(54) Title: DUAL-AXIS PLATFORM FOR USE IN AN UNMANNED AERIAL VEHICLE, TRI-AXIS PLATFORM FOR USE IN AN UNMANNED AERIAL VEHICLE, AND MULTI-ROTOR AERIAL VEHICLE

(57) Abstract:
A dual-axis ball head for use in an unmanned aerial vehicle, a triple-axis ball head for use in the unmanned aerial vehicle, and a multi-rotor aerial vehicle, comprising a machine frame component, a transmission component, and a photographing component.
The machine frame component comprises a first frame bracket (2), a second frame bracket (2), and a third frame bracket (6). The transmission component comprises a first motor (3) and a second motor (5), and also comprises a connecting rod (12). Two free ends of the connecting rod (12) respectively are rotatably arranged on two open ends of the second frame bracket (4). The connecting rod (12) is fixed onto the third frame bracket (6) via a fastener (13). By hingedly arranging the free ends of the connecting rod (12) onto the second frame bracket (4), both together constitute a parallel quadrilateral connecting rod, when the second frame bracket (4) rotate for a certain number of degrees in relation to the third frame bracket (6), the connecting rod (12) moves in tandem for same number of degrees, a rotation track of the second frame bracket (4) is thus not affected. The connecting rod (12) is fixed via the fastener (13) onto the third frame bracket (6), and the connecting rod (12) provides same with effective support in the vertical direction, thus improving the load capacity and stiffness of the second frame bracket (4), and effectively reducing the degree of distention thereof.
(12) 按照专利合作条约所公布的国际申请

(19) 世界知识产权组织
国际局

(43) 国际公布日
2013年3月14日 (14.03.2013)

(51) 国际专利分类号:
B64D 47/08 (2006.01) F16M 11/12 (2006.01)

(21) 国际申请号: PCT/CN2011/079703

(22) 国际申请日: 2011年9月15日 (15.09.2011)

(25) 申请语言: 中文

(26) 公布语言: 中文

(30) 优先权: 20110268445.4 2011年9月9日 (09.09.2011) CN

(71) 申请人 (对除美国外的所有指定国): 深圳市大疆创新科技有限公司 (SHENZHEN DAJIAN INNOVATION TECHNOLOGY CO. LTD) [CN/CN]; 中国广东省深圳市南山区高新区南区粤兴二路9号香港科技大学产学研大楼6楼管巧丽, Guangdong 518057 (CN).

(72) 发明人: 及

(74) 代理人: 广州华进联合专利商标代理有限公司 (ADVANCE CHINA I.P. LAW OFFICE), 中国广东省广州市先烈中路69号东山广场918-920室, Guangdong 510095 (CN).

(54) Title: DUAL-AXIS BALL HEAD FOR USE IN UNMANNED AERIAL VEHICLE, TRIPLE-AXIS BALL HEAD FOR USE IN UNMANNED AERIAL VEHICLE, AND MULTI-ROTOR AERIAL VEHICLE

(54) 发明名称: 无人机用两轴云台、无人机用三轴云台以及多旋翼飞行器

(57) 摘要: A dual-axis ball head for use in an unmanned aerial vehicle, a triple-axis ball head for use in the unmanned aerial vehicle, and a multi-rotor aerial vehicle, comprising a machine frame component, a transmission component, and a photographing component. The machine frame component comprises a first frame bracket (2), a second frame bracket (3), and a third frame bracket (6). The transmission component comprises a first motor (1) and a second motor (5), and also comprises a connecting rod (12). Two free ends of the connecting rod (12) respectively are rotatably arranged on two open ends of the second frame bracket (4). The connecting rod (12) is fixed onto the third frame bracket (6) via a fastener (13). By hingedly arranging the free ends of the connecting rod (12) onto the second frame bracket (4), both together constitute a parallel quadrilateral connecting rod, when the second frame bracket (4) rotate for a certain number of degrees in relation to the third frame bracket (6), the connecting rod (12) moves in tandem for same number of degrees, a rotation track of the second frame bracket (4) is thus not affected. The connecting rod (12) is fixed via the fastener (13) onto the third frame bracket (6), and the connecting rod (12) provides same with effective support in the vertical direction, thus improving the load capacity and stiffness of the second frame bracket (4), and effectively reducing the degree of distention thereof.
一种无人机用两轴云台，无人机用三轴云台以及多旋翼飞行器，包括机架组件、传动组件以及拍摄组件，机架组件包括第一支架(2)、第二支架(4)以及第三支架(6)，传动组件包括第一电机(3)以及第二电机(5)，还包括连杆构件(12)，连杆构件(12)的两自由端分别转动设置在第二支架(4)的两开口端，连杆构件(12)通过紧固件(13)固定在第三支架(6)上。通过连杆构件(12)的自由端铰接设置在第二支架(4)上，两者共同构成平行四边形连杆，当第二支架(4)相对第三支架(6)转动一定角度时，连杆构件(12)会随之转动相等角度，不影响第二支架(4)的转动轨迹；连杆构件(12)通过紧固件(13)固定在第三支架(6)上，连杆构件(12)在竖直方向上为其有效支撑，增大第二支架(4)的载重量和刚度，有效地减小其形变量。
DUAL-AXIS PLATFORM FOR USE IN AN UNMANNED AERIAL VEHICLE,
TRI-AXIS PLATFORM FOR USE IN AN UNMANNED AERIAL VEHICLE, AND
MULTI-ROTOR AERIAL VEHICLE

Field of the Invention

The present invention relates to the field of unmanned aerial vehicles, and particularly to a dual-axis platform for use in an unmanned aerial vehicle, a triple-axis platform for use in an unmanned aerial vehicle, and a multi-axis aircraft for purpose of aerial photography or surveillance.

