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FIG. 3
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FIG. 4
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FIG. 8
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00 0110 TPY%E (USED FOR 2x4 TRANSLATE TABLE) 2x2 TABLE
01

(USED FOR 4x4 TRANSLATE TABLE)

ax2 TABLE CONTAINS A TABLE OF TWO BIT PE I0s. A SEQUENCE OF TW BIT VALUES (STARTING WITH 0
WHICH SPECTFY THE PE VID, ARE APPLIED AS AN INDICES INTO THIS TABLE WHEN ONE OF
THE PE ADDRESSING MODES IS USED IN A TRANSFER INSTRUCTION. THE TRANSLATED VALUE
IS THEN USED TO PERFORM THE MEMORY ACCESS. WITH THIS APPROACH, PEs MAY BE
ACCESSED IN ANY ORDER FOR THESE HODES.

MA TYPE ?:antE‘ray TYPE SPECIFIES THE CONFIGURATION TARGETED AND THEREFORE THE SIZE OF THE

00 - 1x2 (WP 10 2 PEs)
01 - 2x2 (UP TO 4 PEs)
10 - 2x4 (WP TO § PEs)
11 - 4xd (P TO 16 PEs)
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FIG. 10

INIVIALIZE (PE) : 1002 1000
INITIALLZE (8ASE) - - -~
INITIALTIZE (INDEX) :

—{while (TRUE) 008
————— while (1BaseloopComplete) 1010 )

1020 3

while (!IndexLoopComplete)

1030 3

while [!PELoopComplete)
MEMACCESS (PE, Base, Index) 1040

}f(lcontinuuusl _,/’/’

Decrement {TC)
Pf1C == 0) >IHdER
EndTransfer; LooP

1050

KIDOLE | e
. OUTER
0P LGP

UpdataAddress(PE) .
UEdataloopControl(PEl;
PELoopComplete = CheckloopStatus(PE) .

Endwhile | 1060 j

Reinitialize(PE] 1065

UpdateAddress (Inex) L~ 1070
UpdateLoogControllIndex);
IndexLooplomplete = ChecklLoopStatus(Index)

Endwhile | ]

Lﬁeinitialize(lnﬂex) 1075

UpdateAddress(Basel ; |~ 1077
UpdateloopControl (Base) ;
BaseloopComplete = CheckloopStatus(Base ;

[Reinitialize Base) 1085
Endwhile
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FIG. 11
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: EndTransfer; ?LGP
KIDOLE | «pyprene
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IndexLoopComplete = CheckLoopStatus(Index) ;

Endwhile 1150 J )
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FIG. 12
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FIG. 13
/1300
HHABHAHBHABHARRR AR RN RORE
tlol9)el7lelslalalal1lolalalzlelslalal2ltlolalsllg]s]el3|2]1]0
CTU TRANSFER | 11 TYPE | BLOCKCYCLIC | X | RSVD CORE TRANSFER COUNT (C10)
/
0
RESEAVED STARTING TRANSFER ADDRESS (WITHIN PE HEHORY)
L00P CIRL| PE COUNT | BASE UFOATE COUNT BAGE UPDATE (STRIOE)
RANGE: 1 T0 256 RANGE :
TNEX COUNT (HOLDI TNOEX UPDATE
RANGE : RESERVED RANGE: 1-256
L00P CTRL LODP CTRL SPECIFIES A PARTICULAR ORDER IN WHICH FE, BASE AND TNDEK VALUES

ARE UPDATED. THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND 10
THREE ASSIGNHENTS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONTROL
LOOPS (OUTER, MIDOLE AND INNER) .

00 - BASE (QUTER), INDEX (MIODLE), PE (INNER) - BIP

01 - BASE {QUTER), PE (NICDLE), INDEX (INNER) - BPI

10 - PE (QUTER), BASE (NIDDLE), INDEX (INNER) - PBI

PE COUNT SPECIFIES THE NUMBER OF PEs TO BE ACCESSED FOR EACH TINE THE PE COUNTER
IS SIGNALED T0 RELOAD. VALID VALUES ARE:

gggi - ?AX NUMBER OF Pts AS SPECIFIED IN THE PE CONFIGURATION REGISTER

0010 - ¢
0011 - 3 EIC., EIC.

BASE PDATE (STRIDE) | DISTANCE BETWEEN SUCCESSIVE BLOCKS. UNITS ARE OF *DATA TYPE" SIZE.

BASE UPDATE COUNT [USED FOR PBI LOOP CONTROL. SPECIFIES THE MUMBER OF TIMES THE BASE IS
UPDATED BEFORE EXTTING T0 THE QUTER LOOP (PE UPDATE) . RANGE IS 1 T0 256

INDEX COUNT (HOLD) | NUMBER OF CONTIGUOUS DATA ITEMS IN A BLOCK
INDEX UPDATE DISTANCE BETWEEN SUCCESSIVE ITENS WITHIN A BLOCK. UNITS ARE OF "TYPE® SIZE.
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FIG. 14 P 1400
L00P CONTROL. BIP (PE 1D VARIES FIRST, THEN INDEX, THEN BASE
ADDRESS PEO PEL P2 Pl
020000 0 { 2 3
00001
00002 { 5 ; ]
030003
010000
00005
00006
0:000)
00008 B g 0 i
0x0009
0x000a 12 1 14 15
« AN INBOUN) SEQUENCE OF 16 DATA ELEMENTS WITH VALUES 0.1.2.3....15
« PETABLE SETTING OF 0x000000E4 (NO TRANSLATION OF PE I0s)
= 1S1.block INSTRUCTION IN THE STU (READING THE 15 VALUES FRON SYSTEM MEMORY)
* 1CL.blockeyclic INSTRUCTION IN THE CTU WITH PE COUNT - 4, LOOP CONTROL - BIP, BASE UPDATE - 8. BASE
COUNT =, INDEX UPDATE = 2. INDEX COUNT = 2

FIG

. 15 P 1500

LOOP CONTROL: BPI (INDEX VARIES FIRST. THEN PE 10, THEN BASE)

ADDRESS PE0 PEL PE? PE3
0x0000 0 2 [ 3
0x0001
0x0002 1 3 3 ]
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008 8 10 12 1
0x0009
0x0002 g 11 13 15
© AN INBOUND SEQUENCE OF {6 DATA ELENENTS WITH VALUES 0.1.2.3._.. 15
» PETABLE SETTING OF 0x000000E4 (N TRANSLATION OF PE I0s)
* TSI.block INSTRUCTION IN THE STU (READING THE 15 VALUES FRON SYSTEN MEMORY)
* L1 blockeyclic INSTRUCTION IN THE CTU WITH PE COUNT « 4, LOGP CONTROL - 8PT, BASE UPDATE - B, BASE
COUNT . INDEX UPDATE = 2. INDEX COUNT = 2
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FIG. 16
/ 1600
LOOP CONTROL: PBI (INDEX VARIES FIAST, THEN BASE, THEN PE I0)
ADDRESS PE0 PEL PE? Pt3

0x0000 0 { 8 2
0x0001
0x0002 )| 5 3 13
0x0003
0x0004
0x0005
0x0006
0x0007
0x0008 ¢ b 10 14
0x0003
0x000a 3 ] {1 13
« AN INBOUND SEQUENCE OF 16 DATA ELEMENTS WITH VALUES 0.1.2.3,.. .15
» PETABLE SETTING OF 0x0Q0000E4 (NO TRANSLATION OF PE IDs)
« IS[.block INSTRUCTION IN THE STU (READING THE 1B VALUES FROM SYSTEM MEMORY)
* ICL.blockcyclic INSTRUCTION IN THE CTU WITH PE COUNT - 4, LOOP CONTROL = BPI. BASE UPDATE - 8, BASE

COUNT =, INDEX UPDATE = 2, INDEX COUNT = 2

NOTE THAT A FOR PBL MODE, THE BASE COUNT MUST BE 2 IN ORDER TO GET 2 *BLOCKS® OF DATA. INDEX COUNT

(ORRESPONDES TO THE NUMBER OF ELEMENTS WRITTEN BEFORE UPDATING THE NEXT ADDRESS VARIABLE. THE GAP

| BETWEEN ELEMENTS WITHIN A PE IS DUE TO THE INDEX UPDATE VALUE OF 2 (RATHER THAN 1)
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FIG. 17
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1019181780150 4131214504918171645141312{110(91817i6)S5(4t312{110
TTU TRANSEER | 1] TYPE |PE SELECT 1 X | SV CORE TRANSFER COUNT (CT0)
L TNOE
o
INDEX COUNT RESERVED STARTING TRANSFER ADDRESS (WITHIN PE MEMORYI
[00° CIRL | TNOEX COUNT| ™ BASE UPDATE COUNT BASE UPOATE (STRIDE]
w7 1ue U5 TU4 103 U2 (I} U0
LOOP CTRL 100P CTRL SPECIFIES A PARTICULAR OACER IN WHICH PE, BASE AND INDEX VALUES

ARE UPDATED. THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND T0
THREE ASSIGNMENTS OF PE, BASE AND INDEX UPDATE 7O THREE NESTED CONTROL
LOOPS (OUTER, MIDDLE AND INNER) .

