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FIG. 4 
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FIG. B. 900 
1. 

33 22 22 2 21 1 OOOOOO 
1 O 9 8 7 6 3 OS 8 7 6 5 4 3 2 O 7 6 5 4 3 2 

"This (USED FOR 2x4 TRANSLATE TABLE) 2x2 TABLE 
O1 

(USED FOR 4x4 TRANSLATE TABLE) 

2x2 TABLE CONTAINS A TABLE OF TWO BIT PE IOS. A SECRENCE OF TWO BIT VALUES (STARTING WITHO) 
WHICH SPECIFY THE PE VID, ARE APPLIED AS AN INDICES INTO THIS TABLE WHEN ONE OF 
THE PE ADDRESSING MODES IS USED IN A TRANSFER INSTRUCTION THE TRANSLATED YALE 
IS THEN USED TO PERFORN THE MEMORY ACCESS WITH THIS APPROACH, PEs KAY BE 
ACCESSED IN ANY ORDER FOR THESE MODES. 
agay TYPE SPECIFIES THE CONFIGRATION TARGETED AND THEREFORE THE SIZE OF THE 
00 - 2 (P TO 2 PES) 
O - 2x2 (UP TO PEs) 
0 - 24 (VP TO 8 PEs) 
1 - 4x4 (UP TO SPEs) 

FIG. 9 
1. 900 

ESSESSEE 
USED FOR PE ID TRANSLATION TABLES LARGER THAN 4. ELEMENTS PIO3PO2PIO 

  

    

    

    

    

  



U.S. Patent Oct. 26, 2010 Sheet 8 of 19 US RE41,904 E 

FIG 10 
INITIALIZE (PE) : 1002 1. 1000 
NITIALIZE (BASE) : 
INITIALIZE (INDEX): 

while (TRUE) 1005 

while (BaselOOpComplete) 100 

while ( IndexLOOpComplete) 

while IPELOOpComplete) 

MEMACCESS (PE, Base, Index) 040 

if continuous 
( 

020 

1050 

Decrement (TC) 
if TC is 0) INNER 

} End Transfer LOOP 
HIE OUTER 
LOOP to UpdataAddress (PE) 

E: E PELOOpComplete = CheckloopStatus (PE); 

Reinitialize (PE) 1065 

UpdateAddress (Index): 1070 
ESE: IndexlOOpComplete s CheckloopStatus (Index): 

Reinitialize (Index) 1075 

Update Address (Base); O77 
UpdatelOOpControl (Base); 
BaselOOpComplete = ChecklDOpStatus (Base); 

Reinitialize Base) OBS 

  

  

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  

  

  



U.S. Patent Oct. 26, 2010 Sheet 9 of 19 US RE41,904 E 

FIG 11 
INITIALIZE PE) : 102 A100 
INITIALIZE (BASE) : 1. 
INITIALIZE (INDEX); 

105 While (RUE) 

while (BaselOOpCOMplete) 

while PELOOpComplete) 

while (IndexLOOpCompletel 
MEMACCESS PE, Base, Index) 40 

continuous 
Decrement (TC) 
if TC = 0) 
End Transfer 

10 

20 

1150 

INNER 
LOOP 

) MDOLE "OUTER 
LOOP to Updateddress (Index): 

UpdatelOOpControl Index): 
IndexLoop Complete = CheckLOOpStatus (Index) 

Endwhile 

Reinitializeindex 1155 
UpdateAddress (PE) 170 
UpdatetOOpControl (PE) 
PELOOpCo?plete : ChecklOOpStatus (PE) 

ndwhile 
75 Relnitalize (PE) 

Updateaddress (Base); 180 
UpdateLoopControl (Base); 
BaselOOpComplete CheckLoopStatus (8ase) 

Reinitialize Base) 185 

  

  

  

    

    

    

  

  

  

  

  

  

    

  

    

  

  

  

  

  

  

  

  



U.S. Patent Oct. 26, 2010 Sheet 10 of 19 US RE41,904 E 

FIG. 12 
INITIALIZE (PE): 202 1200 
INITIALIZE (BASE): 1. 
INITIALIZE INDEX) : 

1205 while (TRUE) 

while (PELOOpComplete) 

while (Baseloop Complete) 

while ( Index.00pComplete) 

MEMACCESS PE, Base, Index) 

continuous 

20 

220 

250 

Decrement (TC) 
if (TC is 0) INNER 

End Transfer LOOP 
} MIDDLE "OUTER" 

LOOP to UpdateAddress (Index): 
E.g.: IndexlOOpComplete = CheckLOOpStatus (Index): 

Reinitialize (Index) 2S5 

UpdateAddress (Base); 270 
UpdateLoop Control (Base); 
BaselOOpCoAplete = CheckLOOpStatus (Base); 

Reinitialize (Base) 1275 

UpdateAddress (PE) ; 1230 
UpdateLoopControl (PE): 
PELOOpComplete s CheckLOopStatus (PE) 

285 

  

  

  

  

    

    

    

    

  

    

    

  

  

  

  

  

    

  

  

  

  

  



U.S. Patent Oct. 26, 2010 Sheet 11 of 19 US RE41,904 E 

FIG. 13 
- 1:0 

ESSESSEE 
CTU TRANSFER way CORE TRANSFER COUNT (CTC) 

O 
RESERVED STARTING TRANSFER ADDRESS (WITHINPE MEMORY) 

PE COUNT BASE UPDATE COUNT BASE UPDATE (STRIDE) 
RANGE: TO 256 RANSE: 

INDEX COUNT (HOLD) INDEX UPDATE 
RANGE RESERVED RANGE: -2S6 

OOP CTRL SPECIFIES A PARTICULAR ORDER IN WICH PE, BASE AND INDEX YALVES 
ARE UPDATED THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND TO 
THREE ASSIGNMENTS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONTROL 
LOOPS (OUTER, MIDCLE AND INNER), 
OO - BASE (OUTER), INDEX (MIDOLE), PE (INNER) - BIP 
O - BASE (OUTER), PE (NICOLE), INDEX (INNER) - BPI 
10 - PE (OUTER), BASE (NIDDE), INDEX INNER) - PBI 
SPECIFIES THE NUMBER OF PES TO BE ACCESSED FOREACH TIME THE PE COUNTER 
IS SIGNALED TO RELOAD, VALID VALUES ARE 
s: NUMBEA OF PES AS SPECIFIED IN THE PE CONFIGURATION REGISTER 
000 - 2 
001 - 3 ETC., ETC. 