Background of the Invention

Unmanned aerial vehicles are characterized by a small size, small weight, low costs, flexible operation and high security performance, and can be widely used in various areas such as aerial photography, surveillance, search and rescue, and resource exploration. Since the unmanned aerial vehicle itself suffers from high frequency vibration and low frequency jitter, it needs to be equipped with an aerial photography stabilizing platform to carry a video camera or camera to achieve stable aerial photography. The aerial photography stabilizing platforms mostly detect posture changes of the video camera or camera via an electronic apparatus and control reverse compensation of a steering engine to stabilize the video camera or camera.

In the prior art, most of platforms employ mechanical gear driving to enable dual-axis, triple-axis or multi-axis rotation of the video camera or camera. Since gear transmission generally has a lag, when the unmanned aerial vehicle is in various postures such as turn, hover, rise, fall or tilt, the platform has a long response time, the steering engine adjusts slowly so that it is very difficult for the video camera or camera to adjust the angle timely to adapt to adjustment of postures of the unmanned aerial vehicle, which affects the image quality of the video camera or camera. Meanwhile, most of dual-axis or triple-axis
platforms for the unmanned aerial vehicles are not stable enough, the camera shakes abruptly during change of postures of the unmanned aerial vehicle, and the influence exerted by low frequency shake or machine body tilt cannot be eliminated, so it is very difficult to shoot high quality images which can meet professional needs.

Summary of the Invention

In order to solve the technical problem that poor stability of the unmanned aerial vehicle in the prior art reduces shooting quality of a shooting assembly, the present invention provides a dual-axis platform for use in an unmanned aerial vehicle, a triple-axis platform for use in an unmanned aerial vehicle, and a multi-axis aircraft.

The technical solution adopted by the present invention to solve the technical problem is as follows: a dual-axis platform for use in an unmanned aerial vehicle is constructed and characterized in that it comprises: a machine frame assembly, a transmission assembly and a shooting assembly, the machine frame assembly comprises a first bracket, a second bracket and a third bracket, the shooting assembly is fixed on the first bracket, the first bracket is rotatably arranged with the second bracket, and the second bracket is rotatably arranged with the third bracket; the transmission assembly comprises a first motor and a second motor, wherein the first motor drives the first bracket to rotate about its rotation axis relative to the second bracket, and the second motor drives the second bracket to rotate about its rotation axis relative to the third bracket; the dual-axis platform further comprises a linkage member having two free ends which are respectively rotatably arranged at two open ends of the second bracket, the linkage member being fixed on the third bracket via a fastener.

The present invention provides a dual-axis platform for use in an unmanned aerial vehicle, specifically, wherein the linkage member comprises a first link, a second link and a third link which are hingedly connected sequentially; one free end of the first link is hingedly arranged at one end of the second bracket, one free end of the third link is hingedly arranged at the other end of the second bracket; the middle portion of the second link is positioned on the
third bracket via the fastener.

The present invention provides a dual-axis platform for use in an unmanned aerial vehicle, further comprising a mounting arm, one end of the mounting arm is fixed on the third bracket, the other end is provided with a positioning hole adapted for the fastener, and the second link is fixed on the mounting arm via the fastener.

The present invention provides a dual-axis platform for use in an unmanned aerial vehicle. Preferably, a stator of the first motor is fixed on the first bracket, and a rotor of the first motor is fixedly arranged with the second bracket; a stator of the second motor is fixed on the third bracket and a rotor of the second motor is fixedly arranged with the second bracket.

The present invention provides a dual-axis platform for use in an unmanned aerial vehicle. Preferably, the center of gravity of the first bracket and the shooting assembly falls on a rotation axis of the first bracket.

The present invention provides a dual-axis platform for use in an unmanned aerial vehicle. Preferably, the center of gravity of the first bracket, the second bracket and the shooting assembly as a whole falls on a rotation axis of the second bracket.

The present invention provides a triple-axis platform for use in an unmanned aerial vehicle, comprising a machine frame assembly, a transmission assembly and a shooting assembly, characterized in that: the machine frame assembly comprises a first bracket, a second bracket and a third bracket, the shooting assembly is fixed on the first bracket, the first bracket is rotatably arranged with the second bracket, and the second bracket is rotatably arranged with the third bracket; the transmission assembly comprises a first motor, a second motor and a third motor, wherein the first motor drives the first bracket to rotate about its rotation axis relative to the second bracket, the second motor drives the second bracket to rotate about its rotation axis relative to the third bracket, and the third motor drives the third bracket to rotate about its rotation axis Z relative to a connecting frame; the triple-axis platform further comprises a linkage member having two free ends which are respectively rotatably arranged at two open ends of the second bracket, the linkage member being fixed on
the third bracket via a fastener.

The present invention provides a triple-axis platform for use in an unmanned aerial vehicle. Specifically, the linkage member comprises a first link, a second link and a third link which are hingedly connected sequentially; one free end of the first link is hingedly arranged at one end of the second bracket, one free end of the third link is hingedly arranged at the other end of the second bracket; the middle portion of the second link is positioned on the third bracket via the fastener.

The present invention provides a triple-axis platform for use in an unmanned aerial vehicle, further comprising a mounting arm, one end of the mounting arm is fixed on the third bracket, the other end is provided with a positioning hole adapted for the fastener, and the second link is fixed on the mounting arm via the fastener.

