发明名称
人干扰素 α - 2b 重组卡介苗及其构建方法和鉴定方法

摘要
本发明涉及一种分泌人干扰素 α - 2b 的重组卡介苗 rBCG - IFNα - 2b 及其构建方法、鉴定方法，利用基因工程技术将起分泌作用的卡介苗 Ag85B 信号肽片段和人 IFNα - 2b 的基因克隆至 pMV261，得到卡介苗穿梭表达载体 pMV261 - Ag85B - IFNα - 2b，然后采用电转化技术将该载体导入 BCG 中，构建重组卡介苗 rBCG - IFNα - 2b，依靠 pMV261 - Ag85B - IFNα - 2b 在 BCG 的复制和信号肽的分泌作用，能够高效分泌人 IFNα - 2b。本发明得到的重组卡介苗 rBCG - IFNα - 2b 既保留了原有 BCG 的免疫原性，又能持续分泌细胞因子 IFNα - 2b，从而提高 BCG 的免疫活性；IFNα - 2b 能够直接作用于肿瘤细胞，抑制肿瘤细胞增殖和诱导分化，具有更好的抗肿瘤作用，可以减少使用剂量，降低 BCG 引起的毒副作用；避免了使用外源 IFNα - 2b 所带来的应用剂量大、副作用发生率高、作用时间短暂和费用高昂的问题。
1.一种人干扰素α-2b重组卡介苗的构建方法，其特征在于包括以下步骤：

（1）获得人IFN α-2b基因和BCG-Ag85B信号肽基因。

设计人IFN α-2b和BCGAg85B的扩增引物，分别从人外周血和BCG基因组中用聚合酶链反应方法提取。扩增人IFN α-2b基因和Ag85B信号肽基因片段，并对其筛选、鉴定，其中人IFN α-2b的上游引物：5’-GACAAGTTACAGTGCTCTGCTCAAACC-3’ 且含EcoR I酶切位点

下游引物：5’-CGCAAGCTCTTACATTCTTCTAAGCC-3’ 且含Hind III酶切位点。

BCG-Ag85B信号肽基因的

上游引物：5’-GATGGCCTCAAAGGCACTGGCTCTAAG-3’且含BamHI酶切位点

下游引物：5’-GTACAAGCCTCCTCCTCCTTCTTAAGCC-3’ 且含EcoR I酶切位点。

（2）构建卡介苗穿梭表达载体。

利用DNA重组技术将人IFN α-2b基因和BCG-Ag85B信号肽基因片段插入质粒pMV261结核杆菌hsp60启动子下游，构建分泌型卡介苗穿梭表达载体pMV261-Ag85B-IFN α-2b并转化大肠杆菌，提取和纯化，对pMV261-Ag85B-IFN α-2b进行酶切、PCR扩增及DNA测序鉴定。

（3）人IFN α-2b重组BCG的构建：利用电穿孔技术将已构建的重组载体pMV261-Ag85B-IFN α-2b导入BCG，构建重组卡介苗rBCG-IFN α-2b。

2.根据权利要求1所述人干扰素α-2b重组卡介苗的构建方法，其特征在于：所述获得人IFN α-2b基因和BCG-Ag85B信号肽基因包括以下步骤：获取人IFN α-2b基因，信号肽基因BCG-Ag85B抽提、PCR扩增，所述获取人IFN α-2b基因包括人基因组DNA提取和纯化、人IFN α-2b基因的PCR扩增、人IFN α-2b的PCR产物电泳和半定量分析，所述信号肽基因BCG-Ag85B抽提、PCR扩增包括BCG基因组DNA抽提、BCG-Ag85B的PCR扩增、BCG-Ag85B的PCR产物纯化。

3.根据权利要求1所述人干扰素α-2b重组卡介苗的构建方法，其特征在于：所述构建卡介苗穿梭表达载体包括人IFN α-2b基因克隆到pMV261载体中、信号肽基因BCG-Ag85B克隆到pMV261-IFN α-2b载体中，所述人IFN α-2b基因克隆到pMV261载体中步骤通过人IFN α-2bDNA与pMV261分别用EcoRI和Hind III进行酶切连接，连接产物转化E.coli细胞，挑取克隆进行酶切鉴定和测序鉴定，得到重组质粒pMV261-IFN α-2b，所述信号肽基因BCG-Ag85B克隆到pMV261-IFN α-2b载体中步骤将pMV261-IFN α-2b和BCG-Ag85B分别用EcoRI和BamHI进行酶切连接，连接产物转化E.coli细胞，挑取克隆进行酶切鉴定和测序鉴定，得到重组质粒pMV261-Ag85B-IFN α-2b。

4.根据权利要求1所述人干扰素α-2b重组卡介苗的构建方法，其特征在于：所述人IFN
a-2b 重组 BCG 的构建包括感受态 BCG 的制备、电穿孔法构建重组卡介苗与抗性筛选。

5、一种权利要求 1 所述构建方法制得的人干扰素 α-2b 重组卡介苗，其特征在于：人干扰素 α-2b 重组卡介苗具有人 IFN α-2b 基因片段和 BCG-Ag85B 信号肽基因片段。

6、一种权利要求 1 所述构建方法制得的人干扰素 α-2b 重组卡介苗的鉴定方法，其特征在于包括以下步骤：

从人干扰素 α-2b 重组卡介苗的构建方法得到的疫苗抽取质粒 DNA 后，通过 PCR 扩增和 SDS-PAGE 电泳方法得到 IFN α-2b 基因片段，通过 Western blotting 方法证实 rBCG-IFN α-2b 的培养上清中和菌体中有 IFN α-2b 蛋白的表达，采用酶联免疫吸附方法测定出 rBCG-IFN α-2b 培养上清中有高水平表达的 IFN α-2b，其中人干扰素 α-2b 重组卡介苗 PCR 扩增的

上游引物：5'-GACGAATTCTAGGTGAATCCGCTCAAACCC-3' 且含 EcoR I 酶切位点

下游引物：5'-CGCAAGCTTCTAGGACTTTAGCTAAAC-3' 且含 Hind III 酶切位点。
技术领域：

本发明涉及一种临床医学中的抗膀胱癌的药物，尤其是涉及一种人干扰素 α-2b 重组卡介苗及其构建方法和鉴定方法。

背景技术：

膀胱移行上皮癌是我国泌尿系统最常见的恶性肿瘤，手术后容易复发与进展。因此，术后需定期用丝裂霉素、阿霉素、噻替哌、卡介苗 (BCG) 等药物进行膀胱灌注来预防肿瘤复发，而其中 BCG 是目前认为最有效的药物。但临床上，仍约有 30% 左右的患者 BCG 治疗和预防效果不理想，尤其对浸润性膀胱癌疗效更低。此外，BCG 膀胱灌注具有较高的毒副作用发生率。近年来，有不少研究应用小剂量的 BCG 联合人干扰素 α-2b (IFN α-2b) 膀胱灌注来提高抗癌疗效、降低副作用，但是联合应用的远期疗效不佳，且外源性添加 IFN α-2b 存在应用剂量大、副作用发生率高、作用时间短暂的问题，且费用高昂。因此，目前有必要通过研究来改善 BCG 减株，增强其抗膀胱癌作用，并减少应用剂量，降低副作用。

