a block of residual samples, represented by an arrow 499. When a transform skip
flag 478 for a given TB of the CU indicates bypassing of the transform, a multiplexer 449
outputs reconstructed transform coefficients 432 as residual samples 488 to the summation
module 450. Otherwise, the multiplexer 449 outputs the residual samples 499 as the residual
samples 488. The block of residual samples 448 is equal in size to the corresponding CB. The
residual samples 448 are supplied to a summation module 450. At the summation module 450
the residual samples 448 are added to a decoded PB (represented as 452) to produce a block of
reconstructed samples, represented by an arrow 456. The reconstructed samples 456 are
supplied to a reconstructed sample cache 460 and an in-loop filtering module 488. The in-loop
filtering module 488 produces reconstructed blocks of frame samples, represented as 492. The
frame samples 492 are written to a frame buffer 496, from which the frame data 135 is later

output.

[000112] The reconstructed sample cache 460 operates similarly to the reconstructed sample
cache 356 of the video encoder 114. The reconstructed sample cache 460 provides storage for
reconstructed samples needed to intra predict subsequent CBs without resorting to accessing the
memory 206 (for example by using the data 232 instead, which is typically on-chip memory).
Reference samples, represented by an arrow 464, are obtained from the reconstructed sample
cache 460 and supplied to a reference sample filter 468 to produce filtered reference

samples indicated by arrow 472. The filtered reference samples 472 are supplied to an intra-
frame prediction module 476. The module 476 produces a block of intra-predicted samples,
represented by an arrow 480, in accordance with the intra prediction mode parameter 458
signalled in the bitstream 133 and decoded by the entropy decoder 420. The block of

samples 480 is generated using modes such as DC, planar or angular intra prediction, according

to the intra prediction mode 458.

[000113] When the prediction mode of a CB is indicated to use intra prediction in the
bitstream 133, the intra-predicted samples 480 form the decoded PB 452 via a multiplexor

23954677_1

03 Dec 2019

2019275553

32

module 484. Intra prediction produces a prediction block (PB) of samples, that is, a block in
one colour component, derived using ‘neighbouring samples’ in the same colour component.
The neighbouring samples are samples adjacent to the current block and by virtue of being
preceding in the block decoding order have already been reconstructed. Where luma and
chroma blocks are collocated, the luma and chroma blocks may use different intra prediction

modes. However, the two chroma CBs share the same intra prediction mode.

[000114] When the prediction mode of the CB is indicated to be inter prediction in the
bitstream 133, a motion compensation module 434 produces a block of inter-predicted samples,
represented as 438, using a motion vector (decoded from the bitstream 133 by the entropy
decoder 420) and reference frame index to select and filter a block of samples 498 from a frame
buffer 496. The block of samples 498 is obtained from a previously decoded frame stored in the
frame buffer 496. For bi-prediction, two blocks of samples are produced and blended together
to produce samples for the decoded PB 452. The frame buffer 496 is populated with filtered
block data 492 from an in-loop filtering module 488. As with the in-loop filtering module 368
of the video encoder 114, the in-loop filtering module 488 applies any of the DBF, the ALF and
SAO filtering operations. Generally, the motion vector is applied to both the luma and chroma
channels, although the filtering processes for sub-sample interpolation in the luma and chroma

channel are different.

[000115] Fig. 5 is a schematic block diagram showing a collection 500 of available divisions or
splits of a region into one or more sub-regions in each node of the coding tree structure of
versatile video coding. The divisions shown in the collection 500 are available to the block
partitioner 310 of the encoder 114 to divide each CTU into one or more CUs or CBs according
to a coding tree, as determined by the Lagrangian optimisation, as described with reference to

Fig. 3.

[000116] Although the collection 500 shows only square regions being divided into other,
possibly non-square sub-regions, it should be understood that the collection 500 is showing the
potential divisions of a parent node in a coding tree into child nodes in the coding tree and not
requiring the parent node to correspond to a square region. If the containing region is non-
square, the dimensions of the blocks resulting from the division are scaled according to the
aspect ratio of the containing block. Once a region is not further split, that is, at a leaf node of

the coding tree, a CU occupies that region.

23954677_1

03 Dec 2019

2019275553

33

[000117] The process of subdividing regions into sub-regions terminates when the resulting
sub-regions reach a minimum CU size, generally 4x4 luma samples. In addition to constraining
CUs to prohibit block areas smaller than a predetermined minimum size, for example 16
samples, CUs are constrained to have a minimum width or height of four. Other minimums,
both in terms of width and height or in terms of width or height are also possible. The process
of subdivision may also terminate prior to the deepest level of decomposition, resulting in a
CUs larger than the minimum CU size. It is possible for no splitting to occur, resulting in a
single CU occupying the entirety of the CTU. A single CU occupying the entirety of the CTU is
the largest available coding unit size. Due to use of subsampled chroma formats, such as 4:2:0,
arrangements of the video encoder 114 and the video decoder 134 may terminate splitting of
regions in the chroma channels earlier than in the luma channels, including in the case of a
shared coding tree defining the block structure of the luma and chroma channels. When
separate coding trees are used for luma and chroma, constraints on available splitting operations
ensure a minimum chroma CU area of 16 samples, even though such CUs are collocated with a

larger luma area, e.g., 64 luma samples.

[000118] At the leaf nodes of the coding tree exist CUs. For example, a leaf node 510 contains
one CU. At the non-leaf nodes of the coding tree exist a split into two or more further nodes,
each of which could be a leaf node that forms one CU, or a non-leaf node containing further
splits into smaller regions. At each leaf node of the coding tree, one CB exists for each colour
channel of the coding tree. Splitting terminating at the same depth for both luma and chroma in

a shared tree results in one CU having three collocated CBs.

[000119] A quad-tree split 512 divides the containing region into four equal-size regions as
shown in Fig. 5. Compared to HEVC, versatile video coding (VVC) achieves additional
flexibility with additional splits, including a horizontal binary split 514 and a vertical binary
split 516. Each of the splits 514 and 516 divides the containing region into two equal-size
regions. The division is either along a horizontal boundary (514) or a vertical boundary (516)

within the containing block.

[000120] Further flexibility is achieved in versatile video coding with addition of a ternary
horizontal split 518 and a ternary vertical split 520. The ternary splits 518 and 520 divide the
block into three regions, bounded either horizontally (518) or vertically (520) along % and % of
the containing region width or height. The combination of the quad tree, binary tree, and
ternary tree is referred to as ‘QTBTTT’. The root of the tree includes zero or more quadtree

splits (the ‘QT’ section of the tree). Once the QT section terminates, zero or more binary or

23954677_1

03 Dec 2019

2019275553

34

ternary splits may occur (the ‘multi-tree’ or ‘MT’ section of the tree), finally ending in CBs or
CUs at leaf nodes of the tree. Where the tree describes all colour channels, the tree leaf nodes
are CUs. Where the tree describes the luma channel or the chroma channels, the tree leaf nodes

are CBs.

[000121] Compared to HEVC, which supports only the quad tree and thus only supports square
blocks, the QTBTTT results in many more possible CU sizes, particularly considering possible
recursive application of binary tree and/or ternary tree splits. When only quad-tree splitting is
available, each increase in coding tree depth corresponds to a reduction in CU size to one
quarter the size of the parent area. In VVC, the availability of binary and ternary splits means
that the coding tree depth no longer corresponds directly to CU area. The potential for unusual
(non-square) block sizes can be reduced by constraining split options to eliminate splits that
would result in a block width or height either being less than four samples or in not being a

multiple of four samples.

[000122] Fig. 6 is a schematic flow diagram illustrating a data flow 600 of a QTBTTT (or
‘coding tree’) structure used in versatile video coding. The QTBTTT structure is used for each
CTU to define a division of the CTU into one or more CUs. The QTBTTT structure of each
CTU is determined by the block partitioner 310 in the video encoder 114 and encoded into the
bitstream 115 or decoded from the bitstream 133 by the entropy decoder 420 in the video
decoder 134. The data flow 600 further characterises the permissible combinations available to
the block partitioner 310 for dividing a CTU into one or more CUSs, according to the divisions

shown in Fig. 5.

[000123] Starting from the top level of the hierarchy, that is at the CTU, zero or more quad-tree
divisions are first performed. Specifically, a quad-tree (QT) split decision 610 is made by the
block partitioner 310. The decision at 610 returning a ‘1’ symbol indicates a decision to split
the current node into four sub-nodes according to the quad-tree split 512. The result is the
generation of four new nodes, such as at 620, and for each new node, recursing back to the QT
split decision 610. Each new node is considered in raster (or Z-scan) order. Alternatively, if the
QT split decision 610 indicates that no further split is to be performed (returns a ‘0’ symbol),

quad-tree partitioning ceases and multi-tree (MT) splits are subsequently considered.

[000124] Firstly, an MT split decision 612 is made by the block partitioner 310. At 612, a
decision to perform an MT split is indicated. Returning a ‘0’ symbol at decision 612 indicates

that no further splitting of the node into sub-nodes is to be performed. If no further splitting of

23954677_1

03 Dec 2019

2019275553

35

a node is to be performed, then the node is a leaf node of the coding tree and corresponds to a
CU. The leaf node is output at 622. Alternatively, if the MT split 612 indicates a decision to
perform an MT split (returns a ‘1’ symbol), the block partitioner 310 proceeds to a direction

decision 614.

[000125] The direction decision 614 indicates the direction of the MT split as either horizontal
(‘“H’ or ‘0’) or vertical (‘V’ or ‘1’). The block partitioner 310 proceeds to a decision 616 if the
decision 614 returns a ‘0’ indicating a horizontal direction. The block partitioner 310 proceeds

to a decision 618 if the decision 614 returns a ‘1’ indicating a vertical direction.

[000126] At each of the decisions 616 and 618, the number of partitions for the MT split is
indicated as either two (binary split or ‘BT’ node) or three (ternary split or ‘TT’) at the BT/TT
split. That is, a BT/TT split decision 616 is made by the block partitioner 310 when the
indicated direction from 614 is horizontal and a BT/TT split decision 618 is made by the block

partitioner 310 when the indicated direction from 614 is vertical.

[000127] The BT/TT split decision 616 indicates whether the horizontal split is the binary
split 514, indicated by returning a “0’, or the ternary split 518, indicated by returning a ‘1°.
When the BT/TT split decision 616 indicates a binary split, at a generate HBT CTU nodes
step 625 two nodes are generated by the block partitioner 310, according to the binary
horizontal split 514. When the BT/TT split 616 indicates a ternary split, at a generate HTT
CTU nodes step 626 three nodes are generated by the block partitioner 310, according to the
ternary horizontal split 518.

[000128] The BT/TT split decision 618 indicates whether the vertical split is the binary

split 516, indicated by returning a “0’, or the ternary split 520, indicated by returning a ‘1°.
When the BT/TT split 618 indicates a binary split, at a generate VBT CTU nodes step 627 two
nodes are generated by the block partitioner 310, according to the vertical binary split 516.
When the BT/TT split 618 indicates a ternary split, at a generate VIT CTU nodes step 628
three nodes are generated by the block partitioner 310, according to the vertical ternary

split 520. For each node resulting from steps 625-628 recursion of the data flow 600 back to
the MT split decision 612 is applied, in a left-to-right or top-to-bottom order, depending on the
direction 614. As a consequence, the binary tree and ternary tree splits may be applied to

generate CUs having a variety of sizes.

23954677_1

03 Dec 2019

2019275553

36

[000129] Figs. 7A and 7B provide an example division 700 of a CTU 710 into a number of
CUs or CBs. An example CU 712 is shown in Fig. 7A. Fig. 7A shows a spatial arrangement of
CUs in the CTU 710. The example division 700 is also shown as a coding tree 720 in Fig. 7B.

[000130] At each non-leaf node in the CTU 710 of Fig. 7A, for example nodes 714, 716 and
718, the contained nodes (which may be further divided or may be CUs) are scanned or
traversed in a ‘Z-order’ to create lists of nodes, represented as columns in the coding tree 720.
For a quad-tree split, the Z-order scanning results in top left to right followed by bottom left to
right order. For horizontal and vertical splits, the Z-order scanning (traversal) simplifies to a
top-to-bottom scan and a left-to-right scan, respectively. The coding tree 720 of Fig. 7B lists all
nodes and CUs ordered according to the Z-order traversal of the coding tree. Each split
generates a list of two, three or four new nodes at the next level of the tree until a leaf node

(CU) is reached.

[000131] Having decomposed the image into CTUs and further into CUs by the block
partitioner 310, and using the CUs to generate each residual block (324) as described with
reference to Fig. 3, residual blocks are subject to forward transformation and quantisation by
the video encoder 114. The resulting TBs 336 are subsequently scanned to form a sequential list
of residual coefficients, as part of the operation of the entropy coding module 338. An

equivalent process is performed in the video decoder 134 to obtain TBs from the bitstream 133.

