
USOORE41904E

(19) United States
(12) Reissued Patent (10) Patent Number: US RE41,904 E

Barry (45) Date of Reissued Patent: Oct. 26, 2010

(54) METHODS AND APPARATUS FOR 5,165,023. A 1 1/1992 Gifford
PROVIDING DIRECT MEMORYACCESS 5,301,287 A 4, 1994. Herrell et al.
CONTROL 5,418,970 A 5, 1995 Gifford

5,579,493 A * 1 1/1996 Kiuchi et al. 71.2/2O7
5,655,151 A 8, 1997 Bowes et al.

(75) Inventor: Edwin Franklin Barry, Vilas, NC (US) 5,659,798 A 8, 1997 Blumrich et al.
5,698.913 A 12/1997 Yagi et al.

(73) Assignee: Altera Corporation, San Jose, CA (US) 5,758,182 A 5, 1998 RNA et al.
5,784,706 A 7/1998 Oberlin et al.

(21) Appl. No.: 11/526,296 5,802.554 A 9, 1998 Caceres et al.
5,802,604 A 9, 1998 Stewart et al.

(22) Filed: Sep. 22, 2006 5,828,856 A 10/1998 Bowes et al.
5,828,903. A 10, 1998 Sethuram et al.

Related U.S. Patent Documents 5,860,025 A 1/1999 Roberts et al.
Reissue of: 5,864,876 A 1/1999 ROSSum et al.
(64) Patent No.: 6,453,367 5,890,201 A 3, 1999 McLellanet al.

Issued: Sep. 17, 2002 5,958,048 A * 9/1999 Babaian et al. T12/241
Appl. No.: 09/854,789 6,047.307 A 4/2000 Radko

1-1. 6,058.437 A 5, 2000 Park et al.
Filed: May 14, 2001 6,081,854. A 6/2000 Priem et al.

6,145,076 A * 1 1/2000 Gabzdyl et al. T12/241
U.S. Applications: 6.256,683 B1 7/2001 Barry
(6,260,082 B1 7/2001 Barry et al.

(62) Division of application No. 09/472,372, filed on Dec. 23, * cited by examiner
1999, now Pat. No. 6,256,683

(60) Provisional application No. 60/113,637, filed on Dec. 23, Primary Examiner Christopher B Shin
1998. (74) Attorney, Agent, or Firm Priest & Goldstein, PLLC

(51) Int. Cl. (57) ABSTRACT
G06F 3/28 (2006.01)

GO6F 9/26 Techniques are described for providing mechanisms of data
(52) U.S. Cl. .. 710/26: 711/203 distribution to and collection of data from multiple memo
(58) Field of Classification Search 710,26, ries in a data processing system. The system may suitably be

710/22 25, 27–35: 711/16, 203, 200–207; a manifold array (Man Array) processing system employing
712/22, 200, 24, 245. 209 an array of processing elements. Virtual to physical process

See application file for complete search history s ing element (PE) identifier translation is employed in con
junction with a Man Array PE interconnection topology to

(56) References Cited Support a variety of communication models, such as hyper

U.S. PATENT DOCUMENTS

3.593,306 A * 7, 1971 Toy T12/241
4,538,241 A 8, 1985 Levin et al.
4,783,736 A * 1 1/1988 Ziegler et al. T11 130
4,794.521 A * 12/1988 Ziegler et al. T11 130

425
DMABS
LANEO)

SP
INSTRUCTION

RAM

SP

430

430

30

430

43
NSTRON
CONTRO
UNIT

cube and such. Also, PE addressing nodes are based upon
logically nested parameterized loops. Mechanisms for
updating loop parameters, as well as exemplary instruction
formats are also described.

13 Claims, 19 Drawing Sheets

400 1
40

SYSTEM
DATABUS

ISDE)

U.S. Patent Oct. 26, 2010 Sheet 1 of 19 US RE41,904 E

FIG. 1

- 10
110 PROCESSOR -120 HOST UNIrissoa - S.

OMA 160
CONTROLLER

I/O I/O 150
SYSTEM (BULK) MEMORY

130 140

U.S. Patent Oct. 26, 2010 Sheet 2 of 19 US RE41,904 E

FIG 2

OMA BUS 202

212 2O7 F?. PE PE 21

SE, PCLAIR- LNI : MEMORY U U MEMORY

202
208 ManArray 202 210

DSP

'N E OCAL
MEMORY t MEMORY

SP
214 205

2O2

DMA
SPIMIU 201

220
SCB CNTRL MASTER, 225 AEGS SLAVE INSTRUCTION

MEMORY

-- o
230s

235
SDB

240 255
245 250

HOST HOST SYSTEM CONTROL to IOBLOCK MEMORY

Y 200

U.S. Patent Oct. 26, 2010 Sheet 3 of 19 US RE41,904 E

FIG. 3

30 305 300
DMA BUS OMA BUS 1.
LANE O LANE

320 SP
INSTRUCTION

RAM - ?o SYSTEM
- ur 8 wome u m w v utm 8 mm was was a two 8 - A ra DATA BUS

321 SP DMA CONTROLLER 350

DATA TRANSFER 303
CONTROLLER RAM

322 PEO
DATA is P.

323 PE1
DATA

324
DATA | A Pll

32S PE3 ------.

DATA -
330

SYSTEM
CONTROL BUS

U.S. Patent Oct. 26, 2010 Sheet 4 of 19 US RE41,904 E

FIG. 4

425
DMA BUS
(LANE 0) 400

SP 1.
INSTRUCTION 470

RAM SYSTEM
DATABUS

430 SP (SDB)
DATA
RAM

430

DATA 401
--------. ?---

PEl
DATA SYSTEM
RAM TRANSFER

RAM 498 460

430

DATA
RAM

440
INSTRUCTION EVENT

CONTROL CONTROL
UNIT UNIT

--. XX w. A pro a rhi & two-ax was or a w a w w w was s a

(C

435 SISNA
436 SIGNAL 450

437-CERROR if-tipT-- SYSTEM
CONTROL BUS 465

(SCB) SIGNAL
SEM

INPUTS

U.S. Patent Oct. 26, 2010 Sheet 5 Of 19 US RE41,904 E

FIG 5

5 510 S2O 530 540 550 570 0.

BASE DATA ADDRESS OPCODE TYPE MODE : TRANSFER COUNT
570

ADDRESS PARAMETER

ADDITIONAL PARAMETER WORDS (IF ANY)

Y 500

SBO

FIG. S

-60
PHYSICAL
PE ID

SO4

602

VIRTUAL
PE ID

U.S. Patent Oct. 26, 2010 Sheet 6 of 19 US RE41,904 E

710

U.S. Patent Oct. 26, 2010 Sheet 7 of 19 US RE41,904 E

FIG. B. 900
1.

33 22 22 2 21 1 OOOOOO
1 O 9 8 7 6 3 OS 8 7 6 5 4 3 2 O 7 6 5 4 3 2

"This (USED FOR 2x4 TRANSLATE TABLE) 2x2 TABLE
O1

(USED FOR 4x4 TRANSLATE TABLE)

2x2 TABLE CONTAINS A TABLE OF TWO BIT PE IOS. A SECRENCE OF TWO BIT VALUES (STARTING WITHO)
WHICH SPECIFY THE PE VID, ARE APPLIED AS AN INDICES INTO THIS TABLE WHEN ONE OF
THE PE ADDRESSING MODES IS USED IN A TRANSFER INSTRUCTION THE TRANSLATED YALE
IS THEN USED TO PERFORN THE MEMORY ACCESS WITH THIS APPROACH, PEs KAY BE
ACCESSED IN ANY ORDER FOR THESE MODES.
agay TYPE SPECIFIES THE CONFIGRATION TARGETED AND THEREFORE THE SIZE OF THE
00 - 2 (P TO 2 PES)
O - 2x2 (UP TO PEs)
0 - 24 (VP TO 8 PEs)
1 - 4x4 (UP TO SPEs)

FIG. 9
1. 900

ESSESSEE
USED FOR PE ID TRANSLATION TABLES LARGER THAN 4. ELEMENTS PIO3PO2PIO

U.S. Patent Oct. 26, 2010 Sheet 8 of 19 US RE41,904 E

FIG 10
INITIALIZE (PE) : 1002 1. 1000
NITIALIZE (BASE) :
INITIALIZE (INDEX):

while (TRUE) 1005

while (BaselOOpComplete) 100

while (IndexLOOpComplete)

while IPELOOpComplete)

MEMACCESS (PE, Base, Index) 040

if continuous
(

020

1050

Decrement (TC)
if TC is 0) INNER

} End Transfer LOOP
HIE OUTER
LOOP to UpdataAddress (PE)

E: E PELOOpComplete = CheckloopStatus (PE);

Reinitialize (PE) 1065

UpdateAddress (Index): 1070
ESE: IndexlOOpComplete s CheckloopStatus (Index):

Reinitialize (Index) 1075

Update Address (Base); O77
UpdatelOOpControl (Base);
BaselOOpComplete = ChecklDOpStatus (Base);