The present invention further provides a multi-rotor aircraft, comprising the triple-axis platform for use in an unmanned aerial vehicle, a multi-rotor mounting frame and a circuit device, the multi-rotor mounting frame comprises a base, at least three support arms inserted and fixed on the base, a rotor member fixed at one end of each support arm, and a plurality of support frames which are arranged extending along the base and used for positioning externally; the triple-axis platform for use in an unmanned aerial vehicle is fixedly arranged at the base through the connecting frame.

The present invention further provides a platform for use in an unmanned aerial vehicle, comprising a machine frame assembly, a transmission assembly and a shooting assembly, characterized in that: the machine frame assembly comprises a first bracket, a second bracket, a third bracket and a linkage member, the shooting assembly is fixed on the first bracket, the first bracket is rotatably arranged with the second bracket, the second bracket is rotatably arranged with the third bracket, and the linkage member and the second bracket form a four-link mechanism;

the transmission assembly comprises a first motor and a fourth motor, wherein the first motor directly drives the first bracket to rotate relative to the second bracket, and the fourth
motor directly drives the linkage member to bring the second bracket to rotate relative to the third bracket.

The present invention provides a platform for use in an unmanned aerial vehicle. Specifically, the linkage member comprises a first link, a second link and a third link which are hingedly connected in such an order; one free end of the first link is hingedly arranged at one end of the second bracket, one free end of the third link is hingedly arranged at the other end of the second bracket; the second link is positioned on the third bracket via the fourth motor.

The present invention provides a platform for use in an unmanned aerial vehicle, further comprising a mounting arm, one end of the mounting arm is fixed on the third bracket, the other end is fixedly connected to a stator of the fourth motor; a rotor of the fourth motor is fixedly connected to the second link; or one end of the mounting arm is fixed on the third bracket, the other end is fixedly connected to the rotor of the fourth motor; the stator of the fourth motor is fixedly connected to the second link.

The present invention provides a platform for use in an unmanned aerial vehicle. Furthermore, the second bracket is in an open "U" shape, one free end of the first link and one free end of the third link are respectively rotatably disposed on two open ends of the second bracket.

The present invention provides a platform for use in an unmanned aerial vehicle. Furthermore, the machine frame assembly further comprises a connecting frame for external mounting, the transmission assembly further comprises a third motor; the third motor drives the third bracket to rotate relative to the connecting frame.

The present invention provides a platform for use in an unmanned aerial vehicle. Furthermore, the transmission assembly further comprises a second motor which directly drives the second bracket to rotate relative to the third bracket.

The present invention can achieve the following advantages: the free ends of the linkage member are hingedly arranged on the second bracket to jointly form a parallelogram.
According to principles of the parallelogram, when the second bracket rotates a certain angle relative to the third bracket, the linkage member rotates the same angle along with it without interfering with the movement trajectory of the second bracket; meanwhile the linkage member is fixed on the third bracket via a fastener, the linkage member provides effective support for the two open ends of the second bracket in a vertical direction, increases load and rigidity of the second bracket and effectively reduces deformation quantity when the second bracket has a larger load; meanwhile, reduces self weight of the second bracket and decreases a diameter of the second motor.

Brief Description of Drawings

The present invention will be further exemplified with reference to figures and embodiments. In which,

Fig.1 is a structural schematic view of a dual-axis platform for use in an unmanned aerial vehicle according to a first embodiment of the present invention;

Fig.2 is exploded view 1 of a triple-axis platform for use in an unmanned aerial vehicle according to a second embodiment of the present invention;

Fig.3 is exploded view 2 of a triple-axis platform for use in an unmanned aerial vehicle according to a second embodiment of the present invention;

Fig.4 is exploded view 2 of a triple-axis platform for use in an unmanned aerial vehicle according to a second embodiment of the present invention;

Fig.5 is structural schematic view 1 of a triple-axis platform for use in an unmanned aerial vehicle according to a second embodiment of the present invention;

Fig.6 is structural schematic view 2 of a triple-axis platform for use in an unmanned aerial vehicle according to a second embodiment of the present invention;

Fig.7 is exploded view 1 of a multi-rotor aircraft according to a third embodiment of the present invention;
Fig. 8 is exploded view 2 of a multi-rotor aircraft according to a third embodiment of the present invention;

Fig. 9 is structural schematic view 1 of a multi-rotor aircraft according to a third embodiment of the present invention;

Fig. 10 is structural schematic view 2 of a multi-rotor aircraft according to a third embodiment of the present invention;

Fig. 11 is structural schematic view 1 of a platform for use in an unmanned aerial vehicle according to a fourth embodiment of the present invention;

Fig. 12 is structural schematic view 2 of a platform for use in an unmanned aerial vehicle according to a fourth embodiment of the present invention;

Fig. 13 is structural schematic view 3 of a platform for use in an unmanned aerial vehicle according to a fourth embodiment of the present invention;

Fig. 14 is structural schematic view 4 of a platform for use in an unmanned aerial vehicle according to a fourth embodiment of the present invention;
25 fourth motor

Detailed Description of Preferred Embodiments

Specific embodiments of the present invention will be described in detail with reference to figures to make technical features, objects and effects of the present invention clearer to understand.