[000132] Figs. 8A, 8B, 8C, and 8D show examples of forward and inverse non-separable
secondary transforms that are performed according to different sizes of transform blocks (TBs).
Fig. 8A shows a set of relationships 800 between primary transform coefficients 802 and
secondary transform coefficients 804 for a 4x4 TB size. The primary transform

coefficients 802 consist of 4x4 coefficients, while the secondary transform coefficients 804
consist of eight coefficients. The eight secondary transform coefficients are arranged in a
pattern 806. The pattern 806 corresponds to the eight positions, adjacent in a backward
diagonal scan of the TB and including the DC (top-left) position. The remaining eight positions
shown in Fig. 8A in the backward diagonal scan are not populated by performing a forward
secondary transform and thus remain zero-valued. A forward non-separable secondary
transform 810 for 4x4 TBs therefore receives sixteen primary transform coefficients, and
produces as output eight secondary transform coefficients. The forward secondary

transform 810 for 4x4 TBs can therefore be represented by an 8x16 matrix of weights.

Similarly, an inverse secondary transform 812 can be represented by a 16x8 matrix of weights.

23954677_1

03 Dec 2019

2019275553

37

[000133] Fig. 8B shows a set of relationships 818 between primary transform coefficients and
secondary transform coefficients for 4XN and Nx4 TB sizes, where N is greater than 4. In both
cases, a top-left 4x4 sub-block of primary coefficients 820 is associated with a top-left 4x4 sub-
block of secondary transform coefficients 824. In the video encoder 114, the forward non-
separable secondary transform 830 takes sixteen primary transform coefficients and produces as
output sixteen secondary transform coefficients. Remaining primary transform coefficients 822
are not populated by the forward secondary transform and thus remain zero-valued. After the
forward non-separable secondary transform 830 is performed, coefficient positions 826,

associated with the coefficients 822, are not populated and thus remain zero-valued.

[000134] The forward secondary transform 830 for 4xN or Nx4 TBs can be represented by a
16x16 matrix of weights. The matrix representing the forward secondary transform 830 is
defined as A. Similarly, a corresponding inverse secondary transform 832 can be represented
by a 16x16 matrix of weights. The matrix representing the inverse secondary transform 832 is

defined as B.

[000135] The storage requirement of the non-separable transform kernel is further reduced by
reusing parts of A for the forward secondary transform 810 and the inverse secondary
transform 812 for 4x4 TBs. The first eight rows of 4 are used for the forward secondary
transform 810, and the transpose of the first eight rows of A are used for the inverse secondary

transform 812.

[000136] Fig. 8C shows a relationship 855 between primary transform coefficients 840 and
secondary transform coefficients 842 for TBs of size 8x8. The primary transform

coefficients 840 consist of §x8 coefficients, while the secondary transform coefficients 842
consist of eight transform coefficients. The eight secondary transform coefficients 842 are
arranged in a pattern corresponding to eight consecutive positions in a backward diagonal scan
of the TB, the eight consecutive positions including the DC (top-left) coefficient of the TB.
The remaining secondary transform coefficients in the TB are all zeroes and thus do not need to
be scanned. The forward non-separable secondary transform 850 for an §x8 TB takes forty-
eight primary transform coefficients as input, corresponding to three 4x4 sub-blocks, and
produces eight secondary transform coefficients. The forward secondary transform 850 for an
8x8 TB can be represented by an 8x48 matrix of weights. A corresponding inverse secondary

transform 852 for an 8x8 TB can be represented by a 48x8 matrix of weights.

23954677_1

03 Dec 2019

2019275553

38

[000137] Fig. 8D shows a relationship 875 between primary transform coefficients 860 and
secondary transform coefficients 862 for TBs of size greater than 8x8. A top-left 8x8 block of
primary coefficients 860 (arranged as four 4x4 sub-blocks) is associated with a top-left 4x4
sub-block of secondary transform coefficients 862. In the video encoder 114, a forward non-
separable secondary transform 870 operates on forty-eight primary transform coefficients to
produce sixteen secondary transform coefficients. Remaining primary transform

coefficients 864 are zeroed out. Secondary transform coefficient positions 866 outside of the
top-left 4x4 sub-block of secondary transform coefficients 862 are not populated and remain as

ZLrocs.

[000138] The forward secondary transform 870 for TBs of size greater than 8x8 can be
represented by a 16x48 matrix of weights. A matrix representing the forward secondary
transform 870 is defined as F. Similarly, a corresponding inverse secondary transform 832 can
be represented by a 48x16 matrix of weights. A matrix representing the inverse secondary
transform 872 is defined as G. As described above with reference to matrices A and B, F
desirably has the property of orthogonality. The property of orthogonality means G = F', and
only F needs be stored in the video encoder 114 and video decoder 134. An orthogonal matrix

can be described as a matrix in which the rows have orthogonality.

[000139] The storage requirement of the non-separable transform kernel is further reduced by
reusing parts of F for the forward secondary transform 850 and the inverse secondary
transform 852 for 8x8 TBs. The first eight rows of F are used for the forward secondary
transform 810, and the transpose of the first eight rows of F are used for the inverse secondary

transform 812.

[000140] Non-separable secondary transforms may achieve coding improvement over the use
of separable primary transforms alone, because non-separable secondary transforms are able to
sparsify two-dimensional features in the residual signal, such as angular features. As angular
features in the residual signal may be dependent on the type of intra prediction mode 387
selected, it is advantageous for the non-separable secondary transform matrix to be adaptively
selected depending on the intra prediction mode. As described above, intra prediction modes
consist of “intra-DC”, “intra-planar”, “intra-angular” modes, and “matrix intra prediction”
modes. The intra prediction mode parameter 458 takes the value of 0 when intra-DC prediction
isused. The intra prediction mode parameter 458 takes the value of 1 when intra-planar

prediction is used. The intra prediction mode parameter 458 takes a value between 2 and 66

inclusive, when intra-angular prediction on square TBs is used.

23954677_1

03 Dec 2019

2019275553

39

[000141] Fig. 9 shows a set 900 of transform blocks available in the versatile video coding
(VVC) standard. Fig. 9 also shows the application of the secondary transform to a subset of
residual coefficients from transform blocks of the set 900. Fig. 9 shows TBs with widths and
heights ranging from four to 32. However TBs of width and/or height 64 are possible but are

not shown for ease of reference.

[000142] A 16-point secondary transform 952 (shown with darker shading) is applied to a 4x4
set of coefficients. The 16-point secondary transform 952 is applied to TBs with a width or a
height of four, e.g., a 4x4 TB 910, an 8x4 TB 912, a 16x4 TB 914, a 32x4 TB 916, a 4x8

TB 920, a 4x16 TB 930, and a 4x32 TB 940. The 16-point secondary transform 952 is also
applied to TBs of size 4x64 and a 64x4 (not shown in Fig. 9). For TBs with a width or height
of four but with more than 16 primary coefficients, the 16-point secondary transform is applied
only to the upper-left 4x4 sub-block of the TB and other sub-blocks are required to have zero-
valued coefficients in order for the secondary transform to be applied. Generally application of
a 16-point secondary transform results in 8 or 16 secondary transform coefficients, as described
with reference to Figs. 8 to 8D. The secondary transform coefficients are packed into the TB

for encoding into the top-left sub-block of the TB.

[000143] For transform sizes with a width and height greater than four, a 48-point secondary
transform 950 (shown with lighter shading) is available for application to three 4x4 sub-blocks
of residual coefficients in the upper-left 8x8 region of the transform block, as shown in Fig. 9.
The 48-point secondary transform 950 is applied to an 8x8 transform block 922, a 16x8
transform block 924, a 32x8 transform block 926, an 8x16 transform block 932, a 16x16
transform block 934, a 32x16 transform block 936, an 8x32 transform block 942, a 16x32
transform block 944, and a 32x32 transform block 946, in each case in the region shown with
light shading and a dashed outline. The 48-point secondary transform 950 is also applicable to
TBs of size 8x64, 16x64, 32x64, 64x64, 64x32, 64x16 and 64%8 (not shown). Application of a
48-point secondary transform kernel generally results in the production of fewer than 48
secondary transform coefficients. For example, 8 or 16 secondary transform coefficients may be
produced, as described with reference to Figs. 8B to 8D. Primary transform coefficients not
subject to the secondary transform (‘primary-only coefficients’), for example coefficients 966
of the TB 934, are required to be zero-valued in order for the secondary transform to be applied.
After application of the 48-point secondary transform 950 in a forward direction, the region
which may contain significant coefficients is reduced from 48 coefficients to 16 coefficients,
further reducing the number of coefficient positions which may contain significant coefficients.

For the inverse secondary transform, decoded significant coefficients present are transformed to

23954677_1

03 Dec 2019

2019275553

40

produce coefficients any of which may be significant in a region which are then subject to the
primary inverse transform. Only the upper-left 4x4 sub-block may contain significant
coefficients when a secondary transform reduces one or more sub-blocks to a set of 16
secondary transform coefficients. A last significant coefficient position located at any
coefficient position for which secondary transform coefficients may be stored indicates either

application of a secondary transform or only a primary transform was applied.

[000144] When the last significant coefficient position indicates a secondary transform
coefficient position in a TB, a signalled secondary transform index (i.e., 388 or 474) is needed
to distinguish between applying a secondary transform kernel or bypassing the secondary
transform. Although application of secondary transforms to TBs of various sizes in Fig. 9 has
been described from the perspective of the video encoder 114, a corresponding inverse process
is performed in the video decoder 134. The video decoder 134 firstly decodes a last significant
coefficient position. If the decoded last significant coefficient position indicates potential
application of a secondary transform, the secondary transform index 474 is decoded to

determine whether to apply or bypass the inverse secondary transform.

[000145] Fig. 10 shows a syntax structure 1000 for a bitstream 1001 with multiple slices. Each
of the slices includes multiple coding units. The bitstream 1001 may be produced by the video
encoder 114, e.g. as the bitstream 115, or may be parsed by the video decoder 134, e.g. as the
bitstream 133. The bitstream 1001 is divided into portions, for example network abstraction
layer (NAL) units, with delineation achieved by preceding each NAL unit with a NAL unit
header such as 1008. A sequence parameter set (SPS) 1010 defines sequence-level parameters,
such as a profile (set of tools) used for encoding and decoding the bitstream, chroma format,
sample bit depth, and frame resolution. Parameters are also included in the set 1010 that

constrain the application of different types of split in the coding tree of each CTU.

[000146] A picture parameter set (PPS) 1012 defines sets of parameters applicable to zero or
more frames. A picture header (PH) 1015 defines parameters applicable to the current frame.
Parameters of the PH 1015 may include a list of CU chroma QP offsets, one of which may be
applied at the CU level to derive a quantisation parameter for use by chroma blocks from the

quantisation parameter of a collocated luma CB.

[000147] The picture header 1015 and a sequence of slices forming one picture is known as an

access unit (AU), such as AU 0 1014. The AU 0 1014 includes three slices, such as slices 0 to

23954677_1

03 Dec 2019

2019275553

41

2. Slice 1 is marked as 1016. As with other slices, slice 1 (1016) includes a slice header 1018
and slice data 1020.

[000148] Fig. 11 shows a syntax structure 1100 for slice data (such as the slice data 1104
corresponding to 1020) of the bitstream 1001 (e.g. 115 or 133) with a shared coding tree for
luma and chroma coding units of a coding tree unit, such as a CTU 1110. The CTU 1110
includes one or more CUs. An example is labelled as a CU 1114. The CU 1114 includes a
signalled prediction mode 1116 followed by a transform tree 1118. When the size of the

CU 1114 does not exceed the maximum transform size (either 32x32 or 64x64 in the luma
channel) then the transform tree 1118 includes one transform unit, shown as a TU 1124. When
a 4:2:0 chroma format is in use, the corresponding maximum chroma transform sizes are half of
the luma maximum transform size in each direction. That is, maximum luma transform sizes of
32x32 or 64%x64 result in maximum chroma transform sizes of 16x16 or 32x32, respectively.
When a 4:4:4 chroma format is in use, the chroma maximum transform size is the same as the
luma maximum transform size. When a 4:2:2 chroma format is in use, the chroma maximum
transform size is half horizontally and the same vertically as the luma transform size, that is, for
maximum luma transform sizes of 32x32 and 64x64 the maximum chroma transform sizes are

16%32 and 32x64, respectively.

[000149] If the prediction mode 1116 indicates usage of intra prediction for the CU 1114, a
luma intra prediction mode and a chroma intra prediction mode are specified. For the luma CB
of the CU 1114, the primary transform type is also signalled as either (i) DCT-2 horizontally
and vertically, (ii) transform skip horizontally and vertically, or (ii1) combinations of DST-7
and DCT-8 horizontally and vertically, according to an MTS index 1122. If the signalled luma
transform type is DCT-2 horizontally and vertically (option (1)), an additional luma secondary
transform index 1120, also known as a ‘low frequency non-separable transform’ (LFNST)
index, is signalled in the bitstream, under conditions as described with reference to Figs. 8A-D

and Figs. 13-16.