Reinitialize Base) OBS

U.S. Patent Oct. 26, 2010 Sheet 9 of 19 US RE41,904 E

FIG 11
INITIALIZE PE) : 102 A100
INITIALIZE (BASE) : 1.
INITIALIZE (INDEX);

105 While (RUE)

while (BaselOOpCOMplete)

while PELOOpComplete)

while (IndexLOOpCompletel
MEMACCESS PE, Base, Index) 40

continuous
Decrement (TC)
if TC = 0)
End Transfer

10

20

1150

INNER
LOOP

) MDOLE "OUTER
LOOP to Updateddress (Index):

UpdatelOOpControl Index):
IndexLoop Complete = CheckLOOpStatus (Index)

Endwhile

Reinitializeindex 1155
UpdateAddress (PE) 170
UpdatetOOpControl (PE)
PELOOpCo?plete : ChecklOOpStatus (PE)

ndwhile
75 Relnitalize (PE)

Updateaddress (Base); 180
UpdateLoopControl (Base);
BaselOOpComplete CheckLoopStatus (8ase)

Reinitialize Base) 185

U.S. Patent Oct. 26, 2010 Sheet 10 of 19 US RE41,904 E

FIG. 12
INITIALIZE (PE): 202 1200
INITIALIZE (BASE): 1.
INITIALIZE INDEX) :

1205 while (TRUE)

while (PELOOpComplete)

while (Baseloop Complete)

while (Index.00pComplete)

MEMACCESS PE, Base, Index)

continuous

20

220

250

Decrement (TC)
if (TC is 0) INNER

End Transfer LOOP
} MIDDLE "OUTER"

LOOP to UpdateAddress (Index):
E.g.: IndexlOOpComplete = CheckLOOpStatus (Index):

Reinitialize (Index) 2S5

UpdateAddress (Base); 270
UpdateLoop Control (Base);
BaselOOpCoAplete = CheckLOOpStatus (Base);

Reinitialize (Base) 1275

UpdateAddress (PE) ; 1230
UpdateLoopControl (PE):
PELOOpComplete s CheckLOopStatus (PE)

285

U.S. Patent Oct. 26, 2010 Sheet 11 of 19 US RE41,904 E

FIG. 13
- 1:0

ESSESSEE
CTU TRANSFER way CORE TRANSFER COUNT (CTC)

O
RESERVED STARTING TRANSFER ADDRESS (WITHINPE MEMORY)

PE COUNT BASE UPDATE COUNT BASE UPDATE (STRIDE)
RANGE: TO 256 RANSE:

INDEX COUNT (HOLD) INDEX UPDATE
RANGE RESERVED RANGE: -2S6

OOP CTRL SPECIFIES A PARTICULAR ORDER IN WICH PE, BASE AND INDEX YALVES
ARE UPDATED THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND TO
THREE ASSIGNMENTS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONTROL
LOOPS (OUTER, MIDCLE AND INNER),
OO - BASE (OUTER), INDEX (MIDOLE), PE (INNER) - BIP
O - BASE (OUTER), PE (NICOLE), INDEX (INNER) - BPI
10 - PE (OUTER), BASE (NIDDE), INDEX INNER) - PBI
SPECIFIES THE NUMBER OF PES TO BE ACCESSED FOREACH TIME THE PE COUNTER
IS SIGNALED TO RELOAD, VALID VALUES ARE
s: NUMBEA OF PES AS SPECIFIED IN THE PE CONFIGURATION REGISTER
000 - 2
001 - 3 ETC., ETC.

BASE PDATE (STRIDE DISTANCE BETWEEN SUCCESSIVE BLOCKS, UNITS ARE OF DATA TYPE SIZE
BASE UPDATE COUNT USED FOR PBI LOOP CONTROL. SPECIFIES THE NAMBER OF TIMES THE BASE IS

UPDATED BEFORE EXITING TO THE OUTER LOOP (PE UPDATE). RANGE IS TO 256.
-
NUMBER OF CONTIGOUS DATA ITEMS IN A BLOCK
DISTANCE BETWEEN SUCCESSIVE ITENS WITHINA BLOCK. WNITS ARE OF 'TYPE" SIZE

LOOP CTRL

LOOP CTRL

PE COUNT

INDEX COUNT HOLO)
INDEX UPDATE

U.S. Patent Oct. 26, 2010 Sheet 12 of 19 US RE41,904 E

FIG. 14 1. 1400

LOOP CONTROL BIP (PE ID VARIES FIRST THEN INDEX, THEN BASE)
ADDRESS PEO

X0000
x000
x0002
0003
x0004
000S

0x000S
0x000)
0x0008
0000

to 12 14
a AN INBOUND SEQUENCE OF SDATA ELEMENTS WITH YALUES O,2,3,...15
o PETABLE SETTING OFOXOOOOOOE (NOTRANSLATION OF PE IDs
a TSI block INSTRUCTION IN THE STU (READING THE S VALUES FROM SYSTEM MENORY)
o TCI blockcyclic INSTRUCTION IN THE CTY WITH PE COUNT . . LOOP CONTROL. BIP, BASE UPDATE 8, BASE
COUNT ... INDEX UPDATE : 2, INDEX COUNT s 2

O

FIG 15 1. 1500
LOOP CONTROL: BPI (INDEX VARIES FIRST. THEN PE ID, THEN BASE)

ADDRESS PEO PE PE2 PE3
0x0000 O 2 is
0x000 FF 0x000? 3 5
0.003 | | | |
0x000

:

F.
OTOT. T.

8 to 2 T Ox000S
0x000a T 3 is
o AN INBOUND SECVENCE OF SDATA ELEMENTS WITH YALUES O, 1,2,3,15
O PETABLE SETTING OF Ox000.000E (NOTRANSLATION OF PE IDs)
o TSI block INSTRUCTION IN THE STU (READING THE S VALUES FROM SYSTEK MEMORY)
o TCI, blockcyclic INSTRUCTION IN THE CTU WITH PE COUNT 4, LOOP CONTROL. BPI, BASE UPDATE, 6, BASE
COUNT ... INDEX UPDATE : 2, INDEX COUNT .. 2

U.S. Patent Oct. 26, 2010 Sheet 13 of 19 US RE41,904 E

FIG 16

- 1so
OOP CONTROL, PB (INDEX VARIES FIRST THEN BASE, THEN PE IO)

GSG 0x0000 O 12
0x000
Ox002 S 9 3
Ox000

0x0004 H 00005

0x000S --E 0x000

GH EEE Ox000S -
0x00a || 3 || 7 || 1 | 15
AN INBOUND SEQUENCE OF SDATA ELEMENTS WITH YALVES 0,1,2,3,...15

o PETABLE SETTING OF Ox000000E4 NO TRANSLATION OF PE IDs)
o TSI block INSTRUCTION IN THE STU (READING THE IS YALUES FRON SYSTEMMEMORY)
o TCI. block cyclic INSTRUCTION IN THE CTV WITH PE COUNT : , LOOP CONTROL = BPI, BASE UPOATE 8, BASE
COUNT : , INDEX UPDATE : 2, INDEX COUNT - 2

NOTE THAT A FOR PBI MODE, THE BASE COUNT HUST BE 2 IN ORDER TO GET 2 "BLOCKS OF DATA, INDEX COUNT
CORRESPONDES TO THE NUMBER OF ELEMENTS WRITTEN BEFORE UPDATING THE NEXT ADDRESS WARIABLE THE GAP

| BETWEEN ELEMENTS WITHIN A PE IS DE TO THE INDEX UPDATE VALUE OF 2 (RATHER THAN)

U.S. Patent Oct. 26, 2010 Sheet 14 of 19 US RE41,904 E

FIG. 17
1. 1700

988
CORE TRANSFER COUNT (CTC)

;
CTU TRANSFER I

RESERVED STARTING TRANSFER ADORESS WITHINPE MEMORY
OOP CTRL INDEX COUNT BASE UPDATE COUNT BASE UPOATE (STRIDE)

LOOP CTRL LOOP CTRL SPECIFIES A PARTICULAA ORDER IN WHICH PE, BASE AND INDEX VALUES
ARE UPDATED THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND TO

PE COUNT

TREE ASSIGNMENTS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONTROL
OOPS (OUTER, MIDOLE AND INNER).
OO. BASE (OUTER), INDEX (MIDOLE), PE (INNER) - BIP
O. BASE (OUTER), PE (MIDDE), INDEX (INNER) - BPI
O. PE (OUTER), BASE (MIDOLE), INDEX (INNER) - PBI
SPECIFIES THE NUMBER OF PES TO BE ACCESSED FOREACH TIME THE PE COUNTER
IS SIGNALED TO RELOAD, VALIO VALUES ARE:
9: s NUMBER OF PES AS SPECIFIED IN THE PE CONFIGRATION REGISTER
OOO - 2
O01 - 3 ETC., ETC.

BASE UPOATE STRIDE DISTANCE BETWEEN SUCCESSIVE BLOCKS, UNITS ARE OF DATA TYPE SIZE
BASE UPDATE COUNT USED FOR PBI LOOP CONTROL SPECIFIES THE NUMBER OF TIMES THE BASE IS

UPDATED BEFORE EXITING TO THE OUTER LOOP (PE UPDATE). RANGE IS TO 2SS.