BASE PDATE (STRIDE DISTANCE BETWEEN SUCCESSIVE BLOCKS, UNITS ARE OF DATA TYPE SIZE 
BASE UPDATE COUNT USED FOR PBI LOOP CONTROL. SPECIFIES THE NAMBER OF TIMES THE BASE IS 

UPDATED BEFORE EXITING TO THE OUTER LOOP (PE UPDATE). RANGE IS TO 256. 
- 
NUMBER OF CONTIGOUS DATA ITEMS IN A BLOCK 
DISTANCE BETWEEN SUCCESSIVE ITENS WITHINA BLOCK. WNITS ARE OF 'TYPE" SIZE 

LOOP CTRL 

LOOP CTRL 

PE COUNT 

INDEX COUNT HOLO) 
INDEX UPDATE 

  

    

    

    

    

    

    

  

  



U.S. Patent Oct. 26, 2010 Sheet 12 of 19 US RE41,904 E 

FIG. 14 1. 1400 

LOOP CONTROL BIP (PE ID VARIES FIRST THEN INDEX, THEN BASE) 
ADDRESS PEO 

X0000 
x000 
x0002 
0003 
x0004 
000S 

0x000S 
0x000) 
0x0008 
0000 

to 12 14 
a AN INBOUND SEQUENCE OF SDATA ELEMENTS WITH YALUES O,2,3,...15 
o PETABLE SETTING OFOXOOOOOOE (NOTRANSLATION OF PE IDs 
a TSI block INSTRUCTION IN THE STU (READING THE S VALUES FROM SYSTEM MENORY) 
o TCI blockcyclic INSTRUCTION IN THE CTY WITH PE COUNT . . LOOP CONTROL. BIP, BASE UPDATE 8, BASE 
COUNT ... INDEX UPDATE : 2, INDEX COUNT s 2 

O 

FIG 15 1. 1500 
LOOP CONTROL: BPI (INDEX VARIES FIRST. THEN PE ID, THEN BASE) 

ADDRESS PEO PE PE2 PE3 
0x0000 O 2 is 
0x000 FF 0x000? 3 5 
0.003 | | | | 
0x000 

: 

F. 
OTOT. T. 

8 to 2 T Ox000S 
0x000a T 3 is 
o AN INBOUND SECVENCE OF SDATA ELEMENTS WITH YALUES O, 1,2,3,15 
O PETABLE SETTING OF Ox000.000E (NOTRANSLATION OF PE IDs) 
o TSI block INSTRUCTION IN THE STU (READING THE S VALUES FROM SYSTEK MEMORY) 
o TCI, blockcyclic INSTRUCTION IN THE CTU WITH PE COUNT 4, LOOP CONTROL. BPI, BASE UPDATE, 6, BASE 
COUNT ... INDEX UPDATE : 2, INDEX COUNT .. 2 

  

  

  

  

  



U.S. Patent Oct. 26, 2010 Sheet 13 of 19 US RE41,904 E 

FIG 16 

- 1so 
OOP CONTROL, PB (INDEX VARIES FIRST THEN BASE, THEN PE IO) 

GSG 0x0000 O 12 
0x000 
Ox002 S 9 3 
Ox000 

0x0004 H 00005 

0x000S --E 0x000 

GH EEE Ox000S - 
0x00a || 3 || 7 || 1 | 15 
AN INBOUND SEQUENCE OF SDATA ELEMENTS WITH YALVES 0,1,2,3,...15 

o PETABLE SETTING OF Ox000000E4 NO TRANSLATION OF PE IDs) 
o TSI block INSTRUCTION IN THE STU (READING THE IS YALUES FRON SYSTEMMEMORY) 
o TCI. block cyclic INSTRUCTION IN THE CTV WITH PE COUNT : , LOOP CONTROL = BPI, BASE UPOATE 8, BASE 
COUNT : , INDEX UPDATE : 2, INDEX COUNT - 2 

NOTE THAT A FOR PBI MODE, THE BASE COUNT HUST BE 2 IN ORDER TO GET 2 "BLOCKS OF DATA, INDEX COUNT 
CORRESPONDES TO THE NUMBER OF ELEMENTS WRITTEN BEFORE UPDATING THE NEXT ADDRESS WARIABLE THE GAP 

| BETWEEN ELEMENTS WITHIN A PE IS DE TO THE INDEX UPDATE VALUE OF 2 (RATHER THAN ) 



U.S. Patent Oct. 26, 2010 Sheet 14 of 19 US RE41,904 E 

FIG. 17 
1. 1700 

988 
CORE TRANSFER COUNT (CTC) 

; 
CTU TRANSFER I 

RESERVED STARTING TRANSFER ADORESS WITHINPE MEMORY 
OOP CTRL INDEX COUNT BASE UPDATE COUNT BASE UPOATE (STRIDE) 

LOOP CTRL LOOP CTRL SPECIFIES A PARTICULAA ORDER IN WHICH PE, BASE AND INDEX VALUES 
ARE UPDATED THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND TO 

PE COUNT 

TREE ASSIGNMENTS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONTROL 
OOPS (OUTER, MIDOLE AND INNER). 
OO. BASE (OUTER), INDEX (MIDOLE), PE (INNER) - BIP 
O. BASE (OUTER), PE (MIDDE), INDEX (INNER) - BPI 
O. PE (OUTER), BASE (MIDOLE), INDEX (INNER) - PBI 
SPECIFIES THE NUMBER OF PES TO BE ACCESSED FOREACH TIME THE PE COUNTER 
IS SIGNALED TO RELOAD, VALIO VALUES ARE: 
9: s NUMBER OF PES AS SPECIFIED IN THE PE CONFIGRATION REGISTER 
OOO - 2 
O01 - 3 ETC., ETC. 

BASE UPOATE STRIDE DISTANCE BETWEEN SUCCESSIVE BLOCKS, UNITS ARE OF DATA TYPE SIZE 
BASE UPDATE COUNT USED FOR PBI LOOP CONTROL SPECIFIES THE NUMBER OF TIMES THE BASE IS 

UPDATED BEFORE EXITING TO THE OUTER LOOP (PE UPDATE). RANGE IS TO 2SS. 

Ux IUO - IU FORMAN INDEX UPDATE TABLE WITH EACHENTRY BEING A 4-BIT UPDATE 
YALVE, PDATE VALUES ARE INTEGERS IN THE RANGE OF -8 TO 7 
NUMBER OF TIMES TOEXECUTE THE INDEX UPDATE LOOP THIS WARIABLE PROVIDES 
THE LOOP EXIT CONTROL FOR THE INDEX LOOP. 

INOEX COUNT 

  

    

  

    

  

  

  



U.S. Patent Oct. 26, 2010 Sheet 15 of 19 US RE41,904 E 

800 1. 
LOOP CONTROL BIP (INDEX VARIES FIRST THEN BASE, THEN PE ID) 

0x0000 O 2 3 
00002 as 26 27 
00002 T S S 
00003 20 222 23 
00004 9 

J 18 19 
x000S 

Ox000) 

0x0009 
0x000a 

PATTERN ABOVE RESULTS FROM AFTER A TRANSFER WITH THE FOLLOWING ASSEPTIONS: 
O Slock INSTRUCTION READS SUCCESSIVE ADDRESSES FROH SYSTEMMEMORY, DATA ELEMENT VALUES ARE 

1,2,... eC. 
o TCI. Select INDEX INSTRUCTION PLACES VALUES INPE MEMORIES USING THE FOLLOWING PARAMETERS 
v ASSUE NO PE YEO-to-PID TRANSLATION 
o TRANSFER COUNT 36 
o PE ADDRESS ... O 
o PE COUNT = 4 
to LOOP CONTROL BP 
o BASE UPDATE COUNT - O 
o BASE UPOATE .. 8 
O INDEX UPDATE TABLE VALUE IS OxOOEEF222 WHICH GIVES UPDATES 2.2.2-1-2,-2 
D INDEX COUNY : 1 

  

  

  

  

  



U.S. Patent Oct. 26, 2010 Sheet 16 of 19 US RE41,904 E 

FIG. 19 
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AFTER UPDATE), THE NEXT OUTER LOOP YAAIABLE BOR P IS UPDATED. SUBSEQUENT 
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US RE41,904 E 
1. 

METHODS AND APPARATUS FOR 
PROVIDING DIRECT MEMORYACCESS 

CONTROL 

Matter enclosed in heavy brackets appears in the 
original patent but forms no part of this reissue specifica 
tion; matter printed in italics indicates the additions 
made by reissue. 