[000150] Use of a shared coding tree results in the TU 1124 including TBs for each colour
channel, shown as a luma TB Y 1128, a first chroma TB Cb 1132, and a second chroma TB
Cr 1136. The presence of each TB is dependent on a corresponding ‘coded block flag’ (CBF),
1.e. one of coded block flags 1123. When a TB is present, the corresponding CBF is equal to
one and at least one residual coefficient in the TB is nonzero. When a TB is absent, the
corresponding CBF is equal to zero and all residual coefficients in the TB are zero. The luma

TB 1128, the first chroma TB 1134, and the second chroma TB 1136 each may use transform

23954677_1

03 Dec 2019

2019275553

42

skip, as signalled by transform skip flags 1126, 1130, and 1134, respectively. A coding mode
in which a single chroma TB is sent to specify the chroma residual both for Cb and Cr channels
is available, known as a ‘joint CbCr’ coding mode. When the joint CbCr coding mode is

enabled, a single chroma TB is encoded.

[000151] Irrespective of colour channel, each coded TB includes a last position followed by
one or more residual coefficients. For example, the luma TB 1128 includes a last position 1140
and residual coefficients 1144. The last position 1140 indicates the last significant residual
coefficient position in the TB when considering coefficients in the diagonal scan pattern, used
to serialise the array of coefficients of a TB, in a forward direction (i.e. from the DC coefficient
onwards). The two TBs 1132 and 1136 for the chroma channels each have a corresponding last
position syntax element used in the same manner as described for the luma TB 1128, If the last
positions of each of the TBs for the CU, that is 1128, 1132, and 1136, indicate that only
coefficients in the secondary transform domain are significant for each TB in the CU, such that
all remaining coefficients that would only be subject to primary transformation are zero, the
secondary transform index 1120 may be signalled to specify whether or not to apply a
secondary transform. Further conditioning on the signalling of the secondary transform

index 1120 is described with reference to Fig. 14 and 16.

[000152] If a secondary transform is to be applied, the secondary transform index 1120
indicates which kernel is selected. Generally, two kernels are available in a ‘candidate set’ of
kernels. Generally, there are four candidate sets, with one candidate set selected using the intra
prediction mode of the block. The luma intra prediction mode is used to select the candidate set
for the luma block and the chroma intra prediction mode is used to select the candidate set for
the two chroma blocks. As described with reference to Figs. 8A-8D, the selected kernels also
depend on the TB size, with different kernels for 4x4, 4xN/Nx4, and other size TBs. When the
4:2:0 chroma format is in use, the chroma TBs are generally half the width and height of the
corresponding luma TBs, resulting in different selected kernels for chroma blocks when luma
TBs of width or height of eight are used. For luma blocks of sizes 4x4, 4x8, 8x4, the one-to-
one correspondence of luma to chroma blocks in the shared coding tree is altered to avoid the

presence of small-sized chroma blocks, such as 2x2, 2x4, or 4x2,

[000153] The secondary transform index 1120 indicates the following for example: Index value
0 (not apply), one (apply first kernel of the candidate set), or two (apply second kernel of the
candidate set). For chroma, the selected secondary transform kernel of the candidate set

derived considering the chroma TB size and chroma intra prediction mode is applied to each

23954677_1

03 Dec 2019

2019275553

43

chroma channel and thus the residuals of the Cb block 1224 and the Cr block 1226 need to only
include significant coefficients in positions subject to secondary transformation, as described
with reference to Figs. 8A-D. If joint CbCr coding is used, the requirement to only include
significant coefficients in positions subject to secondary transformation is applicable only to the
single coded chroma TB, as the resulting Cb and Cr residuals only contain significant

coefficients in positions corresponding to significant coefficients in the joint coded TB.

[000154] Fig. 12 shows a syntax structure 1200 for slice data 1204 (e.g., 1020) for a bitstream
(e.g., 115, 133) with a separate coding tree for luma and chroma coding units of a coding tree
unit. A separate coding tree is available for ‘I-slices’. The slice data 1204 includes one or more
CTUs, such as CTU 1210. CTU 1210 is generally 128x128 luma samples in size and begins
with a shared tree including one quad-tree split common to luma and chroma. At each of the
resulting 64x64 nodes, separate coding trees commence for luma and chroma. An example
node 1214 is marked in Fig. 12. The node 1214 has a luma node 1214a and a chroma node
1214b. A luma tree commences from the luma node 1214a and a chroma tree commences from
the chroma node 1214b. The trees continuing from the node 1214a and the node 1214b are
independent between luma and chroma, so different splits options are possible to produce the
resulting CUs. A luma CU 1220 belongs to the luma coding tree and includes a luma prediction
mode 1221, a luma transform tree 1222 and a secondary transform index 1224. The luma
transform tree 1222 includes a TU 1230. Since the luma coding tree encodes samples of the
luma channel only, the TU 1230 includes a luma TB 1234 and a luma transform skip flag 1232
indicates of the luma residual is to be transformed or not. The luma TB 1234 includes a last

position 1236 and residual coefficients 1238.

[000155] A chroma CU 1250 belongs to the chroma coding tree and includes a chroma
prediction mode 1251, a chroma transform tree 1252 and a secondary transform index 1254.
The chroma transform tree 1252 includes a TU 1260. As the chroma tree includes chroma
blocks, the TU 1260 includes a Cb TB 1264 and a Cr TB 1268. Application of bypassing of
transforming for the Cb TB 1264 and the Cr CB 1268 is signalled with a Cb transform skip

flag 1262 and a Cr transform skip flag 1266, respectively. Each TB includes a last position and
residual coefficients, for example a last position 1270 and residual coefficients 1272 are
associated with the Cb TB 1264. Signalling of the secondary transform index 1254, applicable

to the chroma TBs of a chroma tree, is described with reference to Figs. 14 and 16.

[000156] Fig. 17 shows a 32x32 TB 1700. A conventional scan pattern 1710 is shown applied
to the TB 1700. The scan pattern 1710 progresses through the TB 1700 in a backward diagonal

23954677_1

03 Dec 2019

2019275553

44

manner, starting from a last significant coefficient position and progressing towards the DC
(top-left) coefficient position. The progression divides the TB 1700 into 4x4 sub-blocks. Each
sub-block is scanned in a backward diagonal manner internally, as shown in several sub-blocks
of the TB 1700, for example a sub-block 1750. Other sub-blocks are scanned in the same
manner. However, a limited number of sub-blocks are shown with full scanning in Fig. 17 for
ease of reference. The progression from one 4x4 sub-block to the next also follows a backward

diagonal scan, spanning the entire TB 1700.

[000157] If MTS is to be used, only coefficients in the top-left 16x16 portion 1740 of the

TB 1700 may be significant. The top-left 16x16 portion forms a threshold cartesian location (in
this example (15, 15)) at or within which MTS can be applied. MTS cannot be applied if the
last significant coefficient is outside the threshold cartesian location whether in in terms of X or
Y coordinates. That is, if either X or Y co-ordinate of the last significant coefficient position
exceeds 15 then MTS cannot be applied and a DCT-2 is applied (or the transform is skipped). A
last significant coefficient position is expressed as a Cartesian co-ordinate relative to the DC
coefficient position in the TB 1700. For example, a last significant coefficient position 1730 is
15,15. The scan pattern 1710, commencing from the position 1730 and progressing towards the
DC coefficient, results in scanning sub-blocks 1720 and 1721 (identified with shading) that are
zeroed-out in the video encoder 114 when MTS is applied and are not used by the video
decoder 134. The video decoder 134 needs to decode residual coefficients in the sub-

blocks 1720 and 1721 as 1720 and 1721 are included in the scan, however the decoded residual
coefficients of the sub-blocks 1720 and 1721 are not used when MTS is applied. At least,
residual coefficients in the sub-blocks 1720 could be required to be zero-valued for MTS to be
applied, reducing the associated coding cost and preventing bitstreams from encoding
significant residual coefficients in the sub-blocks when MTS is applied. That is, parsing the
‘mts_idx’ syntax element could be conditioned, not only on the last significant position being
within the portion 1740 but also on the sub-blocks 1720 and 1721 containing only zero-valued

residual coefficients.

[000158] Fig. 18 shows a scan pattern 1810 for a 32x32 TB 1800 used the arrangements
described. The scan pattern 1810 groups 4x4 sub-blocks into several ‘collections’, such as a

collection 1840.

[000159] In the context of the present disclosure, in relation to scan patterns, a collection
provides a non-overlapping set of sub-blocks (i) that form an area or region of size applicable

for MTS, or (ii) form an area or region that surrounds an area applicable for MTS. The scan

23954677_1

03 Dec 2019

2019275553

45

pattern traverses the transform block by progressing a number of non-overlapping collections of
sub-blocks of residual coefficients, progressing from a current collection to a next collection

after completing scanning of the current collection.

[000160] In the example of Fig. 18, each collection is a two-dimensional array of 4x4 sub-
blocks having a width and height of at most four sub-blocks (option (i) for collections). The
collection 1840 corresponds to the region of potential significant coefficients when MTS is in
use, i.e. a 16x16 region of the TB 1800. The scan pattern 1810 progresses from one collection
to the next collection without re-entry, that is, once all residual coefficients in one collection
have been scanned, the scan pattern 1810 progresses to the next collection. The scan 1810
effectively completes a scan pattern of a current collection in full before progressing to scan a
next collection. The collections are non-overlapping and each residual coefficient position is
scanned once, commencing from a last position and progressing towards the DC (top-left)

coefficient position.

[000161] As with the scan pattern 1710, the scan pattern 1810 also divides the TU 1800 into
4x4 sub-blocks. Due to the monotonic progression from one collection to the next, once
scanning reaches the top-left collection 1840, no further scanning of residual coefficients
outside of the collection 1840 occurs. In particular, if the last position is within the

collection 1840, for example at a last position 1830 at the 15,15 position, then all residual
coefficients outside of the collection 1840 are not significant. The residual coefficients

outside 1840 being zero is aligned to the zero-out performed in the video encoder 114 when
MTS is in use. Accordingly, the video decoder 134 need only check the last position is within
the collection 1840 to enable parsing of the mts_idx syntax element (1122 when the CU
belongs to a single coding tree and 1226 when the CU belongs to the luma branch of a separate
coding tree). Use of the scan pattern 1810 removes a need to ensure any residual coefficients
outside of the collection 1840 are zero-valued. Whether coefficiants outside the collection 1840
is already apparent by virtue of the scan pattern 1810 with a collection size aligned to the MTS
transform coefficient region. By dividing the TB 1800 into a set of collections, each of which
is the same size, the scan pattern 1810 may also enable a memory consumption reduction
compared to the scan pattern 1710. The memory reduction is enabled as the scan over the

TB 1800 can be constructed out of the scan over one collection. For TBs of size 16%32 and
32x16, the same approach of 16x16-sized collections can be used, with two collections in use.
For TBs of size 32x8, a division into collections is possible, with a collection size constrained
to 16x8 due to the TB size. The division into collections for a 32x8 TB results in the same scan

pattern as a regular diagonal progression over the eight by two array of 4x4 sub-blocks

23954677_1

03 Dec 2019

2019275553

46

comprising the 32x8 TB. Accordingly, the property of significant coefficients in the 8x16
region of coefficients subject to MTS transform for a 32x8 TB is met by checking the last
position is within the left half of the 32x8 TB.

[000162] Fig. 19 shows a TB 1900 of size 8x32. A division into collections is possible for the
TB 1900. In the example of Fig. 19, a collection size is constrained to 8x16 due to the TB size,
such as a collection 1940. The division into collections for the 8x32 TB 1900 results in a
different sub-block order compared to a regular diagonal progression over the two by eight
array of 4x4 sub-blocks comprising the 8x32 TB (for example shown in Fig. 18). Use of an
8x16 collection size ensures that provided the last significant coefficient position is within the
collection 1940, significant coefficients are only possible in the MTS transform coefficient

region, for example a last significant position 1930 at 7,15.

[000163] The scan patterns of Figs. 18 and 19 scan residual coefficients in each sub-block in a
backward diagonal manner. Sub-blocks in each collection are scanned in a backward diagonal
manner in the examples of Figs. 18 and 19. Scanning between collections is conducted in a

backward diagonal manner in Figs. 18 and 19.

[000164] Fig. 20 shows an alternative scan order 2010 for a 32x32 TB 2000. The scan order
(scan pattern) 2010 is divided into portions 2010a to 2010f. The scan order 2010 to 2010e
relates to option (ii) for collections, a set of sub-blocks that form an area or region that
surrounds an area applicable for MTS. The scan pattern 2010f relates to (i) a collection of
covering a region 2040 that forms an area applicable for MTS. The scan order 2010a-2010f is
defined such that a backward diagonal progression from one sub-block to the next occurs over
the TB 2000 except for the region 2040, which is subsequently scanned using a backward
diagonal scan progression. The region 2040 corresponds to the MTS transform coefficient
region. The division of the TB 2000 into a scan over sub-blocks outside of the MTS transform
coefficient region followed by a scan over sub-blocks within the MTS transform coefficient
region results in a progression over sub-blocks as shown in 2010a, 2010b, 2010c, 2010d, 2010e,
and 2010f. The scan pattern 2010 identifies two collections, being a collection defined by 2010a
to 2010e and a collection defined by a region 2040, scanned by 2010f. Scanning is performed in
a manner than allows all sub-blocks bordering the collection 2040 to be scanned prior to the
bottom-right corner (2030) of the collection 2040. The scan pattern 2010 scans the collection of
sub-blocks formed using the scans 2010a to 2010e. Upon completion of the collection covered
by 2010a to 2010e, the scan pattern 2010 continues to the next collection, 2040, scanned

according to 2010f. The property of checking the last significant coefficient position, such as

23954677_1

03 Dec 2019

2019275553

47

2030, is within the region 2040 to enable signalling of mts_idx is present, without a need to also

check any residual coefficients outside of the region 2040 are zero-valued.