Ux IUO - IU FORMAN INDEX UPDATE TABLE WITH EACHENTRY BEING A 4-BIT UPDATE
YALVE, PDATE VALUES ARE INTEGERS IN THE RANGE OF -8 TO 7
NUMBER OF TIMES TOEXECUTE THE INDEX UPDATE LOOP THIS WARIABLE PROVIDES
THE LOOP EXIT CONTROL FOR THE INDEX LOOP.

INOEX COUNT

U.S. Patent Oct. 26, 2010 Sheet 15 of 19 US RE41,904 E

800 1.
LOOP CONTROL BIP (INDEX VARIES FIRST THEN BASE, THEN PE ID)

0x0000 O 2 3
00002 as 26 27
00002 T S S
00003 20 222 23
00004 9

J 18 19
x000S

Ox000)

0x0009
0x000a

PATTERN ABOVE RESULTS FROM AFTER A TRANSFER WITH THE FOLLOWING ASSEPTIONS:
O Slock INSTRUCTION READS SUCCESSIVE ADDRESSES FROH SYSTEMMEMORY, DATA ELEMENT VALUES ARE

1,2,... eC.
o TCI. Select INDEX INSTRUCTION PLACES VALUES INPE MEMORIES USING THE FOLLOWING PARAMETERS
v ASSUE NO PE YEO-to-PID TRANSLATION
o TRANSFER COUNT 36
o PE ADDRESS ... O
o PE COUNT = 4
to LOOP CONTROL BP
o BASE UPDATE COUNT - O
o BASE UPOATE .. 8
O INDEX UPDATE TABLE VALUE IS OxOOEEF222 WHICH GIVES UPDATES 2.2.2-1-2,-2
D INDEX COUNY : 1

U.S. Patent Oct. 26, 2010 Sheet 16 of 19 US RE41,904 E

FIG. 19
1. 1900

98.
rate CORE TRANSFER COUNT (CTC)
RESERVED STARTING TRANSFER ADDRESS (WITHINPE MEMORY)

LOOP CTRL PE COUNT BASE UPOATE COUNT BASE UPDATE (STRIDE)

3.
TU TRANSFER I

6

INDEX COUNT (HOLD) RESERVED INDEX UPDATE

THREE ASSIGNMENTS OF PE, BASE AND INDEX UPDATE TO THREE NESTED CONTROL
LOOPS (OUTER, MIDOLE AND INNER

BASE UPDATE (STRICEDISTANCE BETWEEN SUCCESSIVE BLOCKS, UNITS ARE OF 'OATA TYPE SIZE.
BASE UPDATE COUNT USED FOR PBI LOOPCONTROL SPECIFIES THE NUMBER OF TIMES THE BASE IS

UPDATED BEFORE EXITING TO THE OUTER LOOP (PE UPDATE). RANGE IS TO 256.

SELECTIONS FOR UP TO BPASSES THROUGH THE PEs. FOREACH FOA BIT FIELD, A '1"
BIT SELECTS THE PE VID CORRESPONDING TO ITS BIT POSITION, PEMSKONUST HAVE

RANGE: TO 65536 RANGE: A-256

OO - BASE (OUTER), INDEX (MIDOLE), PE (INNER) - BIP

NUMBER OF CONTIGOUS DATA ITES IN A BLOCK

AT LEAST ONE 'i' BIT, AND THE FIRST AL-ZERO FIELD DETECTED CAUSESSELECTION TO

PEMSK) PEMSK5 PEMSK4 PEMSK3 PEMSK2 PEMSK res

LOOP CTRL LOOP CTRL SPECIFIES A PARTICULAR ORDER IN WHICH PE, BASE AND INDEX VALUES
ARE UPOATED THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND TO

01 - BASE (OUTER), PE (MIDOLE), INDEX (INNER) - BPI
10 - PE (OUTER), BASE (MIOOLE), INDEX (INNER) - PBI

PE COUNT (NOT USED FOR THIS ADORESS MODE)

INDEX UPDATE SNE 8ETWEEN SUCCESSIVE ITEMS WITHIN A BLOCK. WNITS ARE OF DATA TYPE

PEVEC THESE YALUES FORMA TABLE OF 4-8T FIELDS THAT ARE USED TO SPECIFY PE

BEGINAGAIN WITH THE PENSKO FIELO.
IN BIP AND BPI LOOP MODES, WHEN THE BASE IS UPDATED, THE PEYEC TABLE
RESETS TO THE FIRST 4-BIT ENTRY REGARDLESS OF WHICHENTRY WAS LAST IN USE.
INPBI LOOP MODE THE PEYECENTRIES ARE CYCLED THROUGH CONTINUOUSLY.

U.S. Patent Oct. 26, 2010 Sheet 17 of 19 US RE41,904 E

FIG. 20
1. 2000

WORDS)
0x0000 O 2
0x000 5
0x0002 || 3 || 6
0x0003 2
000 T | | |
00005
Ox000s
0x000
0x000 3 14 15
0x000s 6 7 18
0x000 22 is 20 2
0x000a 23 2 25
-F-F

PATTERN ABOVE RESULTS FRON AFTER A TRANSFER WITH THE FOLLOWING ASSWMPTIONS:
Stock SIRTO READS SUCCESSIVE ADDRESSES FROM SYSTEMMEMORY, DATA ELEMENT VALUES ARE

, , , ... C.
ASSUKE PE TRANSLATE TABLE MAPSO-1, -2, 2-a-3, 3--0
TCI. selectpe INSTRUCTION PLACES YALVES INPE MEMORIES VSING THE FOLLOWING PARAMETERS
TRANSFER COUNT - 26
INITIAL PE ADDRESS OFFSET - O
PE COUNT NOT USED
LOOP CONTRO - BP
BASE UPOATE COUNT - O
BASE UPDATE = 8
INDEX UPDATE
INDEX COUNT = 4
PE TABLE IS 0x000OOF77
o FIRST PASS SELECT VIDs: 0, 1, 2 (TRANSLATION CONVERTS THESE TOP10s: 1,2,3)
o NEXT PASS SELECT YIDs 0,1,2 (TRANSLATION CONVERTS THESE TO PIDs: 1,2,3)
o NEXT PASS SELECT YIDs 0,1,2,3 (TRANSLATION CONVERTS THESE TO PIOs: 1,2,3,O)

U.S. Patent Oct. 26, 2010 Sheet 18 of 19 US RE41,904 E

FIG 21 200
1.

EEEEEEEEEEEE
"Tra. He wore 0
IU COUNT RESERVED STARTING TRANSFER ADORESS (WITHINPE MEMORY)
LOOP CTRL PE COUNT BASE UPDATE COUNT BASE UPDATE STRIDE)

v is is a a v to
so essessesses esses

LOOP CTRL LOOP CTRL SPECIFIES A PARTICULAA ORDER IN WHICH PE, BASE AND INDEC VALUES
ARE UPOATED THREE POSSIBLE ORDERS ARE SELECTABLE WHICH CORRESPOND TO
THREE ASSIGNMENTS OF PE, BASE AND INDEX PDATE TO THREE NESTED CONTROL
OOPS (OUTER, MIDOLE AND INNER).
00 - BASE OUTER), INDEX (MODLE), PE (INNER) - BIP
O - BASE (OUTEA), PE (MIDDE), INDEX (INNER) - BPI
10 - PE (OUTER) BASE (KIOE), INDEX (INNER) - PBI
(NOT USED FOR THIS ADDRESS MODE)

BASE UPDATE STRIDE DISTANCE BETWEEN SUCCESSIVE BLOCKS, UNIS ARE OF DATA TYPE SIZE.
BASE POATE COUNT USED FOR PBI OOP CONTROL. SPECIFIES THE NUMBER OF TIMES THE BASE IS

UPDATED 8EFORE EXITING TO THE OUTER LOOP (PE UPDATE). RANGE IS TO 256.
INDEX UPDATE COUNT. THIS IS THE NIMBER OF ENTRIES IN THE INDEX UPDATE TABLE.
WHEN 'IV Count' INDEX (PDATES HAVE OCCURRED WITH ASSOCIATED ACCESSES
AFTER UPDATE), THE NEXT OUTER LOOP YAAIABLE BOR P IS UPDATED. SUBSEQUENT
INDEX UPDATES START AT THE FIRST ENTRY AGAIN (VO). IF 'IU Count IS GREATER THAN
8, THE TABLE ENTRIES ARE USED AGAIN, STARTING AT THE BEGINNING OF THE TABLE.

Vx IUO - TV7 FORMAN INDEX VPDATE TABLE WITH EACHENTRY BEING A 4-8IT UPDATE
VALUE. PDATE VALUES ARE INTEGERS IN THE RANGE OF .9 TO 7.
THESE VALUES FORMA TABLE OF 4-BIT FIELDS THAT ARE USED TO SPECIFY PE
SELECTIONS FOR UP TO 8 PASSES THROUGH THE PEs. FOREACH FORBIT FIELD, A 'i'
BIT SELECTS THE PE CORRESPONDING TO ITS BIT POSITION. PEMSKO KUST HAVE AT
LEAST ONE'." BIT, AND THE FIRST ALL-2ERO FIELD DETECTED CAUSESSELECTION TO
BEGINAGAIN WITH THE PENSKO FIELD.

