

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
5 February 2004 (05.02.2004)

PCT

(10) International Publication Number
WO 2004/011637 A2

(51) International Patent Classification⁷:

C12N 9/00

(21) International Application Number:

PCT/US2003/023484

(22) International Filing Date: 29 July 2003 (29.07.2003)

(25) Filing Language:

English

(26) Publication Language:

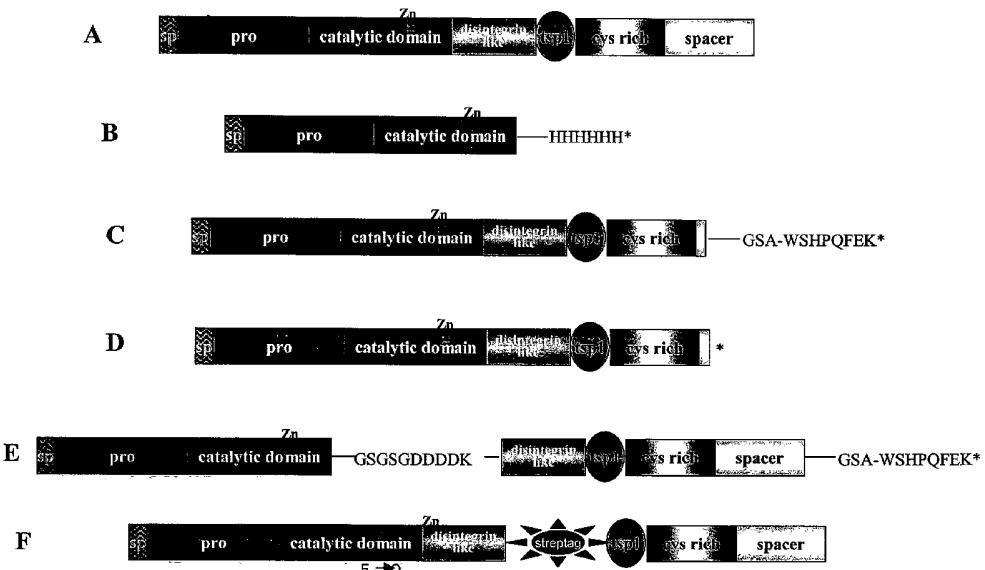
English

(30) Priority Data:

60/398,721 29 July 2002 (29.07.2002) US

(71) Applicant: WYETH [US/US]; 5 Giralta Farms, Madison, NJ 07940 (US).

(71) Applicants and


(72) Inventors: CORCORAN, Christopher, John [US/US]; 170 Broadway Apt 3, Arlington, MA 02474 (US). FLAN-NERY, Carl, R. [US/US]; 13 Brucewood Road, Acton, MA 01720 (US). ZENG, Weilan [CN/US]; 696 Lexington Street, Waltham, MA 02452 (US). RACIE, Lisa, A. [US/US]; 124 School Street, Acton, MA 01720 (US). MC-DONAGH, Thomas [US/US]; 48 Mohawk Drive, Acton, MA 01720 (US). FREEMAN, Bethany, A. [US/US]; 52 Foster Street, Arlington, MA 02472 (US). GEORGIADIS, Katy, E. [US/US]; 46 Trowbridge Street, Belmont, MA 02478 (US). LAVALLIE, Edward, R. [US/US]; 113 Ann Lee Road, Harvard, MA 01451 (US).

(74) Agents: VAN DYKE, Raymond et al.; Dorsey & Whitney LLP, 1001 Pennsylvania Avenue, N.W., Suite 400 South, Washington, DC 20004 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE,

[Continued on next page]

(54) Title: MODIFIED ADAMTS4 MOLECULES AND METHOD OF USE THEREOF

WO 2004/011637 A2

(57) Abstract: The present invention relates to modified ADAMTS4 proteins having improved stability comparing to the corresponding native, unmodified proteins. The modified ADAMTS4 proteins can be expressed and isolated in large quantities, thus allowing further characterization of the proteins, such as crystallographic and enzyme kinetic studies. The purified, stable proteins would also facilitate the production of antiADAMTS antibodies and the development of inhibitors to ADAMTS enzymes.

SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— *without international search report and to be republished upon receipt of that report*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

MODIFIED ADAMTS4 MOLECULES AND METHOD OF USE THEREOF**REFERENCE TO RELATED APPLICATION(S)**

This application claims the benefit of priority of U.S. Provisional Patent Application Serial No. 60/398,721, filed July 29, 2002, the entire disclosure of which is incorporated by reference herein.

5 FIELD OF THE INVENTION

The present invention relates to modified aggrecanases, nucleotides encoding such enzymes, and processes for producing these enzymes. The invention further relates to the development of inhibitors of, as well as antibodies to, the modified aggrecanase. These inhibitors and antibodies may be useful for the treatment of various aggrecanase-
10 associated conditions including osteoarthritis.

BACKGROUND OF THE INVENTION

Aggrecan is a major extracellular component of articular cartilage. It is a proteoglycan responsible for providing cartilage with its mechanical properties of compressibility and elasticity. The loss of aggrecan has been implicated in the
15 degradation of articular cartilage in arthritic diseases such as osteoarthritis.

Aggrecan contains two N-terminal globular domains, G1 and G2, separated by a proteolytically-sensitive interglobular domain, followed by a glycosaminoglycan attachment region and a C-terminal globular domain, G3. At least two enzymatic cleavage sites have been identified within the interglobular domain of aggrecan. One
20 enzymatic cleavage site within the interglobular domain of aggrecan (asn341-phe342) has been observed to be cleaved by several known metalloproteases. Cleavage at a second aggrecan cleavage site within aggrecan (glu373-ala374) has been attributed to aggrecanase activity. The cleavage site (glu373-ala374) is therefore referred to as the aggrecanase cleavage site.