[000165] Scanning of residual coefficients is performed in a variation on backward diagonal
scanning in fig. 20. The scan pattern scans the collections in backward raster manner in Fig. 20.
In variations on the patterns of Fig. 18 and Fig. 19, the collections may be scanned in backward

raster order.

[000166] Scan patterns shown in Figs. 18-20, that is 1810, 1910, and 2010a-f, substantially
retain the property of progressing from the highest-frequency coefficients of a TB towards the
lowest-frequency coefficients of the TB, compared to the scan pattern 1710 of Fig. 17.
Accordingly, arrangements of the video encoder 114 and the video decoder 134 using the scan
patterns 1810, 1910, and 2010a-f achieve similar compression efficiency as that achieved when
using the scan pattern 1710, while enabling M TS index signalling to be dependent on the last
significant coefficient position without further need to check for zero-valued residual

coefficients outside of the MTS transform coefficient region.

[000167] Fig. 13 shows a method 1300 for encoding the frame data 113 into the bitstream 115,
the bitstream 115 including one or more slices as sequences of coding tree units. The

method 1300 may be embodied by apparatus such as a configured FPGA, an ASIC, or an
ASSP. Additionally, the method 1300 may be performed by the video encoder 114 under
execution of the processor 205. As such, the method 1300 may be implemented as modules of

the software 233 stored on computer-readable storage medium and/or in the memory 206.

[000168] The method 1300 begins at an encode SPS/PPS step 1310. At step 1310 the video
encoder 114 encodes the SPS 1010 and the PPS 1012 into the bitstream 115 as sequences of
fixed and variable length encoded parameters. Parameters of the frame data 113, such as
resolution and sample bit depth, are encoded. Parameters of the bitstream, such as flags
indicating the usage of particular coding tools, are also encoded. The picture parameter set
includes parameters specifying the frequency with which ‘delta QP’ syntax elements are present

in the bitstream 113, offsets for chroma QP relative to luma QP, and the like.

[000169] The method 1300 continues from step 1310 to an encode picture header step 1320. In
execution of step 1320 the processor 205 encodes the picture header (for example 1015) into
the bitstream 113, the picture header 1015 being applicable to all slices in the current frame.

The picture header 1015 may include partition constraints signalling the maximum allowed

23954677_1

03 Dec 2019

2019275553

48

depths of binary, ternary, and quadtree splitting, overriding similar constraints included as part

of the SPS 1010.

[000170] The method 1300 continues from step 1320 to an encode slice header step 1330. At
step 1330 the entropy encoder 338 encodes the slice header 1118 into the bitstream 115.

[000171] The method 1300 continues from step 1330 to a divide slice into CTUs step 1340. In
execution of step 1340 the video encoder 114 divides the slice 1016 into a sequence of CTUs.
Slice boundaries are aligned to CTU boundaries and CTUs in a slice are ordered according to a
CTU scan order, generally a raster scan order. The division of a slice into CTUs establishes an
order in which portions of the frame data 113 are to be processed by the video encoder 113 in

encoding each current slice.

[000172] The method 1300 continues from step 1340 to a determine coding tree step 1350. At
step 1350 the video encoder 114 determines a coding tree for a current selected CTU in the
slice. The method 1300 starts from the first CTU in the slice 1016 on the first invocation of the
step 1350 and progresses to subsequent CTUs in the slice 1016 on subsequent invocations. In
determining the coding tree of a CTU, a variety of combinations of quadtree, binary, and

ternary splits are generated by the block partitioner 310 and tested.

[000173] The method 1300 continues from step 1350 to a determine coding unit step 1360. At
step 1360 the video encoder 114 executes to determine encodings for the CUs resulting from
various coding trees under evaluation using known methods. Determining encodings involves
determining a prediction mode (e.g. intra prediction 387 with specific mode or inter prediction
with motion vector) and the primary transform type 389. If the primary transform type 389 is
determined to be DCT-2 and all quantised primary transform coefficient that is not subject to
forward secondary transformation are not significant, the secondary transform index 388 is
determined and may indicate application of the secondary transform (for example encoded as
1120, 1224 or 1254). Otherwise the secondary transform index 388 indicates bypassing of the
secondary transform. Additionally, a transform skip flag 390 is determined for each TB in the
CU, indicating to apply the primary (and optionally the secondary) transform, or to bypass
transforms altogether (for example 1126/1130/1134 or 1232/1262/1266). For the luma channel,
the primary transform type is determined to be DCT-2, transform skip, or one of the MTS
options and for the chroma channels, DCT-2 or transform skip are the available transform
types. Determining the encoding can also include determining a quantisation parameter where it

is possible to change the QP, that is, where a ‘delta QP’ syntax element is to be encoded into

23954677_1

03 Dec 2019

2019275553

49

the bitstream 115. In determining individual coding units the optimal coding tree is also
determined, in a joint manner. When a coding unit in a shared coding tree is to be coded using
intra prediction, a luma intra prediction mode and a chroma intra prediction are determined at
step 1360. When a coding unit in a separate coding tree is to be coded using intra prediction,
either a luma intra prediction mode or a chroma intra prediction mode is determined at step

1360, depending on the branch of the coding tree being luma or chroma, respectively.

[000174] The determine coding unit step 1360 may inhibit testing application of the secondary
transform when there are no ‘AC’ residual coefficients present in the primary domain residual
resulting from application of the DCT-2 primary transform by the forward primary transform
module 326. AC residual coefficients are residual coefficients in locations other than the top-
left position of the transform block. The inhibition of testing secondary transform when only a
DC primary coefficient exists spans the blocks for which the secondary transform index 388
applies, that is, Y, Cb and Cr for shared tree (with Y channel only when the Cb and Cr blocks
are width or height of two samples). Regardless of whether the coding unit is for shared or
separate tree coding tree, provided at least one significant AC primary coefficient exists, the
video encoder 114 tests for selection of non-zero secondary transform index values 388 (that is,

for application of the secondary transform).

[000175] The method 1300 continues from step 1360 to an encode coding unit step 1370. At
step 1370 the video encoder 114 encodes the determined coding unit of the step 1360 into the
bitstream 115. An example of how the coding unit is encoded is described in more detail with

reference to Fig. 14.

[000176] The method 1300 continues from step 1370 to a last coding unit test step 1380. At
step 1380 the processor 205 tests if the current coding unit is the last coding unit in the CTU. If
not (“NO” at step 1380), control in the processor 205 returns to the determine coding unit

step 1360. Otherwise, if the current coding unit is the last coding unit (“YES” at step 1380)

control in the processor 205 progresses to a last CTU test step 1390.

[000177] At the last CTU test step 1390 the processor 205 tests if the current CTU is the last
CTU in the slice 1016. If the current CTU is not the last CTU in the slice 1016 (“NO” at step
1390), control in the processor 205 returns to the determine coding tree step 1350. Otherwise, if
the current CTU is the last (“YES” at step 1390), control in the processor 205 progresses to a
last slice test step 13100.

23954677_1

03 Dec 2019

2019275553

50

[000178] At the last slice test step 13100 the processor 205 tests if the current slice being
encoded is the last slice in the frame. If the current slice is not the last slice (“NO” at step
13100), control in the processor 205 returns to the encode slice header step 1330. Otherwise, if
the current slice is the last slice and all slices have been encoded (“YES” at step 13100) the

method 1300 terminates.

[000179] Fig. 14 shows a method 1400 for encoding a coding unit into the bitstream 115,
corresponding to the step 1370 of Fig. 13. The method 1400 may be embodied by apparatus
such as a configured FPGA, an ASIC, or an ASSP. Additionally, the method 1400 may be
performed by the video encoder 114 under execution of the processor 205. As such, the
method 1400 may be stored as modules of the software 233 on computer-readable storage

medium and/or in the memory 206.

[000180] The method 1400 results in improved compression efficiency by encoding the
secondary transform index 1254 only when it is possible to apply to the chroma TBs of the

TU 1260, and only encoding the secondary transform index 1120 when it is possible to apply to
any of the TBs of the TU 1124. When a shared coding tree is in use, the method 1400 is
invoked for each CU in the coding tree, e.g. CU 1114 of Fig. 11, with Y, Cb, and Cr colour
channels being encoded. When a separate coding tree is in use, the method 1400 is firstly
invoked for each CU in the luma branch 1214a, e.g. 1220, and the method 1400 is also invoked
for each chroma CU, e.g. 1250, in the chroma branch 1214b.

[000181] The method 1400 starts at a generate prediction block step 1410. At step 1410 the
video encoder 114 generates the prediction block 320 according to a prediction mode for the
CU as determined at the step 1360, e.g. the intra prediction mode 387. The entropy

encoder 338 encodes the intra prediction mode 387 for the coding unit, as determined at the
step 1360, into the bitstream 115. A ‘pred mode’ syntax element is encoded to distinguish
between use of intra prediction, inter prediction, or other prediction modes for the coding unit.
If intra prediction is used for the coding unit then a luma intra prediction mode is encoded if a
luma PB is applicable to the CU and a chroma intra prediction mode is encoded if chroma PBs
are applicable to the CU. That is, for an intra-predicted CU belonging to a shared tree, such as
the CU 1114, the prediction mode 1116 includes the luma intra prediction mode and the chroma
intra prediction mode. For an intra predicted CU belonging to the luma branch of a separate
coding tree, such as the CU 1220, the prediction mode 1221 includes the luma intra prediction
mode. For an intra predicted CU belong to the chroma branch of a separate coding tree, such as

the CU 1250, the prediction mode 1251 includes the chroma intra prediction mode. The

23954677_1

03 Dec 2019

2019275553

51

primary transform type 389 is encoded to select between use of DCT-2 horizontally and
vertically, transform skip horizontally and vertically, or combinations of DCT-8 and DST-7

horizontally and vertically for the luma TB of the coding unit.

[000182] The method 1400 continues from step 1410 to a determine residuals step 1420. The
prediction block 320 is subtracted from the corresponding block of frame data 312 by the
difference module 322 to produce the difference 324.

[000183] The method 1400 continues from step 1420 to a transform residuals step 1430. At the
transform residuals step 1430 the video encoder 114, under execution of the processor 205,
either bypasses primary and secondary transform on the residual of the step 1420 or performs
transforms according to the primary transform type 389 and a secondary transform index 388
for each TB of the CU. Transforming of the difference 324 may be performed or bypassed
according to the transform skip flags 390, and if transformed, the secondary transform may also
be applied, as determined at the step 1350 to produce the residual samples 350, as described
with reference to Fig. 3. After operation of the quantisation module 334 residual

coefficients 336 are available.

[000184] The method 1400 continues from step 1430 to an encode luma transform skip flag
step 1440. At the step 1440 the entropy encoder 338 encodes a context-coded transform skip
flag 390 into the bitstream 115, indicating either the residual for the luma TB is to be
transformed according to a primary transform, and possibly a secondary transform, or primary
and secondary transforms are to be bypassed. The step 1440 is performed when the CU
includes a luma TB, i.e., in a shared coding tree (encoding 1126) or luma branch of a dual tree

(encoding 1232).

[000185] The method 1400 continues from step 1440 to an encode luma residual step 1450. At
the step 1450 the entropy encoder 338 encodes the residual coefficients 336 for the luma TB
into the bitstream 115. The step 1450 operates to select a suitable scan patterns based on the
dimensions of the coding unit. Examples of scan patterns are described in relation to Fig. 17 (a
conventional scan pattern) and Figs. 18 to 20 (additional scan patterns used for determining
MTS flag). In the example described herein, a scan pattern relating to the examples of Figs. 18
to 20 is used. The residual coefficients 336 are typically scanned into a list according to a
backward diagonal scan pattern, with 4x4 sub-blocks. For TBs having a width or height larger
than 16 samples, the scan pattern is as described with reference to Figs. 18, 19 and 20. The

position of the first non-zero residual coefficient in the list is encoded in the bitstream 115 as a

23954677_1

03 Dec 2019

2019275553

52

Cartesian co-ordinate relative to the top-left coefficient of the transform block, i.e. 1140. The
remaining residual coefficients are encoded in order from the coefficient at the last position to
the DC (top-left) residual coefficient, as residual coefficients 1144, The step 1450 is performed
when the CU includes a luma TB, i.e., in a shared coding tree (encoding 1128) or the CU
belongs to the luma branch of a dual tree (encoding 1234).

