005/076101 A2 |1 0001 0 OO0 0O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
18 August 2005 (18.08.2005)

AT O OO R

(10) International Publication Number

WO 2005/076101 A2

GO6F

(51) International Patent Classification’:

(21) International Application Number:
PCT/JP2005/001979

(22) International Filing Date: 3 February 2005 (03.02.2005)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/542,334 6 February 2004 (06.02.2004) US
10/899,380 26 July 2004 (26.07.2004) US

(71) Applicant (for all designated States except US): TREND
MICRO INCORPORATED [JP/JP]; Shinjuku MAYNDS
Tower 27F, 2-1-1, Yoyogi, Shibuya-ku, Tokyo 151-0053
(p).

(72) Inventors; and

(75) Inventors/Applicants (for US only): DE L.LOS SANTOS,
Aldous, C. [PH/PH]; 1889 E Amang Rodriguez Ave., Pasig
City, Manila (PH). FERNANDEZ, Richard, T. [PH/PH];
3123 Duhat Street, Napico, Pasig City, Manila (PH). FI-
NONES, Rodelio, G. [PH/PH]; Blk 20, Lot 3, Bulacan
Meadows Subdivision Cay Pombo, Santa Maria, Bulacan
(PH).

(74) Agents: YAMASAKI, Yukuzo et al.; Yamasaki Law and
Patent Office, Sogo Nagatacho Bldg. 8F, 11-28, Nagatacho
1-chome, Chiyoda-ku, Tokyo 100-0014 (JP).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 7ZM,
7ZW), BEurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SL, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title: SYSTEM AND METHOD FOR SECURING COMPUTERS AGAINST COMPUTER VIRUS

600

N

607 —‘\

210
/_.

L~ 213

SIMULATOR

ya 213 — 214
i i

212
£

BINARY FILE
BEING
SCANNED

DISASSEMBLER

| DEPERMUTATOR

— 504
f

20—

206

. L /a 2 216
. /

BINARY FILE
TAGGED EITHER

DFA SIMULATOR

VIRUS
AUTOMATON

NORMALIZER

AS A VIRUS-OR

FILE

NON-VIRUS

o (57) Abstract: In one embodiment, an antivirus mechanism builds an automaton (206) of a virus using a pattern and a set of rules.
The antivirus mechanism may then scan a binary file (602) to detect an engine of the virus by matching the automaton with a plurality
of disassembly codes (212) derived from the binary file. The pattern may comprise a data structure including a name of a particular
virus, and information for detecting the virus using the disassembly codes. 1

WO

WO 2005/076101 A2 I} }10 Y A0V0H0 T 00 0 A

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

WO 2005/076101 PCT/JP2005/001979

DESCRIPTION

SYSTEM AND METHOD FOR SECURING COMPUTERS AGAINST COMPUTER
VIRUS

CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No.
60/542,334, entitled "FAST PATTERN-BASED POLYMORPHIC AND
METAMORPHIC VIRUS SCANNER?, filed by Aldous C. de los Santos, Richard T.
Fernandez, and Rodelio G. Finones on February 6, 2004, which is hereby incorporated

by reference in its entirety.

BACKGROUND OF INVENTION
1. Field Of the Invention

The present invention relates generally to computer systems, and more
particularly but not exclusively to techniques for combating computer viruses.
2. Description Of the Background Art

The threat posed by computer viruses to computer systems is well
documented. A computer virus code can corrupt or delete important files, send e-mails
without user authorization, render a computer inoperable, or cause other types of
damage to a computer. From the old Disk Operating System (DOS) battlefield to the
current Windows 32-bit (Win32) arena, the evolving virus technology has taken the
battle between virus writers and antivirus experts to greater heights. Known and
skilled virus coders continue to generate new types of viruses that can escape antivirus
programs.

Polymorphic viruses are characterized by having the constant part of the
virus body (except the data areas) encrypted using different encryption methods.
Metamorphic viruses, on the other hand, do not have a decryptor, nor a constant virus
body but are able to create new generations that look totally different. Virus code
obfuscation on the host program with the use of complex techniques has been a
common method of hiding viral codes. Random garbage code (code that does not change
the behavior of the program) insertion and do-nothing-loops code generation are

among the complex techniques that a clever virus coder uses to build virus codes.

WO 2005/076101 PCT/JP2005/001979

Antivirus product developers are constantly keeping track of the latest virus
technology advances. However, most commercial antivirus products are still
inadequate in detecting all possible forms of infections given the elusive complexity of
viruses. Most of these products rely on an old virus matching technology called "scan
string." In this approach, the string represents virus pattern on a specific location of
the file. When applied to metamorphic viruses, this method will absolutely fail since
metamorphic viruses do not contain any constant scan strings and are mutated
throughout its infection generations.

Another conventional technique used to combat viruses is the so-called "byte
searching,"” which is just another form of scan string. In this approach, the antivirus
program continuously parses consecutive locations of the file to search for certain byte
sequences. The drawback of this approach is that it is too slow, considering that it
searches the whole code portion of the file for specific byte sequences. In small files
with small code portions, the technique may not yield significant results. But, on large
files with large code portions, a noticeable scanning performance drop down will be
apparent right away.