发明内容：

本发明所要解决的技术问题是克服现有技术中所存在的上述不足，而提供一种人干扰素 α-2b 重组卡介苗及其构建方法、鉴定方法，能自动分泌人 IFN α-2b 的新型基因重组 BCG，提高抗膀胱癌作用，降低应用剂量与副作用。

本发明解决上述技术问题所采用的技术方案是：该人干扰素 α-2b 重组卡介苗的构建方法，其特征在于包括以下步骤：

(1) 获得人 IFN α-2b 基因和 BCG-Ag85B 信号肽基因：

设计人 IFN α-2b 和 BCGAg85B 的扩增引物，分别从人外周血和 BCG 基因组中用聚合酶联反应方法提取、扩增人 IFN α-2b 基因和 Ag85B 信号肽基因片段，并对其进行筛选、鉴定，其中人 IFN α-2b 的上游引物：5’-GACGAATTCATGTGTGATCTGCTCAAAAC-3’ 且含 EcoR I 酶切位点

下游引物：5’-CGCAAGCTTTCATCTTACTTCTAACAC-3’ 且含 Hind III 酶切位点，

BCG-Ag85B 信号肽基因的

上游引物：5’-GATGGATCCAATGACAGACGTAGCCGAAAG-3’ 且含 BamHI 酶切位点

下游引物：5’-GTAGAATTCGCGCGCGCGGTGCTCC-3’ 且含 EcoR I 酶切位点；

(2) 构建卡介苗穿梭表达载体：

利用 DNA 重组技术将人 IFN α-2b 基因和 BCG-Ag85B 信号肽基因片段插入质粒 pMV261
结核杆菌 hsp60 启动子下游，构建分泌型卡介苗穿梭表达载体 pMV261-Ag85B-IFN α -2b 并
转化大肠杆菌，抽提和纯化，对 pMV261-Ag85B-IFN α -2b 进行酶切、PCR 扩增及 DNA 测序鉴
定；

（3）IFN α -2b 重组 BCG 的构建：利用电穿孔技术将已构建的重组载体
pMV261-Ag85B-IFN α -2b 导入 BCG，构建重组卡介苗 rBCG-IFN α -2b。

本发明所述获得人 IFN α -2b 基因和 BCG-Ag85B 信号肽基因包括以下步骤：获取人 IFN
α -2b 基因，信号肽基因 BCG-Ag85B 抽提、PCR 扩增，所述获取人 IFN α -2b 基因包括人基
因组 DNA 提取和纯化，人 IFN α -2b 基因的 PCR 扩增、人 IFN α -2b 的 PCR 产物电泳和半定量
分析，所述信号肽基因 BCG-Ag85B 抽提、PCR 扩增包括 BCG 基因组 DNA 抽提、BCG-Ag85B
的 PCR 扩增、BCG-Ag85B 的 PCR 产物纯化。

本发明所述构建卡介苗穿梭表达载体包括人 IFN α -2b 基因克隆到 pMV261 载体中，信
号肽基因 BCG-Ag85B 克隆到 pMV261-IFN α -2b 载体中，所述人 IFN α -2b 基因克隆到 pMV261
载体中步骤通过人 IFN α -2b DNA 与 pMV261 分别用 EcoRI 和 Hind III 进行酶切连接，连接
产物转化 E.coli 细胞，挑取克隆进行酶切鉴定和测序鉴定，得到重组质粒 pMV261-IFN α -2b，
所述信号肽基因 BCG-Ag85B 克隆到 pMV261-IFN α -2b 载体中步骤将 pMV261-IFN α -2b 和
BCG-Ag85B 分别用 EcoRI 和 BamHI 进行酶切连接，连接产物转化 E.coli 细胞，挑取克隆进
行酶切鉴定和测序鉴定，得到重组质粒 pMV261-Ag85B-IFN α -2b。

本发明所述人 IFN α -2b 重组 BCG 的构建包括感受态 BCG 的制备、电穿孔法构建重组
c介苗与抗性筛选。

本发明解决上述技术问题所采用的技术方案还包括一种如上所述构建方法制得的人干
扰素 α -2b 重组卡介苗，其特征在于人干扰素 α -2b 重组卡介苗具有人 IFN α -2b 基因片段
和 BCG-Ag85B 信号肽基因片段。

本发明解决上述技术问题所采用的技术方案还包括一种如上所述构建方法制得的人干
扰素 α -2b 重组卡介苗的鉴定方法，其特征在于包括以下步骤：

从人干扰素 α -2b 重组卡介苗的构建方法得到的疫苗抽提质粒 DNA 后，通过 PCR 扩增和
SDS-PAGE 电泳方法得到 IFN α -2b 基因片段，通过 Western blotting 方法证实 rBCG-IFN α
-2b 的培养上清中和菌体中 IFN α -2b 蛋白的表达，采用酶联免疫吸附方法测定出
rBCG-IFN α -2b 培养上清中有高水平表达的 IFN α -2b。其中人干扰素 α -2b 重组卡介苗 PCR
扩增的

上游引物：5'-GACGAATTCATTGTCGATCTGGCCTAAACC-3' 且含 EcoR I 酶切位点
下游引物：5'-CGCAAGCTTCTATTGCCCTTGAAG-3' 且含 Hind III 酶切位点。
本发明能自动分泌 IFN α -2b 的新型基因重组 BCG，提高抗膀胱癌作用，降低应用剂量与副作用。

附图说明：

图 1 为本发明实施例重组卡介苗染色后的光学显微镜镜检结果示意图。
图 2 为本发明实施例重组卡介苗质粒 DNA PCR 扩增结果示意图（以 IFN α -2b 为引物进行 PCR 扩增）。
图 3 为本发明实施例重组卡介苗分泌的 IFN α -2b 蛋白表达 Western Blotting 检测示意图。
图 4 为本发明实施例重组卡介苗对人外周血单核细胞（PBMC）的增殖活性示意图。
图 5 为本发明实施例不同有效靶比效果细胞对 T24 肿瘤细胞的细胞毒活性 MTT 法测定示意图。
图 6 为本发明实施例不同有效靶比效果细胞对 T5637 肿瘤细胞的细胞毒活性 MTT 法测定示意图。

具体实施方式：

1. 本发明的原理：

研究认为 BCG 发挥抗膀胱癌作用是由于 BCG 灌注后机体对其的免疫反应有关，而其中细胞因子如白介素-2（IL-2）、γ 干扰素（IFN-γ）、肿瘤坏死因子 α （TNF-α）等在抗癌过程中起着重要作用。提高这些细胞因子的表达量，便可提高 BCG 的免疫作用和抗癌疗效。