00 - BASE (QUTER), INDEX (NIDDLE), PE (INNER) - BIP

01 - BASE (QUTER), PE (MIODLE). INDEX (INNER) - BPI

10 - PE (QUTER), BASE (MIDDLE), INDEX (INNER) - PBI

PE COUNT SPECIFIES THE NUMBER OF PEs TO BE ACCESSED FOR EACK TIME THE PE COUNTER
IS SIGNALED TO RELOAD. VALID VALUES ARE:

ggg? - ?AX NUMBER OF PEs AS SPECIFIED IN THE PE CONFIGURATION REGISTER

0010 - 2
0011 - 3 ETC., EIC.

BASE UPOATE {STRIOE) | DISTANCE BETWEEN SUCCESSIVE BLOCKS. UNITS ARE OF °DATA TYPE* SIZE.

BASE UPDATE COUNT JUSED FOR PBI L00P CONTROL. SPECIFIES THE NUMBER OF TIMES THE BASE IS
UPDATED BEFORE EXTTING T0 THE QUTER LOOP (PE UPDATE) . RANGE IS 1 T0 256.

TUx 1U0 - TU7 FORM AN INOEX UPDATE TABLE WITH EACH ENTRY BEING A 4-BIT UPDATE
VALUE. UPDATE VALUES ARE INTEGERS IN THE RANGE OF -8 10 +7

[NDEX COUNT NUMBER OF TIHES TO EXECUTE THE INDEX UPDATE LOOP. THIS VARIABLE PROVIDES
THE LOOP EXIT CONTROL FOR THE INDEX LOOP.
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FIG. 18
/ 1800
LOOP CONTROL: BIP (INDEX VARIES FIRST, THEN BASE, THEN PE ID)

ADDRESS PED PE1 PE2 PE3
0x0000 0 1 4 3
0x0001 2 &5 2 i
0x0002 4 b b ]
0x0003 P} 21 124 a
0x0004 8 g 10 il
0x0005 16 Y 18 13
0x0006 Y 1 14 15
0x0007
0x0008 28 L] k(i N
0x0003
0x000a R 3 K[} 39

PAITERN ABOVE RESULTS FROM AFTER A TRANSFER WITH THE FOLLOWING ASSUMPTIONS:

. sS{glock INSTRUCTION READS SUCCESSIVE ADDRESSES FROM SYSTEM MEMORY, DATA ELEMENT VALUES ARE
1.2, elc.

» 101 select INOEX INSTAUCTION PLACES VALUES IN PE HEMORIES USING THE FOLLOWING PARAMETERS

* ASSUME NO PE VID-to-PID TRANSLATION

» TAANSFER COUNT - 36

* PE ADDRESS - 0

» PE COUNT - 4

» L00P CONTROL = BIP

» BASE UPDATE COUNT - 0

» BASE UPDATE - 9

o INDEX UPDATE TABLE VALUE IS OxOOEEF222 WHICH GIVES UPDATES 2.2,2.-1,-2,-2

» INDEX COUNT - 7
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FIG. 18
/1900
Jt3tef 22|22tz 2 2pajapefepapefaisyayeiofofojofofofojololo
1101318 716]5}4]312{1}0]9]8}7 6}5/4/3[2]1/0]93{Bi7]6jSj4]3[2{1]0
CTU TRANSFER } TYPE {SELECT-PE [ X} ASVD CORE TRANSFER COUNT {CTC)
0
RESERVED STARTING TRANSFER ADDRESS (WITHIN PE MEMORY)
LOOP CTRL [ PE COUNT | BASE UPDATE COUNT BASE UPDATE (STRIOE)
INDEX COUNT (HOLD) RESERVED INDEX UPDATE
AANGE: 1 TO 63336 RANGE: 1-256
PEMSK7 PEMSKE PEMSKS | PEMSK4 | PEMSK3 | PEMSK2 PEMSKL | PEMSKO

LOOP CTARL LOOP CTRL SPECIFIES A PARTICULAR ORDER IN WHICH PE. BASE AND INDEX VALUES
ARE UPDATED. THREE POSSIBLE OROERS ARE SELECTABLE WHICH CORRESPOND 10
THREE ASSIGNMENTS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONTROL
LOOPS [QUTER, MIDDLE AMD INNERI .

00 - BASE (QUTER), INDEX (MIODLE), PE (INNER} - BIP

01 - BASE (OUTER), PE (MIDDLE), INDEX (INNER} - BPI

10 - PE (QUTER), BASE (MIODLE), INDEX (INNER) - PBI

PE COUNT (NOT USED FOR THIS ADDRESS MODE)
BASE UPOATE (STRICE! { DISTANCE BETWEEN SUCCESSIVE BLOCKS. UNITS ARE OF "OATA TYPE® SIZE.

BASE UPDATE COUNT USED FOR PRI LOOP CONTROL. SPECIFIES THE NUMBER OF TIMES THE BASE IS
UPDATED BEFORE EXITING T0 THE OUTER LOOP (PE UPDATE) . RANGE IS 1 T0 255.

TNDEX COUNT (HOLD! { NUMBER OF CONTIGUOUS DATA TTEMS IN A BLOCK
INDEX UPDATE g%%EANCE BETWEEN SUCCESSIVE ITEMS WITHIN A BLOCK. UNTTS ARE OF DATA TYPE'

PEVEC THESE VALUES FORM A TABLE OF 4-BIT FIELOS THAT ARE USED TO SPECIFY PE
SELECTIONS FOR UP TO B PASSES THROUGH THE PEs. FOR EACH FOUR BIT FIELD, A '{'
BIT SELECTS THE PE VID CORRESPONDING 10 ITS BIT POSITION. PEMSKO NUST HAVE

AT LEAST ONE "{' BIT, AND THE FIRST ALL-ZERO FIELD DETECTED CAUSES SELECTION T0
BEGIN AGAIN WITH THE PENSKD FIELD.

IN BIP AND BPI LOOP MODES, WHEN THE BASE IS UPDATED, THE PEVEC TABLE

RESETS 10 THE FIRST 4-BIT ENTRY REGARDLESS OF WHICH ENTRY WAS LAST IN USE.