RELATED APPLICATIONS 

More than one reissue application has been filed for the 
reissue of U.S. Pat. No. 6,453,367. The reissue applications 
are application Ser: No. 10/819,885 and which is the present 
divisional reissue application. 
The present application is a division of U.S. application 

Ser. No. 09/472,372 filed Dec. 23, 1999, now U.S. Pat. No. 
6.256,683, which in turn claimed the benefit of U.S. Provi 
sional Application Ser. No. 60/113,637 entitled “Methods 
and Apparatus for Providing Direct Memory Access (DMA) 
Engine' and filed Dec. 23, 1998 which is incorporated by 
reference in its entirety herein. 

FIELD OF THE INVENTION 

The present invention relates generally to improvements 
in array processing, and more particularly to advantageous 
techniques for providing improved mechanisms of data dis 
tribution to, and collection from multiple memories often 
associated with and local to processing elements within an 
array processor. 

BACKGROUND OF THE INVENTION 

Various prior art techniques exist for the transfer of data 
between system memories or between system memories and 
I/O devices. FIG. 1 shows a conventional data processing 
system 100 comprising a host uniprocessor 110, processor 
local memory 120, direct memory access (DMA) controller 
160, system memory 150 which is usually a larger memory 
store than the processor local memory, having longer access 
latency, and input/output (I/O) devices 130 and 140. 
The DMA controller 160 provides a mechanism for trans 

ferring data between processor local memory and system 
memory or I/O devices concurrent with uniprocessor execu 
tion. DMA controllers are sometimes referred to as I/O pro 
cessors or transfer processors in the literature. System per 
formance is improved since the host uniprocessor can 
perform computations while the DMA controller is transfer 
ring new input data to the processor local memory and trans 
ferring result data to output devices or the system memory. A 
data transfer is typically specified with the following mini 
mum set of parameters: Source address, destination address, 
and number of data elements to transfer. Addresses are inter 
preted by the system hardware and uniquely specify I/O 
devices or memory locations from which data must be read 
or to which data must be written. Sometimes additional 
parameters are provided such as element size. One of the 
limitations of conventional DMA controllers is that address 
generation capabilities for the data source and data destina 
tion are often constrained to be the same. For example, when 
only a source address, destination address and a transfer 
count are specified, the implied data access pattern is block 
oriented, that is, a sequence of data words from contiguous 
addresses starting with the Source address is copied to a 
sequence of contiguous addresses starting at the destination 
address. Array processing presents challenges for data col 
lection and distribution both in terms of addressing 
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2 
flexibility, control and performance. The patterns in which 
data elements are distributed and collected from processing 
element local memories can significantly affect the overall 
performance of the processing system. With the advent of 
the Man Array architecture it has been recognized that it will 
be advantageous to have improved techniques for data trans 
fer which provide these capabilities and which are tailored to 
this new architecture. 

SUMMARY OF THE INVENTION 

As described in detail below, the present invention 
addresses a variety of advantageous methods and apparatus 
for improved data transfer control within a data processing 
system. In particular we provide improved techniques for: 
distributing data to, and collecting data from an array of 
processing elements (PEs) in a flexible and efficient manner; 
and PE address translation which allows data distribution 
and collection based on PE virtual IDs. 

Further aspects of the present invention are related to a 
virtual-to-physical PE ID translation which works together 
with a Man Array PE interconnection topology to Support a 
variety of communication models (such as hypercube and 
mesh) through data placement based upon a PE virtual ID. 
This result can be accomplished in a DMA controller by 
translation, through a VID-to-PID lookup table or through 
combinational logic, where the resulting PID becomes an 
addressing component on the DMA bus to PE local memo 
ries. This result can also be achieved at the PE local memo 
ries within the interface logic, where a VID available to the 
interface logic is compared to a VID presented on the DMA 
bus. A match at a particular memory interface allows that 
memory to accept the access. The present invention also 
addresses the provision of PE addressing modes based on 
generating data access patterns from logically nested param 
eterized loops. Varying assignments of loop parameters to 
nesting level allows flexible data access patterns to be gener 
ated. Providing varying mechanisms for updating loop 
parameters provides greater flexibility for generating 
complex-periodic access patters patterns, such as select 
index modes which provide a table of index-update values 
which are used when the index loop parameter is updated; 
select-PE modes which provide a table of bit-vector control 
values, each of which specifies the PEs to be accessed for an 
iteration through the “PE update loop' (i.e., the loop which 
PE update is assigned); and select-index-PE modes which 
provide both select-index and select-PE update capability 
and combine to form the most flexible mode for generating 
complex-periodic data access patterns. Further, the invention 
addresses the design of a looping mechanism to be reentrant 
thereby allowing any addressing mode to be restarted after 
completing a specific number of element transfers, by just 
loading or reloading a new transfer count and continuing the 
transfer. This result is accomplished by initializing address 
ing parameters at instruction load time, and only updating 
them after a loop exits. 

These and other advantages of the present invention will 
be apparent from the drawings and the Detailed Description 
which follow. 

BRIEF DESCRIPTION OF DRAWINGS 

FIG. 1 shows a conventional data processing system with 
a DMA controller to support data transfers concurrent with 
host processor computation; 

FIG. 2 illustrates a ManArray DSP with a DMA controller 
in a representative system in accordance with the present 
invention; 
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FIG. 3 illustrates a DMA controller implemented as a 
multiprocessor, with two transfer controllers, bus connec 
tions to a system memory, PE memories and a control bus; 

FIG. 4 shows a single transfer controller comprising 4 
primary execution units, bus connections and FIFO buffers; 

FIG. 5 shows an exemplary format of a transfer type 
instruction in accordance with the present invention; 

FIG. 6 shows an exemplary virtual PE identification to 
physical PE identification (VID-to-PID) translation; 

FIG. 7 shows an exemplary logical implementation of 
VID-to-PID translation: 

FIG. 8 shows an exemplary PEXLAT instruction (“load 
VID-to-PID table”); 

FIG. 9 illustrates a VID-to-PID translation table register, 
called the PETABLE register in a presently preferred 
embodiment; 

FIG. 10 illustrates a nested logical loop model showing a 
“BIP assignment of address components to loops: base 
(outer), index (middle) and PE VID (inner); 

FIG. 11 shows a nested logical loop model with “BPI' 
assignment of address components to loops: base (outer), PE 
(middle) and index (inner); 

FIG. 12 is a nested logical loop model showing a “PBI' 
assignment of address components to loops: PE (outer), 
Base (middle) and Index (inner); 

FIG. 13 illustrates an exemplary format for a PE Block 
cyclic instruction in accordance with the present invention; 

FIG. 14 shows an exemplary transfer result using PE 
Blockcyclic address mode with BIP loop assignment; 

FIG. 15 shows an exemplary transfer result using PE 
Blockcyclic address mode with BPI loop assignment; 

FIG. 16 shows an exemplary transfer result using PE 
Blockcyclic address mode with PBI loop assignment; 

FIG. 17 illustrates an exemplary format for a PE Select 
Index transfer instruction in accordance with the present 
invention; 

FIG. 18 shows an exemplary transfer result using a PE 
Select-Index address mode with BIP loop assignment; 

FIG. 19 illustrates an exemplary format for a PE Select 
PE transfer instruction in accordance with the present inven 
tion; 

FIG. 20 shows an exemplary transfer result using a PE 
Select-PE address mode with BIP loop assignment; 

FIG. 21 illustrates an exemplary format for a PE Select 
Index-PE transfer instruction in accordance with the present 
invention; and 

FIG. 22 shows an exemplary transfer result using a PE 
Select-Index -PE address mode with BIP loop assignment. 