An existing method that is used to detect a combination of polymorphic and
metamorphic viruses is the so called "manual decryption." In this technique, the
polymorphic decryptor is reversed to come up with the virus-decrypted code. This
method also suffers from scanning speed. Because the decryptor of a combination of
polymorphic and metamorphic viruses typically does not reside on a fixed location, the
antivirus program needs to search for it. Just like byte searching, this method entails
too much scanning time overhead.

There are also non-commercial tools that attempt to use geometric detection
methods based on modifications that a virus has made to a file structure. These tools
check for virus signatures and modifications of section headers, and advantageously
filter normal and viral files right away. However, these tools do not provide the exact
identification of the virus since they do not derive their detection on the virus code
itself. Since the detection is not exact, it is also prone to false positives.

Emulators have also been used to combat computer viruses. Emulators allow
virus codes to execute in a controlled environment. The virus codes that are being
monitored can then be examined periodically or only when special instructions are
executed. The effectiveness of emulators to detect viruses depends on how these
emulators are implemented. Aside from metamorphism, any virus could easily place
trigger conditions at the start of its code before executing its infection routine.

Emulators that follow only one path could easily miss other samples that were not able

WO 2005/076101 PCT/JP2005/001979

to execute the infection routine due to the infection condition. Another major drawback
of this technique is its scanning speed. When applied to viruses that insert many

do-nothing loops before the actual virus code, the detection speed definitely suffers.

SUMMARY

In one embodiment, an antivirus mechanism builds an automaton of a virus
using a pattern and a set of rules. The antivirus mechanism may then scan a binary
file to detect an engine of the virus by matching the automaton with a plurality of
disassembly codes derived from the binary file. The pattern may comprise a data
structure including a name of a particular virus, and information for detecting the
virus using the disassembly codes.

These and other features of the present invention will be readily apparent to
persons of ordinary skill in the art upon reading the entirety of this disclosure, which

includes the accompanying drawings and claims.

DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a schematic diagram of an example computer that may be used

in embodiments of the present invention.

FIG. 2 schematically illustrates the components of an antivirus program in
accordance with an embodiment of the present invention.

FIG. 3 is a block diagram of a Deterministic Finite Automata (DFA) building
system in accordance with an embodiment of the present invention.

FIG. 4 illustrates a format of a script-based pattern source in accordance with
an embodiment of the present invention.

FIG. 5 is a flow chart illustrating exemplary steps of building an automaton of
a virus in accordance with an embodiment of the present invention.

FIG. 6 is a block diagram of a virus simulation system in accordance with an
embodiment of the present invention.

FIG. 7A is a flow chart illustrating exemplary procedures of a Disassembler &
Depermutator component in accordance with an embodiment of the present invention.

FIG. 7B is a flow chart illustrating exemplary procedures of a Normalizer in
accordance with an embodiment of the present invention.

FIG. 7C is a flow chart illustrating exemplary procedures of a DFA Simulator

in accordance with an embodiment of the present invention.,

WO 2005/076101 PCT/JP2005/001979

DETAILED DESCRIPTION

In the present disclosure, numerous specific details are provided, such as
examples of apparatus, components, and methods, to provide a thorough
understanding of embodiments of the invention. Persons of ordinary skill in the art
will recognize, however, that the invention can be practiced without one or more of the
specific detail. In other instances, well-known details are not shown or described to
avoid obscuring aspects of the invention.

Being computer-related, it can be appreciated that the components disclosed
herein may be implemented in hardware, software, or a combination of hardware and
software (e.g., firmware). Software components may be in the form of
computer-readable program code stored in a computer-readable storage medium, such
as memory, mass storage device, or removable storage device. For example, a
computer-readable storage medium may comprise computer-readable code for
performing the function of a particular component. Likewise, computer memory may
be configured to include one or more components, which may then be executed by a
processor. Components may be implemented separately in multiple modules or
together in a single module.

To overcome the inadequaéy and inefficiency of existing antivirus technologies
in fully detecting polymorphic and metamorphic viruses, the present invention
provides an improved polymorphic and metamorphic virus scanner. The improved
virus scanner provides the following advantages. Firstly, it allows for generic detection
of polymorphic/metamorphic viruses by specifically detecting the
polymorphic/metamorphic engine used by the virus. An "engine" of the virus is
responsible for creating the mutated codes of the virus that result in a new generation
that looks different. Unlike the conventional scan string technology, the improved
viruses scanner may use another approach to match the pattern (regular
expression-like) using Deterministic Finite Automata ("DFA"). Generally speaking, a
"regular expression” is a formula for matching strings that follow a certain pattern,
while a DFA may comprise a transition table containing states and corresponding next
states. DFA'S, in general, are described in "Compilers: Principles, Techniques, and
Tools," by Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ulman, published by Addison
Wesley, incorporated herein by reference in its entirety. Instead of representing virus
pattern with a string or a series of bytes, the improved virus scanner may use actual

disassembly code. That is, the improved virus scanner may use actual human-readable

WO 2005/076101 PCT/JP2005/001979

assembly language instructions instead of mere bytes and strings.