IU COUNT

U.S. Patent Oct. 26, 2010 Sheet 19 of 19 US RE41,904 E

FIG. 22

-20

(WOROS)
0x0000 O 2
0x000
00002 5
00003
0x0004
00005 9 8
0x000s 2
0x000 | | | |
0x000 13 15
0x0009
0000

PATTERN ABOVE RESULTS FROKAFTER A TRANSFER WITH THE FOLLOWING ASSWPTIONS:
p block IRI, READS SUCCESSIVE ADDRESSES FROM SYSTEMMEMORY, DATA ELEMENT VALUES ARE

ld, , , . C.
ASSUME PE TRANSLATE TABLE MAPSO-o-, --2, 2-3, 3--0
TCI, selectpe INSTRUCTION PLACES VALUES INPE MEMORIESVSING THE FOLLOWINGPARAMETERS
TRANSFER COUNT - 20
INITIAL PE ADDRESS OFFSET = 0
PE COUNT is NOT USED
LOOP CONTROL BIP
BASE UPDATE COUNT = 0
BASE UPDATE : 6
NOEX COUNT = 3
INDEX TABLE = 0x00000032 (2, THEN 3)
PE HELPE IS OOOOOOF77
u FIRST PASS SELECT WIDs 0,1,2 (TRANSLATION CONVERTS THESE TO PIDs: 1,2,3)
0 NEXT PASS SELECT VIDs 0, 1,2 (TRANSLATION CONVERTS THESE TO PIOs: 1,2,3}
o NEXT PASS SELECT VIDs 0,1,2,3 (TRANSLATION CONVERTS THESE TO PIOs: 1,2,3,0)

US RE41,904 E
1.

METHODS AND APPARATUS FOR
PROVIDING DIRECT MEMORYACCESS

CONTROL

Matter enclosed in heavy brackets appears in the
original patent but forms no part of this reissue specifica
tion; matter printed in italics indicates the additions
made by reissue.

RELATED APPLICATIONS

More than one reissue application has been filed for the
reissue of U.S. Pat. No. 6,453,367. The reissue applications
are application Ser: No. 10/819,885 and which is the present
divisional reissue application.
The present application is a division of U.S. application

Ser. No. 09/472,372 filed Dec. 23, 1999, now U.S. Pat. No.
6.256,683, which in turn claimed the benefit of U.S. Provi
sional Application Ser. No. 60/113,637 entitled “Methods
and Apparatus for Providing Direct Memory Access (DMA)
Engine' and filed Dec. 23, 1998 which is incorporated by
reference in its entirety herein.

FIELD OF THE INVENTION

The present invention relates generally to improvements
in array processing, and more particularly to advantageous
techniques for providing improved mechanisms of data dis
tribution to, and collection from multiple memories often
associated with and local to processing elements within an
array processor.

BACKGROUND OF THE INVENTION

Various prior art techniques exist for the transfer of data
between system memories or between system memories and
I/O devices. FIG. 1 shows a conventional data processing
system 100 comprising a host uniprocessor 110, processor
local memory 120, direct memory access (DMA) controller
160, system memory 150 which is usually a larger memory
store than the processor local memory, having longer access
latency, and input/output (I/O) devices 130 and 140.
The DMA controller 160 provides a mechanism for trans

ferring data between processor local memory and system
memory or I/O devices concurrent with uniprocessor execu
tion. DMA controllers are sometimes referred to as I/O pro
cessors or transfer processors in the literature. System per
formance is improved since the host uniprocessor can
perform computations while the DMA controller is transfer
ring new input data to the processor local memory and trans
ferring result data to output devices or the system memory. A
data transfer is typically specified with the following mini
mum set of parameters: Source address, destination address,
and number of data elements to transfer. Addresses are inter
preted by the system hardware and uniquely specify I/O
devices or memory locations from which data must be read
or to which data must be written. Sometimes additional
parameters are provided such as element size. One of the
limitations of conventional DMA controllers is that address
generation capabilities for the data source and data destina
tion are often constrained to be the same. For example, when
only a source address, destination address and a transfer
count are specified, the implied data access pattern is block
oriented, that is, a sequence of data words from contiguous
addresses starting with the Source address is copied to a
sequence of contiguous addresses starting at the destination
address. Array processing presents challenges for data col
lection and distribution both in terms of addressing

10

15

25

30

35

40

45

50

55

60

65

2
flexibility, control and performance. The patterns in which
data elements are distributed and collected from processing
element local memories can significantly affect the overall
performance of the processing system. With the advent of
the Man Array architecture it has been recognized that it will
be advantageous to have improved techniques for data trans
fer which provide these capabilities and which are tailored to
this new architecture.

SUMMARY OF THE INVENTION

As described in detail below, the present invention
addresses a variety of advantageous methods and apparatus
for improved data transfer control within a data processing
system. In particular we provide improved techniques for:
distributing data to, and collecting data from an array of
processing elements (PEs) in a flexible and efficient manner;
and PE address translation which allows data distribution
and collection based on PE virtual IDs.

Further aspects of the present invention are related to a
virtual-to-physical PE ID translation which works together
with a Man Array PE interconnection topology to Support a
variety of communication models (such as hypercube and
mesh) through data placement based upon a PE virtual ID.
This result can be accomplished in a DMA controller by
translation, through a VID-to-PID lookup table or through
combinational logic, where the resulting PID becomes an
addressing component on the DMA bus to PE local memo
ries. This result can also be achieved at the PE local memo
ries within the interface logic, where a VID available to the
interface logic is compared to a VID presented on the DMA
bus. A match at a particular memory interface allows that
memory to accept the access. The present invention also
addresses the provision of PE addressing modes based on
generating data access patterns from logically nested param
eterized loops. Varying assignments of loop parameters to
nesting level allows flexible data access patterns to be gener
ated. Providing varying mechanisms for updating loop
parameters provides greater flexibility for generating
complex-periodic access patters patterns, such as select
index modes which provide a table of index-update values
which are used when the index loop parameter is updated;
select-PE modes which provide a table of bit-vector control
values, each of which specifies the PEs to be accessed for an
iteration through the “PE update loop' (i.e., the loop which
PE update is assigned); and select-index-PE modes which
provide both select-index and select-PE update capability
and combine to form the most flexible mode for generating
complex-periodic data access patterns. Further, the invention
addresses the design of a looping mechanism to be reentrant
thereby allowing any addressing mode to be restarted after
completing a specific number of element transfers, by just
loading or reloading a new transfer count and continuing the
transfer. This result is accomplished by initializing address
ing parameters at instruction load time, and only updating
them after a loop exits.

These and other advantages of the present invention will
be apparent from the drawings and the Detailed Description
which follow.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 shows a conventional data processing system with
a DMA controller to support data transfers concurrent with
host processor computation;

FIG. 2 illustrates a ManArray DSP with a DMA controller
in a representative system in accordance with the present
invention;

US RE41,904 E
3

FIG. 3 illustrates a DMA controller implemented as a
multiprocessor, with two transfer controllers, bus connec
tions to a system memory, PE memories and a control bus;

FIG. 4 shows a single transfer controller comprising 4
primary execution units, bus connections and FIFO buffers;

FIG. 5 shows an exemplary format of a transfer type
instruction in accordance with the present invention;

FIG. 6 shows an exemplary virtual PE identification to
physical PE identification (VID-to-PID) translation;

FIG. 7 shows an exemplary logical implementation of
VID-to-PID translation:

FIG. 8 shows an exemplary PEXLAT instruction (“load
VID-to-PID table”);

FIG. 9 illustrates a VID-to-PID translation table register,
called the PETABLE register in a presently preferred
embodiment;

FIG. 10 illustrates a nested logical loop model showing a
“BIP assignment of address components to loops: base
(outer), index (middle) and PE VID (inner);

FIG. 11 shows a nested logical loop model with “BPI'
assignment of address components to loops: base (outer), PE
(middle) and index (inner);

FIG. 12 is a nested logical loop model showing a “PBI'
assignment of address components to loops: PE (outer),
Base (middle) and Index (inner);

FIG. 13 illustrates an exemplary format for a PE Block
cyclic instruction in accordance with the present invention;

FIG. 14 shows an exemplary transfer result using PE
Blockcyclic address mode with BIP loop assignment;

FIG. 15 shows an exemplary transfer result using PE
Blockcyclic address mode with BPI loop assignment;

FIG. 16 shows an exemplary transfer result using PE
Blockcyclic address mode with PBI loop assignment;

FIG. 17 illustrates an exemplary format for a PE Select
Index transfer instruction in accordance with the present
invention;

FIG. 18 shows an exemplary transfer result using a PE
Select-Index address mode with BIP loop assignment;

FIG. 19 illustrates an exemplary format for a PE Select
PE transfer instruction in accordance with the present inven
tion;

FIG. 20 shows an exemplary transfer result using a PE
Select-PE address mode with BIP loop assignment;

FIG. 21 illustrates an exemplary format for a PE Select
Index-PE transfer instruction in accordance with the present
invention; and

FIG. 22 shows an exemplary transfer result using a PE
Select-Index -PE address mode with BIP loop assignment.