而 IFN α -2b 是目前临床应用最广的细胞因子之一，广泛应用于抗肿瘤与抗病毒治疗。它不但能够直接作用于肿瘤细胞，抑制肿瘤细胞增殖和诱导分化，同时，研究也证明 IFN α -2b 与 BCG 联合膀胱灌注可提高局部 IL-2、IFN-γ、TNF-α 等细胞因子的表达，从而提高 BCG 的免疫活性和抗癌能力。但外源性应用 IFN α -2b 存在剂量大、副作用发生率高、作用时间短暂的问题，且费用高昂。

因此，如能将 IFN α -2b 基因重组入 BCG，构建能自动表达 IFN α -2b 的基因重组 BCG（rBCG），使 BCG 在宿主体内复制的过程中，不断产生 IFN α -2b，有望提高 BCG 抗膀胱癌疗效、降低 BCG 的应用剂量与毒副作用。

2. 本发明实施例中干扰素 α -2b 重组卡介苗构建方法操作步骤如下：

2.1 获得目的基因人 IFN α -2b 基因和 BCG—Ag85B 信号肽基因：

该步骤设计人 IFN α -2b 和 BCGAg85B 的扩增引物，分别从人外周血和 BCG 基因组中用聚合酶链反应（PCR）方法提取、扩增人 IFN α -2b 基因和 BCG—Ag85B 信号肽基因片段，并
对其筛选、鉴定。（人IFNα-2b基因和BCG−Ag85B信号肽基因的获取次序可互换，结果相同）。

2.1.1 获取人IFNα-2b基因

2.1.1.1 人基因组DNA提取和纯化

（1）取新鲜人外周静脉血5ml，以ACD（柠檬酸钠缓冲液）1/7体积抗凝；
（2）3500rpm离心15分钟，吸除上层血浆；
（3）加5倍体积双蒸水，摇匀，静置10分钟，3500rpm15分钟离心，去上清；
（4）吸取沉淀（少许液体）放入1.5ml离心管，TE清洗2次；12000rpm离心8分钟；
（5）去上清后加0.5mlSTE（Sodium Chloride−Tris−EDTA缓冲液），10%SDS（Sodium dodecyl sulfate，十二烷基硫酸钠）30ml，蛋白酶K5μl（100μg/ml）37℃消化过夜，直至沉淀物溶解为止；
（6）加等体积饱和酚，倒转摇匀10分钟。12000rpm离心5分钟，吸上层入另一1.5ml离心管；
（7）上清液加等体积酚：氯仿：异戊醇（体积比为25：24：10），倒转混匀10分钟。12000rpm离心5分钟，吸上层入另一1.5ml离心管；
（8）上清液加等体积氯仿：异戊醇（体积比为24：1），倒转混匀10分钟，12000rpm5分钟，取上清入另一管；
（9）加1/12体积3M醋酸钠，混匀后再加3倍体积的4℃无水乙醇，轻柔振摇，出现白色絮状物（DNA）。于−20℃放置30分钟，12000rpm低温（4℃）离心10分钟，沉淀DNA，去上清；
（10）加1ml70%乙醇洗涤，12000rpm低温（4℃）离心10分钟，去上清，重复1次；
（11）自然干燥后，用pH8.0TE（Tris−EDTA缓冲液）溶解，并以TE液作空白对照，用紫外分光光度计测定波长分别为260nm、280nm时的OD值，测得OD260/OD280为1.8，证明没有蛋白质残余，置于4℃冰箱备用。

2.1.1.2 人IFNα-2b基因的PCR扩增

2.1.1.2.1 人IFNα-2b基因的PCR引物设计

本部分共设计2套PCR引物（上游引物和下游引物，具体见下）。IFNα-2bPCR引物采用计算机辅助设计，并登陆Genebank对照无误。IFNα-2b扩增产物为519bp。

上游引物：5′-GACGAATTCATGTGTGATCTGCCTAAGA-3′ Tm=69.5 且含EcoRI酶切位点
下游引物：5′-CGCAAGCTTTCATCCATTCTTAAAC-3′ Tm=62.6 且含HindIII酶切位点。

2.1.1.2.2 人IFNα-2b基因的PCR扩增反应体系和循环条件
建立 40μl 人 IFNα-2b 基因的 PCR 扩增反应体系见表 1。

<table>
<thead>
<tr>
<th>表 1 40μl 人 IFNα-2b 的 PCR 扩增反应体系</th>
</tr>
</thead>
<tbody>
<tr>
<td>10X PCR buffer</td>
</tr>
<tr>
<td>上游引物</td>
</tr>
<tr>
<td>下游引物</td>
</tr>
<tr>
<td>dNTP</td>
</tr>
<tr>
<td>模板 DNA</td>
</tr>
<tr>
<td>Taq 酶</td>
</tr>
<tr>
<td>ddH2O</td>
</tr>
</tbody>
</table>

人 IFNα-2b 的 PCR 扩增的循环条件：

a. 在 95℃环境下变性 5 分钟；
b. 在 94℃环境下变性 40 秒；
c. 在 58℃环境下退火 40 秒；
d. 在 72℃环境下延伸 40 秒；
e. 步骤 b～d 循环 36 遍；
f. 在 72℃环境下延伸 10 分钟。

2.1.1.3 人 IFNα-2b 的 PCR 产物电泳和半定量分析

取 10μl 人 IFNα-2b 的 PCR 产物加 3μl 加样缓冲液，混匀，于 1.0%琼脂糖电泳，电压为 100V，电泳至条带位置合适后（约 30min）于紫外灯下观察。1%琼脂糖凝胶电泳，2kb DNA marker 证实片断大小为 519bp。

2.1.2 信号肽基因 BCG-Ag85B 抽提，PCR 扩增

2.1.2.1 BCG 基因组 DNA 抽提

液体培养基配制：4.7 克 Middlebrook 7H9 粉剂溶解在 900ml 三蒸水中，再加入 0.5 克 Tween80（吐温 80）混匀。90ml 分装于 10 个 250ml 三角烧瓶中，121℃高压灭菌 10 分钟。待温度冷却至 45℃，无菌条件下分别加入 10ml ADC（偶氮二甲酰胺），使培养基中的 ADC 浓度为 10%，完全冷却后置 4℃冰箱保存。

BCG 的培养：将冻干 BCG 制剂用生理盐水融化，加入 2ml 细菌溶液，纱布封口后轻轻摇匀，三角烧瓶置于 37℃，转速为 150rpm 的恒温摇床中培养。因 BCG 生长缓慢，摇床时间长，为避免污染一般在培养过程中不换液。培养 3 周，取培养后菌液 1ml，离心 15 分钟（14000rpm）弃上清，重复一次，再加溶液（0.1%SDS，1%NP-40，1%Tween20）150μl，充分混匀，沸水 100℃煮 20 分钟，离心 15 分钟（14000rpm），其上清为 BCG-Ag85B 的 PCR 扩增的 DNA 模板。