Secondly, the improved virus scanner improves scanning speed and detection
rate. Unlike conventional emulators, which are known to be slow and unable to handle
viruses that generate do-nothing loops, the improved virus scanner may treat the virus
file as a series of disassembly codes that could be matched with an existing
disassembly codes database. A "disassembly code," which is also referred to as an
"assembly code," refers to a human-readable code derived by converting binary
information contained in an executable file. Assembly and disassembly codes are in the
same programming language except that "assembly code" is used to refer to what is
provided to an "assembler' for conversion to machine-language, while "disassembly
code" is used to refer to an assembly code resulting from "disassembling" machine
language. A file containing machine language is also referred to as a "binary file."

The improved virus scanner may automatically terminate the scanning of a
file when the current disassembly code does not match any of the disassembly codes on
the disassembly code database or when the disassembly code does not belong to the
acceptable list of assembly codes for a certain virus. Since detection is based on the
disassembly code of the virus, the improved virus scanner allows for exact detection of
the virus.

Referring now to FIG 1, there is shown a schematic diagram of an example
computer that may be used in embodiments of the present invention. Depending on its
configuration, the computer shown in the example of FIG. 1 may be employed as a
desktop computer, a server computer, or an appliance, for example. The computer of
FIG. 1 may have less or more components to meet the needs of a particular application.
As shown in FIG. 1, the computer may include a processor 102, such as those from the
Intel Corporation or Advanced Micro Devices, for example. The computer may have
one or more buses 106 coupling its various components. The computer may include one
or more input devices 104 (e.g., keyboard, mouse), a computer-readable storage
medium (CRSM) 110, a CRSM reader 108 (e.g., floppy drive, CD-ROM drive), a display
monitor 118 (e.g., cathode ray tube, flat panel display), a communication interface 112
(e.g., network adapter, modem) for coupling to a network, one or more data storage
devices 114 (e.g., hard disk drive, optical drive, FLASH memory), and a main memory
116 (e.g., RAM). Software embodiments may be stored in a computer-readable storage
medium 110 for reading into a data storage device 114 or main memory 116. In the
example of FIG. 1, main memory 116 may be configured to include an antivirus
program 200, which is further discussed below.

FIG. 2 illustrates the components of an antivirus program 200 in accordance

WO 2005/076101 PCT/JP2005/001979

with an embodiment of the present invention. As shown in FIG. 2, antivirus program
200 may comprise: a DFA pattern file 202 that stores formats used by script-based
patterns, where pattern sources may be generated following the formats; a
Normalization rules file 204; a virus automaton file 206 that stores a DFA of viruses; a
DFA Builder 208 that processes DFA pattern file 202 and Normalization rule file 204 to
produce a DFA and store the produced DFA into virus automaton file 206; and a
Simulator 210 that scans binary files for malicious content. Simulator 210 may include
a Disassembler 212 for converting each byte of a binary file to an assembly code, a
Depermutator 214 for connecting subroutines of the binary file by following the
converted assembly code if the assembly code is a jump instruction, a Normalizer 216
for disregarding an assembly code if the converted assembly code is a garbage
instruction, and a DFA Simulator 218 configured to scan the binary file preprocessed
by Disassembler 212, Depermutator 214 and Normalizer 216 to detect virus engines
contained in the binary file. The components of antivirus program 200 are further
described below. As will be more apparent below, Disassembler 212 and Depermutator
214 may operate simultaneously and, for convenience, may be grouped as
Disassembler & Depermutator component 213 as shown in FIG. 2. Likewise,
Normalizer 216 and DFA Simulator 218 may be grouped as Normalizer & DFA
Simulator component 217.

FIG. 3 is a block diagram of a DFA building system 300 in accordance with an
embodiment of the present invention. In the example of FIG. 3, DFA Builder 208
processes input 302 to produce one or more automatons that may be subsequently
stored in virus automaton file 206. In the context of antivirus mechanisms, an
"automaton" refers to a set of rules that governs how a particular virus will be detected.
In one embodiment, input 302 comprises a DFA pattern source that follows a pattern
source format stored in DFA pattern file 202 and rules stored in Normalization rule file
204. Virus automaton file 206 serves as a virus disassembly codes database that may
be used to match with disassembly codes derived from a binary file being scanned
using simulator 210.

FIG. 4 illustrates a format 400 of a script-based pattern source in accordance
with an embodiment of the present invention. One or more pattern sources following
format 400 may be stored in DFA pattern file 202. In the example of FIG. 4, format 400
comprises: a virus name 402 (e.g., may be less than 16 characters) that specifies a
detection name when the pattern matches a virus engine; a source comment 404 that
may start with a semicolon, where DFA Builder 208 ignores source comments during

its building process; an optional garbage section 406; a grammar section 410; and an

WO 2005/076101 PCT/JP2005/001979

optional accept section 408. The order of sections 402, 404, 406, 408, and 410 may be
interchanged without detracting from the merits of the present invention. A pattern
source in accordance with format 400 may be written as follows:
@VirusName
{
scomment
#garbage
ASM _LINE
#accept
ASM _LINE
#grammar
ASM LINE
}
where "ASM _LINE" may comprise one or more lines of assembly code.