DETAILED DESCRIPTION 

Further details of a presently preferred Man Array core, 
architecture, and instructions for use in conjunction with the 
present invention are found in U.S. patent application Ser. 
No. 08/885,310 filed Jun. 30, 1997, now U.S. Pat. No. 6,023, 
753, U.S. patent application Ser. No. 08/949,122 filed Oct. 
10, 1997, now U.S. Pat. No. 6,167,502, U.S. patent applica 
tion Ser. No. 09/169,255 filed Oct. 9, 1998, U.S. patent 
application Ser. No. 09/169.256 filed Oct. 9, 1998, now U.S. 
Pat. No. 6,167,501, U.S. patent application Ser. No. 09/169, 
072 filed Oct. 9, 1998, now U.S. Pat. No. 6,219,776, U.S. 
patent application Ser. No. 09/187,539 filed Nov. 6, 1998, 
now U.S. Pat. No. 6,151,668, U.S. patent application Ser. 
No. 09/205,558 filed Dec. 4, 1998, now U.S. Pat. No. 6,173, 
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4 
389, U.S. patent application Ser. No. 09/215,081 filed Dec. 
18, 1998, now U.S. Pat. No. 6,101,592, U.S. patent applica 
tion Ser. No. 09/228,374 filed Jan. 12, 1999, now U.S. Pat. 
No. 6,216,223, U.S. patent application Ser. No. 09/238,446 
filed Jan. 28, 1999, U.S. patent application Ser. No. 09/267, 
570 filed Mar. 12, 1999, U.S. patent application Ser. No. 
09/337,839 filed Jun. 22, 1999, U.S. patent application Ser. 
No. 09/350,191 filed Jul. 9, 1999, U.S. patent application 
Ser. No. 09/422,015 filed Oct. 21, 1999, U.S. patent applica 
tion Ser. No. 09/432,705 filed Nov. 2, 1999, U.S. patent 
application Ser. No. 09/471,217 filed Dec. 23, 1999, now 
U.S. Pat. No. 6,260,082, as well as, Provisional Application 
Ser. No. 60/139,946 entitled “Methods and Apparatus for 
Data Dependent Address Operations and Efficient Variable 
Length Code Decoding in a VLIW Processor filed Jun. 18, 
1999, Provisional Application Ser. No. 60/140,245 entitled 
“Methods and Apparatus for Generalized Event Detection 
and Action Specification in a Processor filed Jun. 21, 1999, 
Provisional Application Ser. No. 60/140,163 entitled “Meth 
ods and Apparatus for Improved Efficiency in Pipeline 
Simulation and Emulation' filed Jun. 21, 1999, Provisional 
Application Ser. No. 60/140,162 entitled “Methods and 
Apparatus for Initiating and Re-Synchronizing Multi-Cycle 
SIMD Instructions' filed Jun. 21, 1999, Provisional Applica 
tion Ser. No. 60/140,244 entitled “Methods and Apparatus 
for Providing One-By-One Manifold Array (1x1 Man Array) 
Program Context Control” filed Jun. 21, 1999, Provisional 
Application Ser. No. 60/140,325 entitled “Methods and 
Apparatus for Establishing Port Priority Function in a VLIW 
Processor filed Jun. 21, 1999, Provisional Application Ser. 
No. 60/140,425 entitled “Methods and Apparatus for Paral 
lel Processing Utilizing a Manifold Array (Man Array) 
Architecture and Instruction Syntax' filed Jun. 22, 1999, 
Provisional Application Ser. No. 60/165.337 entitled “Effi 
cient Cosine Transform Implementations on the Man Array 
Architecture' filed Nov. 12, 1999, and Provisional Applica 
tion Ser. No. 60/171,911 entitled “Methods and Apparatus 
for Loading of Very Long Instruction Word Memory” filed 
Dec. 23, 1999, respectively, all of which are assigned to the 
assignee of the present invention and incorporated by refer 
ence herein in their entirety. 
The following definitions of terms are provided as back 

ground for the discussion of the invention which follows: 
A “transfer” refers to the movement of one or more units 

of data from a source device (either I/O or memory) to a 
destination device (I/O or memory). 
A data “source' or “destination” refers to a device from 

which data may be read or to which data may be written 
which is characterized by a contiguous sequence of one or 
more addresses, each of which is associated with a data Stor 
age element of Some unit size. For Some data sources and 
destinations there is a many-to-one mapping of addresses to 
data element storage locations. For example, an I/O device 
may be accessed using one of many addresses in a range of 
addresses, yet it will perform the same operation, such as 
returning the next data element of a FIFO, for any of them. 
A "data access pattern' is a sequence of data source or 

destination addresses whose relationship to each other is 
periodic. For example, the sequence of addresses 0, 1, 2, 4, 
5, 6, 8, 9, 10, ... etc. is a data access pattern. If we look at the 
differences between successive addresses, we find: 1,1,2, 
1.1.2, 1.1.2, ... etc. Every three elements the pattern repeats. 
An “address mode' or “addressing mode” refers to a rule 

that describes a sequence of addresses, usually in terms of 
one or more parameters. For example, a “block” address 
mode is described by the rule: addressi-base address+i 
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where i=0,1,2,... etc. and where base address is a param 
eter and refers to the starting address of the sequence. 

Another example is a “stride' address mode which may be 
described by the rule: 

addressi-base address+(imod (stride-hold))+(i/hold)*stride 

for i=0, 1, 2, ... etc., and where base address, stride and 
hold are parameters, and where division is integer division in 
which any remainder is discarded. 
An “address generation unit (AGU) is a hardware mod 

ule that generates a sequence of addresses (a data access 
pattern) according to a programmed address mode. 
“EOT” means 'end-of-transfer” and refers to the state 

when a transfer execution unit (described in the following 
text) has completed its most recent transfer instruction by 
transferring the number of elements specified by the instruc 
tion's transfer count field. 
The term “host processor as used in the following 

description is any processor or device which can write con 
trol commands and read status from the DMA controller 
and/or which can respond to DMA controller messages and 
signals. In general, a host processor interacts with a DMA 
controller to control and synchronize the flow of data 
between devices and memories in the system in Such a way 
as to avoid overrun and underrun conditions at the sources 
and destinations of data transfers. 
The present invention provides a set of flexible addressing 

modes for Supporting efficient data transfers to and from 
multiple memories, together with methods and apparatus for 
allowing data accesses to be directed to PEs according to 
virtual as opposed to physical IDS. This section describes an 
exemplary DMA controller and a system environment in 
which the present inventions may be effectively used. The 
following sections describe PE memory addressing, virtual 
to-physical PEID translation and its purpose, and a set of PE 
memory addressing modes or “PE addressing modes' which 
Support numerous parallel algorithms with highly efficient 
data transfer. 

FIG. 2 shows an exemplary system 200 illustrating the 
context in which a Man Array DMA controller 201, in accor 
dance with the present invention, resides. The DMA control 
ler 201 accesses processor local memories 210, 211, 212, 
213, 214 and 215 via a DMA Bus 202, 202, 202, 202, 
202, 202s and memory interface units 205, 206, 207, 208 
and 209 to which it is connected. A Man Array DSP 203 also 
connects to its local memories 210-215 via memory inter 
face units 205–209. Further details of a presently preferred 
DSP 203 are found in the above incorporated by reference 
applications. 