Embodiment 1

In an embodiment as shown in Fig.1, the present invention provides a dual-axis platform for an unmanned aerial vehicle, comprising a machine frame assembly, a transmission assembly and a shooting assembly 1. The machine frame assembly comprises a first bracket 2, a second bracket 4 and a third bracket 6, the shooting assembly 1 is fixed on the first bracket 2, the first bracket 2 is rotatably arranged with the second bracket 4, and the second bracket 4 is rotatably arranged with the third bracket 6. Here, the shape of the shooting assembly 1 is not limited to a square shape as shown in Fig.1, and it may be circular, oval, or in other shapes as commonly seen in the market. The transmission assembly comprises a first motor 3 and a second motor 5, wherein the first motor 3 drives the first bracket 2 to rotate about its rotation axis relative to the second bracket 4, and the second motor 5 drives the second bracket 4 to rotate about its rotation axis relative to the third bracket 6. A power source provided in the present embodiment is a motor. A small-sized motor as used has the following advantages: (1) the motor directly drives with less energy consumption, thereby saving energy and achieving environment protection; (2) the motor has a shorter response time and can timely and quickly adjust to adapt for various flying postures of the unmanned aerial vehicle so as to improve shooting stability of the shooting assembly. Two free ends of the second bracket 4 extend outward, the first bracket 2 and the shooting assembly 1 are integrally rotatably arranged between the two free ends; during rotation of the second bracket 4 driven by the second motor 5, the longer the length of the two free ends of the second bracket 4 is, the farther the center of gravity of the first bracket 2 and the shooting assembly 1
is away from a positioning point of the second bracket 4 so that the shaking of the second bracket 4 is stronger and the shooting assembly 1 is less stable. In order to reduce the shaking of the second bracket 4 and improve stability, as shown in Fig.1, the platform further comprises a linkage member 12 which two free ends are respectively rotatably arranged at two open ends of the second bracket 4, the linkage member 12 being fixed on the third bracket 6 via a fastener 13. In the present invention, the free ends of the linkage member 12 are hingedly arranged on the second bracket 4 to jointly form a parallelogram. According to principles of the parallelogram, when the second bracket 4 rotates a certain angle relative to the third bracket 6, the linkage member 12 rotates the same angle along with it without interfering with the movement trajectory of the second bracket 4; meanwhile the linkage member 12 is fixed on the third bracket 6 via a fastener 13, thereby providing support and positioning of the two open ends of the second bracket 4 and increasing stability of the second bracket 4. The free ends of the linkage member 12 are hingedly arranged on the second bracket 4 to jointly form a parallelogram. According to principles of the parallelogram, when the second bracket 4 rotates a certain angle relative to the third bracket 6, the linkage member 12 rotates the same angle along with it without interfering with the movement trajectory of the second bracket 4; meanwhile the linkage member 12 is fixed on the third bracket 6 via a fastener 13, and the linkage member 12 provides effective support for the two open ends of the second bracket 4 in a vertical direction, increases the load and rigidity of the second bracket 4 and effectively reduces deformation quantity when the second bracket 4 has a larger load, and meanwhile, reduces self weight of the second bracket 4 in respect of production process and decreases a diameter of the second motor 5.

On the basis of the above technical solution, specifically, the linkage member 12 comprises a first link 121, a second link 122 and a third link 123 which are hingedly connected sequentially; one free end of the first link 121 is hingedly arranged at one end of the second bracket 4, one free end of the third link 123 is hingedly arranged at the other end of the second bracket 4 so that the linkage member 12 and the second bracket jointly form a
parallelogram. In order to position the parallelogram and improve its stability, a middle portion of the second link 122 is positioned on the third bracket 6 via the fastener 13.

Preferably, in order to enable a fixed connection between the linkage member 12 and the third bracket 6, as shown in Fig.1, it further includes a mounting arm 10, wherein one end of the mounting arm 10 is fixed on the third bracket 6, the other end is provided with a positioning hole 11 adapted for the fastener 13, and the second link 122 is fixed on the mounting arm 10 via the fastener 13.

In order to facilitate the motor adjusting its rotation angle timely, preferably a rotation axis X of the first bracket 2 is arranged perpendicular to a rotation axis Y of the second bracket 4. A stator of the first motor 3 is fixed on the first bracket 2, and a rotor of the first motor 3 is fixedly arranged with the second bracket 4, and the first motor 3 directly drives the second bracket 4 to bring the first bracket 2 to rotate relative to the second bracket 4. A stator of the second motor 5 is fixed on the third bracket 6 and a rotor of the second motor 5 is fixedly arranged with the second bracket 4, and the second motor 5 directly drives the second bracket 4 to bring the second bracket 4 to rotate relative to the third bracket 6.

Furthermore, to increase stability during the shooting of the shooting assembly 1, a center of gravity of the first bracket 2 along with the shooting assembly 1 falls on the rotation axis of the first bracket 2. Through mechanics analysis, when the center of gravity of the first bracket 2 and the shooting assembly 1 falls on the rotation axis X of the first bracket 2, the first bracket 2 rotates to any angle and does not generate rotation moment, i.e., the first bracket 2 will not shake to and fro due to the moment and thereby stability of the shooting assembly 1 during rotation is increased. When the unmanned aerial vehicle operates stably, namely, when motor driving is not needed, the first bracket 2 and the shooting assembly 1 are also in a dynamic balance state.

Likewise, it is found by mechanics analysis that in order to increase stability and prevent a whole assembly rotating about the Y axis from generating the rotation moment, preferably a center of gravity of the first bracket 2, the second bracket 4 and the shooting assembly 1 as a
whole falls on the rotation axis of the second bracket 4, as shown in Fig.1.

On the basis of the above technical solution, preferably, the platform provided in the present embodiment is adapted for a small unmanned aerial vehicle for aerial photography and surveillance, and the first motor 3 and the second motor 5 each are preferably a DC brushless motor. Advantages for using the DC brushless motor in the unmanned aerial vehicle lie in that (1) electronic commutation, in place of conventional mechanical commutation, enables reliable performance, permanent wear resistance, a lower malfunction rate and an increased service life by about six times than a brush motor; (2) the DC brushless motor is a static motor with a small non-load current; (3) a high efficiency; (4) a small size.