Referring to FIG. 4, a pattern source following format 400 may contain
normalization information in garbage section 406, as well as information on how to
detect the malicious virus engine in accept section 408 and in grammar section 410,
where the information may be in the form of a line of assembly code ("assembly line").
Each of sections 406, 408, and 410 may include a set of assembly line entries, where
each assembly line entry may be matched with a disassembly code obtained from a
binary file being scanned. An assembly line entry may be a line of assembly language
instruction comprising an op-code name and one or more operands. For example, in the
Microsoft Windows™ environment, an op-code may be a Win32 assembly instruction
and, in one embodiment, an operand may be exact, wildcard, or variable. That is, an
operand may be:

(1) Exact - specifies the exact operand to match. One example may be
PUSH EAX

This assembly line specifies that PUSH instruction must be followed by

operand EAX.

(2) Wildcard - specifies the general type of operand. Examples may be
PUSH reg32
MOV reg, imm

For the first assembly line, the PUSH instruction must be present together

with any 82-bit register. The second assembly line requires that the MOV

instruction op-code is present with any register as the first operand and any

immediate value as the second operand.

WO 2005/076101 PCT/JP2005/001979

(8) Variable - specifies that information on an operand may be stored in a
variable and later retrieved for matching. One example may be

DEC reg32_varsetl

PUSH reg_varl

While matching, the DEC op-code must be present on the first assembly line

with any 32-bit register as the operand and set register variable 1 to this

register type. For the next assembly line, the PUSH op-code must match and
the operand register and must also match the retrieved value of register

variable 1.

In wildcard instructions, the op-code and the operand may vary. Possible

values for a register operand may be REG, REG8, REG16 and REG32.
Possible values for immediate operand may be IMM, IMM16 and IMM32. For memory
operands, MEM, MEMI16 and MEMS32 may be the possible values. Assembly
instructions may be associated through operators, such as a star (¥), plus (+), question
mark (?), and explicit dot () operators, for example.

As mentioned, Disassembler 212 may convert each byte of a binary file to a
disassembly code. Then, each converted disassembly code may be matched first with
assembly line entries in garbage section 406. If there is a match, the disassembly code
may not be processed by grammar section 410, and the set of states of a DFA defined by
grammar section 410 remains unchanged. Construction of a DFA using grammar
section 410 is further described below. If the disassembly code does not match any
assembly line entry in garbage section 406, the disassembly code may be processed
using grammar section 410: Note that garbage section 406 is used to "normalize" the
disassembly code before moving on to grammar section 410. Garbage section 406
advantageously allows the virus scanner to ignore do-nothing loops and similar useless
viral codes that tend to foil conventional scanners.

Grammar section 410 contains virus pattern information in regular
expression format. When the virus pattern is compiled using DFA builder 208, the
regular expression may be constructed into a transition table that specifies the next set
of states of DFA for a given input symbol, which in this case is a disassembly code.
When the disassembly code is rejected by grammar section 410, assembly line entries
in accept section 408 may be processed. If there is a match, the state of DFA may be
toggled back as if the disassembly code is not rejected at all and the set of DFA states
remain unchanged.

FIG. 5 shows a flow chart 500 illustrating exemplary steps of building a

Deterministic Finite Automata (DFA) for a virus scanner in accordance with an

WO 2005/076101 PCT/JP2005/001979

embodiment of the present invention. In steps 502 and 504, DFA Builder 208 selects a
DFA pattern source format from DFA pattern file 202 and gets rules for a virus from
Normalization rule file 204, where each rule may be an assembly line. Steps 506, 508,
510, 512, 514, 516, and 518 represent a process for grouping the rules and storing each
group to a garbage section 406, an accept section 408, or grammar section 410. Each
and every one of the rules may be selected and checked if the rule is a garbage
instruction in step 508. In step 510, the rule may be stored in garbage section 406 if the
rule is a garbage instruction. If the rule is determined to be an accept instruction in
step 512, it may be stored in accept section 408 in step 514. If the rule is neither a
garbage instruction nor an accept instruction, it may be stored in grammar section 410
in step 516. Upon completion of the step of grouping the rules in step 518, a DFA for
the virus may be constructed based on the grammar section 410 in step 520. The DFA
for the virus may be stored in virus automaton file 206 in step 522.

In general, construction of a DFA from a regular expression is well known in
the art. For example, Aho et al., in the incorporated reference "Compilers: Principles,
Techniques, and Tools," teach an algorithm for DFA construction. In the interest of
clarity, only relevant steps are described in the following sections. Despite its space
requirements, DFA is chosen because of its advantage of recognizing grammar faster
than Non-deterministic Finite Automata (NFA).

Construction of the DFA in step 520 may be performed during the compilation
of the pattern, which in this example follows format 400 shown in FIG. 4. A pattern
may be assigned a pattern index or id. The pattern index or id may be based on the
order they appear in the pattern source and may be referred to by computer-readable
program codes. Those read by humans, such as a debug log, may always refer to the
name of the virus indicated in virus name 402 (see FIG. 4) and not the pattern id, for
example.