In this representative system, the DMA controller also 
connects to two system busses, a system control bus (SCB) 
235 and a system data bus (SDB) 240. The DMA controller 
is designed to transfer data between devices on the SDB 240, 
such as a system memory 250 and the DSP 203 local memo 
ries 210–215. The SCB 235 is used by an SCB master such 
as the DSP 203 or a host control processor (HCP) 245 to 
program the DMA controller 201 with read and write 
addresses and registers to initiate control operations and read 
status. The SCB 235 is also used by the DMA controller 201 
to send synchronization messages to other SCB bus slaves 
such as the DSP control registers 225 and a host I/O block 
255. Some registers in these slaves can be polled by the DSP 
and HCP to receive status from the DMA. Alternatively, 
DMA writes to some of these slave addresses can be pro 
grammed to cause interrupts to the DSP and/or HCP allow 
ing DMA controller messages to be handled by interrupt 
service routines. 
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6 
FIG.3 shows a system 300 which illustrates operation of a 

DMA Controller 301 which may suitably be a multiproces 
Sor specialized to carry out data transfers utilizing one or 
more transfer controllers 302 and 303. Each transfer control 
ler can operate as an independent processor or work together 
with other transfer controllers to carry out data transfers. The 
DMA busses 305 and 310 provide, in the presently preferred 
embodiment, independent data paths to local memories 320, 
321, 322, 323,324, 325, one for each transfer controller 302 
and 303. In addition, each transfer controller is connected to 
SDB350 and to SCB 330. Each transfer controller operates 
as a bus master and abus slave on both the SCB and SDB. As 
a bus slave on the SCB, a transfer controller may be accessed 
by other SCB bus masters in order to read its internal state or 
to issue control commands. As a bus master on the SCB, a 
transfer controller can send synchronization messages to 
other SCB bus slaves. As a bus master on the SDB, a transfer 
controller performs data reads and writes from or to system 
memory or I/O devices which are bus slaves on the SDB. As 
a bus slave on the SDB, a transfer controller can cooperate 
with another SDB bus master in a “slave mode” allowing the 
bus master to read or write data directly from or to its data 
FIFOs (as discussed further below). It may be noted that the 
DMA busses 305 and 310, the SDB 350 and the SCB 330 
may be implemented in different ways. For example, they 
may be implemented with varying bus widths, protocols, or 
the like consistent with the teachings of the present inven 
tion. 

FIG. 4 shows a system 400 having single transfer control 
ler 401 comprising a set of execution units including an 
instruction control unit (ICU) 440, a system transfer unit 
(STU) 402, a core transfer unit (CTU) 408 and an event 
control unit (ECU) 460. An inbound data queue (IDQ) 405 is 
a data FIFO buffer which is written with data from an SDB 
470 under control of the STU-402. Data is read from the IDQ 
405 under control of the CTU 408 to be sent to core memo 
ries 430, or sent to the ICU 440 in the case of instruction 
fetches. An outbound data queue (ODO) 406 is a data FIFO 
which is written with data from DMA busses 425 under 
control of the CTU 408, to be sent to an SDB 470 device or 
memory under the control of the STU 402. The CTU 408 
may also read DMA instructions from a memory attached to 
the DMA bus, which are forwarded to the ICU 440 for initial 
decoding. The ECU 460 receives signal inputs from external 
devices 465, commands from the SCB 450 and instruction 
data from the ICU 440. It generates output signals 435, 436 
and 437 which may be used to generate interrupts on host 
control processors within the system, and can act as a bus 
master on the SCB 450 to send synchronization messages to 
SCB bus slaves. 

Each transfer controller within a Man Array DMA control 
ler is designed to fetch its own stream of DMA instructions. 
DMA instructions are of five basic types: transfer; branch; 
load; synchronization; and state control. The branch, load, 
synchronization, and state control types of instructions are 
collectively referred to as “control instructions, and distin 
guished from the transfer instructions which actually per 
form data transfers. DMA instructions are typically of multi 
word length and require a variable number of cycles to 
execute although several control instructions require only a 
single word to specify. Although the presently preferred 
embodiment supports multiple DMA instruction types as 
described in further detail in U.S. patent application Ser. No. 
09/471,217 filed Dec. 23, 1999, now U.S. Pat. No. 6,260, 
082, and incorporated by reference in its entirety herein, the 
present invention focuses on instructions and mechanisms 
which provide for flexible and efficient data transfers to and 
from multiple memories. 
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Referring further to system 400 of FIG. 4, transfer-type 
instructions are dispatched by the ICU for further decoding 
and execution by the STU 402 and the CTU 408. Transfer 
instructions have the property that they are fetched and 
decoded sequentially, in order to load transfer parameters 
into the appropriate execution unit, but are executed concur 
rently. The control means for initiating execution of transfer 
instructions is a flag bit contained in the instruction itself, 
and is described below. 
A “transfer-system-inbound” (TSI) instruction moves 

data from the SDB 470 to the IDQ 405 and is executed by 
the STU. A “transfer-core-inbound” (TCI) instruction moves 
data from the IDQ 405 to the DMA Bus 425 and is executed 
by the CTU. A “transfer-core-outbound” (TCO) instruction 
moves data from the DMA Bus 425 to the ODQ 406 and is 
executed by the CTU. A “transfer-system-outbound” (TSO) 
instruction moves data from the ODQ 406 to the SDB 470 
and is executed by the STU. Two transfer instructions are 
required to move data between an SDB system memory and 
one or more SP or PE local memories on the DMA bus, and 
both instructions are executed concurrently: a TSI, TCI pair 
or a TSO, TCO pair. 
The address parameter of STU transfer instructions TSI 

and TSO refers to addresses on the SDB while the address 
parameter of CTU transfer instructions refers to addresses 
on the DMA bus to PE and SP local memories. 

FIG. 5 shows an exemplary instruction format 500 for 
transfer instructions. A base opcode field 501 indicates that 
the instruction is of transfer type. A C/S field 510 indicates 
the transfer unit (CTU or STU) and I/O field 520 indicates 
whether the transfer direction is inbound or outbound. The 
execute (“X”) field 550 is a field which, when set to “1”, 
indicates a “start transfer” event, that is, that the transfer 
should start immediately after loading the transfer instruc 
tion. When the “X” field is “0”, then the parameters are 
loaded into the specified unit but the transfer is not initiated. 
Instruction fetch/decode continues normally until a “start 
transfer event occurs. A data type field 530 indicates the 
size of each element transferred and an address mode 540 
refers to the data access pattern which must be generated by 
the transfer unit. A transfer count 560 indicates the number 
of data elements of size “data type' which are to be trans 
ferred to or from the target memory/device before EOT 
occurs for that unit. An address parameter 570 specifies the 
starting address for the transfer. Other parameters 580 may 
follow the address word of the instruction, depending on the 
addressing mode used. 

While there are six memories 210, 211, 212, 213, 214, and 
215 shown in FIG. 2, the PE address modes access only the 
set of PE memories 210, 211, 212, and 213 in this exemplary 
Man Array DSP configuration. The address of a data element 
within PE local memory space is specified with three 
variables, a PEID, a base value and an index value. The base 
and the index values are summed to form an offset into a PE 
memory relative to an address 0, the first address of that PE's 
memory. The address of a PE data element is therefore given 
by a pair: PE data address=(PE ID, Base+Index). 