IN PBI LOOP MODE THE PEVEC ENTRIES ARE CYCLED THROUGH CONTINUDUSLY .
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FIG. 20
/- 2000

LOOP CONTROL: BIP (INDEX VARIES FIRST, THEN BASE, THEN PE I0)

ADDRESS PE0 PEy PE? FE3

IORDS)
0x0000 0 ! {
0x0001 ] { 5
{x0002 9 b ] ]
0x0003 10 11 12
{x0004
0x0005
0x0006
0x0007
0x0008 13 ) 15
0x0009 ‘ 16 17 18
0x00%a 2 19 A 4
0x000a 23 P 2

PATTERN ABOVE RESULTS FROM AFTER A TRANSFER WITH THE FOLLOWING ASSUKPTIONS:
(T)S{ tz)lonk {NSTRUCTION READS SUCCESSIVE ADDRESSES FROM SYSTEM NEMORY, DATA ELEMENT VALUES ARE
elc

ASSUNE P TRANSLATE TABLE MAPS 0—==1, {—==2, 2—=-3, J—=j

1CL selectpe INSTRUCTION PLACES VALUES IN PE NEMORIES USING THE FOLLOWING PARAMETERS
TRANSFER COUNT - 26

INITIAL PE ADORESS OFFSET - 0

PE COUNT - NOT USED

LOOP CONTROL - BIP

BASE UPDATE COUNT < 0

BASE UPDATE - 8

INOEX UPDATE = 1

INOEX COUNT - 4

PE TABLE IS 0x00000F77

*  FIRST PASS SELECT VIDs: 0. 1, 2 {TRANSLATION CONVERTS THESE 10 PI0s: 1.2.3!
e NEXT PASS SELECT VIDs 0,1.2 (TRANSLATION CONVERTS THESE T0 PIDs: 1,2,3)

*  NEXT PASS SELECT VIDs 0.1,2,3 (TRANSLATION CONVERTS THESE T0 PIOs: 1.2.3.0)
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FIG. 21
/-—2100
3132 ettty 2tdq |y iy bt aior0)0101010]0f0j0(0
1/0(9)8]7{6]514{3[2]1({0(9}817({6]5]4[3[2|1]0]i8iBf7 6f5[4]3j2[1]0
CTU TRANSFER § I [ TYPE | SELECT- X| AS¥D CORE TRANSFER COUNT (CTC)
(l) INDEX-PE

TV COUNT RESERVED STARTING TRANSFER ADDRESS (WITHIN PE MEMORY)
LOOP CTRL | PE COUNT | BASE UPDATE COUNT BASE UPDATE (STRIDE)

V7 U6 U U4 Iv3 e U1 U
PEMSK7 PEMSKE PEMSKS PEMSK4 PEMSK3 PEMSK2 PEMSK1 | PEMSKO

LOOP CTAL L0OP CTRL SPECIFIES A PARTICULAR ORDER IN WHICH PE, BASE AND INDEX VALUES
ARE UPDATED. THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND 10
THAEE ASSIGNHENTS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONTROL
LOOPS {OUTER, MIDDLE AND INNER) .

00 - BASE {OUTER), INDEX (MIODLE), PE (INNER) - BIP

01 - BASE (QUTER), PE (MIDOLE), INDEX (INNER) - BPI

10 - PE (OUTER), BASE (MIODLE), INOEX (INNER) - PBI

PE COUNT {NOT USED FOR THIS ADDRESS MODE)
BASE UPCATE (STRIDE} | DISTANCE BETWEEN SUCCESSIVE BLOCKS. UNITS ARE OF "OATA TYPE™ SIZE.

BASE UPDATE COUNT |USED FOR PBI LOOP CONTROL. SPECIFIES THE NUMBER OF TIMES THE BASE IS
UPDATED BEFORE EXITING T0 THE OUTER LOOP (PE UPDATE) . RANGE IS 110 256.

10 COUNT INDEX UPDATE COUNT. THIS IS THE NUMBER OF ENTRIES IN THE INDEX UPDATE TABLE.
WHEN “IU Count’ INDEX UPDATES HAVE OCCURRED (WITH ASSOCIATED ACCESSES

AFTER UPDATE) . THE NEXT QUTER LOOP VARTABLE (B OR P IS UPDATED. SUBSEQUENT
INDEX UPDATES START AT THE FIRST ENTRY AGAIN (IUOI. IF '1U Count' IS GREATER THAN
B, THE TABLE ENTRIES ARE USED AGAIN, STARTING AT THE BEGINNING OF THE TABLE.

IUx IU0 - TU7 FORM AN INDEX UPDATE TABLE WITH EACH ENTRY BEING A 4-BIT UPDATE
VALUE. UPDATE VALUES ARE INTEGERS IN THE RANGE OF -8 10 +7.
PENSKx THESE VALUES FORM A TABLE OF 4-BIT FIELDS THAT ARE USED TO SPECIFY PE

SELECTIONS FOR UP TO 8 PASSES THROUGH THE PEs. FOR EACH FOUR BIT FIELD, A 'Y
BIT SELECTS THE PE CORRESPONDING TO ITS BIT POSITION. PEMSKO HUST HAVE AT

LEAST ONE '1' BIT, AND THE FIRST ALL-ZERD FIELD DETECTED CAUSES SELECTION 10
BEGIN AGAIN WITH THE PENSKO FIELD.
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FIG. 22
/' 2200

L0OP CONTAOL: BIP (INDEX VARIES FIRST, THEN BASE, THEN PE ID)

ADORESS PEO PEl PE? PE3

(NORDS)
{x0000 0 | ?
0x0001
0x0002 ] { 3
0x0003
0x0004
0x0005 g b ] ]
0x0006 0 11 12
0x0007
0x0008 13 i} 15
0x0009
0x000a
0x000a 13 16 1 18

PATTERN ABOVE RESULTS FROM AFTER A TRANSFER WITH THE FOLLOWING ASSUMPTIONS:

o 53{.glock %NSTHUCTIUN READS SUCCESSIYE ADDRESSES FROM SYSTEM MEMORY, DATA ELEMENT VALUES ARE
1.2, ett.

ASSUME PE TRANSLATE TABLE MAPS 0—=-1, {—=2, 2~=], 3—=

IC1.selectpe INSTRUCTION PLACES VALUES IN PE MEMORIES USING THE FOLLOWING PARAMETERS

TRANSFER COUNT = 20

INITIAL PE ADDRESS OFFSET - 0

PE COUNT = NOT USED

L0OP CONTROL = BIP

BASE UPDATE COUNT = 0

BASE UPDATE - 6

INDEX COUNT = 3

INDEX TABLE - 0x00000032 {+2, THEN +3)

PE HELPE IS 0x00000F77

*  FIRST PASS SELECT VIDs 01,2 (TRANSLATION CONVERTS THESE T0 PIDs: 1,2,3)

¢ NEXT PASS SELECT VIDs 0.1,2 (TRANSLATION CONVERTS THESE 10 PI0s: 1,2,3)

*  NEXT PASS SELECT VIDs 0,1,2,3 (TRANSLATION CONVERTS THESE 10 PIDs: 1,2,3.0)
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METHODS AND APPARATUS FOR
PROVIDING DIRECT MEMORY ACCESS
CONTROL

Matter enclosed in heavy brackets [ ] appears in the
original patent but forms no part of this reissue specifica-
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

More than one reissue application has been filed for the
reissue of U.S. Pat. No. 6,453,367. The reissue applications
are application Ser. No. 10/819,885 and which is the present
divisional reissue application.

The present application is a division of U.S. application
Ser. No. 09/472,372 filed Dec. 23, 1999, now U.S. Pat. No.
6,256,683, which in turn claimed the benefit of U.S. Provi-
sional Application Ser. No. 60/113,637 entitled “Methods
and Apparatus for Providing Direct Memory Access (DMA)
Engine” and filed Dec. 23, 1998 which is incorporated by
reference in its entirety herein.

FIELD OF THE INVENTION

The present invention relates generally to improvements
in array processing, and more particularly to advantageous
techniques for providing improved mechanisms of data dis-
tribution to, and collection from multiple memories often
associated with and local to processing elements within an
array processor.

BACKGROUND OF THE INVENTION

Various prior art techniques exist for the transfer of data
between system memories or between system memories and
1/0 devices. FIG. 1 shows a conventional data processing
system 100 comprising a host uniprocessor 110, processor
local memory 120, direct memory access (DMA) controller
160, system memory 150 which is usually a larger memory
store than the processor local memory, having longer access
latency, and input/output (I/0) devices 130 and 140.

The DMA controller 160 provides a mechanism for trans-
ferring data between processor local memory and system
memory or /O devices concurrent with uniprocessor execu-
tion. DMA controllers are sometimes referred to as /O pro-
cessors or transfer processors in the literature. System per-
formance is improved since the host uniprocessor can
perform computations while the DMA controller is transfer-
ring new input data to the processor local memory and trans-
ferring result data to output devices or the system memory. A
data transfer is typically specified with the following mini-
mum set of parameters: source address, destination address,
and number of data elements to transfer. Addresses are inter-
preted by the system hardware and uniquely specify I/O
devices or memory locations from which data must be read
or to which data must be written. Sometimes additional
parameters are provided such as element size. One of the
limitations of conventional DMA controllers is that address
generation capabilities for the data source and data destina-
tion are often constrained to be the same. For example, when
only a source address, destination address and a transfer
count are specified, the implied data access pattern is block-
oriented, that is, a sequence of data words from contiguous
addresses starting with the source address is copied to a
sequence of contiguous addresses starting at the destination
address. Array processing presents challenges for data col-
lection and distribution both in terms of addressing
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flexibility, control and performance. The patterns in which
data elements are distributed and collected from processing
element local memories can significantly affect the overall
performance of the processing system. With the advent of
the ManArray architecture it has been recognized that it will
be advantageous to have improved techniques for data trans-
fer which provide these capabilities and which are tailored to
this new architecture.