Conversion To Assembyl Line Equivalent: The first step of constructing a DFA

in step 520 may be converting an assembly line into its internal operand flag
equivalent. A unique assembly line may be assigned a new alphabet id. This alphabet
id may be stored in a separate pool that all the patterns can share. As mentioned, an
assembly line may have one op-code and two operands. Thus, the internal operand flag
equivalent (also referred to as "assembly line equivalent") may be presented by one
op-code id and two op-flags for two operands, where op-code id and two op-flags may be
represented by a two-byte short integer and two four-byte long integers, respectively.
An assembly line equivalent stores the information about the assembly line to be

matched with disassembly codes derived from a binary file being scanned. The op-code

WO 2005/076101 PCT/JP2005/001979

id may be the op-code assignment used internally for comparing the op-code of a
disassembly code. The op-flag can match exact operand value or even wildcards. It can
also specify to set variables or compare the contents of the variable previously stored.
The alphabet used by the patterns may be listed at the end of a debug log in
an alphabet section. The alphabet id may be indicated by 4-digit decimal enclosed in a
bracket. For example, an alphabet ID "[0001]" may represent MOV EAX, EAX.

Conversion to Postfix: After assembly line entries in grammar section 410

have been converted to assembly line equivalents, the regular expression may be
converted into its postfix-form before building a syntax-tree. Since the infix may be a
regular expression, operators and its precedence should be noted. A concatenation
operator can be inserted in the expression by checking combinations of
operands/operators. Error in combination in the expression may be also be checked. A

unique right-end marker # may be concatenated to the regular expression, as shown in
Table 1.

Table 1
Previous * + | ? | .) (Op

* E E E Ok Ok Ok CAT CAT
-+ E E E Ok Ok Ok CAT CAT
? E E E Ok Ok Ok CAT CAT

| E E E E E E Ok Ok

. E E E E E E Ok Ok
) Ok | Ok | Ok | Ok | Ok | Ok | CAT CAT

(E E E E E E Ok Ok
Op Ok Ok Ok Ok Ok Ok CAT CAT

The infix expression may be processed as follows:

1. If the infix item is "(", push the item in the stack.

2. If the infix item is an operand, copy it directly to postfix string.

3. If the infix item is ")", pop the item in the stack and copy it to the
postflx string until the matching "(" is encountered. Parenthesis pairs
are not copied in the postfix string.

4. If the infix item is an operator, the precedence of the operator may be
checked with the item on the top of the stack. While the precedence of
the operator is less than or equal to the item on the top of stack, the
item is popped and copied in the postfix string.

Building the Syntax-Tree: Syntax-tree can be constructed from a postfix. A

10

WO 2005/076101 PCT/JP2005/001979

postfix may be evaluated using a stack and processed as follows
1. If the postfix item is an operand, push its tree item in the stack.
2. If the postfix item is a unary operator ("*","+","?"), pop a tree item
from the stack. Assign this item to be child of the current tree item.
‘Push the current tree item in the stack.
3. If the postfix item is an operator (CAT or |), pop item and set it as the
right node of the current item. Pop another item and set it as left node.

Push the current item.

After the entire postfix item has been processed, the stack should only contain

the root tree item.

Computation of "Followpos": The function followpos(i) indicates what

positions can follow position "i" in the syntax tree. Types of followpos functions are:
1. nullable(n) - true if can generate an empty string.
2. firstpos(n) - gives the set of positions that can match the first symbol
of a string generated by the sub-expression rooted at n.
3. Iastpos(n) - gives the set of positions that can match the last symbol
of a string.

Rules for computing nullable, firstpos and lastpos are shown in Table 2.

Table 2
NODE n nullable(n) Firstpos(n) Last pos(n)
N is a leaf labeled | True 2 @
€
N is a leaf labeled | False {1} {1}
with position I
cl | c2 nullable(cl) or firstpos(c1) U lastpos(cl) U
nullable(c2) firstpos(c2) lastpos(c2)
cl .c2 nullable(c1) and If nullable(cl) then | If nullable(c2) then
nullable(c2) firstpos(cl) U lastpos(cl) U
firstpos(c2) lastpos(c2)
else firstpos(c1) else lastpos(c2)
cl* True firstpos(c1) lastpos(cl)
cl + False firstpos(cl) lastpos(cl)
cl? True firstpos(c1) lastpos(cl)

11

WO 2005/076101 PCT/JP2005/001979

Two rules define all the ways one position can follow another:
1. If n is a cat-node with left child ¢l and right child ¢2, and “i” is a
position in lastpos(cl), then all positions in firstpos(c2) are in
followpos(@.

[T
1

2. If n is a star-node or a plus-node, and “i” is a position in lastpos(n), then
all positions n firstpos(n) are in followpos().