[000186] The method 1400 continues from step 1450 to an encode chroma transform skip flags
step 1460. At the step 1460 the entropy encoder 338 encodes another two context-coded
transform skip flags 390 into the bitstream 115, one for each chroma TB, indicating whether the
corresponding TB is to be subject to DCT-2 transform, and optionally a secondary transform, or
transforming is to be bypassed. The step 1460 is performed when the CU includes chroma TBs,
1.e., in a shared coding tree (encoding 1130 and 1134) or chroma branch of a dual tree

(encoding 1262 and 1266).

[000187] The method 1400 continues from step 1460 to an encode chroma residuals step 1470.
At the step 1470 the entropy encoder 338 encodes residual coefficients for the chroma TBs into
the bitstream 115, as described with reference to step 1450. The step 1460 is performed when
the CU includes chroma TBs, i.e., in a shared coding tree (encoding 1132 and 1136) or chroma
branch of a dual tree (encoding 1264 and 1268). For chroma TBs having a width or height
larger than 16 samples, the scan pattern is as described with reference to Figs. 18, 19 and 20.
Using the scan patterns of Figs. 18 to 20 for luma TBs and chroma TBs avoids the need to

define different scan patterns between luma and chroma for TBs of the same size.

[000188] The method 1400 continues from step 1470 to an LENST signalling test step 1480.
At the step 1480 the processor 205 determines if the secondary transform may be applicable to
any TB of the CU. If all of the TBs of the CU use transform skip, then there is no need to
encode the secondary transform index 388 (“NO” at step 1480) and the method 1400 progresses
to an MTS signalling test step 14100. For a shared coding tree, for example, each of the luma
TB and the two chroma TBs are transform skipped for step 1480 to return “NO”. For a separate
coding tree, the luma TB in a luma branch of the coding tree is transform skipped or the two
chroma TBs in the a chroma branch of the coding tree are both transform skipped for step 1480
to return “NO” for invocations relating to luma and chroma respectively. For the secondary
transform to be performed, the applicable TBs need to only include significant residual
coefficients in the positions of the TB that are subject to secondary transformation. That is, all
other residual coefficients must be zero, a condition achieved when the last position of a TB

within 806, 824, 842, or 862 for the TB sizes shown in Figs. 8 A-8D. If the last position of any

23954677_1

03 Dec 2019

2019275553

53

TB in the CU is outside of 806, 824, 842, or 862 for the considered TB size, secondary
transformation is not performed (“NO” at step 1480) and the method 1400 progresses to the
MTS signalling test step 14100.

[000189] For chroma TBs, widths or heights of two may occur. TBs with a width or height of
two are not subject to secondary transformation, as there is no kernel defined for TBs of such
dimensions (‘NO’ at step 1480) and the method 1400 progresses to the MTS signalling test
step 14100. An additional condition on performing the secondary transform is the presence of
at least on AC residual coefficient among the applicable TBs. That is, if the only significant
residual coefficients are in the DC (top-left) position of each applicable TB, then the secondary
transform is not performed (‘NO’ at step 1480) and the method 1400 progresses to the MTS
signalling test step 14100. Provided at least one TB of the CU is subject to the primary
transform (transform skip flag indicates no skip for at least one TB of the CU), last position
constraints on TBs subject to primary transform are met, and at least one AC coefficient is
included in one or more of the TBs subject to primary transform (“YES’ at step 1480), control
in the processor 205 progresses to an encode LENST index step 1490.At the encode LENST
index step 1490 the entropy encoder 338 encodes a truncated unary codeword indicating three
possible selections for application of the secondary transform. The selections are zero (not
applied), one (first kernel of candidate set applied), and two (second kernel of candidate set
applied). The codeword uses at most two bins, each of which is context coded. By virtue of the
testing performed at the step 1480, the step 1490 is only performed when the secondary
transform can be applied, i.e. for non-zero indices to be encoded. The step 1490 encodes 1120

or 1224 or 1225 for example.

[000190] Effectively, operation of steps 1480 and 1490 allow that the secondary transform
index 1254 for chroma in a separate tree structure is encoded only when the secondary
transform can be applied to chroma TBs of the TU 1260. In a shared tree structure steps 1480
and 1490 operate to encode the secondary transform index 1120 only if the secondary transform
can be applied to any of the TBs of the TU 1124. In excluding the relevant secondary transform
index (such as 1254 and 1120), the method 1400 operates to increase coding efficiency. In
particular, in the shared or dual tree case, an unnecessary flag is avoided, thereby decreasing the
number of bits required and improving coding efficiency. In the separate tree case, the
secondary transform is not necessarily suppressed for chroma if the corresponding luma

transform block is transform skipped.

[000191] The method 1400 progresses from step 1490 to the MTS signalling test step 14100.

23954677_1

03 Dec 2019

2019275553

54

[000192] At the MTS signalling step 14100 the video encoder 114 determines if the MTS index
needs to be encoded into the bitstream 115 or not. If use of the DCT-2 transform was selected
at the step 1360, the last significant coefficient position may be anywhere in the upper-left
32x32 region of the TB. If the last significant coefficient position is outside of the top-left
16x16 region of the TB and the scans of Figs. 18 and 19 are used (rather than the scan pattern
of Fig. 17), it is not necessary to explicitly signal mts_idx in the bitstream. The signal mts idx
is not required in the bitstream in this event because usage of MTS would not produce a last
significant coefficient outside the top-left 16x16 region. The step 14100 returns “NO” and the
method 1400 terminates, with DCT-2 usage implied by the last significant coefficient position.

[000193] Non-DCT-2 selections for the primary transform type are only available when the TB
width and height are less than or equal to 32. Accordingly, for TBs of width or height
exceeding 32, the step 14100 returns “NO” and the method 1400 terminates at the step 14100.
Non-DCT-2 selections are also only available if the secondary transform is not applied,
accordingly, if the secondary transform type 388 was determined to be non-zero at the

step 1360, the step 14100 returns “NO” and the method 1400 terminates at the step 14100.

[000194] Presence of a last significant coefficient position is within the top-left 16x16 region of
the TB when using the scans of Figs. 18 and 19 may result either from application of a DCT-2
primary transform or an MTS combination of DST-7 and/or DCT-8, necessitating explicit
signalling of mts_idx to encode the selection made at the step 1360. Accordingly, when the last
significant coefficient position is within the top-left 16x16 region of the TB, the step 14100
returns “YES” and the method 1400 progresses to an encode MTS index step 14110.

[000195] At the encode MTS index step 14110 the entropy encoder 338 encodes a truncated
unary bin string representing the primary transform type 389. The step 14110 can encode 1122
or 1226 for example. The method 1400 terminates upon execution of step 14110.

[000196] Fig. 15 shows a method 1500 for decoding the bitstream 133 to produce frame

data 135, the bitstream 133 including one or more slices as sequences of coding tree units. The
method 1500 may be embodied by apparatus such as a configured FPGA, an ASIC, or an
ASSP. Additionally, the method 1500 may be performed by the video decoder 134 under
execution of the processor 205. As such, the method 1500 may be stored as one or more

modules of the software 233 on computer-readable storage medium and/or in the memory 206.

[000197] The method 1500 begins at a decode SPS/PPS step 1510. At step 1510 the video
decoder 134 decodes the SPS 1010 and the PPS 1012 from the bitstream 133 as sequences of

23954677_1

03 Dec 2019

2019275553

55

fixed and variable length encoded parameters. Parameters of the frame data 113, such as
resolution and sample bit depth, are decoded. Parameters of the bitstream, such as flags
indicating the usage of particular coding tools, are also decoded. Default partition constraints
signal the maximum allowed depths of binary, ternary, and quadtree splitting and are also

decoded as part of the SPS 1010 by the video decoder 134.

[000198] The method 1500 continues from step 1510 to a decode picture header step 1520. In
execution of step 1520 the processor 205 decodes the picture header 1015 from the

bitstream 113, applicable to all slices in the current frame. The picture parameter set includes
parameters specifying the frequency with which ‘delta QP syntax elements are present in the
bitstream 133, offsets for chroma QP relative to luma QP, and the like. Optional overridden
partition constraints signal the maximum allowed depths of binary, ternary, and quadtree

splitting and may also be decoded as part of the picture header 1015 by the video decoder 134.

[000199] The method 1500 continues from step 1520 to a decode slice header step 1530. At
step 1530 the entropy decoder 420 decodes the slice header 1018 from the bitstream 133.

[000200] The method 1500 continues from step 1530 to a divide slice into CTUs step 1540. In
execution of step 1540 the video encoder 114 divides the slice 1016 into a sequence of CTUs.
Slice boundaries are aligned to CTU boundaries and CTUs in a slice are ordered according to a
CTU scan order, generally a raster scan order. The division of a slice into CTUs establishes
which portion of the frame data 133 is to be processed by the video encoder 133 in decoding the

current slice.

[000201] The method 1500 continues from step 1540 to a decode coding tree step 1550. At
step 1550 the video decoder 134 decodes a coding tree for a current selected CTU in the slice.
The method 1500 starts from the first CTU in the slice 1016 on the first invocation of the

step 1550 and progresses to subsequent CTUs in the slice 1016 on subsequent invocations. In
decoding the coding tree of a CTU, flags are decoded that are indicative of the combination of

quadtree, binary, and ternary splits as determined at the step 1350 in the video encoder 114.

[000202] The method 1500 continues from step 1550 to a decode coding unit step 1570. At
step 1570 the video decoder 134 decodes the determined coding unit of the step 1560 from the
bitstream 133. An example of how the coding unit is decoded is described in more detail with

reference to Fig. 16.

23954677_1

03 Dec 2019

2019275553

56

[000203] The method 1500 continues from step 1570 to a last coding unit test step 1580. At
step 1580 the processor 205 tests if the current coding unit is the last coding unit in the CTU. If
not (“NO” at step 1580), control in the processor 205 returns to the decode coding unit

step 1560. Otherwise, if the current coding unit is the last coding unit (“YES” at step 1580)
control in the processor 205 progresses to a last CTU test step 1590.

[000204] At the last CTU test step 1590, the processor 205 tests if the current CTU is the last
CTU in the slice 1016. If not the last CTU in the slice 1016 (“NO” at step 1590), control in the
processor 205 returns to the decode coding tree step 1550. Otherwise, if the current CTU is the
last (“YES” at step 1590), control in the processor progresses to a last slice test step 15100.

[000205] At the last slice test step 15100 the processor 205 tests if the current slice being
decoded is the last slice in the frame. If the current slice is not the last slice (“NO” at step
15100), control in the processor 205 returns to the decode slice header step 1530. Otherwise, if
the current slice is the last slice and all slices have been decoded (“YES” at step 15100) the

method 1500 terminates.

[000206] Fig. 16 shows a method 1600 for decoding a coding unit from the bitstream 133,
corresponding to the step 1570 of Fig. 15. The method 1600 may be embodied by apparatus
such as a configured FPGA, an ASIC, or an ASSP. Additionally, the method 1600 may be
performed by the video decoder 134 under execution of the processor 205. As such, the
method 1600 may be stored on computer-readable storage medium and/or as one or more

modules of the software 233 in the memory 206.

[000207] When a shared coding tree is in use, the method 1600 is invoked for each CU in the
coding tree, e.g. CU 1114 of Fig. 11, with Y, Cb, and Cr colour channels being encoded in a
single invocation. When a separate coding tree is in use, the method 1600 is firstly invoked for
each CU in the luma branch 1214a, e.g. 1220, and the method 1600 is also separately invoked
for each chroma CU, e.g. 1250, in the chroma branch 1214b.

[000208] The method 1600 starts at a decode luma transform skip flag step 1610. At the

step 1610 the entropy decoder 420 decodes a context-coded transform skip flag 478 (for
example encoded in the bitstream as 1126 in Fig. 11 or 1232 in Fig. 12) from the bitstream 133.
The skip flag indicates whether transforms are to be applied to the luma TB. The transform skip
flag 478 indicates that the residual for the luma TB is to be transformed according to (i) a
primary transform, (ii) a primary transform and a secondary transform, or (iii) that primary and

secondary transforms are to be bypassed. The step 1610 is performed when the CU includes a

23954677_1

03 Dec 2019

2019275553

57

luma TB in a shared coding tree (decoding 1126 for example). The step 1610 is performed
when the CU belongs to the luma branch of a dual tree (decoding 1232) for a separate coding
tree CTU.