Furthermore, the transmission assembly further comprises a circuit board, an inertia sensor, a microprocessor and a signal line, wherein the inertia sensor comprises a gyro for detecting an angular speed signal and an accelerometer for detecting an acceleration signal, the microprocessor controls positive rotation, reverse rotation and a magnitude of rotation speed of the first motor 3 and the second motor 5 according to the angular speed signal and the acceleration signal. The inertia sensor is set to monitor postures of the unmanned aerial vehicle timely and dynamically, control positive and reverse rotation of the motor quickly and timely so as to improve the shooting stability of the shooting assembly.

Embodiment 2

In another embodiment as shown in Figs.2-6, the present invention provides a triple-axis platform for use in an unmanned aerial vehicle, comprising a machine frame assembly, a transmission assembly and a shooting assembly 1. As shown in Fig.2, the machine frame assembly comprises a first bracket 2, a second bracket 4, a third bracket 6, and a connecting frame 8 for external mounting. The shooting assembly 1 is fixed on the first bracket 2. To allow the shooting assembly 1 to rotate along X axis (the rotation axis of the first bracket 2), the first bracket 2 is rotatably arranged with the second bracket 4. Such rotational structure can achieve rise or bow rotation of the shooting assembly 1. In order to adapt for left tilt or
right tile flight of the unmanned aerial vehicle during flying, the shooting assembly 1 rotates to the right or to the left correspondingly to ensure stability of photo taking or video shooting. As shown in Figs.5 and 6, the second bracket 4 is rotatably arranged with the third bracket 6, leftward or rightward rotation of the second bracket 4 brings the first bracket 2 and the shooting assembly 1 to rotate wholly. To allow circumferential rotation of the shooting assembly 1 to perform rotatable shooting in a range of 360 degrees, the connecting frame 8 is fixed externally to a helicopter or a multi-rotor aircraft, and the third bracket 6 may rotate about a Z axis relative to the connecting frame 8. The transmission assembly comprises a first motor 3, a second motor 5 and a third motor 7, wherein the first motor 3 drives the first bracket 2 to rotate about its rotation axis relative to the second bracket 4, the second motor 5 drives the second bracket 4 to rotate about its rotation axis relative to the third bracket 6, and the third motor 7 drives the third bracket 6 to rotate about its rotation axis Z relative to the connecting frame 8. A power source provided in the present embodiment is a motor. A small-sized motor as used has the following advantages: (1) the motor directly drives with less energy consumption, thereby saving energy and achieving environment protection; (2) the motor has a shorter response time and can timely and quickly adjust to adapt for various flying postures of the unmanned aerial vehicle so as to improve shooting stability of the shooting assembly. As shown in Fig.2, Fig.3 and Fig.4, two free ends of the second bracket 4 extend outward, the first bracket 2 and the shooting assembly 1 are integrally rotatably arranged between the two free ends; during rotation of the second bracket 4 driven by the second motor 5, the longer the length of the two free ends of the second bracket 4 is, the farther a center of gravity of the first bracket 2 and the shooting assembly 1 is away from a positioning point of the second bracket 4 so that the shaking of the second bracket 4 is stronger and the shooting assembly 1 is less stable. In order to reduce the shaking of the second bracket 4 and improve stability, as shown in Fig.2, Fig.3 and Fig.4, the platform further comprises a linkage member 12 which two free ends are respectively rotatably arranged at two open ends of the second bracket 4, the linkage member 12 being fixed on the
third bracket 6 via a fastener 13. In the present invention, the free ends of the linkage member 12 are hingedly arranged on the second bracket 4 to jointly form a parallelogram. According to principles of the parallelogram, when the second bracket 4 rotates a certain angle relative to the third bracket 6, the linkage member 12 rotates the same angle along with it without interfering with the movement trajectory of the second bracket 4; meanwhile the linkage member 12 is fixed on the third bracket 6 via the fastener 13, thereby providing supporting and positioning for the two open ends of the second bracket 4 and increasing stability of the second bracket 4. The free ends of the linkage member 12 are hingedly arranged on the second bracket 4 to jointly form a parallelogram. According to principles of the parallelogram, when the second bracket 4 rotates a certain angle relative to the third bracket 6, the linkage member 12 rotates the same angle along with it without interfering with the movement trajectory of the second bracket 4; meanwhile the linkage member 12 is fixed on the third bracket 6 via the fastener 13, and the linkage member 12 provides effective support for the two open ends of the second bracket 4 in a vertical direction, increases the load and rigidity of the second bracket 4 and effectively reduces deformation quantity when the second bracket 4 has a larger load, and meanwhile, reduces self weight of the second bracket 4 in respect of production process and decreases a diameter of the second motor 5.

On the basis of the above technical solution, specifically, as shown in Fig.2, the linkage member 12 comprises a first link 121, a second link 122 and a third link 123 which are hingedly connected sequentially; one free end of the first link 121 is hingedly arranged at one end of the second bracket 4, one free end of the third link 123 is hingedly arranged at the other end of the second bracket 4 so that the linkage member 12 and the second bracket 4 jointly form a parallelogram. In order to position the parallelogram and improve its stability, a middle portion of the second link 122 is positioned on the third bracket 6 via the fastener 13.

Preferably, in order to enable a fixed connection between the linkage member 12 and the third bracket 6, as shown in Fig.2, Fig.3 and Fig.4, it includes a mounting arm 10, one end of the mounting arm 10 is fixed on the third bracket 6, the other end is provided with a
positioning hole 11 adapted for the fastener 13, and the second link 122 is fixed on the mounting arm 10 via the fastener 13.