SUMMARY OF THE INVENTION

As described in detail below, the present invention
addresses a variety of advantageous methods and apparatus
for improved data transfer control within a data processing
system. In particular we provide improved techniques for:
distributing data to, and collecting data from an array of
processing elements (PEs) in a flexible and efficient manner;
and PE address translation which allows data distribution
and collection based on PE virtual IDs.

Further aspects of the present invention are related to a
virtual-to-physical PE ID translation which works together
with a ManArray PE interconnection topology to support a
variety of communication models (such as hypercube and
mesh) through data placement based upon a PE virtual ID.
This result can be accomplished in a DMA controller by
translation, through a VID-to-PID lookup table or through
combinational logic, where the resulting PID becomes an
addressing component on the DMA bus to PE local memo-
ries. This result can also be achieved at the PE local memo-
ries within the interface logic, where a VID available to the
interface logic is compared to a VID presented on the DMA
bus. A match at a particular memory interface allows that
memory to accept the access. The present invention also
addresses the provision of PE addressing modes based on
generating data access patterns from logically nested param-
eterized loops. Varying assignments of loop parameters to
nesting level allows flexible data access patterns to be gener-
ated. Providing varying mechanisms for updating loop
parameters provides greater flexibility for generating
complex-periodic access [patters] patterns, such as select-
index modes which provide a table of index-update values
which are used when the index loop parameter is updated;
select-PE modes which provide a table of bit-vector control
values, each of which specifies the PEs to be accessed for an
iteration through the “PE update loop” (i.e., the loop which
PE update is assigned); and select-index-PE modes which
provide both select-index and select-PE update capability
and combine to form the most flexible mode for generating
complex-periodic data access patterns. Further, the invention
addresses the design of a looping mechanism to be reentrant
thereby allowing any addressing mode to be restarted after
completing a specific number of element transfers, by just
loading or reloading a new transfer count and continuing the
transfer. This result is accomplished by initializing address-
ing parameters at instruction load time, and only updating
them after a loop exits.

These and other advantages of the present invention will
be apparent from the drawings and the Detailed Description
which follow.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a conventional data processing system with
a DMA controller to support data transfers concurrent with
host processor computation;

FIG. 2 illustrates a ManArray DSP with a DMA controller
in a representative system in accordance with the present
invention;
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FIG. 3 illustrates a DMA controller implemented as a
multiprocessor, with two transfer controllers, bus connec-
tions to a system memory, PE memories and a control bus;

FIG. 4 shows a single transfer controller comprising 4
primary execution units, bus connections and FIFO buffers;

FIG. 5 shows an exemplary format of a transfer type
instruction in accordance with the present invention;

FIG. 6 shows an exemplary virtual PE identification to
physical PE identification (VID-to-PID) translation;

FIG. 7 shows an exemplary logical implementation of
VID-to-PID translation;

FIG. 8 shows an exemplary PEXLAT instruction (“load
VID-to-PID table™);

FIG. 9 illustrates a VID-to-PID translation table register,
called the PETABLE register in a presently preferred
embodiment;

FIG. 10 illustrates a nested logical loop model showing a
“BIP” assignment of address components to loops: base
(outer), index (middle) and PE VID (inner);

FIG. 11 shows a nested logical loop model with “BPI”
assignment of address components to loops: base (outer), PE
(middle) and index (inner);

FIG. 12 is a nested logical loop model showing a “PBI”
assignment of address components to loops: PE (outer),
Base (middle) and Index (inner);

FIG. 13 illustrates an exemplary format for a PE Block-
cyclic instruction in accordance with the present invention;

FIG. 14 shows an exemplary transfer result using PE
Blockeyclic address mode with BIP loop assignment;

FIG. 15 shows an exemplary transfer result using PE
Blockeyclic address mode with BPI loop assignment;

FIG. 16 shows an exemplary transfer result using PE
Blockeyclic address mode with PBI loop assignment;

FIG. 17 illustrates an exemplary format for a PE Select-
Index transfer instruction in accordance with the present
invention;

FIG. 18 shows an exemplary transfer result using a PE
Select-Index address mode with BIP loop assignment;

FIG. 19 illustrates an exemplary format for a PE Select-
PE transfer instruction in accordance with the present inven-
tion;

FIG. 20 shows an exemplary transfer result using a PE
Select-PE address mode with BIP loop assignment;

FIG. 21 illustrates an exemplary format for a PE Select-
Index-PE transfer instruction in accordance with the present
invention; and

FIG. 22 shows an exemplary transfer result using a PE
Select-Index -PE address mode with BIP loop assignment.

DETAILED DESCRIPTION

Further details of a presently preferred ManArray core,
architecture, and instructions for use in conjunction with the
present invention are found in U.S. patent application Ser.
No. 08/885,310 filed Jun. 30, 1997, now U.S. Pat. No. 6,023,
753, U.S. patent application Ser. No. 08/949,122 filed Oct.
10, 1997, now U.S. Pat. No. 6,167,502, U.S. patent applica-
tion Ser. No. 09/169,255 filed Oct. 9, 1998, U.S. patent
application Ser. No. 09/169,256 filed Oct. 9, 1998, now U.S.
Pat. No. 6,167,501, U.S. patent application Ser. No. 09/169,
072 filed Oct. 9, 1998, now U.S. Pat. No. 6,219,776, U.S.
patent application Ser. No. 09/187,539 filed Nov. 6, 1998,
now U.S. Pat. No. 6,151,668, U.S. patent application Ser.
No. 09/205,558 filed Dec. 4, 1998, now U.S. Pat. No. 6,173,
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389, U.S. patent application Ser. No. 09/215,081 filed Dec.
18, 1998, now U.S. Pat. No. 6,101,592, U.S. patent applica-
tion Ser. No. 09/228,374 filed Jan. 12, 1999, now U.S. Pat.
No. 6,216,223, U.S. patent application Ser. No. 09/238,446
filed Jan. 28, 1999, U.S. patent application Ser. No. 09/267,
570 filed Mar. 12, 1999, U.S. patent application Ser. No.
09/337,839 filed Jun. 22, 1999, U.S. patent application Ser.
No. 09/350,191 filed Jul. 9, 1999, U.S. patent application
Ser. No. 09/422,015 filed Oct. 21, 1999, U.S. patent applica-
tion Ser. No. 09/432,705 filed Nov. 2, 1999, U.S. patent
application Ser. No. 09/471,217 filed Dec. 23, 1999, now
U.S. Pat. No. 6,260,082, as well as, Provisional Application
Ser. No. 60/139,946 entitled “Methods and Apparatus for
Data Dependent Address Operations and Efficient Variable
Length Code Decoding in a VLIW Processor” filed Jun. 18,
1999, Provisional Application Ser. No. 60/140,245 entitled
“Methods and Apparatus for Generalized Event Detection
and Action Specification in a Processor” filed Jun. 21, 1999,
Provisional Application Ser. No. 60/140,163 entitled “Meth-
ods and Apparatus for Improved Efficiency in Pipeline
Simulation and Emulation” filed Jun. 21, 1999, Provisional
Application Ser. No. 60/140,162 entitled “Methods and
Apparatus for Initiating and Re-Synchronizing Multi-Cycle
SIMD Instructions” filed Jun. 21, 1999, Provisional Applica-
tion Ser. No. 60/140,244 entitled “Methods and Apparatus
for Providing One-By-One Manifold Array (1x1 ManArray)
Program Context Control” filed Jun. 21, 1999, Provisional
Application Ser. No. 60/140,325 entitled “Methods and
Apparatus for Establishing Port Priority Function in a VLIW
Processor” filed Jun. 21, 1999, Provisional Application Ser.
No. 60/140,425 entitled “Methods and Apparatus for Paral-
lel Processing Utilizing a Manifold Array (ManArray)
Architecture and Instruction Syntax” filed Jun. 22, 1999,
Provisional Application Ser. No. 60/165,337 entitled “Effi-
cient Cosine Transform Implementations on the ManArray
Architecture” filed Nov. 12, 1999, and Provisional Applica-
tion Ser. No. 60/171,911 entitled “Methods and Apparatus
for Loading of Very Long Instruction Word Memory” filed
Dec. 23, 1999, respectively, all of which are assigned to the
assignee of the present invention and incorporated by refer-
ence herein in their entirety.