The ManArray architecture Supports a unique intercon 
nection network between processing elements (PEs) which 
uses PE virtual IDs (VIDs) to support useful single-cycle 
communication paths, for example, torus or hypercube 
paths. In some array organizations, the PES physical and 
virtual IDs are equal. The VIDs are used in the architecture 
to specify the pattern for data distribution and collection. 
When data is distributed according to the pattern established 
by VID assignment, then efficient inter-PE communication 
required by the programmer becomes available. As an 
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8 
example, if a programmer needs to establish a hypercube 
connectivity for a 16 PE Man Array processor, the data will 
be distributed according to a VID assignment in Such a man 
ner that the physical switch connections allow data to be 
transferred between PEs as though the switch topology were 
a hypercube even if the switch connections between physical 
PEs do not support the fill hyper-cube interconnect. The 
present invention describes two approaches whereby the 
DMA controller can access PE memories according to their 
VIDs, effectively mapping PE virtual IDs to PE physical IDs 
(PIDs). The first uses VID-to-PID translation within the 
CTU of a transfer controller. This translation can be per 
formed either through table-lookup, or through logic permu 
tations on the VID. The second approach associates a VID 
with a PE by providing a programmable register within the 
PE or the PE local memory interface unit (LMIU), FIG. 2 
205, 206, 207 and 208 which is used by the LMIU logic to 
“capture' a data access when its VID matches a VID pro 
vided on the DMA Bus for each DMA memory access. 
VID to PID Translation within the DMA Controller 

With this approach, a PE VID-to-PID table is maintained 
in the DMA controller so that data may be distributed to the 
Man Array according to a programmer's view of the array. In 
the preferred embodiment, this table is maintained in the 
CTU of each transfer controller. FIG. 6 shows an exemplary 
mapping table 600 of VID into PID for a four PE system, 
such as a Man Array 2x2 system. The VIDs are in column 
602 on the left and their corresponding PIDs are shown in 
column 604 on the right. An example of a table lookup 
implementation of the mapping of FIG. 6 is illustrated logi 
cally as system 700 of FIG. 7. In the presently preferred 
embodiment, a translation table 710 is stored in the CTU of a 
transfer controller. A CTU transfer instruction 705 (TCI or 
TCO) specifies a starting address 775 which is used by AGU 
770 to generate an initial VID 720. The VID 720 controls the 
selection of one of the elements of the VID-to-PID lookup 
table 710 through multiplexer 715 which is then sent to a 
DMA Bus 740 as the PE ID component of the PE address. 
The numbers on the multiplexer 715 indicate the VID value 
which must be applied to select the corresponding input. 
Successive VIDs are generated by the AGU 770, possibly in 
a recursive fashion as shown by feedback 708. At the same 
time, the AGU 770 generates a sequence of PE memory 
offsets 730, also possibly using recursive feedback 755. The 
PE memory offset 750 is also sent to the DMA bus as a 
second component of a PE address. Logic in the local 
memory interface units (LMIUs) is used to compare the PE 
ID sent on the DMAbus to a stored PID (hard-coded) for any 
DMA bus access. If this matches, then the LMIU accepts the 
access and accepts write data or returns read data. 
The approach of FIG. 7 has the advantage that all map 

pings of PE VIDs to PIDs are supported. With larger num 
bers of PE local memories, the register or memory space 
required to store this table grows. For example, a 16 PE 
memory system requires 64 bits of register or memory space 
to store the PIDs. An alternative approach to table lookup 
based translation is to provide logic which performs a Subset 
of all VID-to-PID mappings. This translation logic would 
also be parameterized, but would require significantly fewer 
bits to configure. As a simple example, let the PID beformed 
by complementing any bit of the VID. If the PID and VID 
require 4 bits to represent the needed IDs, say for a 16 PE 
system, then a four bit “translation vector (XVEC) must be 
stored to configure the translation rather than the 64 bits for 
table lookup. The PID is obtained from the VID by the fol 
lowing: PID=VID Xor XVEC. That is, each bit of VID is 
exclusive-ord with the corresponding bit of XVEC. The set 
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of PIDs resulting from applying this operation to each VID 
constitutes the mapping. Obviously, the number of mappings 
available is far fewer than with a table lookup approach, but 
for systems with a large number of PE memories, only a few 
mappings may be required to Support the desired communi 
cation patterns. 

In the presently preferred embodiment, a lookup table is 
used to perform the VID-to-PID translation. Two approaches 
are provided for initializing the translation table. The first is 
through a DMA instruction 800, shown in FIG. 8. When 
executed, DMA instruction 800 loads a PETABLE register 
900 which is illustrated in FIG. 9. The second approach is 
through a direct write of the PETABLE register 900 via the 
SCB. 
PE Virtual IDs Stored in Local Memory Interface Units 
The second approach to directing data access according to 

PE VID relies on distributing the PE VIDs to each PE local 
memory interface unit (LMIU). The VID for each PE might 
reside in a register either in the PE itself or in its LMIU. In 
this case, there is no translation table or logic in the DMA 
lane controllers. In common with the preceding approach, 
there is a PE ID component of the DMA bus which is driven 
by the transfer controllers and used by the LMIUs to com 
pare for a match with the locally visible PE VID. When a 
match is detected in a PE, then it accepts the access which 
may be either a write or a read request. Means for updating 
the VIDs stored locally in the LMIUs may be provided 
through the use of registers visible in the PE register address 
space, or through a PE instruction which broadcasts the table 
to all PEs, who then select their VID using their hard-coded 
PID stored locally. This approach has advantages when 
VIDs are used for other purposes than just data distribution 
and collection by a DMA controller. 
CTU. Addressing Modes 
A CTU 408 shown in FIG. 4 supports a basic set of 

address modes which may be used to target memories asso 
ciated with each PE or SP individually. These address modes 
include single-address, block, stride and circular modes. 
These addressing modes will not be described in detail 
herein, but are a common set of addressing modes used for 
many uniprocessor applications. In addition to these address 
modes, the CTU 408 provides a set of “PE address modes' 
which allow data to be distributed across or collected from 
multiple PE memories in a variety of patterns. These address 
modes are based on a software model of address generation 
based on parameterizable loops, which is then implemented 
in hardware. 
Flexible PE Addressing Modes through Parameterizable 
Logical Loops 
Many algorithms which are distributed across multiple 

PES require complex data access patterns to achieve peak 
efficiency. The basis for our loop-based PE addressing 
modes is a logical view of data access consisting of a set of 
nested loops in which one component of the PE memory 
address is assigned to be updated at the end of each loop. As 
stated above, a PE memory address consists of three compo 
nents called “address components', a PE virtual ID (VID), a 
base value (Base) and an index value (Index). This model 
requires the following: a mechanism for assigning address 
components to logical loops; a mechanism for initializing 
address components; and a mechanism for updating address 
components; and a mechanism for indicating a loop's exit 
condition. 

Assignment of an address component to a loop specifies 
the order in which the three address components are 
updated. In an embodiment which uses a three-loop model, 
there are six possible orders for updating address compo 
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10 
nents (i.e. six ways to re-order VID, Base and Index). The 
base and index components are defined to be ordered in this 
embodiment so that the index is always updated prior to the 
base, which reduces the number of possible orderings to 
three, since base and index are Summed to form an offset 
into PE memory, allowing loop assignments that update the 
base before the index is redundant. An exemplary loop 
assignment is: update VID on inner loop; update index on 
middle loop; and update base on outer loop. 

Thus, as PE addresses are generated, the VID component 
updates first (inner loop). When all VIDs have been used 
(VID loop exit condition has been reached), then the VID is 
reinitialized, the index is updated, and the VID loop is reen 
tered. This looping continues until the number of index 
updates is exhausted (Index loop exit condition has been 
reached) at which point the index is reinitialized, the base is 
updated, the index loop is reentered, then the VID loop is 
reentered. This further looping continues until the transfer 
count is exhausted. 

Updating an address component is performed by selecting 
a new value for the component either based on the old value 
(e.g. new=old+1) or by Some other means, such as by table 
lookup. A loop exit condition specifies what causes the loop 
to exit to the next-most outer loop in the model. 