Preferably, a rotation axis X of the first bracket 2, a rotation axis Y of the second bracket 4 and a rotation axis Z of the third bracket 6 are arranged perpendicular to one another. As shown in Fig.3 and Fig.4, a stator of the first motor 3 is fixed on the first bracket 2, and a rotor of the first motor 3 is fixedly arranged with the second bracket 4, and the first motor 3 directly drives the second bracket 4 to bring the first bracket 2 to rotate relative to the second bracket 4. As shown in Fig.5 and Fig.6, a stator of the second motor 5 is fixed on the third bracket 6 and a rotor of the second motor 5 is fixedly arranged with the second bracket 4, and the second motor 5 directly drives the second bracket 4 to bring the second bracket 4 to rotate relative to the third bracket 6. As shown in Fig.5 and Fig.6, a stator of the second motor 7 is fixed on the connecting frame 8, a rotor is fixedly connected to the third bracket 6, and the third motor 7 directly drives the third bracket 6 to bring the third bracket 6 to rotate about the Z axis relative to the connecting frame 8. A positioning frame 9 is fixedly disposed on the connecting frame 8 to position the third motor 7.

Furthermore, to increase stability during the shooting of the shooting assembly 1, a center of gravity of the first bracket 2 and the shooting assembly 1 falls on the rotation axis of the first bracket 2. Through mechanics analysis, when the center of gravity of the first bracket 2 and the shooting assembly 1 falls on the rotation axis X of the first bracket 2, the first bracket 2 rotates to any angle and does not generate a rotation moment, i.e., the first bracket 2 will not shake to and fro due to the moment and thereby stability of the shooting assembly 1 during rotation is increased. When the unmanned aerial vehicle operates stably, namely, when motor driving is not needed, the first bracket 2 and the shooting assembly 1 are also in a dynamic balance state.

Likewise, it is found by mechanics analysis that in order to increase stability and prevent a whole assembly rotating about the Y axis from generating the rotation moment, preferably a center of gravity of the first bracket 2, the second bracket 4 and the shooting assembly 1 as a
whole falls on the rotation axis of the second bracket 4, as shown in Fig.1.

Likewise, in order to prevent a whole assembly rotating about the Y axis from generating the rotation moment, a center of gravity of the first bracket 2, the second bracket 4, the third bracket 6 and the shooting assembly 1 as a whole falls on the rotation axis Z of the third bracket 6, as shown in Fig.5 and Fig.6.

On the basis of the above technical solution, preferably, the platform provided by the present embodiment is adapted for a small unmanned aerial vehicle for aerial photography and surveillance, and the first motor 3 and the second motor 5 each are preferably a DC brushless motor. Advantages for using the DC brushless motor in the unmanned aerial vehicle lie in that (1) electronic commutation, in place of conventional mechanical commutation, achieves reliable performance, permanent wear resistance, a lower malfunction rate and an increased service life by about six times than a brush motor; (2) the DC brushless motor is a static motor with a small non-load current; (3) a high efficiency; (4) a small size.

Furthermore, the transmission assembly further comprises a circuit board, an inertia sensor, a microprocessor and a signal line, wherein the inertia sensor comprises a gyro for detecting an angular speed signal and an accelerometer for detecting an acceleration signal, the microprocessor controls positive rotation, reverse rotation and a magnitude of rotation speed of the first motor 3 and the second motor 5 according to the angular speed signal and the acceleration signal. The inertia sensor is set to monitor postures of the unmanned aerial vehicle timely and dynamically, and control positive and reverse rotation of the motor quickly and timely so as to improve the shooting stability of the shooting assembly.

Embodiment 3

In a further embodiment as shown in Fig.7-Fig.10, the present invention provides a multi-rotor aircraft, comprising the triple-axis platform 100 for use in an unmanned aerial vehicle, a multi-rotor mounting frame 200 and a circuit device. The multi-rotor mounting frame 200 comprises a base 21, at least three support arms 22 inserted and fixed on the base
21, a rotor member 23 fixed at one end of the support arm 22, and a plurality of support frames 24 which are arranged extending along the base 21 and used for positioning externally. Noticeably, the number of the support arms 22 is not limited to three as shown in the figures, and it may be four, six or eight. The support arms 22 may be fixed on the base 21 by insertion connection, welding, threaded connection or riveting. The triple-axis platform 100 for use in an unmanned aerial vehicle is fixedly arranged at the base 21 through the connecting frame 8.

Noticeably, the triple-axis platform 100 of the multi-rotor aircraft employs the structure of the triple-axis platform for use in an unmanned aerial vehicle provided in embodiment 2, which is not detailed here. For particulars, please refer to the preceding depictions.

Embodiment 4

In an embodiment shown in Fig.11, the preset invention provides a platform for use in an unmanned aerial vehicle. The platform is a dual-axis platform comprising a machine frame assembly, a transmission assembly and a shooting assembly 1. The machine frame assembly comprises a first bracket 2, a second bracket 4, a third bracket 6 and a linkage member 12, the shooting assembly is fixed on the first bracket 2, the first bracket 2 is rotatably arranged with the second bracket 4, the second bracket 4 is rotatably arranged with the third bracket 6, and the linkage member 12 and the second bracket 4 form a four-link mechanism. The transmission assembly comprises a first motor 3 and a fourth motor 25, wherein the first motor 3 directly drives the first bracket 2 to rotate relative to the second bracket 4. Different from Embodiment 1, Embodiment 2 and Embodiment 3, the fastener 13 is replaced by the fourth motor 25 which directly drives the linkage member 12 to bring the second bracket 4 to rotate relative to the third bracket 6, rather than the fact that the second motor 25 directly drives the fourth bracket 4 as in Embodiment 1, Embodiment 2 and Embodiment 3. In the present invention, the linkage member 12 and the second bracket 4 form a four-link mechanism, the fourth motor 25 which directly drives the linkage member 12 to bring the
second bracket 4 to rotate relative to the third bracket 6, the linkage member 12 and the second bracket 4 rotate the same angle without interfering with the movement trajectory of the second bracket 4; meanwhile the linkage member 12 provides effective support for the two open ends of the second bracket 4 in a vertical direction, increases the load and rigidity of the second bracket 4, effectively reduces deformation quantity, and decreases the self weight of the second bracket 4.

