

AUSTRALIA

Patents Act 1990

651737

NOTICE OF ENTITLEMENT

(To be filed before acceptance)

We, ERICSSON GE MOBILE COMMUNICATIONS, INC. of, S-126 25 Stockholm, Sweden being the applicant in respect of Application No. 26563/92 state the following:-

The Persons nominated for the grant of the patent have entitlement from the actual inventors by way of assignment.

The Persons nominated for the grant of the patent have entitlement from the applicants of the application listed in the declaration under Article 8 of the PCT by way of assignment.

The basic application listed on the request form is the first application made in a Convention country in respect of the invention.

By our Patent Attorneys,
WATERMARK PATENT & TRADEMARK ATTORNEYS

.....
L. J. Dyson

23 May 1994

Registered Patent Attorney

AU9226563

(12) PATENT ABRIDGMENT (11) Document No. AU-B-26563/92
(19) AUSTRALIAN PATENT OFFICE (10) Acceptance No. 651737

(54) Title
MAXIMUM SEARCH CIRCUIT
International Patent Classification(s)
(51)⁵ H03K 003/023 H03K 019/21
(21) Application No. : 26563/92 (22) Application Date : 18.09.92
(87) PCT Publication Number : WO93/06547
(30) Priority Data
(31) Number (32) Date (33) Country
761380 18.09.91 US UNITED STATES OF AMERICA
(43) Publication Date : 27.04.93
(44) Publication Date of Accepted Application : 28.07.94
(71) Applicant(s)
ERICSSON GE MOBILE COMMUNICATIONS, INC.
(72) Inventor(s)
PAUL W. DENT; JAAP C. HAARTSEN
(74) Attorney or Agent
WATERMARK PATENT & TRADEMARK ATTORNEYS, Locked Bag 5, HAWTHORN VIC 3122
(56) Prior Art Documents
US 3740538
(57) Claim

1. An electronic comparator for selecting and outputting a larger of first and second electrical, binary-coded input values presented bit-serially, most-significant-bit first, comprising:

first and second input terminals;

a logical exclusive-OR gate operatively connected to the first and second input terminals for forming a signal indicating a logical exclusive-OR of the first and second input values;

a first resettable flip-flop operatively connected to the logical exclusive-OR gate, wherein an output of the first flip-flop is set from a "0" state to a "1" state when the exclusive-OR gate signal indicates the first and second input values are unequal;

a second flip-flop operatively connected to the first flip-flop and the first input terminal, wherein an output of the second flip-flop is alternatively set to either a "0" state or a "1" state in correspondence with the first input value in response to the first flip-flop's output changing state; and

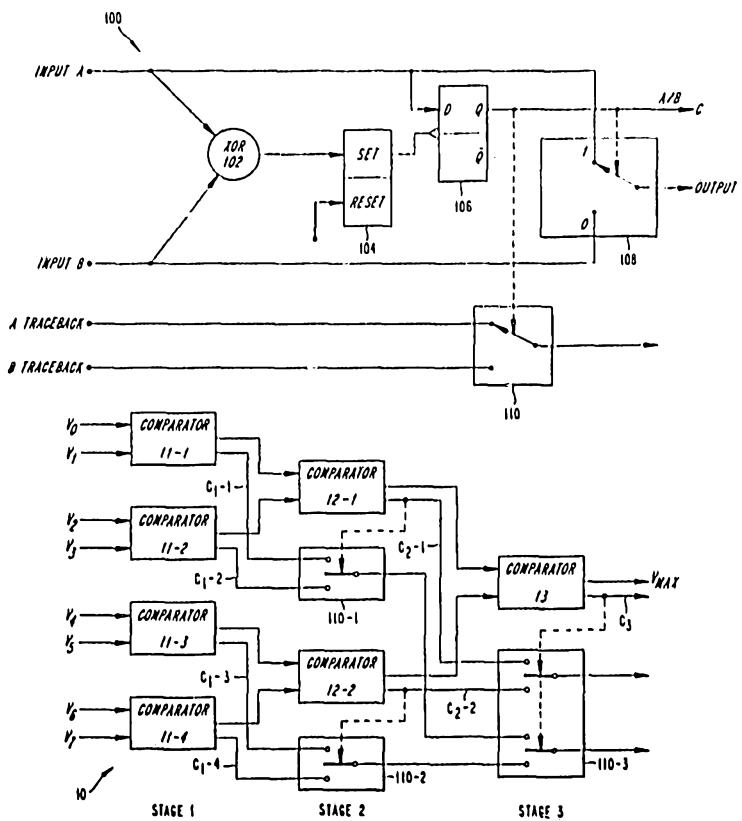
(11) AU-B-26563/92
(10) 651737

-2-

first selecting means, operatively connected to the first and second input terminals and the second flip-flop, for selecting one of the input values as an output of the comparator, wherein the first selecting means selects the first input value when the second flip-flop is set to the "1" state, and the first selecting means selects the second input value when the second flip-flop is set to the "0" state.

AU9226563

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)


(51) International Patent Classification ⁵ : G06F 7/38		(11) International Publication Number: WO 93/06547
A1		(43) International Publication Date: 1 April 1993 (01.04.93)
<p>(21) International Application Number: PCT/US92/07729</p> <p>(22) International Filing Date: 18 September 1992 (18.09.92)</p> <p>(30) Priority data: 761,380 18 September 1991 (18.09.91) US</p> <p>(71) Applicant: ERICSSON GE MOBILE COMMUNICATIONS, INC. [US/US]; 15 East Midland Avenue, Paramus, NJ 07652 (US), 1 Triangle Drive, Research Triangle Park NC 27709 US</p> <p>(72) Inventors: DENT, Paul, W. ; Apt. 201, Hyde Park Court, Cary, NC 27513 (US). HAARTSEN, Jaap, C. ; 413 Snowcrest Trail, Durham, NC 27707 (US).</p> <p>(74) Agent: SAVAGE, Michael, G.; Burns, Doane, Swecker & Mathis, George Mason Building, Washington and Prince Streets, P.O. Box 1404, Alexandria, VA 22313-1404 (US).</p>		
<p>(81) Designated States: AU, BR, CA, DE, ES, GB, JP, NL, SE.</p> <p>Published With international search report.</p> <p style="text-align: center;">651737</p>		

(54) Title: MAXIMUM SEARCH CIRCUIT

(57) Abstract

An electronic comparator (100) for selecting and outputting the larger of first and second electrical, binary-coded input values presented bit-serially, most-significant-bit first, has first and second input terminals; a logical exclusive-OR gate (102); a first resettable flip-flop (104); a second flip-flop (106); and a device (108) for selecting of the input values as an output of the comparator. In second embodiment, the electronic comparator has first and second input terminals; a logical exclusive-OR gate (102'); a first flip-flop synchronized with a train of bit-clock pulses (103'); a second resettable flip-flop (104'); a third flip-flop (106') and a device (108') for selecting one of the input values as an output of the comparator. Devices for generating traceback signals indicating which input values were selected and a signal indicating that the maximum value has been identified are also disclosed.