[000209] The method 1600 continues from step 1610 to a decode luma residual step 1620. At
the step 1620 the entropy decoder 420 decodes the residual coefficients 424 for the luma TB
from the bitstream 115. The residual coefficients 424 are assembled into a TB by applying a
scan to the list of decoded residual coefficients. The step 1620 operates to select a suitable scan
patterns based on the dimensions of the coding unit. Examples of scan patterns are described in
relation to Fig. 17 (a conventional scan pattern) and Figs. 18 to 20 (additional scan patterns
useful for determining MTS flag). In the example described herein, a scan pattern based on
patterns described in relation to Figs. 18-20 is used. The scan is typically a backward diagonal
scan pattern, using 4x4 sub-blocks, as defined with reference to Figs. 18 and 19. The position
of the first non-zero residual coefficient in the list is decoded from the bitstream 133 as a
Cartesian co-ordinate relative to the top-left coefficient of the transform block, i.e. 1140. The
remaining residual coefficients are decoded in order from the coefficient at the last position to

the DC (top-left) residual coefficient, as residual coefficients 1144,

[000210] For each sub-block other than the top-left sub-block of the TB and the sub-block
containing the last significant residual coefficient, a ‘coded sub-block flag’ is decoded to
indicate the presence of at least one significant residual coefficient in the respective sub-block.
If the coded sub-block flag indicates the presence of at least one significant residual coefficient
in a sub-block then a ‘significance map’, a set of flags, is decoded indicating the significance of
each residual coefficient in the sub-block. If a sub-block is indicated to include at least one
significant residual coefficient from a decoded coded sub-block flag and the scan reaches the
last scan position of the sub-block without encountering a significant residual coefficient, then
the residual coefficient at the last scan position in the sub-block is inferred to be significant.
The coded sub-block flags and the significance map (each flag being named ‘sig_coeff flag’)
are coded using context-coded bins. For each significant residual coefficient in a sub-block an
‘abs_level gtx flag’ is decoded, indicating if the magnitude of the corresponding residual
coefficient is greater than one or not. For each residual coefficient in a sub-block having a
magnitude greater than one, a ‘par_level flag’ and a ‘abs_level gtx flag2’ are decoded to

further determine the magnitude of the residual coefficient, according to the Equation (1):

AbsLevelPass1 = sig_coeff flag + par level flag + abs_level gtx flag +
2xabs level gtx flag?. (1)

23954677_1

03 Dec 2019

2019275553

58

[000211] The abs_level gtx flag and abs_level gtx flag2 syntax elements are coded using
context-coded bins. For each residual coefficient having abs_level gtx flag2 equal to one, a
bypass-coded syntax element ‘abs_remainder’ is decoded, using Rice-Golomb coding. The
decoded magnitude for a residual coefficient is determined as: AbsLevel = AbsLevelPass] +
2xabs remainder. A sign bit is decoded for each significant residual coefficient to derive the
residual coefficient value from the residual coefficient magnitude. The cartesian co-ordinates
of each sub-block in a scan pattern may be derived from the scan pattern by adjusting (right
shifting) the X and Y residual coefficient cartesian co-ordinates by the log2 of the sub-block
width and height, respectively. For luma TBs the sub-block size is always 4x4 resulting in
right-shifts of two bits for X and Y. The scan patterns of Figs.18-20 may also be applied to
chroma TBs to avoid storing different scan patterns for blocks of the same size but different
colour channels. The step 1620 is performed when the CU includes a luma TB, i.e., in a shared
coding tree (decoding 1128) or for an invocation for a luma branch of a dual tree (decoding

1234 for example).

[000212] The method 1600 continues from step 1620 to a decode chroma transform skip flags
step 1630. At the step 1630 the entropy decoder 420 decodes a context-coded flag from the
bitstream 133 for each chroma TB. For example, the context-coded flag may have been
encoded as 1130 and 1134 in Fig. 11 or 1262 and 1266 in Fig. 12) At least one flag is decoded,
one for each of the chroma TBs. The flags decoded at step 1630 indicate whether transforms
are to be applied to a corresponding chroma TB, in particular whether the corresponding
chroma TB is to be subject to DCT-2 transform, and optionally a secondary transform, or
whether all transforming for the corresponding chroma TB is to be bypassed. The step 1630 is
performed when the CU includes chroma TBs, i.e., the CU belongs to a shared coding tree
(decoding 1130 and 1134) or chroma branch of a dual tree (decoding 1262 and 1266).

[000213] The method 1600 continues from step 1630 to a decode chroma residuals step 1640.
At the step 1640 the entropy decoder 420 decodes residual coefficients for the chroma TBs
from the bitstream 133. the step 1640 operates in a similar manner to that described with
reference to step 1620 and in accordance with scan patterns defined in Figs. 18 and 19. The
step 1640 is performed when the CU includes chroma TBs, i.e., when the CU belongs to a
shared coding tree (decoding 1132 and 1136) or chroma branch of a dual tree (decoding 1264
and 1268).

[000214] The method 1600 continues from step 1640 to an LENST signal test step 1650. At
the step 1650 the processor 205 determines if the secondary transform is applicable to any TB

23954677_1

03 Dec 2019

2019275553

59

of the CU. The luma transform skip flag can have a different value to the chroma transform skip
flags. If all of the TBs of the CU use transform skip, then the secondary transform is not
applicable and there is no need to encode a secondary transform index (“NO” at step 1650) and
the method 1600 progresses to a determine LFNST index step 1660. For example, for a shared
coding tree, each of the luma TB and the two chroma TBs are transform skipped to return “NO”
at step 1650. For a CU belonging to the luma branch of a separate coding tree (e.g. 1220) the
step 1650 returns ‘NO’ when the luma TB is transform skipped. For a CU belonging to the
chroma branch of a separate coding tree (e.g. 1250) the step 1650 returns “NO” when both
chroma TBs are transform skipped. For a CU belonging to the chroma branch of a separate
coding tree (e.g.1250) and having a width or height of less than four samples the step1650
returns “NO”. For the secondary transform to be performed, the applicable TBs need to only
include significant residual coefficients in the positions of the TB that are subject to secondary
transformation. That is, all other residual coefficients must be zero, a condition achieved when
the last position of a TB is within 806, 824, 842, or 862 for the TB sizes shown in Figs. 8A-8D.
If the last position of any TB in the CU is outside of 806, 824, 842, or 862 for the considered
TB size, secondary transformation is not performed (“NO” at step 1650) and the method 1600
progresses to the determine LENST index step 1660. For chroma TBs, widths or heights of two
may occur. TBs with a width or height of two are not subject to secondary transformation, as
there is no kernel defined for TBs of such dimensions. An additional condition on performing
the secondary transform is the presence of at least on AC residual coefficient among the
applicable TBs. That is, if the only significant residual coefficients are in the DC (top-left)
position of each TB, then the secondary transform is not performed (“NO” at step 1650) and the
method 1600 progresses to the determine LFNST index step 1660. Constraints on last
significant coefficient position and presence of non-DC residual coefficient only apply to TBs
of applicable size, i.e., having width and height of greater than two samples. Provided at least
one applicable TB is transformed, last position constraints are met, and non-DC coefficient
requirement is met (‘YES’ at step 1650), control in the processor 205 progresses to a decode

LFNST index step 1670.

[000215] The determine LENST index step 1660 is implemented when a secondary transform
cannot be applied to any of the TBs associated with the CU. At step 1660 the processor 205
determines the secondary transform index to have a value of zero, indicating no application of
the secondary transform. Control in the processor 205 progresses from the step 1660 to an

MTS signalling step 1672.

23954677_1

03 Dec 2019

2019275553

60

[000216] At the decode LFNST index step 1670, the entropy decoder 420 decodes a truncated
unary codeword as secondary transform index 474 indicating three possible selections for
application of the secondary transform. The selections are zero (not applied), one (first kernel
of candidate set applied), and two (second kernel of candidate set applied). The codeword uses
at most two bins, each of which is context coded. By virtue of the testing performed at the

step 1650, the step 1670 is only performed when it is possible for the secondary transform to be
applied, i.e. for non-zero indices to be decoded. When the method 1600 is invoked as part of a
shared coding tree, the step 1670 decodes 1120 from the bitstream 133. When the method 1600
is invoked as part of a luma branch of a separate coding tree, the step 1670 decodes 1224 from
the bitstream 133. When step 1670 invoked as part of a chroma branch of a separate coding
tree, the step 1670 decodes 1254 from the bitstream 133. Control in the processor 205
progresses from the step 1670 to the MTS signalling step 1672.

[000217] The steps 1650, 1660 and 1670 operate to determine the LENST index, that is, 474.
The LFNST index is decoded from the video bitstream (for example decoding 1120, 1224 or
1254) if at least one of the luma transform skip flags and the chroma transform skip flags
applicable to the CU indicates that a transform of the respective transform block is not to be
skipped (“YES” at step 1650 and performing step 1670). The LFNST index is determined to
indicate that a secondary transform is not to be applied if all of the luma transform skip flag and
chroma transform skip flags applicable to the CU indicate transforms of the respective
transform blocks are to be skipped (“NO” at step 1650 and performing step 1660). In the shared
tree case, the luma and chroma skip values and LFNST indices can differ. For example, the
LFNST index decoded for chroma transform blocks can be based on the decoded chroma skip
flags even if the decoded luma transform skip flag, for example in a collocated block, indicates
that transforms for the luma block are to be skipped. The encoding steps 1480 and 1490 operate

in a similar manner.

[000218] At the MTS signalling step 1672 the video decoder 114 determines whether the MTS
index needs to be decoded from the bitstream 133 or not. If use of the DCT-2 transform was
selected at the step 1360, when encoding the bitstream, then the last significant coefficient
position may be anywhere in the upper-left 32x32 region of the TB. If the last significant
coefficient position decoded at the step 1620 is outside of the top-left 16x16 region of the TB
and the scans of Figs. 18 and 19 are used, it is not necessary to explicitly decode an mts_idx
because usage of any non-DCT-2 primary transform would not produce a last significant
coefficient outside this region. The step 1672 returns “NO” and the method 1600 progresses
from the step 1672 to a determine MTS index step 1674. Non-DCT2 primary transforms are

23954677_1

03 Dec 2019

2019275553

61

only available when the TB width and height are less than or equal to 32. Accordingly, for TBs
of width or height exceeding 32, the step 1672 returns “NO” and the method 1600 progresses to
the determine MTS index step 1674.

[000219] Non-DCT-2 primary transforms are only available when the secondary transform

type 474 indicates bypassing application of a secondary transform kernel, accordingly, when
the secondary transform type 474 has a non-zero value, the method 1600 progresses from the
step 1672 to the step 1674. Presence of a last significant coefficient position within the top-left
16x16 region of the TB, when using the scans of Figs. 18 and 19, may result either from
application of a DCT-2 primary transform or an MTS combination of DST-7 and/or DCT-8,
necessitating explicit signalling of mts_idx to encode the selection made at the step 1360.
Accordingly, when the last significant coefficient position is within the top-left 16x16 region of
the TB the step 1672 returns “YES” and the method 1600 progresses to a decode MTS index
step 1676.

[000220] At the determine MTS index step 1674 the video decoder 134 determines that DCT-2
is to be used as primary transform. The primary transform type 476 is set to zero. The

method 1400 progresses from the step 1674 to a transform residuals step 1680.

[000221] At the decode MTS index step 1676 the entropy decoder 420 decodes a truncated
unary bin string from the bitstream 133 to determine the primary transform type 476. The
truncated string is in the bitstream as 1122 in Fig. 11 or 1226 in Fig. 12 for example. The
method 1400 progresses from the step 1676 to the transform residuals step 1680.

[000222] The steps 1670, 1672 and 1674 operate to determine the MTS index for the coding
unit. The MTS index is decoded from the video bitstream if the last significant coefficient is at
or within the threshold coordinate (15, 15) (“YES” at step 1672 and step 1676). The MTS index
is determined to indicate that MTS is not to be applied if the last significant coefficient is
outside the threshold coordinate (“NO” at step 1672 and step 1674). The encoding steps 14100

and 14110 operate in a similar manner.

[000223] In an alternative arrangement of the video encoder 114 and the video decoder 134,
appropriately-sized chroma TBs (with MTS not being applicable to chroma TBs) are scanned in
accordance with the scan pattern as described with reference to Fig. 17 while luma TBs utilise
scans in accordance with Figs. 18 and 19, with DST-7/DCT-8 combinations only applicable to

luma TBs.

23954677_1

03 Dec 2019

2019275553

62

[000224] At the transform residuals step 1680 the video decoder 134, under execution of the
processor 205, either bypasses inverse primary and inverse secondary transform on the residual
of the step 1420 or performs inverse transforms according to the primary transform type 476
and the secondary transform index 474. The transforms are performed for each TB of the CU in
according with the decode transform skip flag 478 for each TB in the CU, as described with
reference to Fig. 4. The primary transform type 476 selects between use of DCT-2 horizontally
and vertically, or combinations of DCT-8 and DST-7 horizontally and vertically for the luma
TB of the coding unit. Effectively, step 1680 transforms the luma transform block of the CU
according to the decoded luma transform skip flag, the primary transform type 476, and the
secondary transform index determined by operation of steps 1610 and 1650 to 1670 to decode
the coding unit. The step 1680 can also transform the chroma transform blocks of the CU
according to the respective decoded chroma transform skip flags and the secondary transform
index determined by operation of steps 1630 and 1650 to 1670 to decode the coding unit. For
TBs belonging to the chroma channels (for example: 1132 and 1136 in the shared coding tree
case or 1264 and 1268 in the chroma branch of a separate coding tree case), the secondary
transform is only performed if the width and height of the TB is greater than or equal to four
samples, as there is no available secondary transform kernel of TBs having a width or height of
less than four samples. For TBs belonging to the chroma channels, restrictions on split
operations are in place in the VVC standard to prohibit intra-predicted CUs with TB sizes of
2x2,2x4, and 4x2, due to the difficulty in processing such small sizes of TB at the required
block throughput rate needed to support video formats such as UHD and 8K. Further
restrictions prohibit intra-predicted CUs with TBs of width 2 due to the difficulty in memory
access for on-chip memory typically used for producing reconstructed samples as part of the
intra-prediction operation. Accordingly, chroma TB sizes (in chroma samples) for which the

secondary transform does not apply are shown in Table 1

Chroma TB sizes for which
Chroma format Maximum transform size secondary transform is not
applicable
4:2:0 32x32 8x2, 16x2
4:2:0 64x64 8x2, 16x2, 32x2.
4:2:2 32x32 8x2, 16x2.