2.1.2.2 BCG-Ag85B 的 PCR 扩增
2.1.2.2.1 BCG-Ag85B 的引物设计

BCG-Ag85B 的 PCR 引物采用计算机辅助设计，并登陆 Genebank 对照无误，产物长度为 139bp。

上游引物：5’-GATGGATCCAATGACAGACGTGAGCCGAAAG-3’ Tm=73 且含 BamHI 酶切位点，

下游引物：5’-GTAGAATTCCGCGCCCGGTTGGCCGCTCC-3’ Tm=83 且含 EcoRI 酶切位点。

2.1.2.2.2 BCG-Ag85B 的 PCR 扩增反应体系和循环条件

建立 20μl BCG-Ag85B 的 PCR 扩增反应体系，见表 2。

<table>
<thead>
<tr>
<th>表 2 20μl BCG-Ag85B 的 PCR 扩增反应体系</th>
</tr>
</thead>
<tbody>
<tr>
<td>buffer</td>
</tr>
<tr>
<td>上游引物</td>
</tr>
<tr>
<td>下游引物</td>
</tr>
<tr>
<td>dNTP</td>
</tr>
<tr>
<td>模板 cDNA</td>
</tr>
<tr>
<td>Taq 酶</td>
</tr>
<tr>
<td>ddH2O</td>
</tr>
</tbody>
</table>

BCG-Ag85B 的 PCR 扩增的循环条件：

h. 在 95℃环境下预变性 4 分钟;
i. 在 94℃环境下变性 30 秒;
j. 在 58℃环境下退火 30 秒;
k. 在 72℃环境下延伸 30 秒;
1. 步骤 i~k 循环 36 遍;
m. 在 72℃环境下延伸 5 分钟。

2.1.2.2.3 BCG-Ag85B 的 PCR 产物电泳和半定量分析

取 10μl BCG-Ag85B 的 PCR 产物加 3μl 加样缓冲液，混匀，于 1.0%琼脂糖电泳，电压为 100V，电泳至条带位置合适后（约 30min）于紫外灯下观察。1kb DNA marker 证实片断大小为 139bp。

2.1.2.3 BCG-Ag85B 的 PCR 产物纯化

PCR 产物应用 QIAquick Gel Extraction Kit 进行纯化。

（1）PCR 产物进行琼脂糖凝胶电泳，获得目的条带；

（2）紫外灯下切割目的条带凝胶于 Eppendorf 管中，使它尽可能小，称重；
（3）按照 100mg 凝胶加入 300μQG 的比例加入 QG；
（4）50℃下 10min，期间不断震荡使凝胶充分溶解，此时溶解物呈黄色；
（5）按照 100mg 溶解物加入 300μl 异丙醇的比例加入异丙醇，混匀；
（6）将 QIAquick spin 柱放置于收集管上，再将样品液倒入柱中，13000rpm 离心 1min；
（7）弃去滤液，加入 0.75mlPE 洗柱，13000rpm 离心 1min；
（8）弃去滤液，再 13000rpm 离心 1min；
（9）将 QIAquick spin 柱放置于 1.5ml 消毒 Eppendorf 管上；
（10）于柱底膜中心加 30μl ddH₂O，13000rpm 离心 1min，洗脱液即含目的 DNA；
（11）取 2μl 洗脱液进行 1%琼脂糖凝胶电泳，凝胶成像系统下观察。

2.2 构建卡介苗穿梭表达载体：

该步骤利用 DNA 重组技术将 IFN α-2b 基因和 BCG-Ag85B 信号肽基因片段插入质粒 pMV261 结核杆菌 hsp60 启动子下游，构建分泌型卡介苗穿梭表达载体 pMV261-Ag85B-IFN α-2b 并转化大肠杆菌、抽提和纯化，对 pMV261-Ag85B-IFN α-2b 进行酶切、PCR 扩增及 DNA 测序鉴定。

2.2.1 将人 IFN α-2b 基因克隆到 pMV261 载体中

将 IFN α-2b DNA 与 pMV261 分别用 EcoR I 和 Hind III 进行酶切连接，连接产物转化大肠杆菌 (E. coli) 细胞，挑取克隆进行酶切鉴定和测序鉴定，此重组质粒命名为 pMV261-IFN α-2b。

2.2.1.1 分别酶切 IFN α-2b DNA 和 pMV261 载体

酶切体系：

<table>
<thead>
<tr>
<th></th>
<th>10×M</th>
<th>2μL</th>
<th>10×M</th>
<th>2μL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN α-2b DNA</td>
<td>16μL</td>
<td></td>
<td>pMV261</td>
<td>16μL</td>
</tr>
<tr>
<td>EcoR I</td>
<td>1μL</td>
<td>EcoR I</td>
<td>1μL</td>
<td></td>
</tr>
<tr>
<td>Hind III</td>
<td>1μL</td>
<td>Hind III</td>
<td>1μL</td>
<td></td>
</tr>
</tbody>
</table>

37℃作用 3hr，1%琼脂糖凝胶电泳。

2.2.1.2 回收 IFN α-2b DNA 片段和酶切后的 pMV261 载体（QIAquick Gel Extraction Kit），步骤如下：

（1）割下含 DNA 的琼脂糖块，使它尽可能小，称重，放入 1.5ml 离心管中。
（2）按每 100mg 琼脂糖加入 300μl QG 液的比例加入 QG 液，置 50℃水浴 10 分钟，使琼脂糖块完全溶化。每 2 分钟颠倒混匀一次。
③ 当目的片段<500bp 时，加入 1/3 QG 液体积的异丙醇，混匀。50℃温浴 1 分钟后，
混匀。当目的片段>500bp 时，可省略此步骤，直接进行步骤④。
④ 将溶化后的琼脂糖移入吸附柱，离心 60 秒。倒掉收集管中液体，再吸附柱放入收集管。
⑤ 在吸附柱中加入 750ul PE 液，静置 2-5 分钟后，离心 13000rpm 60 秒。倒掉收集
管中液体，将吸附柱放入收集管，离心 1 分钟。
⑥ 将吸附柱放入一个干净的 1.5ml 的离心管中，在吸附膜中央加入 50ul EB 液或 20ul
ddH2O，静置 1 分钟后，离心 1 分钟。将 1.5ml 离心管(DNA)贮存于-20℃。
2.2.1.3 连接 IFNα-2b DNA 和 pMV261
连接体系:

- 连接 buffer: 1 μL
- pMV261 载体: 5 μL
- IFNα-2b DNA 片段: 3 μL
- 连接酶: 1 μL

16℃连接过夜，得到 pMV261-IFNα-2b 连接产物。

2.2.1.4 大肠杆菌化学感受态菌 E.coli DH5α 的制备
(1) 受体菌的培养：从 LB 平板上挑取新活化的 E.coli DH5α 单菌落，接种于 3-5ml LB
液体培养基中，37℃下振荡培养 12 小时左右，直至对数生长后期。将该菌悬液以 1:100～1:50 的比例接种于 100ml LB 液体培养基中，37℃振荡培养 2-3 小时至 OD600＝
0.5 左右；
(2) 将培养液转入离心管中，冰上放置 10 分钟，然后于 4℃下 4000rpm 离心 10 分钟；
(3) 弃去上清，用预冷的 0.01mol/L 的 CaCl2 溶液 10ml 轻轻悬浮细胞，冰上放置 15～
30 分钟后，4℃下 4000rpm 离心 10 分钟；
(4) 弃去上清，加入 4ml 预冷含 15%甘油的 0.075mol/L 的 CaCl2 溶液，轻轻悬浮细胞，
冰上放置几分钟，即成感受态细胞悬液；
(5) 感受态细胞分装成 200 μL 的小份，贮存于-70℃保存。