In Summary, three different aspects of loop control are 
used to vary the sequence in which PE memories may be 
accessed. These are: 

(1) Rearranging the order of assignment of address com 
ponents to logical loops, 

(2) Varying the method for updating the address 
components, and 

(3) Varying the loop termination conditions. 
FIGS. 10, 11 and 12 show logical representations or pro 

cesses 1000, 1100 and 1200, respectively, of preferred 
assignments of address parameters (PE VID, Base and 
Index) to logical loops. In the nomenclature used in FIGS. 
10, 11 and 12, the term “PE refers to the PE VID compo 
nent of a PE address. In FIG. 10, the address components are 
assigned in “Base, Index, PE' (BIP) ordering. This means 
that the PE is updated in the innermost loop, the index 
parameter is updated in the “middle' loop and the base 
parameter is updated in the “outer loop. In FIG. 11, the loop 
assignments are in a “Base, PE, Index (BPI) ordering, and 
in FIG. 12, the loop assignments are in a “PE, Base, Index' 
(PBI) ordering. 

FIG. 10 shows a logical representation 1000 of the nested 
loop model in which the PE VID is updated in an inner loop 
1030, the index is updated in a middle loop 1020, and the 
base is updated in an outer loop 1010. A fourth loop 1005 
which encompasses the other three loops indicates that the 
other loops are continued until the number of data elements 
specified in the transfer instruction have been accessed. 
Associated with each loop is a condition for loop exit 1010, 
1020 or 1030, respectively, where the “” character repre 
sents a logical NOT. Also associated with each loop is a 
mechanism 1060, 1070 or 1077, respectively, for updating 
the loop address parameter and for testing the updated value 
to indicate whether the exit condition for that loop has 
become TRUE. Prior to starting any loop is an address ini 
tialization block 1002 which sets the starting values of each 
address component (PE, Base and Index). The data transfer 
implemented by FIG. 10 will cause PEs to be accessed first 
until an “exit PE loop” condition has become true 
(PELoopComplete is TRUE), at which point the PE loop 
exits and the PE parameter is reinitialized in step 1065. The 
index parameter is then updated and tested for its terminal 
condition in step 1070. If the index parameter's terminal 
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condition has not become TRUE, then the PE loop is reen 
tered. When the index parameter's terminal condition 
becomes TRUE, the index loop is exited, the index param 
eter is reinitialized in step 1075 and the base parameter is 
updated and tested for a terminal condition in step 1080. If 
the base parameter terminal condition has not been reached, 
then the index and PE loops are reentered and executed until 
either all data items have been accessed (transfer count 
specified in the transfer instruction becomes zero) or the 
index loop is terminated again. When BaseLoopComplete 
becomes TRUE, the base value is reinitialized in step 1085 
and the loops are reentered again. 

FIGS. 11 and 12 show nested logical loops or processes 
1100 and 1200 corresponding to “BPI access (index is 
updated first, followed by PE, followed by base) and “PBI” 
access (Index is updated first, followed by Base, then lastly 
PE) respectively. 
The following aspects of the loop formulation are noted. 

When the requested number of accesses are made (TC in 
FIGS. 10–12) then all loops are exited immediately, leaving 
all address and loop control variables in their current states. 
By using logical “while' loops and reinitializing a loop only 
at its exit, it is possible to reenter the loops and continue a 
transfer after “terminal count” (TC) addresses have been 
accessed. This capability is used in this invention to allow 
transfers to be restarted so that the addressing continues as 
though it would if the transfer count had not been exhausted. 
For further details of such transfers see U.S. application Ser. 
No. 09/471,217 filed Dec. 23, 1999, now U.S. Pat. No. 
6,260,082, which is incorporated by reference in its entirety 
herein. 
The functions used to update an address (see 

UpdateAddress() in FIG. 10 steps 1060, 1070 and 1077; in 
FIG. 11 steps 1160, 1170 and 1177; and in FIG. 12 steps 
1260, 1270 and 1277) may update the address using a con 
stant increment value, or a value extracted from a table, or 
use a selection mechanism based on a bit vector. While other 
UpdateAddress() functions might be supported, those listed 
are supported in the presently preferred embodiment. 
The function used to update the loop control variable, 

UpdateLoopControl( ), may be performed as part of the 
address update or as a separate operation as shown in FIGS. 
10–12. This operation is used to update variables which con 
trol loop termination. In the preferred embodiment, the con 
trol variables are counters or special logical functions con 
sisting of priority encoders and counter blocks. 
The function used to check for loop termination simply 

tests the loop termination variable for an end of loop condi 
tion. This condition may be a particular count value or the 
state of a mask register. 
The initialization of address parameters (see Initialize() 

function: FIG. 10 1002, FIG. 11 1102, and FIG. 12 1202) 
does not necessarily occur each time a transfer is started. In 
the preferred embodiment, this initialization occurs only 
when a transfer instruction is decoded and parameters are 
loaded into CTU registers in the case of PE addressing 
modes or STU registers. 
The following discussion addresses instruction formats 

and describes PE addressing modes for one embodiment of 
the invention. It will be recognized other instruction encod 
ings may be used consistent with the teachings of the present 
invention. In the preferred embodiment, a transfer controller 
reads transfer instructions from a local memory and decodes 
them. Transfer instructions come in two types, those for the 
STU and those for the CTU. The STU transfer instructions 
specify the addressing mode and transfer count for accesses 
to the system data bus while CTU transfer instructions 
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specify the addressing mode and transfer count for accesses 
to the DMA bus and all SP and PE memories. The instruc 
tion formats addressed below are only those instructions 
which control special PE memory addressing for the CTU. 
Instruction mnemonics are used to indicate the instruction 
type and addressing mode. “TCI stands for “transfer, core 
inbound, while “TCO' stands for “transfer, core 
outbound. “TCX' Stands for either TCI or TCO. The follow 
ing PE addressing modes are described as illustrative of the 
present invention: PE Block-Cyclic, PE Select-Index, PE 
Select-PE, and PE Select-Index-PE. 
PE Block-Cyclic Addressing 
PE blockcyclic addressing provides the basic framework 

for all of the PE addressing modes. A Loop parameter speci 
fies the assignment of address components to loops: BIP. 
BPI, or PBI. FIG. 13 shows an exemplary format 1300 
which defines the parameters for a PE Blockcyclic transfer 
instruction executed by the CTU. As an example, if we are 
given: 
An inbound sequence of 16 data elements with values 

0,1,2,3,... 15: 
PETABLE setting of 0x000000E4 (no translation of PE 

IDs): 
TSI.block instruction in the STU (reading the 16 values 

from system memory); and 
TCI.blockcyclic instruction in the CTU with PE count=4, 

Base Update=8, Base Count=2 (used for PBI mode 
only), Index Update=2, Index Count=2, then the result 
ing data in the PE memories 1400 after the transfer are 
shown in FIG. 14 for BIP loop assignment. FIG. 15 
shows resulting data 1500 for BPI loop assignment. 
FIG. 16 shows resulting data 1600 for PBI loop assign 
ment. 