23954677_1

03 Dec 2019

2019275553

63

4:2:2 64x64 8x2,16x2, 32x2,
4:4:4 32x32 8x2,16x2, 32x2,
4:4:4 64x64 8x2, 16x2, 32x2, 64x2.

Table 1: chroma TB sizes (in chroma samples) for which the secondary transform does not

apply.

[000225] As described hereinbefore, different scan patterns can be used in encoding and
decoding. The step 1680 transforms the transform blocks of the CU according to the MTS index

to decode the coding unit.

[000226] The method 1600 continues from step 1680 to a generate prediction block step 1690.
At step 1690 the video decoder 134 generates the prediction block 452 according to a prediction
mode for the CU as determined at the step 1360 and decoded from the bitstream 113 by the
entropy decoder 420. The entropy decoder 420 decodes the prediction mode for the coding
unit, as determined at the step 1360, from the bitstream 133. A ‘pred mode’ syntax element is
decoded to distinguish between use of intra prediction, inter prediction, or other prediction
modes for the coding unit. If intra prediction is used for the coding unit then a luma intra
prediction mode is decoded if a luma PB is applicable to the CU and a chroma intra prediction

mode is decoded if chroma PBs are applicable to the CU.

[000227] The method 1600 continues from step 1690 to a reconstruct coding unit step 16100.
At the step 16100 the prediction block 452 is added to the residual samples 424 for each colour
channel of the CU to produce the reconstructed samples 456. Additional in-loop filtering steps,
such as deblocking, may be applied to the reconstructed samples 456 before they are output as

frame data 135. The method 1600 terminates on execution of the step 16100.

[000228] As described above, for a separate coding tree, the method 1600 is firstly invoked for
each CU in the luma branch 1214a, e.g. 1220, and the method 1600 is also separately invoked
for each chroma CU, e.g. 1250, in the chroma branch 1214b. Invocations of the method 1600
for chroma determine the LENST index 1254 at steps 1650 to 1670 with respect to whether all
of the chroma transform skip flags of the CU 1250 are set or not. Similarly, in invocations of
the method 1600 for luma, the luma LFENST index 1224 is determined at steps 1650 to 1670
with respect to the luma transform skip flag for the CU 1220 only.

23954677_1

03 Dec 2019

2019275553

64

[000229] Scan patterns shown in Figs. 18-20, that is 1810, 1910, and 2010a-f, as implemented
at steps 1450 and 1620 substantially retain the property of progressing from the highest-
frequency coefficients of a TB towards the lowest-frequency coefficients of the TB, compared
to the scan pattern 1710 of Fig. 17. Accordingly, arrangements of the video encoder 114 and
the video decoder 134 using the scan patterns 1810, 1910, and 2010a-f achieve similar
compression efficiency as that achieved when using the scan pattern 1710, while enabling MTS
index signalling to be dependent on the last significant coefficient position without further need
to check for zero-valued residual coefficients outside of the MTS transform coefficient region.
The last position used with the scan patterns of Figs. 18-20 allows that MTS is used only when
all significant coefficients are present the appropriate top-left region, such as the top-left 16x16
region. Burden on the decoder 134 to check flags outside of the appropriate area, e.g. outside
of the 16x16 coefficient region of a TB to ensure no further non-significant coefficients are
present is removed. Behaviour in the decoder does not require specific alterations to implement
MTS. Further, as described above, use of the scan patterns in Figs. 18 and 19, that is, for
transform blocks of size 16x32, 32x16, and 32x32 can be replicated from a 16x16 scan,

thereby reducing memory requirements.
INDUSTRIAL APPLICABILITY

[000230] The arrangements described are applicable to the computer and data processing
industries and particularly for the digital signal processing for the encoding a decoding of

signals such as video and image signals, achieving high compression efficiency.

[000231] Some arrangements described herein improve compression efficiency by signalling
the secondary transform index in cases where the available selections include at least one option
other than bypassing of the secondary transform. The compression efficiency increase is
achieved both in the case of a CTU divided into CUs spanning all colour channels (‘shared
coding tree’ case) and when CTUs are divided into sets of luma CUs and sets of chroma CUs
(‘separate coding tree’ case). Redundant signalling the secondary transform index in cases
where the secondary transform index cannot be used is avoided in a separate tree case. For
shared trees, the LENST index can be signalled for a chroma DCT-2 primary case even if luma
uses a transform skip. Other arrangements maintain compression efficiency while enabling
MTS index signalling to be dependent on the last significant coefficient position without further
need to check for zero-valued residual coefficients outside of the MTS transform coefficient

region of a TB.

23954677_1

03 Dec 2019

2019275553

65

[000232] The foregoing describes only some embodiments of the present invention, and
modifications and/or changes can be made thereto without departing from the scope and spirit

of the invention, the embodiments being illustrative and not restrictive.

[000233] In the context of this specification, the word “comprising” means “including
principally but not necessarily solely” or “having” or “including”, and not “consisting only of”.
Variations of the word "comprising", such as “comprise” and “comprises” have

correspondingly varied meanings.

23954677_1

08 Sep 2022

2019275553

66

CLAIMS:

1. A method of decoding a coding unit from a bitstream, the coding unit being divided, using
a tree structure, from a coding tree unit of an image, the coding unit being capable of having a
luma component and chroma components, and the chroma components including a Cb component
and a Cr component, the method comprising;:
decoding from the bitstream, a luma transform skip flag for the luma component in a case
where the coding unit has the luma component, the luma transform skip flag indicating whether a
luma transform process for the luma component is skipped;
decoding, from the bitstream, a first chroma transform skip flag for the Cb component and
a second chroma transform skip flag for the Cr component in a case where the coding unit has the
chroma components, the first chroma transform skip flag indicating whether a first chroma
transform process for the Cb component is skipped, and the second chroma transform skip flag
indicating whether a second chroma transform process for the Cr component is skipped; and
determining an LENST (Low Frequency Non-separable Transform) index,
wherein, in a case where (i) the luma transform process, the first chroma transform
process, and the second chroma transform process are skipped and (i) the coding unit is
divided from the coding tree unit using a single tree structure, the LFNST index is not
decoded from the bitstream and the LFNST index is determined such that the LENST
index indicates that an LENST process is not used, even if a transform block in the coding
unit contains a non-zero coefficient in which the LENST process is applicable,
wherein, in a case where (i) the luma transform process is skipped and (ii) the
coding unit is divided from the coding tree unit using a dual tree structure for the luma
component, the LFNST index is not decoded from the bitstream and the LENST index is
determined such that the LFNST index indicates that the LENST process is not used, even
if a transform block in the coding unit contains a non-zero coefficient in which the LFNST
process is applicable,
wherein, in a case where (i) the first chroma transform process and the second
chroma transform process are skipped and (ii) the coding unit is divided from the coding
tree unit using a dual tree structure for the chroma components, the LFNST index is not
decoded from the bitstream and the LFNST index is determined such that the LFNST
index indicates that the LFNST process is not used, even if a transform block in the coding
unit contains a non-zero coefficient in which the LENST process is applicable,

wherein, in a case where (i) the luma transform process is skipped, (ii) the first

40413831_1

08 Sep 2022

2019275553

67

chroma transform process and the second chroma transform process are not skipped and
(ii1) the coding unit is divided from the coding tree unit using a single tree structure, the
LFNST index is capable of being decoded from the bitstream, and

wherein a ternary split is capable of being used to divide the coding tree unit into coding units.

2. The method according to claim 1, further comprising performing the LENST process in a

case where the LENST index indicates that the LENST process is used.

3. The method according to claim 1, wherein the LENST process is performed for a transform
block in the coding unit in a case where (i) the LFNST index indicates that the LFNST process is
used and (i1) the transform block contains a non-zero coefficient at a position which is not included

in an area including a bottom right position of the transform block.

4. The method according to claim 3, wherein the LENST process is performed in a case

where the transform block in the coding unit does not contain a non-zero coefficient in the area.

5. A method of encoding a coding unit into a bitstream, the coding unit being divided, using
a tree structure, from a coding tree unit of an image, the coding unit being capable of having a
luma component and chroma components, and the chroma components including a Cb component
and a Cr component, the method comprising;:

encoding, into the bitstream, a luma transform skip flag for the luma component in a case
where the coding unit has the luma component, the luma transform skip flag indicating whether a
luma transform process for the luma component is skipped;

encoding, into the bitstream, a first chroma transform skip flag for the Cb component and
a second chroma transform skip flag for the Cr component in a case where the coding unit has the
chroma components, the first chroma transform skip flag indicating whether a first chroma
transform process for the Cb component is skipped, and the second chroma transform skip flag
indicating whether a second chroma transform process for the Cr component is skipped; and

determining an LENST (Low Frequency Non-separable Transform) index,

wherein, in a case where (i) the luma transform process, the first chroma transform

process, and the second chroma transform process are skipped and (i) the coding unit is

divided from the coding tree unit using a single tree structure, the LFNST index is not

encoded into the bitstream and the LENST index is determined such that the LFNST index

indicates that an LFNST process is not used, even if a transform block in the coding unit

40413831_1

08 Sep 2022

2019275553

68

contains a non-zero coefficient in which the LENST process is applicable,

wherein, in a case where (i) the luma transform process is skipped and (ii) the
coding unit is divided from the coding tree unit using a dual tree structure for the luma
component, the LFNST index is not encoded into the bitstream and the LFNST index is
determined such that the LFNST index indicates that the LENST process is not used, even
if a transform block in the coding unit contains a non-zero coefficient in which the LFNST
process is applicable,

wherein, in a case where (i) the first chroma transform process and the second
chroma transform process are skipped and (ii) the coding unit is divided from the coding
tree unit using a dual tree structure for the chroma components, the LFNST index is not
encoded into the bitstream and the LENST index is determined such that the LENST index
indicates that the LENST process is not used, even if a transform block in the coding unit
contains a non-zero coefficient in which the LENST process is applicable,

wherein, in a case where (1) the luma transform process is skipped, (ii) the first
chroma transform process and the second chroma transform process are not skipped and
(ii1) the coding unit is divided from the coding tree unit using a single tree structure, the
LFNST index is capable of being encoded into the bitstream, and

wherein a ternary split is capable of being used to divide the coding tree unit into coding units.

6. The method according to claim 5, further comprising performing the LENST process in a
case where the LENST index indicates that the LENST process is used.

7. The method according to claim 5, wherein the LENST process is performed for a transform
block in the coding unit in a case where the LENST index indicates that the LENST process is
used and the transform block contains a non-zero coefficient at a position which is not included

in an area including a bottom right position of the transform block.

8. The method according to claim 7, wherein the LENST process is performed in a case

where the transform block in the coding unit does not contain a non-zero coefficient in the area.

9. An apparatus for decoding a coding unit from a bitstream, the coding unit being divided,
using a tree structure, from a coding tree unit of an image, the coding unit being capable of having
a luma component and chroma components, and the chroma components including a Cb

component and a Cr component, the apparatus comprising:

40413831_1

08 Sep 2022

2019275553

69

a first decoding unit configured to decode, from the bitstream, a luma transform skip flag
for the luma component in a case where the coding unit has the luma component, the luma
transform skip flag indicating whether a luma transform process for the luma component is
skipped;

a second decoding unit configured to decode, from the bitstream, a first chroma transform
skip flag for the Cb component and a second chroma transform skip flag for the Cr component in
a case where the coding unit has the chroma components, the first chroma transform skip flag
indicating whether a first chroma transform process for the Cb component is skipped, and the
second chroma transform skip flag indicating whether a second chroma transform process for the
Cr component is skipped; and

a determining unit configured to determine an LFNST (low frequency non-separable
transform) index,

wherein, in a case where (i) the luma transform process, the first chroma transform
process, and the second chroma transform process are skipped and (ii) the coding unit is
divided from the coding tree unit using a single tree structure, the LFNST index is not
decoded from the bitstream and the LFNST index is determined such that the LENST
index indicates that an LENST process is not used, even if a transform block in the coding
unit contains a non-zero coefficient in which the LENST process is applicable,

wherein, in a case where (i) the luma transform process is skipped and (ii) the
coding unit is divided from the coding tree unit using a dual tree structure for the luma
component, the LFNST index is not decoded from the bitstream and the LFNST index is
determined such that the LFNST index indicates that the LENST process is not used, even
if a transform block in the coding unit contains a non-zero coefficient in which the LFNST
process is applicable,

wherein, in a case where (i) the first chroma transform process and the second
chroma transform process are skipped and (ii) the coding unit is divided from the coding
tree unit using a dual tree structure for the chroma components, the LFNST index is not
decoded from the bitstream and the LFNST index is determined such that the LENST
index indicates that the LFNST process is not used, even if a transform block in the coding
unit contains a non-zero coefficient in which the LENST process is applicable,

wherein, in a case where (i) the luma transform process is skipped, (ii) the first
chroma transform process and the second chroma transform process are not skipped and

(ii1) the coding unit is divided from the coding tree unit using a single tree structure, the

LFNST index is capable of being decoded from the bitstream, and

40413831_1

08 Sep 2022

2019275553

70

wherein a ternary split is capable of being used to divide the coding tree unit into coding units.