The following definitions of terms are provided as back-
ground for the discussion of the invention which follows:

A “transfer” refers to the movement of one or more units
of data from a source device (either I/O or memory) to a
destination device (I/O or memory).

A data “source” or “destination” refers to a device from
which data may be read or to which data may be written
which is characterized by a contiguous sequence of one or
more addresses, each of which is associated with a data stor-
age element of some unit size. For some data sources and
destinations there is a many-to-one mapping of addresses to
data element storage locations. For example, an I/O device
may be accessed using one of many addresses in a range of
addresses, yet it will perform the same operation, such as
returning the next data element of a FIFO, for any of them.

A “data access pattern” is a sequence of data source or
destination addresses whose relationship to each other is
periodic. For example, the sequence of addresses 0, 1, 2, 4,
5,6,8,9,10,...etc. is a data access pattern. If we look at the
differences between successive addresses, we find: 1,1,2,
1,1,2,1,1,2,. . . etc. Every three elements the pattern repeats.

An “address mode” or “addressing mode” refers to a rule
that describes a sequence of addresses, usually in terms of
one or more parameters. For example, a “block” address
mode is described by the rule: address[i]=base__address+i



US RE41,904 E

5

where i=0, 1, 2, . . . etc. and where base__address is a param-
eter and refers to the starting address of the sequence.

Another example is a “stride” address mode which may be
described by the rule:

address[i]=base__address+(i mod (stride-hold))+(i/hold)*stride

for i=0, 1, 2, . . . etc., and where base__address, stride and
hold are parameters, and where division is integer division in
which any remainder is discarded.

An “address generation unit (AGU)” is a hardware mod-
ule that generates a sequence of addresses (a data access
pattern) according to a programmed address mode.

“EOT” means “end-of-transfer” and refers to the state
when a transfer execution unit (described in the following
text) has completed its most recent transfer instruction by
transferring the number of elements specified by the instruc-
tion’s transfer count field.

The term “host processor” as used in the following
description is any processor or device which can write con-
trol commands and read status from the DMA controller
and/or which can respond to DMA controller messages and
signals. In general, a host processor interacts with a DMA
controller to control and synchronize the flow of data
between devices and memories in the system in such a way
as to avoid overrun and underrun conditions at the sources
and destinations of data transfers.

The present invention provides a set of flexible addressing
modes for supporting efficient data transfers to and from
multiple memories, together with methods and apparatus for
allowing data accesses to be directed to PEs according to
virtual as opposed to physical IDs. This section describes an
exemplary DMA controller and a system environment in
which the present inventions may be effectively used. The
following sections describe PE memory addressing, virtual-
to-physical PE ID translation and its purpose, and a set of PE
memory addressing modes or “PE addressing modes” which
support numerous parallel algorithms with highly efficient
data transfer.

FIG. 2 shows an exemplary system 200 illustrating the
context in which a ManArray DMA controller 201, in accor-
dance with the present invention, resides. The DMA control-
ler 201 accesses processor local memories 210, 211, 212,
213, 214 and 215 via a DMA Bus 202, 202,, 202,, 202,,
202,, 202, and memory interface units 205, 206, 207, 208
and 209 to which it is connected. A ManArray DSP 203 also
connects to its local memories 210-215 via memory inter-
face units 205-209. Further details of a presently preferred
DSP 203 are found in the above incorporated by reference
applications.

In this representative system, the DMA controller also
connects to two system busses, a system control bus (SCB)
235 and a system data bus (SDB) 240. The DMA controller
is designed to transfer data between devices on the SDB 240,
such as a system memory 250 and the DSP 203 local memo-
ries 210-215. The SCB 235 is used by an SCB master such
as the DSP 203 or a host control processor (HCP) 245 to
program the DMA controller 201 with read and write
addresses and registers to initiate control operations and read
status. The SCB 235 is also used by the DMA controller 201
to send synchronization messages to other SCB bus slaves
such as the DSP control registers 225 and a host 1/0 block
255. Some registers in these slaves can be polled by the DSP
and HCP to receive status from the DMA. Alternatively,
DMA writes to some of these slave addresses can be pro-
grammed to cause interrupts to the DSP and/or HCP allow-
ing DMA controller messages to be handled by interrupt
service routines.
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FIG. 3 shows a system 300 which illustrates operation of a
DMA Controller 301 which may suitably be a multiproces-
sor specialized to carry out data transfers utilizing one or
more transfer controllers 302 and 303. Each transfer control-
ler can operate as an independent processor or work together
with other transfer controllers to carry out data transfers. The
DMA busses 305 and 310 provide, in the presently preferred
embodiment, independent data paths to local memories 320,
321, 322, 323, 324, 325, one for each transfer controller 302
and 303. In addition, each transfer controller is connected to
SDB 350 and to SCB 330. Each transfer controller operates
as a bus master and a bus slave on both the SCB and SDB. As
a bus slave on the SCB, a transfer controller may be accessed
by other SCB bus masters in order to read its internal state or
to issue control commands. As a bus master on the SCB, a
transfer controller can send synchronization messages to
other SCB bus slaves. As a bus master on the SDB, a transfer
controller performs data reads and writes from or to system
memory or I/O devices which are bus slaves on the SDB. As
a bus slave on the SDB, a transfer controller can cooperate
with another SDB bus master in a “slave mode” allowing the
bus master to read or write data directly from or to its data
FIFOs (as discussed further below). It may be noted that the
DMA busses 305 and 310, the SDB 350 and the SCB 330
may be implemented in different ways. For example, they
may be implemented with varying bus widths, protocols, or
the like consistent with the teachings of the present inven-
tion.

FIG. 4 shows a system 400 having single transfer control-
ler 401 comprising a set of execution units including an
instruction control unit (ICU) 440, a system transfer unit
(STU) 402, a core transfer unit (CTU) 408 and an event
control unit (ECU) 460. An inbound data queue (IDQ) 405 is
a data FIFO buffer which is written with data from an SDB
470 under control of the STU 402. Data is read from the IDQ
405 under control of the CTU 408 to be sent to core memo-
ries 430, or sent to the ICU 440 in the case of instruction
fetches. An outbound data queue (ODQ) 406 is a data FIFO
which is written with data from DMA busses 425 under
control of the CTU 408, to be sent to an SDB 470 device or
memory under the control of the STU 402. The CTU 408
may also read DMA instructions from a memory attached to
the DMA bus, which are forwarded to the ICU 440 for initial
decoding. The ECU 460 receives signal inputs from external
devices 465, commands from the SCB 450 and instruction
data from the ICU 440. It generates output signals 435, 436
and 437 which may be used to generate interrupts on host
control processors within the system, and can act as a bus
master on the SCB 450 to send synchronization messages to
SCB bus slaves.

Each transfer controller within a ManArray DMA control-
ler is designed to fetch its own stream of DMA instructions.
DMA instructions are of five basic types: transfer; branch;
load; synchronization; and state control. The branch, load,
synchronization, and state control types of instructions are
collectively referred to as “control instructions”, and distin-
guished from the transfer instructions which actually per-
form data transfers. DMA instructions are typically of multi-
word length and require a variable number of cycles to
execute although several control instructions require only a
single word to specify. Although the presently preferred
embodiment supports multiple DMA instruction types as
described in further detail in U.S. patent application Ser. No.
09/471,217 filed Dec. 23, 1999, now U.S. Pat. No. 6,260,
082, and incorporated by reference in its entirety herein, the
present invention focuses on instructions and mechanisms
which provide for flexible and efficient data transfers to and
from multiple memories.
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Referring further to system 400 of FIG. 4, transfer-type
instructions are dispatched by the ICU for further decoding
and execution by the STU 402 and the CTU 408. Transfer
instructions have the property that they are fetched and
decoded sequentially, in order to load transfer parameters
into the appropriate execution unit, but are executed concur-
rently. The control means for initiating execution of transfer
instructions is a flag bit contained in the instruction itself,
and is described below.