MAXIMUM SEARCH CIRCUIT

BACKGROUND

The present invention generally relates to methods and apparatus for digital signal processing or 5 computational operations.

It is sometimes desired to find the greatest of a set of values that may be electrically stored as a set of digital words in memory elements such as registers, random access memory ("RAM") or read-only memory ("ROM"). 10 Also, it is often desired to identify the largest such value, e.g., by finding its associated index number, which may be the number of the memory element in which the largest value is stored.

A common method for finding the largest of a set of 15 values involves sequentially scanning the set. A register for storing the largest value is loaded with the first value (and its index), and the contents of the register is compared to the second value. If the second value is larger, the second value and its index replace the first value and its index in the register. The third value is then compared to the register contents, and if 20 it is larger, the third value and its index replace the value and index stored in the register. The process continues until all subsequent values in the set have 25 been compared to the register contents.

Unfortunately, the amount of time needed for such a sequential search is proportional to the number of values in the set; thus, a sequential search may be too slow when the set is large. As described in more detail 30 below, the present invention provides a fully parallel search method and circuit implementation using bit- serially presented digital values that determine the maximum value and its index in a time period that is independent of the number of values in the set searched.

35 The present invention is particularly useful for code division multiple access ("CDMA") communications

techniques in cellular radio telephone communication systems, such as the enhanced CDMA demodulation scheme based on successive signal subtractions, in signal strength order, of multiple CDMA signals that is described in ^{U.S. Patent No. 5151191 granted 29} ~~co-pending U.S. Patent Application Serial No. 07/628,789, filed December 17, 1990.~~

In that co-pending patent application, it is explained that superior methods of spectrally spreading an information signal, such as occurs in a CDMA system, use error correction coding. When a single information bit is expanded into a pseudo-random sequence of R bits, the information bandwidth is spread without error-correction-coding gain; this technique may be termed "simple spreading". On the other hand, spreading a block of M information bits, where $M > 1$, into a pseudo-random sequence of $M \times R$ bits provides an error correction coding gain of the spreading ratio R. This technique, called "intelligent spreading", can involve either orthogonal or bi-orthogonal block coding of the information signal to be transmitted.

In orthogonal block coding, M bits to be transmitted are converted to one of 2^M available 2^M -bit orthogonal codewords. Decoding involves correlating a received signal with all members of the set of orthogonal codewords, and the index of the codeword giving the highest correlation yields the desired information. For example, if a signal's correlation with sixteen 16-bit codewords index-numbered 0 to 15 produces the highest correlation on the tenth codeword, the desired signal information is the 4-bit binary word 1010 (decimal 10).

A comparison processor may determine which correlation has the largest magnitude and may set that signal to zero by opening a corresponding switch. In this manner, the demodulated signal is subtracted effectively from the composite signal. The remaining spectrum with one component removed is processed and re-scrambled to reconstruct the original signal samples

less the just-decoded signal. The magnitude of the correlated signal is representative of signal strength and may be stored in a sorting processor along with the signal's corresponding scrambling code. The processor 5 orders the scrambling codes from greatest to weakest correlated signal magnitudes, and the code corresponding to the greatest magnitude may then be transmitted to the descrambler for the next signal demodulation.

Thus, after the comparison processor detects real 10 and imaginary correlations and determines complex correlation magnitudes by calculating the square root of the sum of the squares of the real and imaginary components, the processor may then determine which complex correlation has the greatest magnitude. The real 15 and imaginary components of the selected correlation may also be analyzed in the complex plane to determine if the phase has changed.

SUMMARY

In one embodiment, the present invention provides an 20 electronic comparator for selecting and outputting the larger of first and second electrical, binary-coded input values presented bit-serially, most-significant-bit first, comprising: first and second input terminals; a logical exclusive-OR gate operatively connected to the 25 first and second input terminals for forming a signal indicating a logical exclusive-OR of the first and second input values; a first resettable flip-flop operatively connected to the logical exclusive-OR gate, wherein an output of the first flip-flop is set from a "0" state to a "1" state when the exclusive-OR gate signal indicates 30 the first and second input values are unequal; a second flip-flop operatively connected to the first flip-flop and the first input terminal, wherein an output of the second flip-flop is set to a "0" state or to a "1" state 35 in correspondence with the first input value when the first flip-flop's output changes state; and means, operatively connected to the first and second input

5 terminals and the second flip-flop, for selecting one of the input values as an output of the comparator, wherein the selecting means selects the first input value when the second flip-flop is set to the "1" state, and the selecting means selects the second input value when the second flip-flop is set to the "0" state.

10 In a second embodiment, the present invention provides an electronic comparator for selecting and outputting the larger of first and second electrical, binary-coded input values presented bit-serially, most-significant-bit first, comprising: first and second input terminals; a logical exclusive-OR gate operatively connected to the first and second input terminals for forming a signal indicating a logical exclusive-OR of the 15 first and second input values; a first flip-flop operatively connected to the logical exclusive-OR gate for registering a value indicating whether corresponding bits of the first and second input values are equal or unequal, wherein the first flip-flop registers the value 20 in synchrony with a train of bitclock pulses applied to the first flip-flop; a second resettable flip-flop operatively connected to the first flip-flop, wherein an output of the second flip-flop is set from a "0" state to a "1" state when the value registered by the first flip-flop indicates the two input values' bits are unequal; a 25 third flip-flop operatively connected to the second flip-flop and the first input terminal, wherein an output of the third flip-flop is set to a "0" state or to a "1" state in correspondence with the first input value's bit when the second flip-flop's output changes state; and 30 means, operatively connected to the first and second input terminals and the second and third flip-flops, for selecting one of the input values as an output of the comparator, wherein the selecting means selects the 35 logical OR gate signal as the output when the second flip-flop is in the "0" state, and the selecting means selects the first input value as the output when the

third flip-flop is set to "1", and the selecting means selects the second input value as the output when the third flip-flop is set to "0".