2.2.1.5 转化
将 pMV261-IFNα-2b 连接产物转化感受态细菌 E.coli DH5α，步骤如下：
(1) 从-70℃冰箱中取 200 μL 感受态细胞悬液，室温下使其解冻，解冻后立即置冰上；
(2) 取 5μL 连接液加入菌液中，轻轻混匀，冰浴 30min；
(3) 42℃热休克 90sec，冰浴 2min；
（4）向管中加入 800μl LB 液体培养基（不含 Kan），混匀后 37℃振荡培养 1 小时，使细菌
恢复正常生长状态，并表达质粒编码的抗生素抗性基因（Kan’）；
（5）将上述菌液摇匀后取 100μl 涂布于含 Kan 的筛选平板上，正面向上放置半小时，待菌
液完全被培养基吸收后倒置培养皿；
（6）37℃倒置培养过夜，至菌落长出；
（7）挑取单克隆至 3ml 含有 Kan 抗性的 LB 培养基中，于 37℃摇床培养，250rpm 培养过夜。
同时做两个对照：
对照组 1：以同体积的无菌双蒸水代替 DNA 溶液，其它操作与上面相同。此组正常情况下
在含抗生素的 LB 平板上应没有菌落出现。
对照组 2：其它操作与上面相同，但涂板时只取 5μl 菌液涂布于不含抗生素的 LB 平
板上，此组正常情况下应产生大量菌落。
2.2.1.6 抽提 pMV261-IFN α-2b 质粒 DNA
挑取没有突变的菌落，抽提质粒。按照质粒抽提试剂盒实验步骤如下：
（1）将培养过夜的 2ml 菌液移至离心管中，9000rpm 离心 5min，弃尽上清；
（2）在细菌沉淀中加入 250ul P1 液，振荡至彻底悬浮；
（3）加入 250ul P2 液，立即温热离心管 4~6 次以混匀。使菌体充分裂解直至形成透亮
的溶液，此步骤应在 5min 内完成；
（4）加入 350ul N3 液，立即温热离心管 4~6 次以混匀。13000rpm 离心 10 分钟；
（5）将上清液小心移入吸附柱，离心 60sec，倒掉收集管中液体，将吸附柱放入收集管；
（6）在吸附柱中加入 750ul PB 液，离心 60sec。倒掉收集管中液体，将吸附柱放入收集管，
离心 1 分钟；
（7）将吸附柱放入一个干净的 1.5ml 的离心管中，在吸附膜中央加入 50ul EB 液或 20ul
cddH₂O，静置 1 分钟后，离心 1 分钟。将 1.5ml 离心管（DNA）贮存于-20℃。
2.2.1.7 人 IFN α-2b 的 PCR 扩增及电泳：
以抽提质粒 DNA 为模板，用合成的 IFN α-2b 两端引物进行 PCR 扩增，扩增反应体系和
条件同前（获取目的基因人 IFN α-2b 部分）。将扩增产物进行 1%琼脂糖凝胶电泳，1kbDNA
marker 证实片断大小为 519bp。
2.2.2 将信号肽基因 BCG-Ag85B 克隆到 pMV261-IFN α-2b 载体中
将 pMV261-IFN α-2b 和 BCG-Ag85B 分别用 EcoRI 和 BamHI 进行酶切连接，连接产物转
化 E.coli 细胞，挑取克隆进行酶切鉴定和测序鉴定，此重组质粒命名为 pMV261-Ag85B-IFN
α-2b。
2.2.2.1 分别酶切信号肽基因 BCG-Ag85B 和 pMV261-IFNα-2b 载体

酶切体系:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>去离子水</td>
<td>4 μL</td>
<td>去离子水</td>
<td>3 μL</td>
</tr>
<tr>
<td>10×K</td>
<td>2 μL</td>
<td>buffer</td>
<td>2 μL</td>
</tr>
<tr>
<td>Ag85B</td>
<td>12 μL</td>
<td>pMV261-IFNα-2b</td>
<td>13 μL</td>
</tr>
<tr>
<td>EcoRI</td>
<td>1 μL</td>
<td>EcoRI</td>
<td>1 μL</td>
</tr>
<tr>
<td>BamHI</td>
<td>1 μL</td>
<td>BamHI</td>
<td>1 μL</td>
</tr>
</tbody>
</table>

37℃作用 2hr，1%琼脂糖凝胶电泳。

2.2.2.2 回收信号肽基因 BCG-Ag85B 片段和切后的 pMV261-IFNα-2b 载体（凝胶回收试剂盒）。

2.2.2.3 连接信号肽基因 BCG-Ag85B 和 pMV261-IFNα-2b

连接体系:

连接 buffer	1 μL
pMV261-IFNα-2b 载体	4 μL
信号肽基因 BCG-Ag85B 片段	2 μL
连接酶	2 μL
ddH_{2}O	1 μL

16℃连接过夜，得到含有信号肽基因 BCG-Ag85B 的质粒 pMV261-Ag85B-IFNα-2b。

2.2.2.4 pMV261-Ag85B-IFNα-2b 质粒转化感受态细菌 E.coliDH5α（转化步骤同 2.2.1.5，菌液的抗性为卡那霉素）。

2.2.2.5 抽提 pMV261-Ag85B-IFNα-2b 质粒 DNA（步骤同 2.2.1.6）

2.2.2.6 酶切验证穿梭表达载体

酶切体系:

water	2 μL	water	2 μL
buffer	2 μL	buffer	2 μL
穿梭表达质粒	15 μL	穿梭表达质粒	15 μL
EcoRI	0.5 μL	EcoRI	0.5 μL
BamHI	0.5 μL	Hind III	0.5 μL

37℃作用 2hr，1%琼脂糖凝胶电泳。

2.2.2.7 测序验证构建的穿梭表达载体
用 IFN α -2b 和 BCG-Ag85B 的正向引物和反向引物对抽提的穿梭表达载体 pMV261-Ag85B-IFN α -2b 进行测序验证。

2.3 人 IFN α -2b 重组 BCG（rBCG-IFN α -2b）的构建：
该步骤利用电穿孔技术将已构建的重组载体 pMV261-Ag85B-IFN α -2b 导入 BCG，构建重组卡介苗 rBCG-IFN α -2b。

2.3.1 感受态 BCG 的制备
(1) BCG 在 Middlebrook 7H9 培养基 37℃摇床培养（转速为 150rpm）；
(2) 待培养液 OD600 值约 0.6 时将 BCG 菌液加入离心管中，冰浴 2hr；
(3) 将 BCG 菌液加入离心管中，在冰盒中预冷 2hr；
(4) 4℃离心：8000rpm ×15min，丢弃上清；用原始体积的 1/10、预冷浓度为 10%的甘油重悬菌体；重复上述操作五次；
(5) 弃上清，加入原始体积 1/50 的 10%甘油重悬菌体即得到感受态细菌，放置室温下备用。