DETAILED DESCRIPTION

Further details of a presently preferred Man Array core,
architecture, and instructions for use in conjunction with the
present invention are found in U.S. patent application Ser.
No. 08/885,310 filed Jun. 30, 1997, now U.S. Pat. No. 6,023,
753, U.S. patent application Ser. No. 08/949,122 filed Oct.
10, 1997, now U.S. Pat. No. 6,167,502, U.S. patent applica
tion Ser. No. 09/169,255 filed Oct. 9, 1998, U.S. patent
application Ser. No. 09/169.256 filed Oct. 9, 1998, now U.S.
Pat. No. 6,167,501, U.S. patent application Ser. No. 09/169,
072 filed Oct. 9, 1998, now U.S. Pat. No. 6,219,776, U.S.
patent application Ser. No. 09/187,539 filed Nov. 6, 1998,
now U.S. Pat. No. 6,151,668, U.S. patent application Ser.
No. 09/205,558 filed Dec. 4, 1998, now U.S. Pat. No. 6,173,

10

15

25

30

35

40

45

50

55

60

65

4
389, U.S. patent application Ser. No. 09/215,081 filed Dec.
18, 1998, now U.S. Pat. No. 6,101,592, U.S. patent applica
tion Ser. No. 09/228,374 filed Jan. 12, 1999, now U.S. Pat.
No. 6,216,223, U.S. patent application Ser. No. 09/238,446
filed Jan. 28, 1999, U.S. patent application Ser. No. 09/267,
570 filed Mar. 12, 1999, U.S. patent application Ser. No.
09/337,839 filed Jun. 22, 1999, U.S. patent application Ser.
No. 09/350,191 filed Jul. 9, 1999, U.S. patent application
Ser. No. 09/422,015 filed Oct. 21, 1999, U.S. patent applica
tion Ser. No. 09/432,705 filed Nov. 2, 1999, U.S. patent
application Ser. No. 09/471,217 filed Dec. 23, 1999, now
U.S. Pat. No. 6,260,082, as well as, Provisional Application
Ser. No. 60/139,946 entitled “Methods and Apparatus for
Data Dependent Address Operations and Efficient Variable
Length Code Decoding in a VLIW Processor filed Jun. 18,
1999, Provisional Application Ser. No. 60/140,245 entitled
“Methods and Apparatus for Generalized Event Detection
and Action Specification in a Processor filed Jun. 21, 1999,
Provisional Application Ser. No. 60/140,163 entitled “Meth
ods and Apparatus for Improved Efficiency in Pipeline
Simulation and Emulation' filed Jun. 21, 1999, Provisional
Application Ser. No. 60/140,162 entitled “Methods and
Apparatus for Initiating and Re-Synchronizing Multi-Cycle
SIMD Instructions' filed Jun. 21, 1999, Provisional Applica
tion Ser. No. 60/140,244 entitled “Methods and Apparatus
for Providing One-By-One Manifold Array (1x1 Man Array)
Program Context Control” filed Jun. 21, 1999, Provisional
Application Ser. No. 60/140,325 entitled “Methods and
Apparatus for Establishing Port Priority Function in a VLIW
Processor filed Jun. 21, 1999, Provisional Application Ser.
No. 60/140,425 entitled “Methods and Apparatus for Paral
lel Processing Utilizing a Manifold Array (Man Array)
Architecture and Instruction Syntax' filed Jun. 22, 1999,
Provisional Application Ser. No. 60/165.337 entitled “Effi
cient Cosine Transform Implementations on the Man Array
Architecture' filed Nov. 12, 1999, and Provisional Applica
tion Ser. No. 60/171,911 entitled “Methods and Apparatus
for Loading of Very Long Instruction Word Memory” filed
Dec. 23, 1999, respectively, all of which are assigned to the
assignee of the present invention and incorporated by refer
ence herein in their entirety.
The following definitions of terms are provided as back

ground for the discussion of the invention which follows:
A “transfer” refers to the movement of one or more units

of data from a source device (either I/O or memory) to a
destination device (I/O or memory).
A data “source' or “destination” refers to a device from

which data may be read or to which data may be written
which is characterized by a contiguous sequence of one or
more addresses, each of which is associated with a data Stor
age element of Some unit size. For Some data sources and
destinations there is a many-to-one mapping of addresses to
data element storage locations. For example, an I/O device
may be accessed using one of many addresses in a range of
addresses, yet it will perform the same operation, such as
returning the next data element of a FIFO, for any of them.
A "data access pattern' is a sequence of data source or

destination addresses whose relationship to each other is
periodic. For example, the sequence of addresses 0, 1, 2, 4,
5, 6, 8, 9, 10, ... etc. is a data access pattern. If we look at the
differences between successive addresses, we find: 1,1,2,
1.1.2, 1.1.2, ... etc. Every three elements the pattern repeats.
An “address mode' or “addressing mode” refers to a rule

that describes a sequence of addresses, usually in terms of
one or more parameters. For example, a “block” address
mode is described by the rule: addressi-base address+i

US RE41,904 E
5

where i=0,1,2,... etc. and where base address is a param
eter and refers to the starting address of the sequence.

Another example is a “stride' address mode which may be
described by the rule:

addressi-base address+(imod (stride-hold))+(i/hold)*stride

for i=0, 1, 2, ... etc., and where base address, stride and
hold are parameters, and where division is integer division in
which any remainder is discarded.
An “address generation unit (AGU) is a hardware mod

ule that generates a sequence of addresses (a data access
pattern) according to a programmed address mode.
“EOT” means 'end-of-transfer” and refers to the state

when a transfer execution unit (described in the following
text) has completed its most recent transfer instruction by
transferring the number of elements specified by the instruc
tion's transfer count field.
The term “host processor as used in the following

description is any processor or device which can write con
trol commands and read status from the DMA controller
and/or which can respond to DMA controller messages and
signals. In general, a host processor interacts with a DMA
controller to control and synchronize the flow of data
between devices and memories in the system in Such a way
as to avoid overrun and underrun conditions at the sources
and destinations of data transfers.
The present invention provides a set of flexible addressing

modes for Supporting efficient data transfers to and from
multiple memories, together with methods and apparatus for
allowing data accesses to be directed to PEs according to
virtual as opposed to physical IDS. This section describes an
exemplary DMA controller and a system environment in
which the present inventions may be effectively used. The
following sections describe PE memory addressing, virtual
to-physical PEID translation and its purpose, and a set of PE
memory addressing modes or “PE addressing modes' which
Support numerous parallel algorithms with highly efficient
data transfer.

FIG. 2 shows an exemplary system 200 illustrating the
context in which a Man Array DMA controller 201, in accor
dance with the present invention, resides. The DMA control
ler 201 accesses processor local memories 210, 211, 212,
213, 214 and 215 via a DMA Bus 202, 202, 202, 202,
202, 202s and memory interface units 205, 206, 207, 208
and 209 to which it is connected. A Man Array DSP 203 also
connects to its local memories 210-215 via memory inter
face units 205–209. Further details of a presently preferred
DSP 203 are found in the above incorporated by reference
applications.

In this representative system, the DMA controller also
connects to two system busses, a system control bus (SCB)
235 and a system data bus (SDB) 240. The DMA controller
is designed to transfer data between devices on the SDB 240,
such as a system memory 250 and the DSP 203 local memo
ries 210–215. The SCB 235 is used by an SCB master such
as the DSP 203 or a host control processor (HCP) 245 to
program the DMA controller 201 with read and write
addresses and registers to initiate control operations and read
status. The SCB 235 is also used by the DMA controller 201
to send synchronization messages to other SCB bus slaves
such as the DSP control registers 225 and a host I/O block
255. Some registers in these slaves can be polled by the DSP
and HCP to receive status from the DMA. Alternatively,
DMA writes to some of these slave addresses can be pro
grammed to cause interrupts to the DSP and/or HCP allow
ing DMA controller messages to be handled by interrupt
service routines.

10

15

25

30

35

40

45

50

55

60

65

6
FIG.3 shows a system 300 which illustrates operation of a

DMA Controller 301 which may suitably be a multiproces
Sor specialized to carry out data transfers utilizing one or
more transfer controllers 302 and 303. Each transfer control
ler can operate as an independent processor or work together
with other transfer controllers to carry out data transfers. The
DMA busses 305 and 310 provide, in the presently preferred
embodiment, independent data paths to local memories 320,
321, 322, 323,324, 325, one for each transfer controller 302
and 303. In addition, each transfer controller is connected to
SDB350 and to SCB 330. Each transfer controller operates
as a bus master and abus slave on both the SCB and SDB. As
a bus slave on the SCB, a transfer controller may be accessed
by other SCB bus masters in order to read its internal state or
to issue control commands. As a bus master on the SCB, a
transfer controller can send synchronization messages to
other SCB bus slaves. As a bus master on the SDB, a transfer
controller performs data reads and writes from or to system
memory or I/O devices which are bus slaves on the SDB. As
a bus slave on the SDB, a transfer controller can cooperate
with another SDB bus master in a “slave mode” allowing the
bus master to read or write data directly from or to its data
FIFOs (as discussed further below). It may be noted that the
DMA busses 305 and 310, the SDB 350 and the SCB 330
may be implemented in different ways. For example, they
may be implemented with varying bus widths, protocols, or
the like consistent with the teachings of the present inven
tion.