5 In other aspects, traceback signals to indicate which of the first and second input values was selected by the selecting means and a signal indicating that the maximum value has been identified are also provided.

BRIEF DESCRIPTION OF THE DRAWINGS

10 The features and advantages of the invention will be understood after reading the following detailed description in conjunction with the drawings, in which:

Figure 1 illustrates a binary tree structure for finding the greatest of eight values;

15 Figure 2A is a block diagram of one embodiment of a bit-serial, most-significant-bit-first comparator in accordance with the present invention;

Figure 2B is a block diagram of a structure of the comparators of Figure 2A for finding the greatest of eight values;

20 Figure 3 is a block diagram of another embodiment of a comparator in accordance with the present invention; and

25 Figure 4 is a diagram of a means for generating a signal that indicates that the maximum value has been identified.

DETAILED DESCRIPTION

30 While portions of the present description are given in a context of cellular communications systems involving portable or mobile radio telephones and/or personal communication networks, it will be understood by those skilled in the art that the present invention may be used in other applications. In addition, binary values that are always positive, with 00...0 being the smallest value and 11...1 being the largest value, are described, but it 35 will be understood that the description is readily adapted to other binary formats.

As an aid in understanding the present invention, a process or apparatus for determining the greatest (or the least, for that matter) of a set of M values can be visualized as a binary tree that is symmetric, or 5 regular, when $M = 2^N$. For example, when $M = 8$ as shown in Figure 1, pairs of the M input values V_0-V_7 , are compared in a first stage of a tree 10 having $M/2 = 4$ comparators 11-1 to 11-4; the larger value of each pair is selected and passed to a second stage having $M/4 = 2$ comparators 10 12-1, 12-2. The larger values of the two pairs are passed to the final, third stage having $M/8 = 1$ comparator 13, which passes the largest value V_{MAX} to its output. It will be appreciated that the number of stages needed for searching the M input values is just N .

15 Even sets of input values generating asymmetric trees can be efficiently processed by a tree structure like that shown in Figure 1 but in which appropriate ones of the comparators are absent. For example, if only input values V_0-V_4 were presented in Figure 1, the 20 comparators 11-3, 11-4 and 12-2 could be eliminated and the input value V_4 could be presented directly to the comparator 13. Alternatively, an asymmetric tree can be made symmetric by padding with a sufficient number of 25 input zeroes or other known values. For the previous example, the input values V_5-V_7 , could be set to zero and presented to the tree 10 shown in Figure 1.

30 In one aspect of the invention, the tree structure is advantageously implemented by a suitable number of comparators that each compare two input values presented bit-serially, most-significant-bit ("MSB") first, and pass the larger of the two with substantially no delay. Such comparators stand in marked contrast to conventional 35 comparators that are based on bit-serial subtraction and compare values presented least-significant-bit first. In another aspect of the invention, each comparator generates a traceback bit for identifying the larger of its input values and passes traceback bits for

identifying the comparators in the preceding stages that were deemed to have furnished the larger input values. It will be appreciated that such bit-serial, MSB-first comparators can be implemented in a suitable, otherwise 5 conventional, integrated circuit.

Figure 2A illustrates one embodiment of a bit-serial, MSB-first comparator 100 according to the present invention that could implement the tree of Figure 1. A pair of binary-coded values are presented bit-serially, 10 MSB first, on inputs A and B to an otherwise conventional exclusive-OR ("XOR") gate 102 that produces a logic HIGH, or "1", output when the values on inputs A and B are unequal. Since the pair of input values are presented and compared bit by bit, MSB first, the input value 15 having the binary "1" will be recognized as the larger on the first occasion that two unlike bits are encountered. (It will be appreciated that as long as the input bits are the same, it cannot be known which value is the larger, but in that case it does not matter which of the 20 two inputs is passed to the output.)

When the output of the XOR gate 102 goes HIGH, indicating that the inputs A, B, are different, it sets a latch 104 that remains set for the rest of the bits of the pair of input values. The latch 104, which may be a 25 conventional set-reset flip-flop, also has a reset input for a suitable control signal for initializing the latch output to logic LOW, or "0", before the first and between sets of input values. The output of the latch 104 is connected to the clock input of a D-type flip-flop 106; thus, when the output of the latch 104 goes HIGH, the 30 value of one of the inputs (input A, for example) is clocked into the flip-flop 106.

As seen in Figure 2A, when the A input value is larger than the B input value (e.g., A's MSB is a "1" and 35 B's MSB is a "0"), the Q output of the flip-flop 106 goes HIGH. The Q output acts as a control signal indicated by the dotted line that causes an input-selector switch 108,

such as a field-effect transistor ("FET"), to switch to the "1" position as shown, thereby connecting the A input to the comparator output for the rest of the pair of input values. In the embodiment shown in Figure 2A, the 5 \bar{Q} output of flip-flop 106 is not used.

On the other hand, if the A input is a "0" when the output of the latch 104 goes HIGH, the A input is again clocked into the flip-flop 106, and the Q output goes LOW, causing the input-selector switch 108 to switch to the "0" position. Thus, the B input is connected to the 10 output for the rest of the pair of input values. As noted above, because the input values are presented MSB first, it does not matter which input value is connected to the output before the output of the XOR gate 102 goes 15 HIGH.

It will be appreciated that the Q output of the flip-flop 106 indicates which of the two inputs was selected (i.e., which value was "1"), and thus the 20 Q output is provided as the comparator's traceback signal output C. The binary traceback signal can be used as an index of the larger value by arbitrarily assigning its value "0" to input A and the value "1" to input B, for example.