A “transfer-system-inbound” (TSI) instruction moves
data from the SDB 470 to the IDQ 405 and is executed by
the STU. A “transfer-core-inbound” (TCI) instruction moves
data from the IDQ 405 to the DMA Bus 425 and is executed
by the CTU. A “transfer-core-outbound” (TCO) instruction
moves data from the DMA Bus 425 to the ODQ 406 and is
executed by the CTU. A “transfer-system-outbound” (TSO)
instruction moves data from the ODQ 406 to the SDB 470
and is executed by the STU. Two transfer instructions are
required to move data between an SDB system memory and
one or more SP or PE local memories on the DMA bus, and
both instructions are executed concurrently: a TSI, TCI pair
or a TSO, TCO pair.

The address parameter of STU transfer instructions TSI
and TSO refers to addresses on the SDB while the address
parameter of CTU transfer instructions refers to addresses
on the DMA bus to PE and SP local memories.

FIG. 5 shows an exemplary instruction format 500 for
transfer instructions. A base opcode field 501 indicates that
the instruction is of transfer type. A C/S field 510 indicates
the transfer unit (CTU or STU) and /O field 520 indicates
whether the transfer direction is inbound or outbound. The
execute (“X”) field 550 is a field which, when set to “17,
indicates a “start transfer” event, that is, that the transfer
should start immediately after loading the transfer instruc-
tion. When the “X” field is “0”, then the parameters are
loaded into the specified unit but the transfer is not initiated.
Instruction fetch/decode continues normally until a “start
transfer” event occurs. A data type field 530 indicates the
size of each element transferred and an address mode 540
refers to the data access pattern which must be generated by
the transfer unit. A transfer count 560 indicates the number
of data elements of size “data type” which are to be trans-
ferred to or from the target memory/device before EOT
occurs for that unit. An address parameter 570 specifies the
starting address for the transfer. Other parameters 580 may
follow the address word of the instruction, depending on the
addressing mode used.

While there are six memories 210, 211, 212, 213, 214, and
215 shown in FIG. 2, the PE address modes access only the
set of PE memories 210, 211, 212, and 213 in this exemplary
ManArray DSP configuration. The address of a data element
within PE local memory space is specified with three
variables, a PE ID, a base value and an index value. The base
and the index values are summed to form an offset into a PE
memory relative to an address 0, the first address of that PE’s
memory. The address of a PE data element is therefore given
by a pair: PE data address=(PE ID, Base+Index).

The ManArray architecture supports a unique intercon-
nection network between processing elements (PEs) which
uses PE virtual IDs (VIDs) to support useful single-cycle
communication paths, for example, torus or hypercube
paths. In some array organizations, the PE’s physical and
virtual IDs are equal. The VIDs are used in the architecture
to specify the pattern for data distribution and collection.
When data is distributed according to the pattern established
by VID assignment, then efficient inter-PE communication
required by the programmer becomes available. As an
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example, if a programmer needs to establish a hypercube
connectivity for a 16 PE ManArray processor, the data will
be distributed according to a VID assignment in such a man-
ner that the physical switch connections allow data to be
transferred between PEs as though the switch topology were
ahypercube even if the switch connections between physical
PEs do not support the fill hyper-cube interconnect. The
present invention describes two approaches whereby the
DMA controller can access PE memories according to their
VIDs, effectively mapping PE virtual IDs to PE physical IDs
(PIDs). The first uses VID-t0-PID translation within the
CTU of a transfer controller. This translation can be per-
formed either through table-lookup, or through logic permu-
tations on the VID. The second approach associates a VID
with a PE by providing a programmable register within the
PE or the PE local memory interface unit (LMIU), FIG. 2
205, 206, 207 and 208 which is used by the LMIU logic to
“capture” a data access when its VID matches a VID pro-
vided on the DMA Bus for each DMA memory access.
VID to PID Translation within the DMA Controller

With this approach, a PE VID-to-PID table is maintained
in the DMA controller so that data may be distributed to the
ManArray according to a programmer’s view of the array. In
the preferred embodiment, this table is maintained in the
CTU of each transfer controller. FIG. 6 shows an exemplary
mapping table 600 of VID into PID for a four PE system,
such as a ManArray 2x2 system. The VIDs are in column
602 on the left and their corresponding PIDs are shown in
column 604 on the right. An example of a table lookup
implementation of the mapping of FIG. 6 is illustrated logi-
cally as system 700 of FIG. 7. In the presently preferred
embodiment, a translation table 710 is stored in the CTU of a
transfer controller. A CTU transfer instruction 705 (TCI or
TCO) specifies a starting address 775 which is used by AGU
770 to generate an initial VID 720. The VID 720 controls the
selection of one of the elements of the VID-to-PID lookup
table 710 through multiplexer 715 which is then sent to a
DMA Bus 740 as the PE ID component of the PE address.
The numbers on the multiplexer 715 indicate the VID value
which must be applied to select the corresponding input.
Successive VIDs are generated by the AGU 770, possibly in
a recursive fashion as shown by feedback 708. At the same
time, the AGU 770 generates a sequence of PE memory
offsets 730, also possibly using recursive feedback 755. The
PE memory offset 750 is also sent to the DMA bus as a
second component of a PE address. Logic in the local
memory interface units (LMIUs) is used to compare the PE
1D sent on the DMAbus to a stored PID (hard-coded) for any
DMA bus access. If this matches, then the LMIU accepts the
access and accepts write data or returns read data.

The approach of FIG. 7 has the advantage that all map-
pings of PE VIDs to PIDs are supported. With larger num-
bers of PE local memories, the register or memory space
required to store this table grows. For example, a 16 PE
memory system requires 64 bits of register or memory space
to store the PIDs. An alternative approach to table lookup-
based translation is to provide logic which performs a subset
of all VID-to-PID mappings. This translation logic would
also be parameterized, but would require significantly fewer
bits to configure. As a simple example, let the PID be formed
by complementing any bit of the VID. If the PID and VID
require 4 bits to represent the needed IDs, say for a 16 PE
system, then a four bit “translation vector” (XVEC) must be
stored to configure the translation rather than the 64 bits for
table lookup. The PID is obtained from the VID by the fol-
lowing: PID=VID xor XVEC. That is, each bit of VID is
exclusive-or’d with the corresponding bit of XVEC. The set
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of PIDs resulting from applying this operation to each VID
constitutes the mapping. Obviously, the number of mappings
available is far fewer than with a table lookup approach, but
for systems with a large number of PE memories, only a few
mappings may be required to support the desired communi-
cation patterns.

In the presently preferred embodiment, a lookup table is
used to perform the VID-to-PID translation. Two approaches
are provided for initializing the translation table. The first is
through a DMA instruction 800, shown in FIG. 8. When
executed, DMA instruction 800 loads a PETABLE register
900 which is illustrated in FIG. 9. The second approach is
through a direct write of the PETABLE register 900 via the
SCB.

PE Virtual IDs Stored in Local Memory Interface Units

The second approach to directing data access according to
PE VID relies on distributing the PE VIDs to each PE local
memory interface unit (LMIU). The VID for each PE might
reside in a register either in the PE itself or in its LMIU. In
this case, there is no translation table or logic in the DMA
lane controllers. In common with the preceding approach,
there is a PE ID component of the DMA bus which is driven
by the transfer controllers and used by the LMIUs to com-
pare for a match with the locally visible PE VID. When a
match is detected in a PE, then it accepts the access which
may be either a write or a read request. Means for updating
the VIDs stored locally in the LMIUs may be provided
through the use of registers visible in the PE register address
space, or through a PE instruction which broadcasts the table
to all PEs, who then select their VID using their hard-coded
PID stored locally. This approach has advantages when
VIDs are used for other purposes than just data distribution
and collection by a DMA controller.

CTU Addressing Modes

A CTU 408 shown in FIG. 4 supports a basic set of
address modes which may be used to target memories asso-
ciated with each PE or SP individually. These address modes
include single-address, block, stride and circular modes.
These addressing modes will not be described in detail
herein, but are a common set of addressing modes used for
many uniprocessor applications. In addition to these address
modes, the CTU 408 provides a set of “PE address modes”
which allow data to be distributed across or collected from
multiple PE memories in a variety of patterns. These address
modes are based on a software model of address generation
based on parameterizable loops, which is then implemented
in hardware.