Construction of Transition Table: The final step of constructing a DFA may be
generating Dstates, the set of states of D and Dtran, the transition table for D by the
following procedure:

Initially, the only unmarked state in Dstate is firstpos(root), where root is the

root of the syntax tree for (r)#;

While there is an unmarked state T in Dstate do begin

Mark T;
For each input symbol a do begin
let U be the set of positions that are in followpos(p) for some position p
in T, such that the symbol at position p is a;
If U is not empty and is not in Dstates then
Add U as an unmarked Dstates;
Dtran[T,al; = U;
end

end

The states in Dstates are sets of positions; initially, each state may be
"unmarked," and a state becomes "marked" just before we consider its out-transitions.
The start state of D may be firstpos(root), and the accepting states may be all those
containing the position associated with end marker #.

FIG. 6 shows a block diagram of a virus simulation system 600 in accordance
with an embodiment of the present invention. As illustrated in FIG. 6, a binary file
being scanned 602 may be processed by Disassembler & Depermutator component 213
that comprises Disassembler 212 and Depermutator 214. Binary file 602 may be
converted from binary code to disassembly code by Disassembler 212. Then,
Depermutator 214 connects the subroutine of the permutated virus using the
converted disassembly code. The processing steps taken by Disassembler &
Depermutator component 213 are further described in the flow chart 700 of FIG. 7A.

Still referring to FIG. 6, output from Disassembler & Depermutator

12

WO 2005/076101 PCT/JP2005/001979

component 213 and a pattern source including DFA from virus automaton file 206 may
be input to Normalizer & DFA Simulator component 217 to complete the scanning of
the binary file for virus engine and tag the binary file 604 either as a containing or not
containing a virus. Normalizer & DFA Simulator component 217 may comprise a
Normalizer 216 and a DFA simulator 218. The processing steps taken by Normalizer
216 and DFA simulator 218 are further described by the flowcharts of FIGS. 7B and 7C,
respectively.

FIG. 7A shows a flowchart 700 illustrating exemplary procedures of
Disassembler & Depermutator 213 in accordance with an embodiment of the present
invention. As illustrated in FIG. 7A, a binary file being scanned (see 602 in FIG. 6)
may be input to Disassembler212 in step 702. Next, Disassembler 212 reads a byte
from the current Instance Pointer (IP) and determines if the byte is a jump instruction
in steps 704 and 706, respectively. Upon negative response to step 706, Disassembler
212 conwverts the byte into an assembly code in step 712. Next, in step 714, current IP
may be checked if it points to the end of file. Upon positive response to step 714, the
process terminates in step 716. Otherwise, the current IP may be updated in step 710
and the next byte from the binary file being scanned may be read from the binary file
in step 704. If the determination at step 706 is positive, Depermutator 214 computes
the jump instruction and follows the jump to connect the subroutines of the binary file
in step 708. Next, the current IP may be updated in step 710 and next byte may be
read from the binary file in step 704.

FIG. 7B shows a flow chart 720 illustrating exemplary procedures of
Normalizer 216 in accordance with an embodiment of the present invention. As
illustrated in FIG. 7B, Normalizer 216 gets disassembly codes that may be output from
Disassembler & Depermutator component 213 in step 722. Next, one of the
disassembly codes may be selected from the current IP in step 724. Subsequently, the
selected disassembly code may be matched with assembly line entries of the garbage
section of the pattern source to check if it is a garbage instruction in step 726. If
answer to the step 726 is YES, the current IP may be updated in step 728 and the next
disassembly code may be selected in step 724. Otherwise, the selected disassembly
code may be passed to DFA Simulator 218 for processing the steps illustrated in FIG.
7C.

FIG. 7C is a flowchart 730 illustrating exemplary procedures of DFA
Simulator 218 in accordance with an embodiment of the present invention. The NO
branch of decision diamond 726 in FIG. 7B proceeds to step 732 in which the selected

disassembly code may be tested if it matches any state of DFA. Upon positive response

13

WO 2005/076101 PCT/JP2005/001979

to the step 732, DFA state may be updated in step 734 and checked if the updated state
is final/accepting state in step 736. If the answer to step 736 is positive, the binary file
may be tagged as a virus in step 738. Otherwise, the process proceeds to decision
diamond 744 in which DFA Simulator 218 examines whether all of the disassembly
codes have been scanned. Upon positive response to step 744, the binary file may be
tagged as a non virus. Otherwise, the process proceeds to operational block 728 of FIG.
7B.

Referring back to step 732, the NO branch from decision diamond 732
proceeds to decision diamond 740 in which the selected disassembly code may be tested
if it matches any instruction of accepted section of the pattern source. Upon negative
response to step 740, the file may be tagged as a non-virus and the process terminates.
Otherwise, the process proceeds to step 744.

While specific embodiments of the present invention have been provided, it is
to be understood that these embodiments are for illustration purposes and not limiting.
Many additional embodiments will be apparent to persons of ordinary skill in the art

reading this disclosure.

14

WO 2005/076101 PCT/JP2005/001979

CLAIMS

1. A method to be performed by a computer having an antivirus mechanism the
method comprising:
building an automaton of a virus using a pattern and a set of rules; and
scanning a file to detect an engine of the virus by comparing the built

automaton to a plurality of disassembly codes derived from the file.

2. The method of claim 1, wherein each of the set of rules is a disassembly code and

comprises an op-code that corresponds to an assembly instruction.