The comparator 100 may also have an associated 25 traceback-selector switch 110 that may have a plurality of poles (only one is shown in Figure 2A). The state of the switch 110 is also controlled by the Q output of the flip-flop 106, and each pole of the switch 110 passes either an A TRACEBACK or B TRACEBACK signal from 30 comparators in preceding tree stages. The number of poles provided in each traceback-selector switch 110 depends on how many traceback signals are to be passed from the preceding stage and the position of its 35 associated comparator in the binary tree. Thus, a binary tree can be implemented by a suitable plurality of comparators 100 and switches 110 that yields not only the

largest value of a set of input values but also the index of the largest value.

For example, if the largest of $M = 128$ values were to be found, the tree would have seven stages, the first 5 of which would have sixty-four comparators. The first-stage comparators would need no traceback-selector switches, but each would generate one (a first) traceback signal. Thus, the thirty-two second-stage comparators would each have an associated one-pole traceback-selector switch and would each generate a second traceback signal. 10 The sixteen third-stage comparators would each have an associated two-pole traceback-selector switch and would each generate a third traceback signal. This would continue until the seventh stage, in which the one 15 comparator would have a six-pole traceback-selector switch and would generate a seventh traceback signal. The 7-bit traceback word consisting of the traceback signals passed and generated by the seventh stage would then be the index of the largest of the one hundred 20 twenty-eight input values with the symbols "1" and "0" assigned to the comparator inputs as described above.

The symmetric tree 10 of Figure 1 implemented by such comparators and traceback-selector switches is illustrated in Figure 2B. Eight input values V_0 to V_7 are presented to four first stage comparators 11-1 to 11-4, 25 none of which has a traceback-selector switch but each of which generates one of the first traceback signals C_{1-1} to C_{1-4} . The outputs of the first stage comparators are fed to the inputs of the two second stage comparators 30 12-1, 12-2, each of which has a one-pole traceback-selector switch 110-1, 110-2, respectively, for passing one of the pairs of traceback signals C_{1-1} , C_{1-2} , and C_{1-3} , C_{1-4} , respectively, and generates second traceback signals C_{2-1} , C_{2-2} . The outputs of the second stage comparators 35 are fed to the inputs of the third stage comparator 13, which has a double-pole traceback-selector switch 110-3 and generates the third traceback signal C_3 . One pole of

the traceback-selector switch 110-3 passes one of the pair of traceback signals C_2-1 , C_2-2 , and the other pole passes one of the pair of outputs from preceding stage traceback selector switches 110-1, 110-2. The output V_{MAX} of the third stage comparator 13 is the largest of the input values V_0 to V_7 .

It will be appreciated that the apparatus illustrated in Figure 2B outputs and identifies the largest input value in a time no longer than that needed to present them. In fact, the maximal value's identification by the traceback word may be available in significantly less time; for example, a single large-magnitude input value could be identified early. These advantages are potentially available no matter how many input values must be searched. It may sometimes be more efficient from a hardware size and cost point of view, however, to divide large sets of input values into subsets, find the maximal value of each subset, and then find the maximal value of those subset maximal values.

In practice, a binary tree comprised of comparators such as that shown in Figure 2A could suffer from undesirable logic glitches due to varying propagation delays. Accordingly, Figure 3 shows a preferred embodiment of a comparator 100' in accordance with the present invention that avoids such logic glitches. A pair of input binary-coded values are presented bit-serially, MSB first, on inputs A' , B' , to an otherwise conventional XOR gate 102'. Instead of being connected directly to the SET input of a set-reset flip-flop 104' as in the comparator 100, the output of gate 102' is connected to the D-input of a second D-type flip-flop 103'. The flip-flop 103' is clocked by a BITCLOCK signal that is synchronized to the presentation of the input bits. The Q output of the flip-flop 103' is passed to the SET input of the latch 104', the output of which clocks a D-type flip-flop 106' as in comparator 100.

Besides beneficially eliminating the effects of varying propagation delays by synchronizing the operation of the comparator to the BITCLOCK signal, another effect of the second flip-flop 103' is to delay slightly the 5 result of the decision by gate 102' whether the two input bits are the same or different. Thus, if the flip-flop 103' were simply inserted into the comparator 100, the input-selector switch 108 would not take on the correct state until slightly after the input bits were 10 presented, and the wrong value could be temporarily presented at the comparator output.

To avoid temporarily selecting the wrong input value as a result of that delay, a modified input-selector switch 108' comprising five conventional NAND gates 108'-1 to 108'-5 is provided. The input-selector switch 108' 15 has three states: (1) an initial state, in which the switch 108' behaves as an OR gate; (2) a select-A state; and (3) a select-B state. In the initial state, the input-selector switch's OR function has the effect that 20 the comparator output promptly goes to "1" when different A and B inputs are presented. Thus, the bit value belonging to the larger input is presented at the output without waiting for the output of the XOR gate 102' to be clocked into flip-flop 103'. In the select-A state, the 25 A value on the input A' is connected to the comparator output, and in the select-B state, the B value on the input B' is connected to the comparator output, both for the rest of the pair of input values as described above.

As seen in Figure 3, a suitable three-state input-selector switch 108' comprises five two-input NAND gates 108'-1 to 108'-5. With the latch 104' initialized 30 (reset), the NAND gates 108'-1, 108'-2, are both fed with a "0" from the latch before unlike input bits are encountered, forcing their outputs to "1" irrespective of the outputs of the gate 106'. Thus, the outputs of the 35 NAND gates 108'-3, 108'-4, are merely inversions of the A and B inputs, respectively. Also, the output of the gate

108'-5 is the inversion of its (equal) inputs, i.e., A OR B, which is the same as both the A and B inputs so long as the A and B inputs are equal.

When the output of XOR gate 102' and the Q output of flip-flop 103' have gone HIGH, latch 104' clocks the A input into the flip-flop 106' and sets a "1" on the inputs of gates 108'-1, 108'-2, thereby passing to gates 108'-3, 108'-4, information about which of the A and B inputs is "1". Thus, an inversion of the Q output of flip-flop 106' (i.e., \bar{A}) is presented to the inputs of the gate 108'-4, and an inversion of the \bar{Q} output (i.e., A) is presented to the inputs of gate 108'-3.