Flexible PE Addressing Modes through Parameterizable
Logical Loops

Many algorithms which are distributed across multiple
PEs require complex data access patterns to achieve peak
efficiency. The basis for our loop-based PE addressing
modes is a logical view of data access consisting of a set of
nested loops in which one component of the PE memory
address is assigned to be updated at the end of each loop. As
stated above, a PE memory address consists of three compo-
nents called “address components”, a PE virtual ID (VID), a
base value (Base) and an index value (Index). This model
requires the following: a mechanism for assigning address
components to logical loops; a mechanism for initializing
address components; and a mechanism for updating address
components; and a mechanism for indicating a loop’s exit
condition.

Assignment of an address component to a loop specifies
the order in which the three address components are
updated. In an embodiment which uses a three-loop model,
there are six possible orders for updating address compo-
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nents (i.e. six ways to re-order VID, Base and Index). The
base and index components are defined to be ordered in this
embodiment so that the index is always updated prior to the
base, which reduces the number of possible orderings to
three, since base and index are summed to form an offset
into PE memory, allowing loop assignments that update the
base before the index is redundant. An exemplary loop
assignment is: update VID on inner loop; update index on
middle loop; and update base on outer loop.

Thus, as PE addresses are generated, the VID component
updates first (inner loop). When all VIDs have been used
(VID loop exit condition has been reached), then the VID is
reinitialized, the index is updated, and the VID loop is reen-
tered. This looping continues until the number of index
updates is exhausted (Index loop exit condition has been
reached) at which point the index is reinitialized, the base is
updated, the index loop is reentered, then the VID loop is
reentered. This further looping continues until the transfer
count is exhausted.

Updating an address component is performed by selecting
a new value for the component either based on the old value
(e.g. new=o0ld+1) or by some other means, such as by table
lookup. A loop exit condition specifies what causes the loop
to exit to the next-most outer loop in the model.

In summary, three different aspects of loop control are
used to vary the sequence in which PE memories may be
accessed. These are:

(1) Rearranging the order of assignment of address com-

ponents to logical loops,

(2) Varying the method for updating the address

components, and

(3) Varying the loop termination conditions.

FIGS. 10, 11 and 12 show logical representations or pro-
cesses 1000, 1100 and 1200, respectively, of preferred
assignments of address parameters (PE VID, Base and
Index) to logical loops. In the nomenclature used in FIGS.
10, 11 and 12, the term “PE” refers to the PE VID compo-
nent of a PE address. In FIG. 10, the address components are
assigned in “Base, Index, PE” (BIP) ordering. This means
that the PE is updated in the innermost loop, the index
parameter is updated in the “middle” loop and the base
parameter is updated in the “outer” loop. In FIG. 11, the loop
assignments are in a “Base, PE, Index” (BPI) ordering, and
in FIG. 12, the loop assignments are in a “PE, Base, Index”
(PBI) ordering.

FIG. 10 shows a logical representation 1000 of the nested
loop model in which the PE VID is updated in an inner loop
1030, the index is updated in a middle loop 1020, and the
base is updated in an outer loop 1010. A fourth loop 1005
which encompasses the other three loops indicates that the
other loops are continued until the number of data elements
specified in the transfer instruction have been accessed.
Associated with each loop is a condition for loop exit 1010,
1020 or 1030, respectively, where the “!” character repre-
sents a logical NOT. Also associated with each loop is a
mechanism 1060, 1070 or 1077, respectively, for updating
the loop address parameter and for testing the updated value
to indicate whether the exit condition for that loop has
become TRUE. Prior to starting any loop is an address ini-
tialization block 1002 which sets the starting values of each
address component (PE, Base and Index). The data transfer
implemented by FIG. 10 will cause PEs to be accessed first
until an “exit PE loop” condition has become true
(PELoopComplete is TRUE), at which point the PE loop
exits and the PE parameter is reinitialized in step 1065. The
index parameter is then updated and tested for its terminal
condition in step 1070. If the index parameter’s terminal
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condition has not become TRUE, then the PE loop is reen-
tered. When the index parameter’s terminal condition
becomes TRUE, the index loop is exited, the index param-
eter is reinitialized in step 1075 and the base parameter is
updated and tested for a terminal condition in step 1080. If
the base parameter terminal condition has not been reached,
then the index and PE loops are reentered and executed until
either all data items have been accessed (transfer count
specified in the transfer instruction becomes zero) or the
index loop is terminated again. When Basel.oopComplete
becomes TRUE, the base value is reinitialized in step 1085
and the loops are reentered again.

FIGS. 11 and 12 show nested logical loops or processes
1100 and 1200 corresponding to “BPI” access (index is
updated first, followed by PE, followed by base) and “PBI”
access (Index is updated first, followed by Base, then lastly
PE) respectively.

The following aspects of the loop formulation are noted.
When the requested number of accesses are made (TC in
FIGS. 10-12) then all loops are exited immediately, leaving
all address and loop control variables in their current states.
By using logical “while” loops and reinitializing a loop only
at its exit, it is possible to reenter the loops and continue a
transfer after “terminal count” (TC) addresses have been
accessed. This capability is used in this invention to allow
transfers to be restarted so that the addressing continues as
though it would if the transfer count had not been exhausted.
For further details of such transfers see U.S. application Ser.
No. 09/471,217 filed Dec. 23, 1999, now U.S. Pat. No.
6,260,082, which is incorporated by reference in its entirety
herein.

The functions used to update an address (see
UpdateAddress( ) in FIG. 10 steps 1060, 1070 and 1077; in
FIG. 11 steps 1160, 1170 and 1177; and in FIG. 12 steps
1260, 1270 and 1277) may update the address using a con-
stant increment value, or a value extracted from a table, or
use a selection mechanism based on a bit vector. While other
UpdateAddress( ) functions might be supported, those listed
are supported in the presently preferred embodiment.

The function used to update the loop control variable,
UpdateLoopControl( ), may be performed as part of the
address update or as a separate operation as shown in FIGS.
10-12. This operation is used to update variables which con-
trol loop termination. In the preferred embodiment, the con-
trol variables are counters or special logical functions con-
sisting of priority encoders and counter blocks.

The function used to check for loop termination simply
tests the loop termination variable for an end of loop condi-
tion. This condition may be a particular count value or the
state of a mask register.

The initialization of address parameters (see Initialize( )
function: FIG. 10 1002, FIG. 11 1102, and FIG. 12 1202)
does not necessarily occur each time a transfer is started. In
the preferred embodiment, this initialization occurs only
when a transfer instruction is decoded and parameters are
loaded into CTU registers in the case of PE addressing
modes or STU registers.

The following discussion addresses instruction formats
and describes PE addressing modes for one embodiment of
the invention. It will be recognized other instruction encod-
ings may be used consistent with the teachings of the present
invention. In the preferred embodiment, a transfer controller
reads transfer instructions from a local memory and decodes
them. Transfer instructions come in two types, those for the
STU and those for the CTU. The STU transfer instructions
specify the addressing mode and transfer count for accesses
to the system data bus while CTU transfer instructions
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specify the addressing mode and transfer count for accesses
to the DMA bus and all SP and PE memories. The instruc-
tion formats addressed below are only those instructions
which control special PE memory addressing for the CTU.
Instruction mnemonics are used to indicate the instruction
type and addressing mode. “TCI” stands for “transfer, core-
inbound”, while “TCO” stands for “transfer, core-
outbound”. “TCx” stands for either TCI or TCO. The follow-
ing PE addressing modes are described as illustrative of the
present invention: PE Block-Cyclic, PE Select-Index, PE
Select-PE, and PE Select-Index-PE.