10. An apparatus for encoding a coding unit into a bitstream, the coding unit being divided,
using a tree structure, from a coding tree unit of an image, the coding unit being capable of having
a luma component and chroma components, and the chroma components including a Cb
component and a Cr component, the apparatus comprising:

a first encoding unit configured to encode, into the bitstream, a luma transform skip flag
for the luma component in a case where the coding unit has the luma component, the luma
transform skip flag indicating whether a luma transform process for the luma component is
skipped;

a second encoding unit configured to encode, into the bitstream, a first chroma transform
skip flag for the Cb component and a second chroma transform skip flag for the Cr component in
a case where the coding unit has the chroma components, the first chroma transform skip flag
indicating whether a first chroma transform process for the Cb component is skipped, and the
second chroma transform skip flag indicating whether a second chroma transform process for the
Cr component is skipped; and

a determining unit configured to determine an LFNST (low frequency non-separable
transform) index,

wherein, in a case where (i) the luma transform process, the first chroma transform
process, and the second chroma transform process are skipped and (i1) the coding unit is
divided from the coding tree unit using a single tree structure, the LFNST index is not
encoded into the bitstream and the LENST index is determined such that the LFNST index
indicates that an LFNST process is not used, even if a transform block in the coding unit
contains a non-zero coefficient in which the LENST process is applicable,

wherein, in a case where (i) the luma transform process is skipped and (ii) the
coding unit is divided from the coding tree unit using a dual tree structure for the luma
component, the LEFNST index is not encoded into the bitstream and the LFNST index is
determined such that the LFNST index indicates that the LENST process is not used, even
if a transform block in the coding unit contains a non-zero coefficient in which the LFNST
process is applicable,

wherein, in a case where (i) the first chroma transform process and the second
chroma transform process are skipped and (ii) the coding unit is divided from the coding
tree unit using a dual tree structure for the chroma components, the LFNST index is not

encoded into the bitstream and the LENST index is determined such that the LFNST index

40413831_1

08 Sep 2022

2019275553

71

indicates that the LENST process is not used, even if a transform block in the coding unit
contains a non-zero coefficient in which the LENST process is applicable,

wherein, in a case where (1) the luma transform process is skipped, (ii) the first
chroma transform process and the second chroma transform process are not skipped and
(ii1) the coding unit is divided from the coding tree unit using a single tree structure, the
LFNST index is capable of being encoded into the bitstream, and

wherein a ternary split is capable of being used to divide the coding tree unit into coding units.

I1. A non-transitory computer readable storage medium containing computer-executable

instructions which causes a computer to perform the method according to claim 1.

12. A non-transitory computer readable storage medium containing computer-executable

instructions which causes a computer to perform the method according to claim 5.
CANON KABUSHIKI KAISHA

Patent Attorneys for the Applicant

Spruson & Ferguson

40413831_1

2019275553 03 Dec 2019

Source device
110

Video source
112

113««l

Video encoder
114

115Ni

1/22

Destination device

130

Display device

136

Video decoder

134

Storage
122

Transmitter
116

133 «1

_;;_5t{__________________

Receiver
132

23953837_1

2/22

7/ —N"T N
7 ~
} (Wide-Area) {

Communications

2019275553 03 Dec 2019

< Network 220 .
Printer 215 |<— / =\
NG -\ — I — f\}\\\
Microphone A 224 \
280 /
— / 221 ~ SN p 5
'4 - \
217 ' (Local-Area) l
! Communications
Video A J

‘ Network 222 S

:D_ Display Ext. 223 ;\ —
214 Modem , ~

:D Y 200

y y
Audio-Video ||I/O Interfaces|| Local Net. Appz'ég’rog gtorage
Interface 207 208 /face 211 £99 evices

HDD 210 209

b i i 'C

R T

Processor I/O Interface Memory Optical Disk
205 213 206 Drive 212

it a

=
Keyboard 202 J \] |
Scanner 226 Disk Storage
203 Medium 225
Camera 227
Fig. 2A

23953837_1

3/22

N

2019275553 03 Dec 2019

234 / 233
s 3
Instruction (Part 1) 228 — Data 235
Instruction (Part 2) 229 Data 236
< ;) I \. 232
Instruction 230 Data 237
\y m—
ROM 249
PosT | | Blos Bootstrap Operating
250 251 Loader 252 System 253
Input Variables 254 Output Variables 261
255 262
256 263
257 264
Intermediate Variables 258
I 259 | 266 |
[260 I 267 |

205 v

Interface 242

241 248

Reg. 244 (Instruction)
Control Unit 239
Reg. 245
I
ALU 240 Reg. 246 (Data)

Fig. 2B

23953837_1

g9¢ 915 ozt ¢ "bi4
sJayy dooj-uj > Joyng swel > ™ uonewns3g uonopy [
0L¢€ v.€ _\T(g/¢
7GE ™ 958 08€
AN ayoeo ajdwes uonesuadwon
/’ r—> ®OC®.._®%®N_ — UOINO M L 0c¢
¢ > 8S€ z8¢e | ¥8¢
Soc — XN
2G¢ + (_Q_co%_mEm < 79¢ uonoipaid
soUBIB}eY Nwom > swel-equ| ©Wm >
0G¢
3 6v< XN 97¢ WIOJSURI) |eny .
66¢)% 06¢ S Aewug
== 68¢ vze
87E Wiojsuel] 7wmm zze
5 wlMV Arewnd esionu| 068 zee
?mvm AW 0EE wJojsuel))ﬁ
== — — Alepuooag ¢le
V¢ wliojsuel) <t ove yee X
A1epuooas asianu| % Jasnuenba(Josipuend | | S e 4 — s
88¢ gzpe Y Jauoniued
9¢e 390|g
weassiiq _ > €ee —
— g€ 2 68E™ 98¢ ereq
<, Jepoou3 Adonu3 b wﬂw/m_z 100198 9PON [+ g0 (g,
i ASHS ~,06€ _

610C¢ @A E0 €955/¢6T0C

23953837_1

veElL Il 961 "\ GEl elep awel .V m_n_
/ Buuayy dooj-uj[) Jayng swe.l
A [43)% N
861
—— _Y_
09% 145% T~
+————»{ ayoeo s|dwes uonesuadwo)
poJoNJISUOOaYy UOIO m
8EY | ¥8¥
ey i
89Y o/v
N 9SG\ J9y1} o|dwes \Nv uonoipa.d MV
3 9dual9)aYy awelj-equ| |
cly 7} 08Y
0Svy + N
1214% 2SY
61474 XN\ 88 "\
» 8.V "™\
66V
vy
{244 ocy 975 W ()/4% weaJss)q
waojsuel wuojsuel) < JapooaQ
Arewnd asianu| AN Aiepuooas aslanu| % Jaspuenbsq AdoJqjug m
cey €el

610C 3°d €0

0} 4%)H
9.t vy

€9595/.¢610¢

23953837_1

2019275553 03 Dec 2019

6/22

500

510 512 514
516 518 520

Fig. 5

23953837_1

2019275553 03 Dec 2019

600

7/22

Generate
QT CTU j—l
nodes
Generate 512
leaf node
625
y
Generate Generate Generate Generate
HBT CTU HTT CTU VBT CTU VTT CTU
nodes nodes nodes nodes

| O

\\3

520

23953837_1

03 Dec 2019

2019275553

710

/ /
\\ \

%

712

=2k _|_> Cu 720

cuU ;

716 “_TT(H) BT(V) - ’/_/

/\/Q —_|_>CU \ :

718 CU
cu

3333333333

2019275553 03 Dec 2019

800

4x4
802 —~_/ primary
coefficients
o \
822
4x4
820 —~_ primary | zero-out
coefficients
4x4
820 ¢ primary
coefficients
zero-out

9/22

810

/\{ }\/

812

Fig. 8A

830

F

832
830

J

832

Fig. 8B

806

(

8 sec
coeffs

—~_ 804

824

4x4
secondary
coefficients

4x4
secondary
coefficients

—~_ 824

23953837_1

2019275553 03 Dec 2019

10/22

855

\ 840 842
¢ ¢

S
primary 0
coefficients 0
0 ? 0 0
852
Fig. 8C
875 \
860 864 862 866
_48 870 4x4
primary secondary
coefficients 2 coefficients
T 0
872
zero-out

23953837_1

2019275553 03 Dec 2019

11/22 900

952 960 ’/_/

910 912 914 8 916

926
-

936

9§0 942 944 946

23953837_1

2019275553 03 Dec 2019

12/22

1001 1000
1010 1012 1014 ’/_/
<l <l
| SPS PPS [AccessUnit 0 |
1008 . T
___________ 1016
-------- °C
| PictureHeader Slice 0 Slice 1 Slice 2
1015 71018 1020 ‘
L l l
| SliceHeader | SliceData

Fig. 10

23953837_1

2019275553 03 Dec 2019

13/22

1100
110423020) ”_—//
| SliceData |
o
o
CTU | CTU CTU
1114
l
e -
e T
1116. (- P
2| T | LFNSTIdx | MTSldx |
1124 11120 12
| = l

11231 1128 1130 1132 11363,
S22 2N
[v [T c TT cr]

0y
J/ s,
K y
\
’ \
J y

1126 / . 1134

/1140 1144

[LastPos| ResidualCoefs

Fig. 11

23953837_1

2019275553 03 Dec 2019

14/22
1200

1204 (1020)

2

| SliceData |
1210 e
> T
CTU | CTU CTU
___________ 1214 R —
....... <
| Node 0 | Node 1 | Node 2 Node3 |
12142 1214b™

- -

|x Node 1a | Node 1b |

1220 {0 1250
[cu [cu | cu | cuU | cu | cu | cu |
Fa222 0 T 71252
S T 4
| TT | LFNSTIdx | MTSldx | |,\| TT LFNSTIdx |
) L < e <
1221 1230 %1224 1226 1251 1260 | 1254
TU ‘ TU
1234 | [1264 1268
l S 2 N
| Y | co | cr |
1232 / \ 1262 *, 1266
/1236 1238 % /1210 1272
[LastPos| ResidualCoefs | |lLastPos| ResidualCoefs |

Fig. 12

23953837_1

2019275553 03 Dec 2019

15/22
/131 0
Encode SPS/PPS
l ;320
Encode picture header

1330
Y _

Encode slice header

¢ 1340

Divide slice into CTUs
— 1350

P

Determine coding tree

1 /1360
Determine coding unit
1370
i
Encode coding unit
+ 1380

Last coding unit test

¢ YES 1390

Last CTU test

| sl

NO

¢ YES 13100

(e Fig. 13

YES
End

23953837_1

2019275553 03 Dec 2019

16/22

Generate prediction
block

v

Determine residuals

v

Transform residuals

v

Encode luma transform
skip flag

!

Encode luma residual

v

Encode chroma
transform skip flags

'

1470

Encode chroma residuals

LFNST si lling test
< signalling tes %

1480

1400

/ (1370)

1490

—/

Encode LFNST index

NO l<
14100

< MTS signalling test

NO |«

14110

/_J

YES

Encode MTS index

End

Fig. 14

23953837_1

2019275553 03 Dec 2019

17/22
/,1510
Decode SPS/PPS
1520

'

Decode picture header

Y

1530

Decode slice header

!

1540

Divide slice into CTUs

|

Y

1550

Decode coding tree

NO

y

1570

Decode coding unit

v

Last coding unit test

i YES

Last CTU test

i'YES

/
\

Last slice test

End

1580

1500

23953837_1

2019275553 03 Dec 2019

18/22

/1910 / (1570)

Decode luma transform
skip flag
S
Decode luma residual
Y 1630
Decode chroma /—J
transform skip flags
$ 1640
Decode chroma residuals /_J
¢ 1650
LFNST signalling test
< e J/NEs l 1670
NO y 1660 —/
Determine LFNST index Decode LFNST index

r \ 1672 |

< MTS signalling test /

YES 1676
NO y 1674 l —
Determine MTS index Decode MTS index

k |

i 1680
Transformresiduals | %

¢ 1690
Generate prediction /_J
block
‘ 16100
_

Reconstruct coding unit Fig . 1 6

End

23953837_1

2019275553 03 Dec 2019

1740

19/22

1721

1700

1720

1710 1730

Prior Art

Fig. 17

23953837_1

2019275553 03 Dec 2019

1840

20/22

1800

N

1810

1830

Fig. 18

23953837_1

2019275553 03 Dec 2019

1910

Fig. 19

1930

23953837_1

2019275553 03 Dec 2019

2040

22/22

2000

2010e

2010a

2030

2010

23953837_1

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