If the A input is "1", that "1" and a "1" are presented on the inputs of gate 108'-3, and its output goes LOW. The B-input "0" and a "0" are presented on the inputs of gate 108'-4, and its output goes HIGH. Thus, the output of gate 108'-5 goes HIGH. If the A input is "0", that "0" and a "0" are presented on the inputs of gate 108'-3, and its output goes HIGH. The B-input "1" and a "1" are presented on the inputs of gate 108'-4, and its output goes LOW. Thus, the output of gate 108'-5 again goes HIGH. In either case, the output of gate 108'-5 continues to track the input that was "1" for the rest of the pair of input values.

As described above in connection with Figure 2A, the Q output of flip-flop 106' indicates which of the A and B inputs was selected, and is output as the traceback signal C'. In addition, Figure 3 shows the Q output as a control signal for a three-pole traceback-selector switch 110' that passes A and B traceback signals from preceding comparators as described above.

As discussed above, the maximum value's identification by the traceback word can become available after a time period significantly less than that needed to present the input values. A suitable means 112 for generating a signal that indicates that the maximum value has been identified is illustrated in Figure 4. Such a

generating means 112 can be provided with either of the comparators 100, 100', and traceback selectors 110, 110'.

Referring to Figure 4, the state of a selector switch 114 is controlled by the Q output of the 5 comparator's D-type flip-flop (i.e., either the flip-flop 106 in the comparator 100, or the flip-flop 106' in the comparator 100'). The output of the switch 114 is presented to one input of an AND gate 116, and the other input of the AND gate 116 is connected to the SET output of the comparator's latch (i.e., the latches 104, 104' in the comparators 100, 100', respectively). Those inputs 10 determine the state of the AND gate's output signal D. The signals E, F, that are presented to the inputs of the switch 114 are the outputs from the preceding stage's AND 15 gates 116; it will thus be appreciated that the signals E, F, are different from the traceback signals handled by the selector switches 110, 110'.

The generating means 112 are provided in a manner substantially similar to the manner in which the 20 traceback selector switches are provided. Just as the first stage of the tree does not need any selector switches 110, 110', the first stage of the tree does not need any generating means 112. The signals E, F, that are input to the respective switches 114 in the 25 generating means associated with the tree's second stage are just the SET outputs of either the latches 104 or the latches 104' of the first stage comparators 100 or 100', respectively. When the output of the last stage generating means's AND gate 116 goes to "1", the 30 traceback word presented from the last stage of the tree is valid (viz., the traceback bits identify the maximum value), and the search can be halted.

It is, of course, possible to embody the invention 35 in specific forms other than those described above without departing from the spirit of the invention. The embodiments described above are merely illustrative and should not be considered restrictive in any way. The

scope of the invention is given by the appended claims, rather than the preceding description, and all variations and equivalents which fall within the range of the claims are intended to be embraced therein.

CLAIMS:

1. An electronic comparator for selecting and outputting a larger of first and second electrical, binary-coded input values presented bit-serially, most-significant-bit first, comprising:

5 first and second input terminals;

a logical exclusive-OR gate operatively connected to the first and second input terminals for forming a signal indicating a logical exclusive-OR of the first and second input values;

10 a first resettable flip-flop operatively connected to the logical exclusive-OR gate, wherein an output of the first flip-flop is set from a "0" state to a "1" state when the exclusive-OR gate signal indicates the first and second input values are unequal;

15 a second flip-flop operatively connected to the first flip-flop and the first input terminal, wherein an output of the second flip-flop is alternatively set to either a "0" state or a "1" state in correspondence with the first input value in response to the first flip-flop's output changing state; and

20 25 first selecting means, operatively connected to the first and second input terminals and the second flip-flop, for selecting one of the input values as an output of the comparator, wherein the first selecting means selects the first input value when the second flip-flop is set to the "1" state, and the first selecting means selects the second input value when the second flip-flop is set to the "0" state.

30 2. An electronic comparator according to claim 1, wherein the second flip-flop generates a traceback signal to indicate which of the first and second input values was selected by the first selecting means.

3. An electronic comparator according to claim 2, further comprising second selecting means, responsive to the traceback signal, for alternatively selecting either a first traceback signal associated with the first input value or a second traceback signal associated with the second input value based on the input value selected by the first selecting means.

4. An electronic comparator according to claim 3, further comprising means, operatively connected to the first and second flip-flops, for generating a signal that indicates that the larger value has been identified.

5. An electronic comparator for selecting and outputting a larger of first and second electrical, binary-coded input values presented bit-serially, most-significant-bit first, comprising:

first and second input terminals;
a logical exclusive-OR gate operatively connected to the first and second input terminals for forming a signal indicating a logical exclusive-OR of the first and second input values;

a first flip-flop operatively connected to the logical exclusive-OR gate for registering a value indicating whether corresponding bits of the first and second input values are equal or unequal, wherein the first flip-flop registers the value in synchrony with a train of bitclock pulses applied to the first flip-flop;

a second resettable flip-flop operatively connected to the first flip-flop, wherein an output of the second flip-flop is set from a "0" state to a "1" state when the value registered by the first flip-flop indicates the two input values' bits are unequal;

a third flip-flop operatively connected to the second flip-flop and the first input terminal, wherein an output of the third flip-flop is alternatively set either to a "0" state or a "1" state in correspondence with the

first input value's bit in response to the second flip-flop's output changing state; and

first selecting means, operatively connected to the first and second input terminals and the second and third flip-flops, for selecting one of the input values as an output of the comparator, wherein the first selecting means selects the logical OR of the first and second input values as the output when the second flip-flop is in the "0" state, and the first selecting means selects the first input value as the output when the third flip-flop is set to "1", and the first selecting means selects the second input value as the output when the third flip-flop is set to "0".

6. An electronic comparator according to claim 5, wherein the third flip-flop generates a traceback signal to indicate which of the first and second input values was selected by the first selecting means.

7. An electronic comparator according to claim 6, further comprising second selecting means, responsive to the traceback signal, for alternatively selecting either a first traceback signal associated with the first input value or a second traceback signal associated with the second input value based on the input value selected by the first selecting means.