3. The method of claim 2, wherein each of the set of rules further comprises one or

more operands.

4. The method of claim 3, wherein the one or more operands are wildcard operands.

5. The method of claim 3, wherein the one or more operands specify information that

is stored in variables.

6. The method of claim 1 wherein the pattern includes a source format that

comprises a virus name and a grammar section.

7. The method of claim 6, wherein the source format further comprises a garbage

section and an accept section.

8. The method of claim 7, wheréin building the automaton comprises:
grouping the set of rules into grammar, garbage and accept instructions, said
grammar, garbage and accept instructions stored in the grammar, garbage and accept

sections of the source format, respectively.

9. The method of claim 8, wherein behavior of the virus is independent of the

garbage instructions.
10. The method of claim 8, wherein the step of building an automaton comprises:

constructing a regular expression into the automaton when the pattern is

compiled.

15

WO 2005/076101 PCT/JP2005/001979

11. The method of claim 1, wherein the built automaton is a deterministic finite
automaton (DFA).

12. The method of claim 1, wherein scanning the file comprises:
processing the file into the plurality of disassembly codes; and

normalizing and simulating the processed file to detect the engine of the virus.

13. The method of claim 12, wherein the step of processing the file comprises:

(a) selecting a byte of the file from a current instance pointer(IP);

(b) determining whether the selected byte is a jump instruction;

(¢) if the determination in step (b) is positive, computing and following the jump
instruction;

(d) if the determination in step (b) is negative, converting the byte into a
disassembly code;

(e) updating the current IP; and

(D repeating steps (a) - (e) until a limit of the file is reached.

14. The method of claim 12, wherein the step of normalizing and simulating the
processed file comprises:

(a) selecting one of the plurality of disassembly codes from a current instance
pointer (IP);

(b) determining whether the selected disassembly code is a garbage instruction;
if the determination in step (b) is negative,

(c) determining if the selected disassembly code matches one of a plurality of
states of the built automaton,

(@) if the determination in step () is positive, updating a current state of the
built automaton to the matched state, wherein if the updated current state is
final state of the plurality of states, further comprising the steps of tagging
the file as a virus and terminating simulation process,

(e) if the determination in step (c) is negative, determining if the selected
disassembly code matches one of accepted instructions of the pattern, wherein,
in case of no match with one of the accepted instructions, further comprising
the steps of tagging the file as a non-virus and terminating simulation process,

and

(® determining if all of the plurality of disassembly codes are scanned, wherein

16

WO 2005/076101 PCT/JP2005/001979

if all of the plurality of disassembly codes are scanned, further comprising the
steps of tagging the file as a non-virus and terminating simulation process;
(g) updating the current IP; and
(h) repeating the steps (a) - (g).

15. The method of claim 14, wherein each of the plurality of disassembly codes is an

assembly instruction.

16. The method of claim 1, wherein the virus is a polymorphic or metamorphic virus

17. A computer including a processor for running computer-readable program code
in memory, the computer comprising:

a deterministic finite automaton (DFA) pattern file comprising at least one
pattern ;

a normalization rule file comprising a plurality of rules, each rule corresponding
to an assembly instruction;

an automaton file comprising automata of known viruses;

a DFA builder configured to build the automata using the at least one pattern
and the plurality of rules and store the automata into the automaton file; and

a Simulator, comprising:

a disassembler configured to convert each byte of a binary file to an assembly
code;

a depermutator configured to connect subroutines of the binary file by following
the assembly code if the assembly code is a jump instruction;

a normalizer configured to disregard the assembly code if the assembly code is a
garbage instruction; and

a DFA simulator configured to scan the binary file using a plurality of input

symbols derived from the binary file and the automata stored in the automaton file.

18. The computer of claim 17, wherein said at least one pattern comprises a virus

name, a source comment and a grammar section.

19. The computer of claim 18, wherein said DFA builder is configured to ignore said

comment section during a building process.

20. The computer of claim 19, wherein said at least one pattern further comprises a

17

WO 2005/076101 PCT/JP2005/001979

garbage section, an accept section or both.

21. The computer of claim 20, wherein each of said garbage, grammar and accept
sections comprises a set of assembly lines, each of said set of assembly lines

corresponding to one of the plurality of rules, respectively.

22. The computer of claim 21 , wherein each of said set of assembly lines comprises

an op-code that corresponds to an assembly instruction.

23. The computer of claim 22, wherein each of said set of assembly lines further

comprises one or more operands.

24. The computer of claim 23, wherein said one or more operands are general type

operands.

25. The computer of claim 23, wherein said one or more operands specify

information that is stored to variables and retrieved later for matching.

26. The computer of claim 17, wherein each of the plurality of input symbols is an

assembly code.

27. A method for constructing a deterministic finite automaton (DFA) during
compilation of a pattern source comprising a plurality of assembly lines, each assembly
line storing information about an assembly instruction, the method comprising:

converting each of the plurality of assembly lines into an internal operand flag
equivalent, said equivalent including an alphabet id for op-code and two opflags for a
first and second operands;

converting an infix regular expression into a postfix expression, said infix
regular expression being a formula for matching strings that follow a grammar of said
pattern source;

building a syntax-tree from the converted postfix expression;

computing a set of followpos functions; and

constructing a transition table using the computed set of followpos functions,

said transition table corresponding to the DFA.