FIG. 4 shows a system 400 having single transfer control
ler 401 comprising a set of execution units including an
instruction control unit (ICU) 440, a system transfer unit
(STU) 402, a core transfer unit (CTU) 408 and an event
control unit (ECU) 460. An inbound data queue (IDQ) 405 is
a data FIFO buffer which is written with data from an SDB
470 under control of the STU-402. Data is read from the IDQ
405 under control of the CTU 408 to be sent to core memo
ries 430, or sent to the ICU 440 in the case of instruction
fetches. An outbound data queue (ODO) 406 is a data FIFO
which is written with data from DMA busses 425 under
control of the CTU 408, to be sent to an SDB 470 device or
memory under the control of the STU 402. The CTU 408
may also read DMA instructions from a memory attached to
the DMA bus, which are forwarded to the ICU 440 for initial
decoding. The ECU 460 receives signal inputs from external
devices 465, commands from the SCB 450 and instruction
data from the ICU 440. It generates output signals 435, 436
and 437 which may be used to generate interrupts on host
control processors within the system, and can act as a bus
master on the SCB 450 to send synchronization messages to
SCB bus slaves.

Each transfer controller within a Man Array DMA control
ler is designed to fetch its own stream of DMA instructions.
DMA instructions are of five basic types: transfer; branch;
load; synchronization; and state control. The branch, load,
synchronization, and state control types of instructions are
collectively referred to as “control instructions, and distin
guished from the transfer instructions which actually per
form data transfers. DMA instructions are typically of multi
word length and require a variable number of cycles to
execute although several control instructions require only a
single word to specify. Although the presently preferred
embodiment supports multiple DMA instruction types as
described in further detail in U.S. patent application Ser. No.
09/471,217 filed Dec. 23, 1999, now U.S. Pat. No. 6,260,
082, and incorporated by reference in its entirety herein, the
present invention focuses on instructions and mechanisms
which provide for flexible and efficient data transfers to and
from multiple memories.

US RE41,904 E
7

Referring further to system 400 of FIG. 4, transfer-type
instructions are dispatched by the ICU for further decoding
and execution by the STU 402 and the CTU 408. Transfer
instructions have the property that they are fetched and
decoded sequentially, in order to load transfer parameters
into the appropriate execution unit, but are executed concur
rently. The control means for initiating execution of transfer
instructions is a flag bit contained in the instruction itself,
and is described below.
A “transfer-system-inbound” (TSI) instruction moves

data from the SDB 470 to the IDQ 405 and is executed by
the STU. A “transfer-core-inbound” (TCI) instruction moves
data from the IDQ 405 to the DMA Bus 425 and is executed
by the CTU. A “transfer-core-outbound” (TCO) instruction
moves data from the DMA Bus 425 to the ODQ 406 and is
executed by the CTU. A “transfer-system-outbound” (TSO)
instruction moves data from the ODQ 406 to the SDB 470
and is executed by the STU. Two transfer instructions are
required to move data between an SDB system memory and
one or more SP or PE local memories on the DMA bus, and
both instructions are executed concurrently: a TSI, TCI pair
or a TSO, TCO pair.
The address parameter of STU transfer instructions TSI

and TSO refers to addresses on the SDB while the address
parameter of CTU transfer instructions refers to addresses
on the DMA bus to PE and SP local memories.

FIG. 5 shows an exemplary instruction format 500 for
transfer instructions. A base opcode field 501 indicates that
the instruction is of transfer type. A C/S field 510 indicates
the transfer unit (CTU or STU) and I/O field 520 indicates
whether the transfer direction is inbound or outbound. The
execute (“X”) field 550 is a field which, when set to “1”,
indicates a “start transfer” event, that is, that the transfer
should start immediately after loading the transfer instruc
tion. When the “X” field is “0”, then the parameters are
loaded into the specified unit but the transfer is not initiated.
Instruction fetch/decode continues normally until a “start
transfer event occurs. A data type field 530 indicates the
size of each element transferred and an address mode 540
refers to the data access pattern which must be generated by
the transfer unit. A transfer count 560 indicates the number
of data elements of size “data type' which are to be trans
ferred to or from the target memory/device before EOT
occurs for that unit. An address parameter 570 specifies the
starting address for the transfer. Other parameters 580 may
follow the address word of the instruction, depending on the
addressing mode used.

While there are six memories 210, 211, 212, 213, 214, and
215 shown in FIG. 2, the PE address modes access only the
set of PE memories 210, 211, 212, and 213 in this exemplary
Man Array DSP configuration. The address of a data element
within PE local memory space is specified with three
variables, a PEID, a base value and an index value. The base
and the index values are summed to form an offset into a PE
memory relative to an address 0, the first address of that PE's
memory. The address of a PE data element is therefore given
by a pair: PE data address=(PE ID, Base+Index).

The ManArray architecture Supports a unique intercon
nection network between processing elements (PEs) which
uses PE virtual IDs (VIDs) to support useful single-cycle
communication paths, for example, torus or hypercube
paths. In some array organizations, the PES physical and
virtual IDs are equal. The VIDs are used in the architecture
to specify the pattern for data distribution and collection.
When data is distributed according to the pattern established
by VID assignment, then efficient inter-PE communication
required by the programmer becomes available. As an

10

15

25

30

35

40

45

50

55

60

65

8
example, if a programmer needs to establish a hypercube
connectivity for a 16 PE Man Array processor, the data will
be distributed according to a VID assignment in Such a man
ner that the physical switch connections allow data to be
transferred between PEs as though the switch topology were
a hypercube even if the switch connections between physical
PEs do not support the fill hyper-cube interconnect. The
present invention describes two approaches whereby the
DMA controller can access PE memories according to their
VIDs, effectively mapping PE virtual IDs to PE physical IDs
(PIDs). The first uses VID-to-PID translation within the
CTU of a transfer controller. This translation can be per
formed either through table-lookup, or through logic permu
tations on the VID. The second approach associates a VID
with a PE by providing a programmable register within the
PE or the PE local memory interface unit (LMIU), FIG. 2
205, 206, 207 and 208 which is used by the LMIU logic to
“capture' a data access when its VID matches a VID pro
vided on the DMA Bus for each DMA memory access.
VID to PID Translation within the DMA Controller

With this approach, a PE VID-to-PID table is maintained
in the DMA controller so that data may be distributed to the
Man Array according to a programmer's view of the array. In
the preferred embodiment, this table is maintained in the
CTU of each transfer controller. FIG. 6 shows an exemplary
mapping table 600 of VID into PID for a four PE system,
such as a Man Array 2x2 system. The VIDs are in column
602 on the left and their corresponding PIDs are shown in
column 604 on the right. An example of a table lookup
implementation of the mapping of FIG. 6 is illustrated logi
cally as system 700 of FIG. 7. In the presently preferred
embodiment, a translation table 710 is stored in the CTU of a
transfer controller. A CTU transfer instruction 705 (TCI or
TCO) specifies a starting address 775 which is used by AGU
770 to generate an initial VID 720. The VID 720 controls the
selection of one of the elements of the VID-to-PID lookup
table 710 through multiplexer 715 which is then sent to a
DMA Bus 740 as the PE ID component of the PE address.
The numbers on the multiplexer 715 indicate the VID value
which must be applied to select the corresponding input.
Successive VIDs are generated by the AGU 770, possibly in
a recursive fashion as shown by feedback 708. At the same
time, the AGU 770 generates a sequence of PE memory
offsets 730, also possibly using recursive feedback 755. The
PE memory offset 750 is also sent to the DMA bus as a
second component of a PE address. Logic in the local
memory interface units (LMIUs) is used to compare the PE
ID sent on the DMAbus to a stored PID (hard-coded) for any
DMA bus access. If this matches, then the LMIU accepts the
access and accepts write data or returns read data.
The approach of FIG. 7 has the advantage that all map

pings of PE VIDs to PIDs are supported. With larger num
bers of PE local memories, the register or memory space
required to store this table grows. For example, a 16 PE
memory system requires 64 bits of register or memory space
to store the PIDs. An alternative approach to table lookup
based translation is to provide logic which performs a Subset
of all VID-to-PID mappings. This translation logic would
also be parameterized, but would require significantly fewer
bits to configure. As a simple example, let the PID beformed
by complementing any bit of the VID. If the PID and VID
require 4 bits to represent the needed IDs, say for a 16 PE
system, then a four bit “translation vector (XVEC) must be
stored to configure the translation rather than the 64 bits for
table lookup. The PID is obtained from the VID by the fol
lowing: PID=VID Xor XVEC. That is, each bit of VID is
exclusive-ord with the corresponding bit of XVEC. The set

US RE41,904 E
9

of PIDs resulting from applying this operation to each VID
constitutes the mapping. Obviously, the number of mappings
available is far fewer than with a table lookup approach, but
for systems with a large number of PE memories, only a few
mappings may be required to Support the desired communi
cation patterns.