2.3.2 电穿孔法构建重组卡介苗与抗性筛选
（1）在一微量离心管中温热混匀 200μL 感受态 BCG（约 1×10^8cfu/ml）和 10μL 穿梭表达质粒（约 2μg）；
（2）冰浴 10min 后，转入预冷的 0.2CM 的电击转化杯中，置于基因脉冲仪中进行电转，电转参数 Voltage：1250V，Capacitance：25μF，Resistance：600Ω；
（3）质粒 pMV261-Ag85B-IFN α -2b, pMV261 及单纯 BCG 的作用时间分别为 13.4, 14.5, 13 毫秒；
（4）电转完成后，迅速加 Middlebrook7H9 培养基 800μL 入电转化杯中混匀，再转入离心管 37℃200 rpm /min ×3hr 培养；
（5）取 100μL 涂布在含 30mg/L 卡那霉素的 Middlebrook7H10 固体培养基的离心管内斜面上，37℃继续培养直至发现克隆；
（6）3～4 周后挑选阳性克隆，先进行抗酸染色初步鉴定，明确后在含 20ml 液体培养基的离心管内摇床生长。

注：此处感受态 BCG 在转化时各做一阳性对照 pBCG (BCG 中只含有空白质粒 pMV261) 及阴性对照 (BCG)。

3. 本发明实施结果 (rBCG-IFN α -2b) 的鉴定方法：
重组菌株 rBCG-IFN α-2b 经抗酸染色证实为抗酸杆菌。从 rBCG-IFN α-2b 抽取质粒 DNA 后，PCR 扩增和 SDS-PAGE 电泳得到 IFN α-2b 基因片段。Western blotting 证实 rBCG-IFN α-2b 的培养上清中和菌体中有 IFN α-2b 蛋白的表达，采用酶联免疫吸附（ELISA）方法测定出 rBCG-IFN α-2b 培养上清中有高水平表达的 IFN α-2b。详细步骤如下：

3.1 重组卡介苗（rBCG-IFN α-2b）的抗酸染色（初步鉴定）

3.1.1 试剂：

碱性复红乙醇染色液：10ml 碱性复红染色液与 90ml 5%石碳酸水溶液混合；
3%盐酸乙醇脱色液：3ml 浓盐酸与 95ml 95%乙醇混合；
0.3%亚甲兰染色储存液：0.3 克亚甲兰溶于 50ml 95%乙醇中，完全溶解后加蒸馏水至终体积 100ml；

亚甲兰染色液：以蒸馏水 10 倍稀释 0.3%亚甲兰染色储存液即亚甲兰染色液。

3.1.2 染色步骤：

- 取 BCG 涂片（用接种环从含培养基的试管里蘸取少许菌液平铺于载玻片上）；
- 37℃培养箱干燥数分钟；
- 火焰固定涂片（酒精灯上来回 3 次）；
- 滴加碱性复红乙醇染色液，盖满菌液。小心火焰加热至出现蒸汽后，脱离火焰，保持染色 3min。染色期间应始终保持菌液被染色液覆盖，必要时可续染染色液；或碱性复红乙醇染色液染 10min 后水洗；
- 流水自玻片背面上端轻洗，洗清染色液；
- 自菌液上端外缘滴加 3%盐酸酒精脱色液，流过菌液，需脱至菌液无可视红色为止，脱色应单片进行；
- 流水自玻片背面上端轻洗，去脱色液；
- 滴加亚甲兰染液，染色 60sec；
- 流水自玻片背面上端轻洗，去染液；
- 用吸水纸吸干标本，然后在油镜下观察结核杆菌的形态、排列及染色性。

3.2 重组卡介苗（rBCG-IFN α-2b）DNA 的 PCR 扩增和电泳鉴定

3.2.1 rBCG-IFN α-2b 的引物设计

采用 Genamics Expression 软件设计引物，引物设计同 2.1.1.2 部分，即：

上游引物：5'-GACGAATTCATGTGATCTGCCCTCAAACC-3' Tm=69.5 且含 EcoRI 酶切位点
下游引物：5'-CGCAAGCTTCTATTCTCCTACTTAAAC-3' Tm=62.6 且含 Hind III 酶切位点。
3.2.2 重组卡介苗质粒 DNA 抽提

- rBCG 质粒 DNA 的提取：将在三角烧瓶内培养四周的 rBCG 分瓶至 15ml 试管中，再在
 试管里摇床培养 3 周后使 OD600 约为 0.6，收获前加入甘氨酸至 20mg/ml 以干扰胞壁的
 合成，培养一定时间后收集菌体；移至离心管中，9000rpm 离心 5 min，弃尽上清；
- 在细菌沉淀中加入 250 ul P1 液，振荡至彻底悬浮；
- 加入 250ul P2 液，立即温和颠倒离心管 4-6 次以混匀。使菌体充分裂解至形成透明的
 溶液，此步骤应在 5min 内完成；
- 加入 350ul N3 液，立即温和颠倒离心管 4-6 次以混匀。13000 rpm 离心 10min；
- 将上清液小心移入吸附柱，离心 60sec，倒掉收集管中液体，将吸附柱放入收集管；
- 在吸附柱中加入 500ul PB 液，离心 60sec。倒掉收集管中液体，将吸附柱放入收集管；
- 在吸附柱中加入 750ul PB 液，离心 60sec。倒掉收集管中液体，将吸附柱放入收集管，
 离心 1min；
- 将吸附柱放入一个干净的 1.5ml 的离心管中，在吸附膜中央加入 50ul EB 液或 20ul
ddH2O，静置 1min 后，离心 1min。将 1.5ml 离心管 (DNA) 贮存于-20℃。

3.2.3 重组卡介苗的 PCR 扩增反应及电泳鉴定：（PCR 扩增条件与方法同 2.1.1.2 人
IFNα-2b 基因的 PCR 扩增部分，电泳鉴定的条件与方法同 2.1.1.3 人 IFNα-2b 的 PCR
产物电泳和半定量分析部分）

3.3 重组卡介苗蛋白水平鉴定 (Western blotting 检测)

3.3.1 重组卡介苗的诱导表达

升温诱导表达：重组卡介苗（rBCG-IFNα-2b）于 37℃摇床培养至对数生长中期，迅速
转到 45℃摇床（200rpm/min）培养，3hr 后收集培养上清，提取上清进行 SDS-PAGE 和 Western
blotting 检测。

H2O2 诱导表达：重组卡介苗于 37℃摇床培养至对数生长中期，加入 100mL 的 H2O2 继续
培养 1-2hr，提取上清进行 SDS-PAGE 和 Western blotting 检测。

3.3.2 重组卡介苗蛋白质的样品制备

3.3.2.1 细胞培养蛋白质样品的制备：

在液体培养基中培养至对数生长中期，先诱导 rBCG-IFN α-2b 分泌表达细胞因子，
4000 rpm/min×10min，离心 2 次，收获菌体及上清后，菌体先用超声裂解法破碎，再加入裂
解液（2%SDS，0.1M DT，0.01%溴甲酚绿，0.06MTris-Cl，10%甘油）煮沸 5min 提取蛋白。分
别将样品用 1× PBS 洗涤三遍，以去除培养液中的白蛋白。收集第一遍洗涤液和最终的沉
进行 Western blotting 鉴定。