8. An electronic comparator according to claim 6, further comprising means, operatively connected to the second and third flip-flops, for generating a signal that indicates that the larger value has been identified.

9. An electronic logic circuit for selecting and outputting a maximum of a plurality of electrical binary-coded values comprising a plurality of selecting means for selecting and outputting a larger of two selecting means input values, the plurality of selecting means

being tree-connected to form a tree of selecting means and each selecting means including means for generating a traceback signal to indicate which of the two selecting means input values was selected, wherein pairs of the plurality of values are presented bit-serially, most-significant-bit first, to respective first ones of the selecting means disposed in a first stage of the tree, each first selecting means outputting a larger of the two selecting means input values as a first-stage output signal and outputting its traceback signal as a first-stage traceback signal, the first-stage output signals being presented bit-serially, most-significant-bit first, to respective second ones of the selecting means disposed in a second stage of the tree, and so forth for subsequent stages of the tree until the maximum of the input values is passed as an output signal from a last selecting means disposed in a last stage of the tree, and the first-stage traceback signals being presented to respective second ones of the selecting means disposed in a second stage of the tree, each second selecting means including means for selecting either the first traceback signal associated with the second selecting means' first selecting means input value or the first traceback signal associated with the second selecting means' second selecting means input value, and so forth for subsequent stages of the tree.

10. An electronic logic circuit according to claim 9, further comprising means, operatively connected to the selecting and outputting means, for generating a signal that indicates that the maximum value has been identified.

1/4

FIG. 1

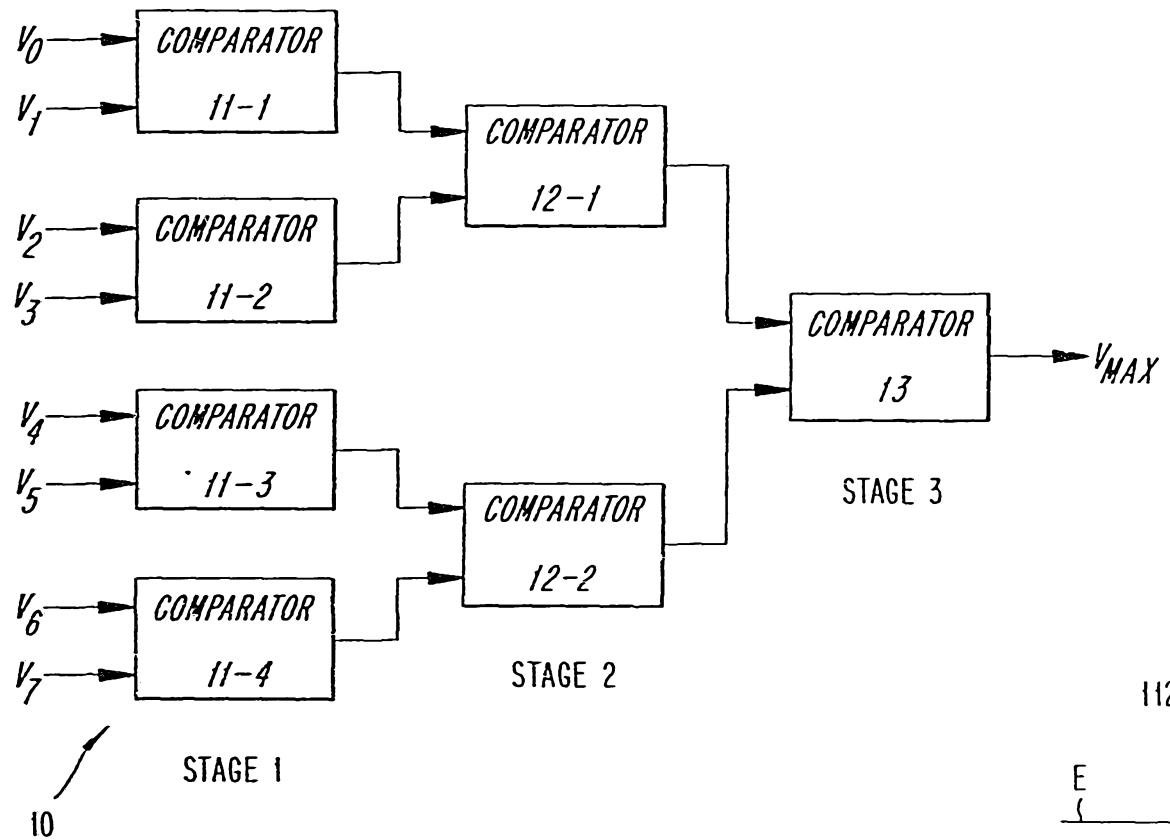
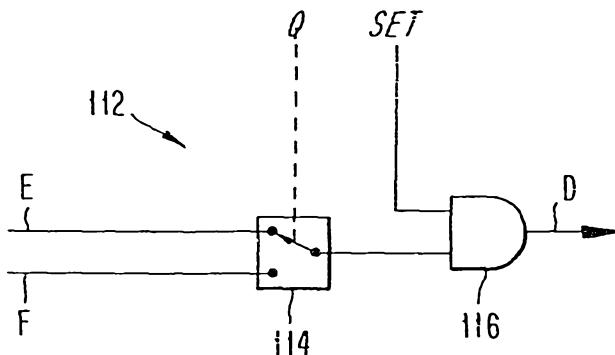
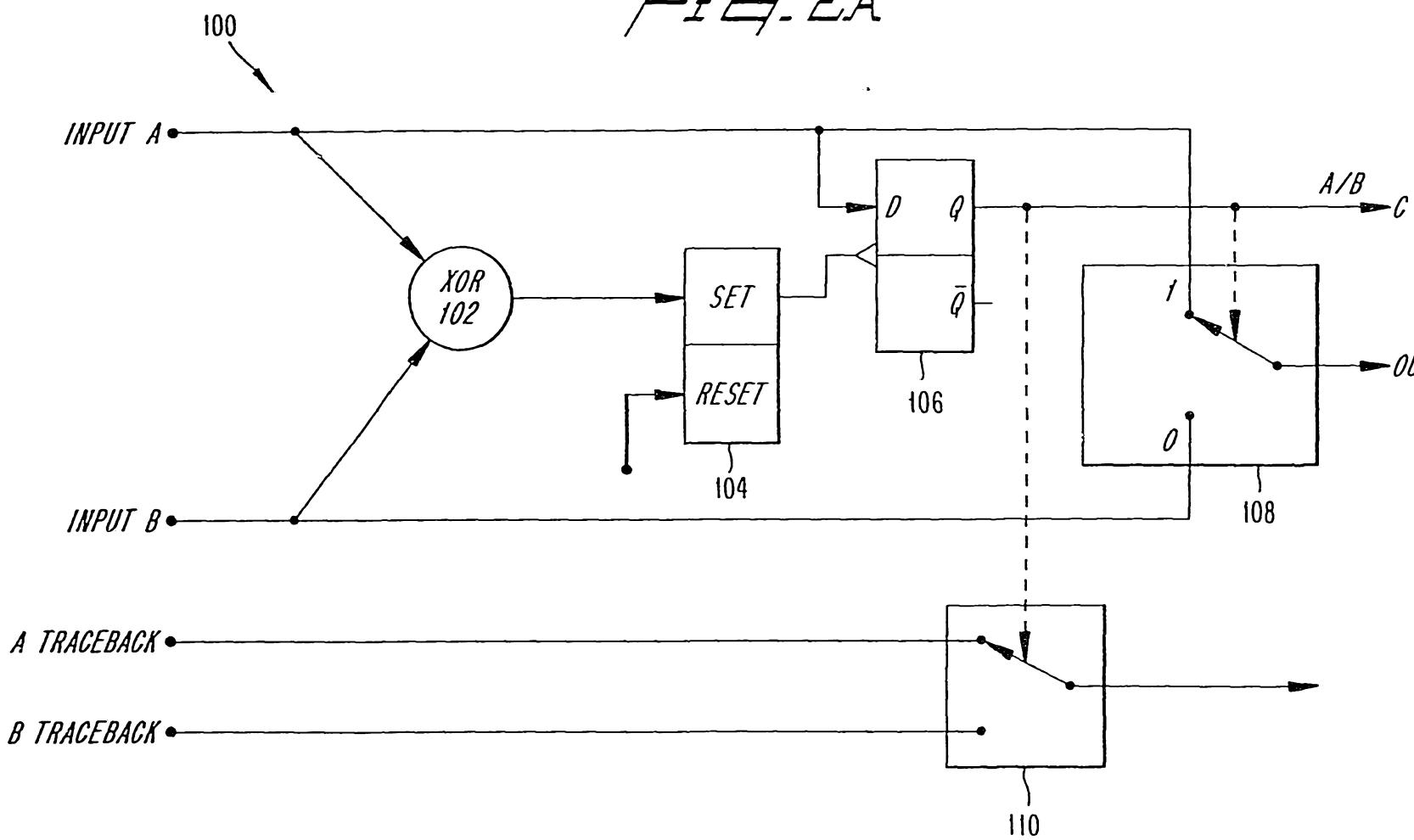