28. The method of claim 27, wherein the alphabet id is a two-byte short integer.

18

WO 2005/076101 PCT/JP2005/001979

29. The method of claim 27, wherein each of the two opflags is an four-byte long

integer.

19

PCT/JP2005/001979

WO 2005/076101

1/8

I ©ld

P 002
. WYHOONd
811 ™ SNMIALLNY " I/ 211 ~
N e $39(A3Q SOVAHALNI
HOLINOW AV1dSIa MOV NIV 39VHOLS V.1V SNOILYDINNWINOD.
N 9L
A 90}
¥AAYIE NSHD |
N
- SAJIAZA LNdNI - YOSSID0Hd
WNIQ3W 3DVHOLS _
I18VAYIL-YILNGWNOD] l\ zZol l\ A

/Io:

WO 2005/076101

2/8

PCT/JP2005/001979

ANTIVIRUS PROGRAM 200

- 202

DFA PATTERN FILE

— 204

NORMALIZATION RULE FILE

'VIRUS AUTOMATON FILE

DFABUILDER

a
e

SIMULATOR

>

DISASSEMBLER 21

DEPERMUTATOR 21

o

|

NORMALIZER 21

DFA SIMULATOR 218

FIG. 2

WO 2005/076101 PCT/JP2005/001979

3/8
300
N
-
| /——208
DFA PATTERNS & | | DFABUILDER : AU%";&%N
NORMALIZATION e ERG diia
RULES ~
302
FIG. 3
400
\\ 402
* VIRUS NAME B G
| — 404
SOURCE COMMENT

' | —d0
GARBAGE SECTION |

ACCEPT SECTION

GRAMMAR SECTION

FIG. 4

PCT/JP2005/001979

WO 2005/076101

4/8

Y40
Q2LINYLISNOO
AHL 3HOLS

A

g old

s I\

LSIT HYHIYYED -

IHLNO a3sve

SNYIA FHL¥O
VA0 LONYLSNOD

RT\ 1 s3A

8

;

g

304N0S NMALLYd JHL

A0 1S HyirveD 01 aay

mvm|\

AN H_omz%m_ -«

304N0S NHALLYd THL
40:1S17 14390Y.01 0V

¢wm.l.\

-

F0dNOS NHALLYd IHL
40 1S1739v8yvD 01 aavY

Emt.\

¢310Y 14320y Sl

Zls

(3NN 38VERYD)

805 -

*

00§

R IXEN 139

s —"

A

- /| oY SNYIAHL 40 STINY 139

AT 37N NOULYZITYWHON ¥

A

205 l\

SNYIA Y Y04 LYWHOd
30¥N0S NY311vd ¥ 103138

PCT/JP2005/001979
5/8

WO 2005/076101

9914

— SNYIA-NON
T MO SNYIA Y SV
NOLYHIOLOY | | 5 | A MIHLS a3Vl
w:mg o %ZRE mwN__d&)mKOZ | JOLYTINNIS v4d v 304 AYYNIS -
902 ST l\ B | y09 /
I , J3NNYOS
| [doLvinwyadaal| yztewassvsia | K ONIZg
/ B, . ‘) 3713 ASYNIg
£17 — —
we—" ./ az—" N 209
; S HOLYINWIS
01z | |
>
N
009

PCT/JP2005/001979

WO 2005/076101

6/8

dl INZHEND 31¥adN

Y. Old

192

£A3HOYY

ON
1474

LA IS

- (3009 A18n3ssY)
DINOWANW OL 300D

AHYNIE 143ANOD
2L —

i~

ANY 2UNDW0D

diNr MOTIOH

NOILONMESNL
WA Y 3LAG 3HL

woh,l\) 902 »

> dl LNTNNNO WOYH 3LAG ¥ 103138
o—" » .

| GaNNYOS ONIZE T A¥YNIE ¥ 139 - N

—y . 00,

PCT/JP2005/001979

WO 2005/076101

7/8

g4 9id -

INZHAND 21VAdN |

< NOHOMULSNI 30YEYYD

di - . :
, - 83A 4000 31037138 3HL Sl
dl INFHUND oML
000 A8INISSY NY 1037138 -
- _/ i
S3000 AJEN3SSYSIA 139

Nﬁl\ |

174

WO 2005/076101 PCT/JP2005/001979
8/8

730

©

T34
.

UPDATE CURRENT STATE

DOES SELECTED ™
DISASSEMBLY CODE
MATCH ANY STATE?

15
UPDATED STATE
__THE FINAUAGGEPTING
STATE?
yYES A
[TAGFLEASA | — 738

VIRUS |

740

DOES DISASSEMBLY
CODE MATCH ANY
INSTRUCTION OF THE -

ACCEPTED LIST? -

» TAGTHEFILEASA |,— 742
NO | NONVRUS |

NO

ALL DISASSEMBLY
CODES?

TAG THE FILE AS A 748
NON-VIRUS a

FIG. 7C

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