PE Block-Cyclic Addressing

PE blockeyclic addressing provides the basic framework
for all of the PE addressing modes. A Loop parameter speci-
fies the assignment of address components to loops: BIP,
BPI, or PBI. FIG. 13 shows an exemplary format 1300
which defines the parameters for a PE Blockeyclic transfer
instruction executed by the CTU. As an example, if we are
given:

An inbound sequence of 16 data elements with values

0,1,23,...15;

PETABLE setting of 0x000000E4 (no translation of PE

1Ds);

TSILblock instruction in the STU (reading the 16 values

from system memory); and

TCl.blockeyclic instruction in the CTU with PE count=4,

Base Update=8, Base Count=2 (used for PBI mode
only), Index Update=2, Index Count=2, then the result-
ing data in the PE memories 1400 after the transfer are
shown in FIG. 14 for BIP loop assignment. FIG. 15
shows resulting data 1500 for BPI loop assignment.
FIG. 16 shows resulting data 1600 for PBI loop assign-
ment.
PE Select-Index Addressing

The operation of the PE select-index address mode is
similar to the PE blockcyclic address mode except that rather
than updating the index component of the address by adding
a constant to it, the instruction specifies a table of index
update values which are used sequentially to update the
index. FIG. 17 shows an exemplary instruction format 1700
for the PE select-index instruction.

An index select parameter allows finer-grained control
over a sequence of index values to be accessed. In the
example, this is done using a table of eight 4-bit index-
update (IU) values. Each time the index loop is updated, an
IU value is added to the effective address. These update
values are accessed from the table sequentially starting from
100 for IUCount updates. After [lUCount updates, the index
update loop is complete and the next outer loop (B or P) is
activated. On the next entry of the index loop, IU values are
accessed starting at the beginning of the table. FIG. 18
shows an exemplary data access table 1800 illustrating data
access using the PE select-index instruction.

PE Select-PE Addressing

The operation of the PE Select-PE address mode is similar
to the PE blockeyclic address mode except that rather than
updating the PE VID component of the address by adding 1
to it, the instruction specifies a table of bit vectors, where
each bit vector specifies the PE’s to select for access. A bit
set to “1”” in a bit vector indicates, by its bit position, the VID
of the PE to access. Bits in each bit vector are scanned from
right to left (least to most significant when viewed in a first
instruction format such as instruction format 1900 of FIG.
19). When there are no more “1” bits in a vector, the PE loop
exits. The next iteration of the loop uses the next bit vector in
the table. FIG. 19 shows an exemplary instruction formal
1900, and FIG. 20 shows an exemplary transfer data access
table 2000 for a transfer using this instruction.
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The PE select fields together with the use of the PE trans-
late table allow out of order access to PEs across multiple
passes through them.

PE Select-Index-PE Addressing

This addressing mode combines both select-index and
select-PE addressing. An exemplary instruction format 2100
is shown in FIG. 21. This form of addressing provides for
complex-periodic data access patterns. An exemplary access
pattern table 2200 for the PE-select-index-PE address mode
is shown in FIG. 22.

I claim:

[1. An apparatus for performing virtual identification
(VID) to physical identification (PID) translation for data
elements to be accessed within local memory of a processing
element (PE) whereby a direct memory access (DMA) con-
troller can access PE local memories according to their
VIDs, the apparatus comprising:

an array of multiple PEs each having local PE memory;

a DMA controller; and

a memory maintained in the DMA controller for storing a
processing element VID-to-PID table mapping process-
ing element VIDs to processing element PIDs utilized
by the DMA controller to access local memories
according to their VIDs.]

[2. The apparatus of claim 1 wherein said memory is

maintained in a core transfer unit of the DMA controller.]

[3. The apparatus of claim 2 wherein the core transfer unit
(CTU) further comprises an address generation unit (AGU)
which receives a CTU transfer instruction which specifies a
starting address which is used by the AGU to generate an
initial VID.]

[4. The apparatus of claim 3 wherein the initial VID con-
trols the selection of one of the elements of the VID-to-PID
lookup table through a multiplexer.]

[5. The apparatus of claim 4 further comprising a DMA
bus for providing the selected PID as a first component of a
PE address.]

[6. The apparatus of claim 5 wherein the AGU further
operates to generate a PE memory offset which is sent as a
second component of a PE address on the DMA bus.]

[7. The apparatus of claim 6 further comprising a local
memory interface unit (LMIU) which is used to compare the
PID sent on the DMA bus to a stored PID for any DMA
access, if a match is detected then the LMIU accepts the
access.]

[8. The apparatus of claim 3 wherein successive VIDs are
generated in recursive fashion by the AGU.]

[9. The apparatus of claim 3 wherein successive VIDs are
generated in recursive fashion by the AGU, and further com-
prising:

a local memory interface unit for each processing element

(PE) storing a VID for each PE.]

[10. The apparatus of claim 9 wherein a VID available to a
particular LMIU or a DMA bus is compared with the stored
VID in the LMIU and where a match occurs the LMIU
accepts the access.]

[11. The apparatus of claim 1 wherein the VID-to-PID
table is stored in a programmable register and the program-
mable register is loaded utilizing a DMA instruction.]

[12. The apparatus of claim 1 wherein the VID-to-PID
table is stored in a programmable register and the program-
mable register loaded utilizing a direct write to the program-
mable register.]

[13. A processing apparatus comprising:

a plurality of processing elements (PEs) communicatively
connected by a bus, each PE comprising a register stor-
ing a virtual identification number (VID) identitying
the PE; and
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a direct memory access (DMA) controller connected to
the bus for accessing local data memory of the PEs,
each data access at least partially identified by a VID;

wherein during a common data to access multiple PEs, a
PE responds to the data access if the VID stored in the
register matches the VID of the data access.]

[14. The processing apparatus of claim 13 wherein each
PE comprises a local memory interface unit (LMIU) which
includes the register storing the VID.]

[15. The processing apparatus of claim 13 wherein the
data access is a read access.]

[16. The processing apparatus of claim 13 wherein the
data access is a write access.]

[17. The processing apparatus of claim 13 further com-
prising: means for updating the register.]

18. An apparatus for accessing local memory of a plural-
ity of processing elements (PEs), the apparatus comprising:

a transfer controller running a process containing a set of
nested loops, the set of nested loops having a plurality
of parameters to be specified by a transfer instruction,
the plurality of parameters, when assigned, control PE
selection and address generation for accessing a
memory location in local memory of each selected PE;
and

a means for receiving the transfer instruction for transfer-
ring data between system memory and local memory of
the plurality of PEs, the transfer instruction having
fields which specify values for the plurality of
parameters, the transfer instruction indicating an
addressing mode, the addressing mode specifying a
particular pattern of accessing local memory of the
plurality of PEs, wherein the transfer controller
decodes the transfer instruction to assign values to the
plurality of parameters, the process generating
addresses for accessing a memory location in local
memory of each selected PE in a particular pattern,
wherein the particular pattern is based on the assigned
parameters.

19. The apparatus of claim 18 wherein the means for

receiving a transfer instruction is an instruction control unit.

20. The apparatus of claim 18 wherein the means for
receiving a transfer instruction is a core transfer unit read-
ing instructions from a memory attached to a divect memory
access (DMA) bus.

21. The apparatus of claim 18 wherein the means for
receiving a transfer instruction is a system data bus con-
nected to the transfer controller and system memory.

22. The apparatus of claim 18 wherein the transfer
instruction specifies a block cyclic addressing mode.

23. The apparatus of claim 18 wherein the transfer
instruction specifies a PE select index addressing mode.

24. The apparatus of claim 18 wherein the transfer
instruction specifies a select PE addressing mode.

25. The apparatus of claim 18 wherein the transfer
instruction specifies a select index PE mode.

26. A method of accessing local memory of a plurality of
processing elements (PEs), the method comprising:

receiving a transfer instruction for tramnsferring data
between system memory and the local memory of a plu-
rality of processing elements (PEys);

running a process containing a set of nested loops, the set
of nested loops having a plurality of parameters to be
assigned values of fields carried in the transfer instruc-
tion;

decoding the transfer instruction to assign field values to
the plurality of parameters;
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assigning the field values to the plurality of parameters in 28. The method of claim 26 wherein the transfer instruc-
order to control PE selection and address generation tion specifies a PE select index addressing mode.
for accessing a memory location in local memory of 29. The method of claim 26 wherein the transfer instruc-
each selected PE; and tion specifies a select PE addressing mode.

generating addresses to access local memory of each PE 5 30. The method of claim 26 wherein the transfer instruc-
in a defined pattern. tion specifies a select index PE mode.

27. The method of claim 26 wherein the transfer instruc-
tion specifies a block cyclic addressing mode. I T S