FIG. 4

265-6 3/92 2/4

FIG. 2A

24563/92 3/4

FIG. 2B

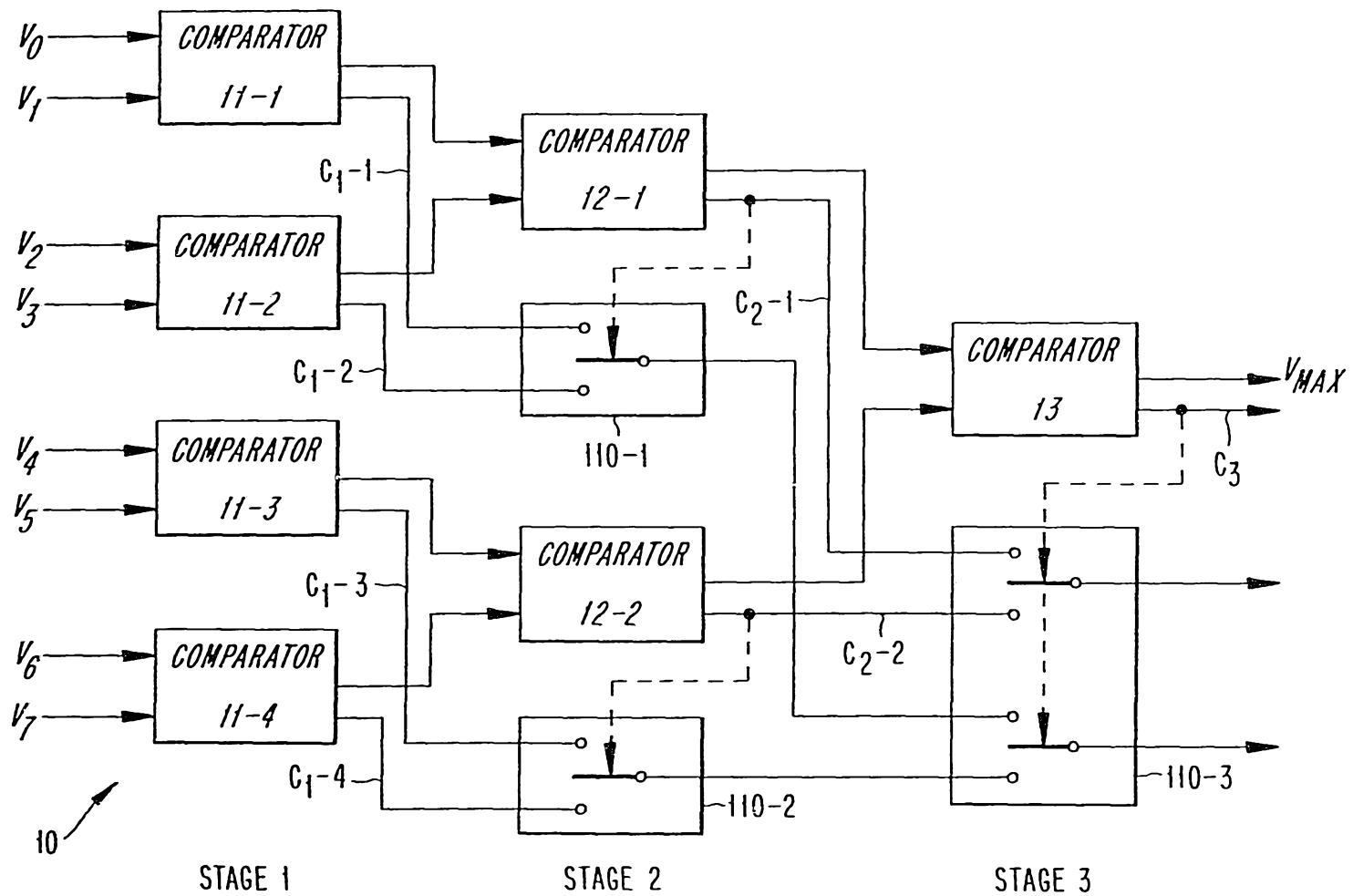
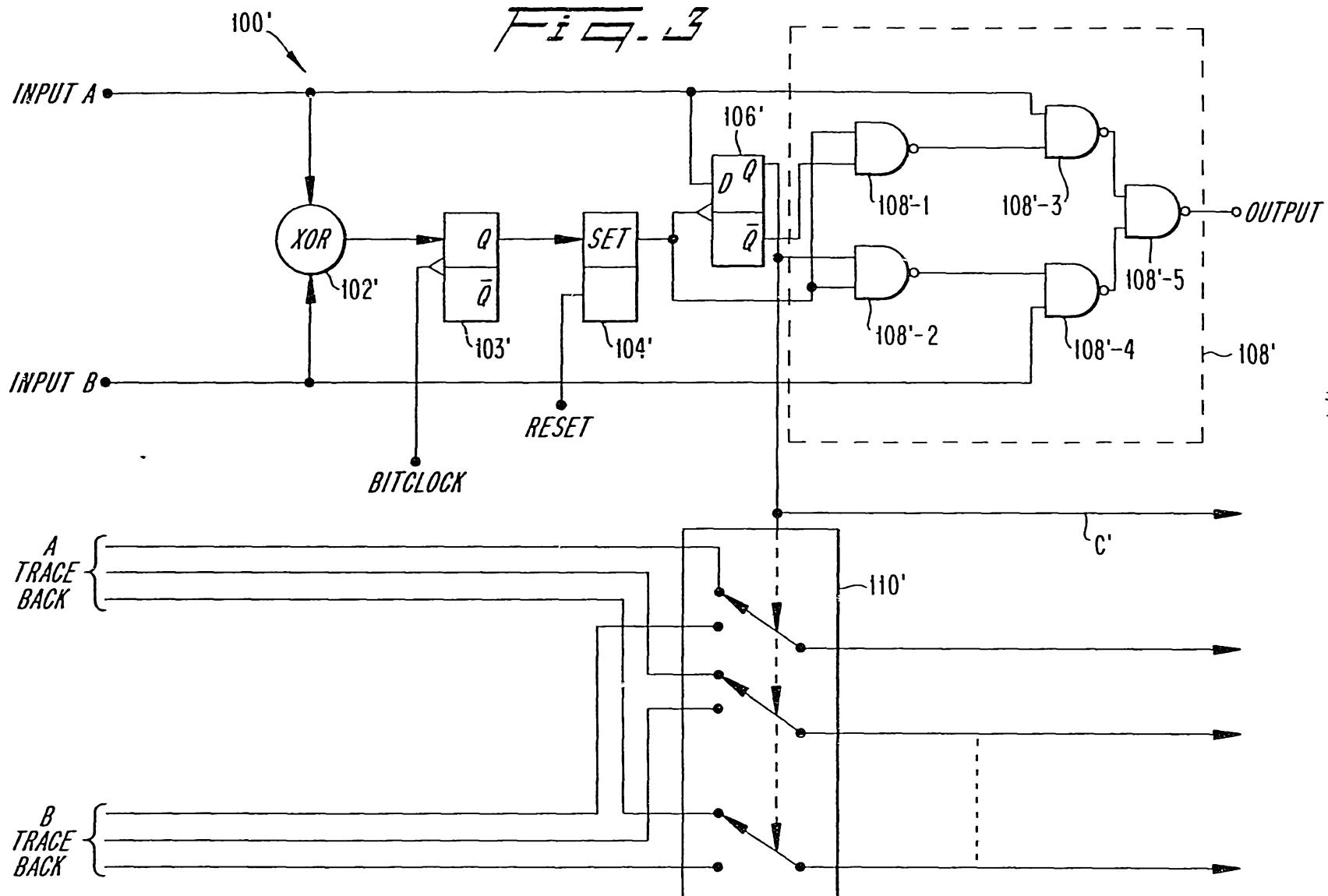



FIG. 3

INTERNATIONAL SEARCH REPORT

Int'l. application No.

PCT/US92/07729

A. CLASSIFICATION OF SUBJECT MATTER

IPC(5) :G06F 7/38
 US CL :364/715.06; 340/146.2

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 364/715.06; 340/146.2

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

none

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US, A, 4,567,572 (MORRIS ET AL.) 28 January 1986, see the Abstract.	1-10
A	US, A, 3,740,538 (HEMPHILL) 19 June 1973, see the Abstract.	1-10
A	US, A, 4,903,005 (SAKASHITA ET AL.) 20 February 1990, see the Abstract.	1-10

<input type="checkbox"/>	Further documents are listed in the continuation of Box C.	<input type="checkbox"/>	See patent family annex.
A	Special categories of cited documents:	*T*	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
E	document defining the general state of the art which is not considered to be part of particular relevance	*X*	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L	earlier document published on or after the international filing date	*Y*	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O	document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	*&*	document member of the same patent family
P	document referring to an oral disclosure, use, exhibition or other means		
	document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search 16 OCTOBER 1992	Date of mailing of the international search report 08 DEC 1992
Name and mailing address of the ISA/ Commissioner of Patents and Trademarks Box PCT Washington, D.C. 20231	Authorized officer <i>Quang Boudry Jr</i> CHUONG D. NGO VSH
Facsimile No. NOT APPLICABLE	Telephone No. (703) 308-1582