In a further embodiment as shown in Fig.12, the present invention provides a triple-axis platform. Different from the dual-axis platform as described in Fig.11, the machine frame assembly of the platform for use in the unmanned aerial vehicle further comprises a connecting frame 8 for external mounting, the transmission assembly further comprises a third motor 7; the third motor 7 drives the third bracket 6 to rotate relative to the connecting frame 8. To allow circumferential rotation of the shooting assembly 1 to perform rotatable shooting in a range of 360 degrees, the connecting frame 8 is fixed externally to a helicopter or a multi-rotor aircraft, and the third bracket 6 may rotate around a Z axis relative to the connecting frame 8.

In a further embodiment as shown in Fig.13, the present invention provides a dual-axis platform for use in an unmanned aerial vehicle. Different from the platform as described in Fig.11, the transmission assembly of the platform for use in an unmanned aerial vehicle further comprises a second motor 5 which directly drives the second bracket 4 to rotate relative to the third bracket 6. The second motor 5 may serve as an auxiliary power source and drive the second bracket 4 in cooperation with the fourth motor 25. Since the linkage member 12 and the second bracket 4 form a four-link mechanism, the second motor 5 and the fourth motor 24 are used in cooperation to synchronously drive the second bracket 4 to rotate. It may be understood that the second motor 5 and the fourth motor 25 may individually drive the second bracket 5 to rotate.

In a further embodiment as shown in Fig.14, the present invention provides a triple-axis platform for use in an unmanned aerial vehicle. Different from the platform as described in
Fig. 13, the machine frame assembly of the platform for use in the unmanned aerial vehicle further comprises a connecting frame 8 for external mounting, the transmission assembly further comprises a third motor 7; the third motor 7 drives the third bracket 6 to rotate relative to the connecting frame 8. To allow circumferential rotation of the shooting assembly 1 to perform rotatable shooting in a range of 360 degrees, the connecting frame 8 is fixed externally to a helicopter or a multi-rotor aircraft, and the third bracket 6 may rotate about a Z axis relative to the connecting frame 8.

In the platform of Embodiment 4 of the present invention, the linkage member 12 and the second bracket 4 form a four-link mechanism, the fourth motor 25 directly drives the linkage member 12 to bring the second bracket 4 to rotate relative to the third bracket 6, the linkage member 12 and the second bracket 4 rotate the same angle without interfering with the movement trajectory of the second bracket 4; meanwhile the linkage member 12 provides effective support for the two open ends of the second bracket 4 in a vertical direction, increases the load and rigidity of the second bracket 4, effectively reduces deformation quantity, and decreases the self weight of the second bracket 4. Meanwhile, the motor, as the power source, is directly connected to the machine frame assembly of the platform, thereby consuming less energy and saving electrical energy; meanwhile, motor driving can achieve indefinitely variable adjustment, the motor has a shorter action response time and can quickly start, stop or adjust the magnitude of the rotation speed timely to adapt for various flying postures of the unmanned aerial vehicle so as to improve the shooting stability of the shooting assembly.

The above only describes preferred embodiments of the present invention with reference to figures. The protection scope of the present invention is not limited to the above specific embodiments. The above specific embodiments are only illustrative not restrictive. As suggested by the present invention, those having ordinary skill in the art, without departure from the essence of the present invention and the scope defined by appended claims, may devise many forms, which all fall within the scope of the present invention.
WHAT IS CLAIMED IS:

1. A dual-axis platform for use in an unmanned aerial vehicle, comprising a machine frame assembly, a transmission assembly and a shooting assembly (1), characterized in that:

 the machine frame assembly comprises a first bracket (2), a second bracket (4) and a third bracket (6), wherein the shooting assembly (1) is fixed on the first bracket (2), the first bracket (2) is rotatably arranged with the second bracket (4), and the second bracket (4) is rotatably arranged with the third bracket (6);

 the transmission assembly comprises a first motor (3) and a second motor (5), wherein the first motor (3) drives the first bracket (2) to rotate relative to the second bracket (4), and the second motor (5) drives the second bracket (4) to rotate relative to the third bracket (6);

 and further comprises a linkage member (12) with two free ends respectively rotatably arranged at two open ends of the second bracket (4), the linkage member (12) being fixed on the third bracket (6) via a fastener (13).

2. The dual-axis platform for use in an unmanned aerial vehicle according to claim 1, characterized in that, the linkage member (12) comprises a first link (121), a second link (122) and a third link (123) hingedly connected sequentially; one free end of the first link (121) is hingedly arranged at one end of the second bracket (4), one free end of the third link (123) is hingedly arranged at the other end of the second bracket (4); a middle portion of the second link (122) is positioned on the third bracket (6) via the fastener (13).

3. The dual-axis platform for use in an unmanned aerial vehicle according to claim 2, characterized in that, it further comprises a mounting arm (10), wherein one end of the mounting arm (10) is fixed on the third bracket (6), and the other end is provided with a positioning hole (11) adapted for the fastener (13), and wherein the second link (122) is fixed on the mounting arm (10) via the fastener (13).
4. The dual-axis platform for use in an unmanned aerial vehicle according to claim 1, characterized in that, a stator of the first motor (3) is fixed on the first bracket (2), and a rotor of the first motor (3) is fixedly arranged with the second bracket (4); a stator of the second motor (5) is fixed on the third bracket (6), and a rotor of the second motor (5) is fixedly arranged with the second bracket (4).