In the presently preferred embodiment, a lookup table is
used to perform the VID-to-PID translation. Two approaches
are provided for initializing the translation table. The first is
through a DMA instruction 800, shown in FIG. 8. When
executed, DMA instruction 800 loads a PETABLE register
900 which is illustrated in FIG. 9. The second approach is
through a direct write of the PETABLE register 900 via the
SCB.
PE Virtual IDs Stored in Local Memory Interface Units
The second approach to directing data access according to

PE VID relies on distributing the PE VIDs to each PE local
memory interface unit (LMIU). The VID for each PE might
reside in a register either in the PE itself or in its LMIU. In
this case, there is no translation table or logic in the DMA
lane controllers. In common with the preceding approach,
there is a PE ID component of the DMA bus which is driven
by the transfer controllers and used by the LMIUs to com
pare for a match with the locally visible PE VID. When a
match is detected in a PE, then it accepts the access which
may be either a write or a read request. Means for updating
the VIDs stored locally in the LMIUs may be provided
through the use of registers visible in the PE register address
space, or through a PE instruction which broadcasts the table
to all PEs, who then select their VID using their hard-coded
PID stored locally. This approach has advantages when
VIDs are used for other purposes than just data distribution
and collection by a DMA controller.
CTU. Addressing Modes
A CTU 408 shown in FIG. 4 supports a basic set of

address modes which may be used to target memories asso
ciated with each PE or SP individually. These address modes
include single-address, block, stride and circular modes.
These addressing modes will not be described in detail
herein, but are a common set of addressing modes used for
many uniprocessor applications. In addition to these address
modes, the CTU 408 provides a set of “PE address modes'
which allow data to be distributed across or collected from
multiple PE memories in a variety of patterns. These address
modes are based on a software model of address generation
based on parameterizable loops, which is then implemented
in hardware.
Flexible PE Addressing Modes through Parameterizable
Logical Loops
Many algorithms which are distributed across multiple

PES require complex data access patterns to achieve peak
efficiency. The basis for our loop-based PE addressing
modes is a logical view of data access consisting of a set of
nested loops in which one component of the PE memory
address is assigned to be updated at the end of each loop. As
stated above, a PE memory address consists of three compo
nents called “address components', a PE virtual ID (VID), a
base value (Base) and an index value (Index). This model
requires the following: a mechanism for assigning address
components to logical loops; a mechanism for initializing
address components; and a mechanism for updating address
components; and a mechanism for indicating a loop's exit
condition.

Assignment of an address component to a loop specifies
the order in which the three address components are
updated. In an embodiment which uses a three-loop model,
there are six possible orders for updating address compo

10

15

25

30

35

40

45

50

55

60

65

10
nents (i.e. six ways to re-order VID, Base and Index). The
base and index components are defined to be ordered in this
embodiment so that the index is always updated prior to the
base, which reduces the number of possible orderings to
three, since base and index are Summed to form an offset
into PE memory, allowing loop assignments that update the
base before the index is redundant. An exemplary loop
assignment is: update VID on inner loop; update index on
middle loop; and update base on outer loop.

Thus, as PE addresses are generated, the VID component
updates first (inner loop). When all VIDs have been used
(VID loop exit condition has been reached), then the VID is
reinitialized, the index is updated, and the VID loop is reen
tered. This looping continues until the number of index
updates is exhausted (Index loop exit condition has been
reached) at which point the index is reinitialized, the base is
updated, the index loop is reentered, then the VID loop is
reentered. This further looping continues until the transfer
count is exhausted.

Updating an address component is performed by selecting
a new value for the component either based on the old value
(e.g. new=old+1) or by Some other means, such as by table
lookup. A loop exit condition specifies what causes the loop
to exit to the next-most outer loop in the model.

In Summary, three different aspects of loop control are
used to vary the sequence in which PE memories may be
accessed. These are:

(1) Rearranging the order of assignment of address com
ponents to logical loops,

(2) Varying the method for updating the address
components, and

(3) Varying the loop termination conditions.
FIGS. 10, 11 and 12 show logical representations or pro

cesses 1000, 1100 and 1200, respectively, of preferred
assignments of address parameters (PE VID, Base and
Index) to logical loops. In the nomenclature used in FIGS.
10, 11 and 12, the term “PE refers to the PE VID compo
nent of a PE address. In FIG. 10, the address components are
assigned in “Base, Index, PE' (BIP) ordering. This means
that the PE is updated in the innermost loop, the index
parameter is updated in the “middle' loop and the base
parameter is updated in the “outer loop. In FIG. 11, the loop
assignments are in a “Base, PE, Index (BPI) ordering, and
in FIG. 12, the loop assignments are in a “PE, Base, Index'
(PBI) ordering.

FIG. 10 shows a logical representation 1000 of the nested
loop model in which the PE VID is updated in an inner loop
1030, the index is updated in a middle loop 1020, and the
base is updated in an outer loop 1010. A fourth loop 1005
which encompasses the other three loops indicates that the
other loops are continued until the number of data elements
specified in the transfer instruction have been accessed.
Associated with each loop is a condition for loop exit 1010,
1020 or 1030, respectively, where the “” character repre
sents a logical NOT. Also associated with each loop is a
mechanism 1060, 1070 or 1077, respectively, for updating
the loop address parameter and for testing the updated value
to indicate whether the exit condition for that loop has
become TRUE. Prior to starting any loop is an address ini
tialization block 1002 which sets the starting values of each
address component (PE, Base and Index). The data transfer
implemented by FIG. 10 will cause PEs to be accessed first
until an “exit PE loop” condition has become true
(PELoopComplete is TRUE), at which point the PE loop
exits and the PE parameter is reinitialized in step 1065. The
index parameter is then updated and tested for its terminal
condition in step 1070. If the index parameter's terminal

US RE41,904 E
11

condition has not become TRUE, then the PE loop is reen
tered. When the index parameter's terminal condition
becomes TRUE, the index loop is exited, the index param
eter is reinitialized in step 1075 and the base parameter is
updated and tested for a terminal condition in step 1080. If
the base parameter terminal condition has not been reached,
then the index and PE loops are reentered and executed until
either all data items have been accessed (transfer count
specified in the transfer instruction becomes zero) or the
index loop is terminated again. When BaseLoopComplete
becomes TRUE, the base value is reinitialized in step 1085
and the loops are reentered again.

FIGS. 11 and 12 show nested logical loops or processes
1100 and 1200 corresponding to “BPI access (index is
updated first, followed by PE, followed by base) and “PBI”
access (Index is updated first, followed by Base, then lastly
PE) respectively.
The following aspects of the loop formulation are noted.

When the requested number of accesses are made (TC in
FIGS. 10–12) then all loops are exited immediately, leaving
all address and loop control variables in their current states.
By using logical “while' loops and reinitializing a loop only
at its exit, it is possible to reenter the loops and continue a
transfer after “terminal count” (TC) addresses have been
accessed. This capability is used in this invention to allow
transfers to be restarted so that the addressing continues as
though it would if the transfer count had not been exhausted.
For further details of such transfers see U.S. application Ser.
No. 09/471,217 filed Dec. 23, 1999, now U.S. Pat. No.
6,260,082, which is incorporated by reference in its entirety
herein.
The functions used to update an address (see

UpdateAddress() in FIG. 10 steps 1060, 1070 and 1077; in
FIG. 11 steps 1160, 1170 and 1177; and in FIG. 12 steps
1260, 1270 and 1277) may update the address using a con
stant increment value, or a value extracted from a table, or
use a selection mechanism based on a bit vector. While other
UpdateAddress() functions might be supported, those listed
are supported in the presently preferred embodiment.
The function used to update the loop control variable,

UpdateLoopControl(), may be performed as part of the
address update or as a separate operation as shown in FIGS.
10–12. This operation is used to update variables which con
trol loop termination. In the preferred embodiment, the con
trol variables are counters or special logical functions con
sisting of priority encoders and counter blocks.
The function used to check for loop termination simply

tests the loop termination variable for an end of loop condi
tion. This condition may be a particular count value or the
state of a mask register.
The initialization of address parameters (see Initialize()

function: FIG. 10 1002, FIG. 11 1102, and FIG. 12 1202)
does not necessarily occur each time a transfer is started. In
the preferred embodiment, this initialization occurs only
when a transfer instruction is decoded and parameters are
loaded into CTU registers in the case of PE addressing
modes or STU registers.
The following discussion addresses instruction formats

and describes PE addressing modes for one embodiment of
the invention. It will be recognized other instruction encod
ings may be used consistent with the teachings of the present
invention. In the preferred embodiment, a transfer controller
reads transfer instructions from a local memory and decodes
them. Transfer instructions come in two types, those for the
STU and those for the CTU. The STU transfer instructions
specify the addressing mode and transfer count for accesses
to the system data bus while CTU transfer instructions