PE Select-Index Addressing 
The operation of the PE select-index address mode is 

similar to the PE blockcyclic address mode except that rather 
than updating the index component of the address by adding 
a constant to it, the instruction specifies a table of index 
update values which are used sequentially to update the 
index. FIG. 17 shows an exemplary instruction format 1700 
for the PE select-index instruction. 
An index select parameter allows finer-grained control 

over a sequence of index values to be accessed. In the 
example, this is done using a table of eight 4-bit index 
update (IU) values. Each time the index loop is updated, an 
IU value is added to the effective address. These update 
values are accessed from the table sequentially starting from 
IUO for IUCount updates. After IUCount updates, the index 
update loop is complete and the next outer loop (B or P) is 
activated. On the next entry of the index loop, IU values are 
accessed starting at the beginning of the table. FIG. 18 
shows an exemplary data access table 1800 illustrating data 
access using the PE Select-index instruction. 
PE Select-PE Addressing 
The operation of the PE Select-PE address mode is similar 

to the PE blockcyclic address mode except that rather than 
updating the PE VID component of the address by adding 1 
to it, the instruction specifies a table of bit vectors, where 
each bit vector specifies the PEs to select for access. A bit 
set to “1” in a bit vector indicates, by its bit position, the VID 
of the PE to access. Bits in each bit vector are scanned from 
right to left (least to most significant when viewed in a first 
instruction format such as instruction format 1900 of FIG. 
19). When there are no more “1” bits in a vector, the PE loop 
exits. The next iteration of the loop uses the next bit vector in 
the table. FIG. 19 shows an exemplary instruction formal 
1900, and FIG. 20 shows an exemplary transfer data access 
table 2000 for a transfer using this instruction. 
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The PE select fields together with the use of the PE trans 
late table allow out of order access to PEs across multiple 
passes through them. 
PE Select-Index-PE Addressing 

This addressing mode combines both select-index and 
select-PE addressing. An exemplary instruction format 2100 
is shown in FIG. 21. This form of addressing provides for 
complex-periodic data access patterns. An exemplary access 
pattern table 2200 for the PE-select-index-PE address mode 
is shown in FIG. 22. 

I claim: 
1. An apparatus for performing virtual identification 

(VID) to physical identification (PID) translation for data 
elements to be accessed within local memory of a processing 
element (PE) whereby a direct memory access (DMA) con 
troller can access PE local memories according to their 
VIDs, the apparatus comprising: 

an array of multiple PEs each having local PE memory; 
a DMA controller; and 
a memory maintained in the DMA controller for storing a 

processing element VID-to-PID table mapping process 
ing element VIDs to processing element PIDs utilized 
by the DMA controller to access local memories 
according to their VIDs. 

2. The apparatus of claim 1 wherein said memory is 
maintained in a core transfer unit of the DMA controller. 

3. The apparatus of claim 2 wherein the core transfer unit 
(CTU) further comprises an address generation unit (AGU) 
which receives a CTU transfer instruction which specifies a 
starting address which is used by the AGU to generate an 
initial VID. 

4. The apparatus of claim 3 wherein the initial VID con 
trols the selection of one of the elements of the VID-to-PID 
lookup table through a multiplexer. 

5. The apparatus of claim 4 further comprising a DMA 
bus for providing the selected PID as a first component of a 
PE address. 

6. The apparatus of claim 5 wherein the AGU further 
operates to generate a PE memory offset which is sent as a 
second component of a PE address on the DMA bus. 

7. The apparatus of claim 6 further comprising a local 
memory interface unit (LMIU) which is used to compare the 
PID sent on the DMA bus to a stored PID for any DMA 
access, if a match is detected then the LMIU accepts the 
access. 

8. The apparatus of claim3 wherein successive VIDs are 
generated in recursive fashion by the AGUI 

9. The apparatus of claim3 wherein successive VIDs are 
generated in recursive fashion by the AGU, and further com 
prising: 

a local memory interface unit for each processing element 
(PE) storing a VID for each PE. 

10. The apparatus of claim 9 wherein a VID available to a 
particular LMIU or a DMA bus is compared with the stored 
VID in the LMIU and where a match occurs the LMIU 
accepts the access. 

11. The apparatus of claim 1 wherein the VID-to-PID 
table is stored in a programmable register and the program 
mable register is loaded utilizing a DMA instruction. 

12. The apparatus of claim 1 wherein the VID-to-PID 
table is stored in a programmable register and the program 
mable register loaded utilizing a direct write to the program 
mable register 

13. A processing apparatus comprising: 
a plurality of processing elements (PEs) communicatively 

connected by a bus, each PE comprising a register stor 
ing a virtual identification number (VID) identifying 
the PE; and 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
a direct memory access (DMA) controller connected to 

the bus for accessing local data memory of the PEs, 
each data access at least partially identified by a VID: 

wherein during a common data to access multiple PEs, a 
PE responds to the data access if the VID stored in the 
register matches the VID of the data access. 

14. The processing apparatus of claim 13 wherein each 
PE comprises a local memory interface unit (LMIU) which 
includes the register storing the VID. 

15. The processing apparatus of claim 13 wherein the 
data access is a read access. 

16. The processing apparatus of claim 13 wherein the 
data access is a write access. 

17. The processing apparatus of claim 13 further com 
prising: means for updating the register 

18. An apparatus for accessing local memory of a plural 
ity of processing elements (PEs), the apparatus comprising: 

a transfer controller running a process containing a set of 
nested loops, the set of nested loops having a plurality 
of parameters to be specified by a transfer instruction, 
the plurality of parameters, when assigned, control PE 
selection and address generation for accessing a 
memory location in local memory of each selected PE 
and 

a means for receiving the transfer instruction for transfer 
ring data between system memory and local memory of 
the plurality of PEs, the transfer instruction having 
fields which specific values for the plurality of 
parameters, the transfer instruction indicating an 
addressing mode, the addressing mode specifiving a 
particular pattern of accessing local memory of the 
plurality of PEs, wherein the transfer controller 
decodes the transfer instruction to assign values to the 
plurality of parameters, the process generating 
addresses for accessing a memory location in local 
memory of each selected PE in a particular pattern, 
wherein the particular pattern is based on the assigned 
parameters. 

19. The apparatus of claim 18 wherein the means for 
receiving a transfer instruction is an instruction control unit. 

20. The apparatus of claim 18 wherein the means for 
receiving a transfer instruction is a core transfer unit read 
ing instructions from a memory attached to a direct memory 
access (DMA) bus. 

21. The apparatus of claim 18 wherein the means for 
receiving a transfer instruction is a system data bus con 
nected to the transfer controller and system memory. 

22. The apparatus of claim 18 wherein the transfer 
instruction specifies a block cyclic addressing mode. 

23. The apparatus of claim 18 wherein the transfer 
instruction specifies a PE select index addressing mode. 

24. The apparatus of claim 18 wherein the transfer 
instruction specifies a select PE addressing mode. 

25. The apparatus of claim 18 wherein the transfer 
instruction specifies a select index PE mode. 

26. A method of accessing local memory of a plurality of 
processing elements (PEs), the method comprising: 

receiving a transfer instruction for transferring data 
between system memory and the local memory of a plu 
rality of processing elements (PEs); 

running a process containing a set of nested loops, the set 
of nested loops having a plurality of parameters to be 
assigned values of fields carried in the transfer instruc 
tion, 

decoding the transfer instruction to assign field values to 
the plurality of parameters, 
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assigning the field values to the plurality of parameters in 28. The method of claim 26 wherein the transfer instruc 
Order to control PE Selection and address generation tion specifies a PE select index addressing mode. 
for accessing a memory location in local memory of 29. The method of claim 26 wherein the transfer instruc 
each selected PE, and tion specifies a select PE addressing mode. 

generating addresses to access local memory of each PE 5 30. The method of claim 26 wherein the transfer instruc 
in a defined pattern. tion specifies a select index PE mode. 

27. The method of claim 26 wherein the transfer instruc 
tion specifies a block cyclic addressing mode. k . . . . 