3.3.2.2 蛋白变性：

处理后的样品加入样品缓冲液（按样品浓度 1: 1 或 1: 2 的比例）混匀，样品置 100℃的水浴箱加热 3-5min，10000rpm/min 离心 10min，取上清液。（样品可立即使用也可以分装冻存，-20℃可稳定保持数月。）

3.3.3 蛋白含量的测定

（1）制作标准曲线：
- 从－20℃取出 1mg/ml BSA，室温融化后，备用。
- 取 18 个 1.5ml 离心管，3 个一组，分别标记为 0μg，2.5μg，5.0μg，10.0μg，20.0μg，40.0μg。
- 按表 3 在各管中加入各种试剂。

<table>
<thead>
<tr>
<th>离心管标记</th>
<th>0μg</th>
<th>2.5μg</th>
<th>5.0μg</th>
<th>10.0μg</th>
<th>20.0μg</th>
<th>40.0μg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1mg/ml BSA</td>
<td>—</td>
<td>2.5μl</td>
<td>5.0μl</td>
<td>10.0μl</td>
<td>20.0μl</td>
<td>40.0μl</td>
</tr>
<tr>
<td>0.15mol/L NaCl</td>
<td>100μl</td>
<td>97.5μl</td>
<td>95.0μl</td>
<td>90.0μl</td>
<td>80.0μl</td>
<td>60.0μl</td>
</tr>
<tr>
<td>G250 考马斯亮蓝溶液</td>
<td>1ml</td>
<td>1ml</td>
<td>1ml</td>
<td>1ml</td>
<td>1ml</td>
<td>1ml</td>
</tr>
</tbody>
</table>

- 混匀后，室温放置 2min。在生物分光光度计（Bio－Photometer，Eppendorf）上比色分析。

（2）检测样品蛋白含量
- 取足量的 1.5ml 离心管，每管加入 4℃储存的考马斯亮蓝溶液 1ml。室温放置 30min 后即可用于测蛋白。
- 取一管考马斯亮蓝加 0.15mol/L NaCl 溶液 100 μl，混匀放置 2 分钟可做为空白样品，将空白倒入比色杯中在做好标准曲线的程序下按 blank 测空白样品。
- 弃空白样品，用无水乙醇清洗比色杯 2 次（每次 0.5ml），再用无菌水洗一次。
- 取一管考马斯亮蓝加 95 μl 0.15mol/L NaCl 溶液和 5μl 待测蛋白样品，混匀后静置 2min，倒入扣干的比色杯中按 sample 鉴测样品。

3.3.4 SDS-PAGE 分离总蛋白

（1）制胶（参见表 4）：①按比例配制分离胶（单体：双体=29：1），缓慢地摇动溶液，使激活剂混合均匀，将凝胶溶液平缓地注入两层玻璃板中，再在液面上小心注入一层水或正丁醇，以阻止氧气进入凝胶溶液中，静置 90min。②同前按比例配制浓缩胶，但混匀溶液时不要过于剧烈以免引入过多地氧气。吸去不连续系统中下层分离胶上的水分，以连续平
稳的液流注入凝胶溶液，然后小心插入梳子并注意不得在齿尖留有气泡，静制 90min 以上
以保证完全聚合。

<table>
<thead>
<tr>
<th>表 4 压 胶</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>超纯水</td>
</tr>
<tr>
<td>40%Ac/Bic (37.5:1)</td>
</tr>
<tr>
<td>1.5mol/L Tris·HCl (pH8.8)</td>
</tr>
<tr>
<td>0.5mol/L Tris·HCl (pH6.8)</td>
</tr>
<tr>
<td>10%SDS</td>
</tr>
<tr>
<td>10%AP（过硫酸胺）</td>
</tr>
<tr>
<td>TEMED</td>
</tr>
</tbody>
</table>

（2）预电泳：将聚合好的凝胶安置于电泳槽中，小心拔去梳子，加入电泳缓冲液后低电压 10-20V 的预电泳 20-30min。（目的是清除凝胶内的杂质，疏通凝胶孔径以保证电泳过程中电泳的畅通）。

（3）加样：预电泳后依次加入标准品和待分析样品，待分析样品包括 rBCG-IFNα-2b 分泌的上清、收获的菌体、阳性对照 pBCG (BCG 中只含有空白质粒 pMV261) 及阴性对照 (BCG)。样品一般在 1.0mm 厚的胶加样 50-100μg/lane。

（4）电泳：加样完毕，选择适当的电压进行电泳，一般采用恒压浓缩胶 80V，分离胶 100-150V，电泳直至溴酚蓝染料前沿下至凝胶末端处，即停止电泳。

3.3.5 转 膜:

蛋白质经 SDS-PAGE 分离后，从凝胶中转移到固相支持物上，打开电转印夹，每侧垫上一块专用的用转印液浸泡透的海绵垫，再各放三块转印液浸泡透的滤纸，滤纸与海绵垫大小相同或与 NC 滤膜大小相同均可，将凝胶平放在阴极侧滤纸上，最后将 NC 滤膜平放在凝胶上，按照（-）夹板-海绵-滤纸-胶块-NC 滤膜-滤纸-海绵-夹板（+）装好，除尽气泡，夹好电转印夹。电泳槽加满预冷水转印液，插入电转印夹，将电泳槽放入冰箱内，连接好电极，接通电流，转印夹的 NC 膜应对电泳槽的正极，4℃，100V，350mA，转印 60min。

3.3.6 膜的封闭；

漂洗转印膜，室温，3 次×10min，以尽量洗去转印膜上的 SDS (以免影响抗体的结合)，放入 5%脱脂奶封闭液内，摇床震荡，室温封闭 2h 或 4℃过夜。1×TBS-T，pH7.6 洗液，室温漂洗 10min。

3.3.7 抗体杂交；

（1）封闭后的杂交膜放入杂交袋中，加入适当稀释的一抗（鼠抗人 IFNα-2b 单抗），4
℃孵育过夜或37℃孵育2h，1×TBS-T，PH7.6洗液洗膜3次x10min。
（2）滴加过氧化物酶标记羊抗鼠（HRP-羊抗鼠IgG），4℃过夜，1×TBS-T洗膜3×10min。
3.3.8 显色（ECM）, 显影, 定影:
(1) 将A和B两种试剂在保鲜膜上等体积混合; 1min后, 将膜蛋白面朝下与此混合液充分接触; 1min后, 将膜移至另一保鲜膜上, 去尽残液, 包好, 放入X光片夹中。
(2) 在暗室中, 将1×显影液和显影液分别倒入塑料盘中; 在灯下取出X光片, 用切纸刀剪裁适当大小（比膜的长和宽均需大1cm); 打开X光片夹, 把X光片放在膜上, 关上X光片夹, 开始计时; 根据信号的强弱适当调整曝光时间, 一般为1min或5min; 曝光完成后, 打开X光片夹, 取出X光片, 迅速浸入显影液中显影, 待出现明显条带后, 即刻终止显影。显影时间一般为1-2min（20-25℃）; 显影结束后, 马上把X光片浸入定影液中, 定影时间一般为5-10min, 以胶片透明为止; 用自来水冲去残留的定影液后, 室温下晾干。
3.3.9 凝胶图象分析:
将胶片进行扫描或拍照。