5

10

15

25

30

35

40

45

50

55

60

65

12
specify the addressing mode and transfer count for accesses
to the DMA bus and all SP and PE memories. The instruc
tion formats addressed below are only those instructions
which control special PE memory addressing for the CTU.
Instruction mnemonics are used to indicate the instruction
type and addressing mode. “TCI stands for “transfer, core
inbound, while “TCO' stands for “transfer, core
outbound. “TCX' Stands for either TCI or TCO. The follow
ing PE addressing modes are described as illustrative of the
present invention: PE Block-Cyclic, PE Select-Index, PE
Select-PE, and PE Select-Index-PE.
PE Block-Cyclic Addressing
PE blockcyclic addressing provides the basic framework

for all of the PE addressing modes. A Loop parameter speci
fies the assignment of address components to loops: BIP.
BPI, or PBI. FIG. 13 shows an exemplary format 1300
which defines the parameters for a PE Blockcyclic transfer
instruction executed by the CTU. As an example, if we are
given:
An inbound sequence of 16 data elements with values

0,1,2,3,... 15:
PETABLE setting of 0x000000E4 (no translation of PE

IDs):
TSI.block instruction in the STU (reading the 16 values

from system memory); and
TCI.blockcyclic instruction in the CTU with PE count=4,

Base Update=8, Base Count=2 (used for PBI mode
only), Index Update=2, Index Count=2, then the result
ing data in the PE memories 1400 after the transfer are
shown in FIG. 14 for BIP loop assignment. FIG. 15
shows resulting data 1500 for BPI loop assignment.
FIG. 16 shows resulting data 1600 for PBI loop assign
ment.

PE Select-Index Addressing
The operation of the PE select-index address mode is

similar to the PE blockcyclic address mode except that rather
than updating the index component of the address by adding
a constant to it, the instruction specifies a table of index
update values which are used sequentially to update the
index. FIG. 17 shows an exemplary instruction format 1700
for the PE select-index instruction.
An index select parameter allows finer-grained control

over a sequence of index values to be accessed. In the
example, this is done using a table of eight 4-bit index
update (IU) values. Each time the index loop is updated, an
IU value is added to the effective address. These update
values are accessed from the table sequentially starting from
IUO for IUCount updates. After IUCount updates, the index
update loop is complete and the next outer loop (B or P) is
activated. On the next entry of the index loop, IU values are
accessed starting at the beginning of the table. FIG. 18
shows an exemplary data access table 1800 illustrating data
access using the PE Select-index instruction.
PE Select-PE Addressing
The operation of the PE Select-PE address mode is similar

to the PE blockcyclic address mode except that rather than
updating the PE VID component of the address by adding 1
to it, the instruction specifies a table of bit vectors, where
each bit vector specifies the PEs to select for access. A bit
set to “1” in a bit vector indicates, by its bit position, the VID
of the PE to access. Bits in each bit vector are scanned from
right to left (least to most significant when viewed in a first
instruction format such as instruction format 1900 of FIG.
19). When there are no more “1” bits in a vector, the PE loop
exits. The next iteration of the loop uses the next bit vector in
the table. FIG. 19 shows an exemplary instruction formal
1900, and FIG. 20 shows an exemplary transfer data access
table 2000 for a transfer using this instruction.

US RE41,904 E
13

The PE select fields together with the use of the PE trans
late table allow out of order access to PEs across multiple
passes through them.
PE Select-Index-PE Addressing

This addressing mode combines both select-index and
select-PE addressing. An exemplary instruction format 2100
is shown in FIG. 21. This form of addressing provides for
complex-periodic data access patterns. An exemplary access
pattern table 2200 for the PE-select-index-PE address mode
is shown in FIG. 22.

I claim:
1. An apparatus for performing virtual identification

(VID) to physical identification (PID) translation for data
elements to be accessed within local memory of a processing
element (PE) whereby a direct memory access (DMA) con
troller can access PE local memories according to their
VIDs, the apparatus comprising:

an array of multiple PEs each having local PE memory;
a DMA controller; and
a memory maintained in the DMA controller for storing a

processing element VID-to-PID table mapping process
ing element VIDs to processing element PIDs utilized
by the DMA controller to access local memories
according to their VIDs.

2. The apparatus of claim 1 wherein said memory is
maintained in a core transfer unit of the DMA controller.

3. The apparatus of claim 2 wherein the core transfer unit
(CTU) further comprises an address generation unit (AGU)
which receives a CTU transfer instruction which specifies a
starting address which is used by the AGU to generate an
initial VID.

4. The apparatus of claim 3 wherein the initial VID con
trols the selection of one of the elements of the VID-to-PID
lookup table through a multiplexer.

5. The apparatus of claim 4 further comprising a DMA
bus for providing the selected PID as a first component of a
PE address.

6. The apparatus of claim 5 wherein the AGU further
operates to generate a PE memory offset which is sent as a
second component of a PE address on the DMA bus.

7. The apparatus of claim 6 further comprising a local
memory interface unit (LMIU) which is used to compare the
PID sent on the DMA bus to a stored PID for any DMA
access, if a match is detected then the LMIU accepts the
access.

8. The apparatus of claim3 wherein successive VIDs are
generated in recursive fashion by the AGUI

9. The apparatus of claim3 wherein successive VIDs are
generated in recursive fashion by the AGU, and further com
prising:

a local memory interface unit for each processing element
(PE) storing a VID for each PE.

10. The apparatus of claim 9 wherein a VID available to a
particular LMIU or a DMA bus is compared with the stored
VID in the LMIU and where a match occurs the LMIU
accepts the access.

11. The apparatus of claim 1 wherein the VID-to-PID
table is stored in a programmable register and the program
mable register is loaded utilizing a DMA instruction.

12. The apparatus of claim 1 wherein the VID-to-PID
table is stored in a programmable register and the program
mable register loaded utilizing a direct write to the program
mable register

13. A processing apparatus comprising:
a plurality of processing elements (PEs) communicatively

connected by a bus, each PE comprising a register stor
ing a virtual identification number (VID) identifying
the PE; and

5

10

15

25

30

35

40

45

50

55

60

65

14
a direct memory access (DMA) controller connected to

the bus for accessing local data memory of the PEs,
each data access at least partially identified by a VID:

wherein during a common data to access multiple PEs, a
PE responds to the data access if the VID stored in the
register matches the VID of the data access.

14. The processing apparatus of claim 13 wherein each
PE comprises a local memory interface unit (LMIU) which
includes the register storing the VID.

15. The processing apparatus of claim 13 wherein the
data access is a read access.

16. The processing apparatus of claim 13 wherein the
data access is a write access.

17. The processing apparatus of claim 13 further com
prising: means for updating the register

18. An apparatus for accessing local memory of a plural
ity of processing elements (PEs), the apparatus comprising:

a transfer controller running a process containing a set of
nested loops, the set of nested loops having a plurality
of parameters to be specified by a transfer instruction,
the plurality of parameters, when assigned, control PE
selection and address generation for accessing a
memory location in local memory of each selected PE
and

a means for receiving the transfer instruction for transfer
ring data between system memory and local memory of
the plurality of PEs, the transfer instruction having
fields which specific values for the plurality of
parameters, the transfer instruction indicating an
addressing mode, the addressing mode specifiving a
particular pattern of accessing local memory of the
plurality of PEs, wherein the transfer controller
decodes the transfer instruction to assign values to the
plurality of parameters, the process generating
addresses for accessing a memory location in local
memory of each selected PE in a particular pattern,
wherein the particular pattern is based on the assigned
parameters.

19. The apparatus of claim 18 wherein the means for
receiving a transfer instruction is an instruction control unit.

20. The apparatus of claim 18 wherein the means for
receiving a transfer instruction is a core transfer unit read
ing instructions from a memory attached to a direct memory
access (DMA) bus.

21. The apparatus of claim 18 wherein the means for
receiving a transfer instruction is a system data bus con
nected to the transfer controller and system memory.

22. The apparatus of claim 18 wherein the transfer
instruction specifies a block cyclic addressing mode.

23. The apparatus of claim 18 wherein the transfer
instruction specifies a PE select index addressing mode.

24. The apparatus of claim 18 wherein the transfer
instruction specifies a select PE addressing mode.

25. The apparatus of claim 18 wherein the transfer
instruction specifies a select index PE mode.

26. A method of accessing local memory of a plurality of
processing elements (PEs), the method comprising:

receiving a transfer instruction for transferring data
between system memory and the local memory of a plu
rality of processing elements (PEs);

running a process containing a set of nested loops, the set
of nested loops having a plurality of parameters to be
assigned values of fields carried in the transfer instruc
tion,

decoding the transfer instruction to assign field values to
the plurality of parameters,

US RE41,904 E
15 16

assigning the field values to the plurality of parameters in 28. The method of claim 26 wherein the transfer instruc
Order to control PE Selection and address generation tion specifies a PE select index addressing mode.
for accessing a memory location in local memory of 29. The method of claim 26 wherein the transfer instruc
each selected PE, and tion specifies a select PE addressing mode.

generating addresses to access local memory of each PE 5 30. The method of claim 26 wherein the transfer instruc
in a defined pattern. tion specifies a select index PE mode.

27. The method of claim 26 wherein the transfer instruc
tion specifies a block cyclic addressing mode. k