5. The dual-axis platform for use in an unmanned aerial vehicle according to claim 1, characterized in that, the center of gravity of the first bracket (2) and the shooting assembly (1) falls on a rotation axis of the first bracket (2).

6. The dual-axis platform for use in an unmanned aerial vehicle according to claim 1, characterized in that, the center of gravity of the first bracket (2), the second bracket (4) and the shooting assembly (1) as a whole falls on a rotation axis of the second bracket (4).

7. A tri-axis platform for use in an unmanned aerial vehicle, comprising a machine frame assembly, a transmission assembly and a shooting assembly (1), characterized in that:

 the machine frame assembly comprises a first bracket (2), a second bracket (4), a third bracket (6) and a connecting frame (8) for external mounting, wherein the shooting assembly (1) is fixed on the first bracket (2), the first bracket (2) is rotatably arranged with the second bracket (4), and the second bracket (4) is rotatably arranged with the third bracket (6);

 the transmission assembly comprises a first motor (3), a second motor (5) and a third motor (7), wherein the first motor (3) drives the first bracket (2) to rotate relative to the second bracket (4), the second motor (5) drives the second bracket (4) to rotate relative to the third bracket (6), and the third motor (7) drives the third bracket (6) to rotate relative to the connecting frame (8);
it further comprises a linkage member (12) with two free ends rotatably arranged at two open ends of the second bracket (4) respectively, the linkage member (12) being fixed on the third bracket (6) via a fastener (13).

8. The tri-axis platform for use in an unmanned aerial vehicle according to claim 7, characterized in that, the linkage member (12) comprises a first link (121), a second link (122) and a third link (123) hingedly connected sequentially; one free end of the first link (121) is hingedly arranged at one end of the second bracket (4), one free end of the third link (123) is hingedly arranged at the other end of the second bracket (4); a middle portion of the second link (122) is positioned on the third bracket (6) via the fastener (13).

9. The tri-axis platform for use in an unmanned aerial vehicle according to claim 8, characterized in that, it further comprises a mounting arm (10), wherein one end of the mounting arm (10) is fixed on the third bracket (6), and the other end is provided with a positioning hole (11) adapted for the fastener (13), and wherein the second link (122) is fixed on the mounting arm (10) via the fastener (13).

10. A multi-rotor aerial vehicle, characterized in that it comprises the tri-axis platform (100) for use in an unmanned aerial vehicle according to any one of claims 7-9, a multi-rotor mounting frame (200) and circuit elements, the multi-rotor mounting frame (200) comprises a base (21), at least three support arms (22) inserted and fixed on the base (21), a rotor member (23) fixed at one end of each support arm (22), and a plurality of support frames (24) which are arranged extending along the base (21) and used for positioning externally; the tri-axis platform (100) for use in an unmanned aerial vehicle is fixedly arranged at the base (21) through the connecting frame (8).
11. A platform for use in an unmanned aerial vehicle, comprising a machine frame assembly, a transmission assembly and a shooting assembly (1), characterized in that:

the machine frame assembly comprises a first bracket (2), a second bracket (4), a third bracket (6) and a linkage member (12), wherein the shooting assembly (1) is fixed on the first bracket (2), the first bracket (2) is rotatably arranged with the second bracket (4), the second bracket (4) is rotatably arranged with the third bracket (6), and the linkage member (12) and the second bracket (4) form a four-link mechanism;

the transmission assembly comprises a first motor (3) and a fourth motor (25), wherein the first motor (3) directly drives the first bracket (2) to rotate relative to the second bracket (4), and the fourth motor (25) directly drives the linkage member (12) to thereby bring the second bracket (4) into rotation relative to the third bracket (6).

12. The platform for use in an unmanned aerial vehicle according to claim 11, characterized in that, the linkage member (12) comprises a first link (121), a second link (122) and a third link (123) hingedly connected sequentially; one free end of the first link (121) is hingedly arranged at one end of the second bracket (4), one free end of the third link (123) is hingedly arranged at the other end of the second bracket (4); the second link (122) is positioned on the third bracket (6) via the fourth motor (25).

13. The platform for use in an unmanned aerial vehicle according to claim 12, characterized in that, it further comprises a mounting arm (10), wherein one end of the mounting arm (10) is fixed on the third bracket (6), and the other end is fixedly connected to a stator of the fourth motor (25); a rotor of the fourth motor (25) is fixedly connected to the second link (122);

or, one end of the mounting arm (10) is fixed on the third bracket (6), and the other end is fixedly connected to the rotor of the fourth motor (25); the stator of the fourth motor (25) is fixedly connected to the second link (122).
14. The platform for use in an unmanned aerial vehicle according to claim 12, characterized in that, the second bracket (4) is in an open "U" shape, and one free end of the first link (121) and one free end of the third link (123) are respectively rotatably arranged at two open ends of the second bracket (4).

15. The platform for use in an unmanned aerial vehicle according to claim 11, characterized in that, the machine frame assembly further comprises a connecting frame (8) for external mounting, and the transmission assembly further comprises a third motor (7); the third motor (7) drives the third bracket (6) to rotate relative to the connecting frame (8).

16. The platform for use in an unmanned aerial vehicle according to any one of claims 11-15, characterized in that, the transmission assembly further comprises a second motor (5) which directly drives the second bracket (4) to rotate relative to the third bracket (6).