3.4 重组卡介苗自分泌细胞因子的测定

rBCG-IFNα-2b及pBCG和BCG分别在试管中摇床培养15天, OD600值约为0.5时,
装入离心管中, 离心2000rpm×10min, 仔细吸取上清, 按照ELISA试剂盒说明书的操作步骤检测培养上清中IFNα-2b的水平。

结果计算与判断:
(1) 所有OD值都应减去空白值后再行计算。
(2) 以标准品1000, 500, 250, 125, 62, 31, 15.6, 0 PG/ml之OD值在半对数纸上作图,
画出标准曲线。
(3) 根据样品OD值在该曲线上查出相应IFNα-2b含量。

4. 本发明产品的实验结果和技术效果:
4.1 实验结果:
4.1.1 重组卡介苗的抗酸染色结果

BCG是一种变毒的结核菌, 细长略带弯曲, 细胞壁脂质含量较高, 抗酸染色阳性。构建的rBCG同样具有BCG的基本特点, 如图1所示, 染色后光学显微镜镜检(目镜10×, 眼镜100×), 在蓝白色背景下, 抗酸杆菌呈红色。即rBCG抗酸染色阳性, 初步表明构建的rBCG是抗酸杆菌, 而不是其他细菌污染。可以继续摇床培养, 并作进一步的鉴定。
4.1.2 重组卡介苗质粒 DNA PCR 扩增结果

以抽提的 rBCG 质粒 DNA 为模板，分别以 IFN α-2b 引物（同 2.1.1.2 部分的引物）进行 PCR 扩增，得到结果如图 2 所示。图 2 中：左为 DNA Marker；1-4 为 PCR 扩增条带，与分子质量标记比较显示约 519bp，与理论上所得的扩增片段大小相同。

4.1.3 重组卡介苗分泌蛋白 Western Blotting 结果

参见图 3，Western Blotting 显示，rBCG-IFN α-2b 的培养上清和菌体中分别均可检测到 IFN α-2b 蛋白的表达，而 pBCG 和 BCG 的培养上清和菌体中未检测到上述蛋白的表达。其中培养上清中蛋白的表达量明显多于菌体，说明 rBCG-IFN α-2b 具有更强的蛋白分泌功能。图 3 中：4、5 分别为 rBCG-IFN α-2b 中的菌体和培养上清，均可见 19KD 的 IFN α-2b 蛋白表达；1、2 为 pBCG 的菌体和培养上清，未见蛋白表达；3 为标准 IFN α-2b 蛋白；6、7 为 BCG 的菌体和培养上清，未见蛋白表达。

4.1.4 重组卡介苗自分泌细胞因子的测定结果

ELISA 法测定培养上清中 IFN α-2b 的水平。只在 rBCG-IFN α-2b 培养上清中检测到高表达的 IFN α-2b 为 301.45 pg/ml，而 pBCG 和 BCG 的培养上清中均未检测到 IFN α-2b 的表达。

4.2 技术效果和初步结论：

4.2.1 rBCG-IFN α-2b 对人外周血单核细胞（PBMC）增殖活性：

rBCG-IFN α-2b 可明显刺激人外周血单核细胞（PBMC）增殖，并随刺激浓度的增加，PBMC 的增殖水平也增加，且这种刺激作用迅速。在刺激的第 1 天，PBMC 即有明显增殖，并在刺激后 3 天 PBMC 增殖达到高峰，参见表 5。

<table>
<thead>
<tr>
<th>stimulating concentration (cfu/ml)</th>
<th>1 day</th>
<th>2 day</th>
<th>3 day</th>
<th>5 day</th>
</tr>
</thead>
<tbody>
<tr>
<td>0×10⁴</td>
<td>0.314±0.003</td>
<td>0.323±0.005</td>
<td>0.468±0.013</td>
<td>0.484±0.011</td>
</tr>
<tr>
<td>1×10⁴</td>
<td>0.387±0.015△</td>
<td>0.445±0.017△</td>
<td>0.545±0.016△</td>
<td>0.511±0.017△</td>
</tr>
<tr>
<td>2×10⁴</td>
<td>0.421±0.018△</td>
<td>0.501±0.016△</td>
<td>0.618±0.023△</td>
<td>0.584±0.017△</td>
</tr>
<tr>
<td>4×10⁴</td>
<td>0.445±0.014△</td>
<td>0.530±0.013△</td>
<td>0.658±0.018△</td>
<td>0.601±0.063△</td>
</tr>
<tr>
<td>8×10⁴</td>
<td>0.475±0.019△</td>
<td>0.574±0.025△</td>
<td>0.692±0.032△</td>
<td>0.621±0.071△</td>
</tr>
</tbody>
</table>

△P<0.001 vs 0ug/ml
4.2.2 重组卡介苗激活的杀伤性细胞对膀胱肿瘤细胞的细胞毒作用

用 rBCG-IFN α-2b、BCG + IFN α-2b、BCG、IFN α-2b 和 PBS 刺激培养 PBMC 3d。收获效应细胞，分别命名为 RAK、BIAK、BAK、IAK 和 PAK 细胞，按不同的效应比 10:1、20:1、40:1 分别作用于人膀胱癌细胞株 T24、T5637，12h 后 MTT 法测定细胞毒活性。参
加图 5、图 6。结果表明，与普通 BCG 相比，rBCG-IFN α-2b 激活的人 PBMC 对人膀胱肿瘤细
胞株 T24、T5637 具有更强的杀伤作用，差异有显著性意义（P<0.01）。

4.2.3 rBCG-IFN α-2b 的优越性：

rBCG-IFN α-2b 既保留了原有 BCG 的免疫原性，又能持续分泌细胞因子 IFN α-2b，从
而提高 BCG 的免疫活性；IFN α-2b 能够直接作用于肿瘤细胞，抑制肿瘤细胞增殖和诱导分
化，而普通 BCG 对肿瘤细胞的直接杀伤作用不明显，因此，rBCG-IFN α-2b 可对部分普通
BCG 疗效不佳的患者起到治疗作用；由于 rBCG-IFN α-2b 具有更强的抗肿瘤作用，因此可
以减少使用剂量，从而降低 BCG 引起的毒副作用；rBCG-IFN α-2b 能够直接在局部高效分
泌 IFN α-2b，避免了使用外源 IFN α-2b 所带来的应用剂量大、副作用发生率高、作用时间
短暂和费用高昂的问题。
图1

图2

图3

图3

Harker

7KD
8KD
9KD
2KD
1KD
1F

1 2 3 4 5 6 7

IFNα 2b 9KD