25 A number of aggrecanases have been cloned in recent years. These enzymes belong to a subfamily of zinc metalloproteases referred to as "ADAMTS," an abbreviation for A Disintegrin-like And MetalloProtease domain with ThromboSpondin type I motifs. The ADAMTS family currently consists of 19 members that are related to one another on the basis of their common domain structure. Typical ADAMTS proteins
30 contain a classic signal sequence upstream of a pro-sequence ending in a furin cleavage site, a metalloprotease domain that is well conserved among family members, a disintegrin-like motif whose functional relevance is still unknown, and at least one thrombospondin type I (TSP 1) domain. ADAMTS family members differ in the number

of TSP-1 domains they contain, which can range from 1 to 15 (Cal *et al.*, 2002; Somerville *et al.*, 2003). The most diverse region of the ADAMTS sequence is the 'spacer' domain located downstream of a cysteine-rich region containing 10 structurally conserved cysteine residues. ADAMTS proteins are capable of associating with 5 components of the extracellular matrix through interactions within the spacer domain and the TSP-1 motif(s) (Kuno and Matsushima, 1998; Tortorella *et al.*, 2000).

ADAMTS4 (aggrecanase-1) is synthesized by IL-1 stimulated cartilage (Tortorella, *et al.*, Science, 284:1664-1666, 1999) and is related to the degradation of aggrecan during degenerative joint diseases such as osteoarthritis (Abaszade *et al.*, J 10 Biol Chem, 274: 23443-23450, 1999). ADAMTS4 is also involved in the cleavage of brain-enriched hyaluranan binding (BEHAB)/brevican, a protein that is dramatically increased in human gliomas (Matthews *et al.*, J. Biol. Chem. 275:22695-22703, 2000). It is thus possible to ameliorate osteoarthritis and any other ADAMTS4-related diseases by 15 inhibiting the aggrecanase activity of ADAMTS4. However, research effects on ADAMTS4 have been hampered by the instability of purified ADAMTS4 proteins.

SUMMARY OF THE INVENTION

The present invention is based on the observation that the full-length, furin-processed ADAMTS4 molecules are capable of undergoing auto-catalytic C-terminal truncation. The auto-digested ADAMTS4 molecules exhibited markedly reduced affinity 20 of binding to sulfated glycosaminoglycans (GAGs) but retained aggrecanase activity. Further studies revealed that ADAMTS molecules with modified domain structures can be enzymatically active while having improved stability compared to the native enzyme. For example, it was found that modified ADAMTS4 molecules with truncated spacer 25 domain or no spacer domain are biologically active and are more stable than their full-length counterparts. The modified ADAMTS proteins can be expressed and isolated in large quantities, thus allowing further characterization of the proteins, such as crystallographic and enzyme kinetic studies. The purified, stable proteins would also facilitate the production of anti-ADAMTS antibodies and the development of inhibitors to ADAMTS enzymes.

30 One aspect of the present invention pertains to modified ADAMTS4 (mTS4) proteins; nucleotide sequences which encode mTS4 proteins; and processes for the production of mTS4 proteins. Preferably, the mTS4 proteins of the present invention are more stable and can be expressed at levels higher than that of their full-length

counterparts. More preferably, the mTS4 proteins of the present invention are more stable and biologically active.

In one embodiment, the invention provides isolated mTS4 proteins that are biologically active. The mTS4 proteins may be produced by standard recombinant DNA technology or by auto-digestion of furin-processed full-length ADAMTS4 molecules. The embodiment specifically includes mTS4 proteins having the amino acid sequences recited in SEQ ID NOS:17, 19, 22, 24, 26, 27, and 46-49, as well as variants and fragments thereof. These proteins may be used, for example, for the characterization of ADAMTS4 enzyme, production of anti-ADAMTS4 antibodies, and screening of ADAMTS4 inhibitors.

In another embodiment, the invention provides isolated mTS4 proteins that are not biologically active but are more stable than the native protein. The embodiment specifically includes mTS4 proteins having the amino acid sequences recited in SEQ ID NOS:29, 31, 32, 40 and 50-53, as well as variants and fragments thereof. These proteins may be used, for example, in crystallographic studies.

In another embodiment, the invention provides isolated mTS4 proteins comprising a ADAMTS4 portion and a non-ADAMTS4 portion. The non-ADAMTS4 portion of the mTS4 protein may serve as a tag to facilitate immune-recognition or protein purification, or as a signal sequence to enhance secretion. The non-ADAMTS4-containing mTS4 proteins can be used, for example, to produce anti-mTS4 antibodies in a subject, to purify ADAMTS4 ligands, and to identify molecules that inhibit the interaction of the ADAMTS4 protein with an ADAMTS4 substrate in screening assays.

In another embodiment, the invention features nucleic acid molecules that encode the mTS4 proteins of the present invention. The embodiment specifically includes isolated polynucleotide molecules comprising a nucleotide sequence encoding a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOS:17, 19, 22, 24, 26, 27, 29, 31, 32, 40 and 46-53.

In another embodiment, the invention provides vectors comprising nucleotide sequences encoding mTS4 proteins of the present invention. These vectors may be employed in a novel process for producing mTS4 proteins of the present invention.

Another aspect of the present invention pertains to anti-mTS4 antibodies, inhibitors of mTS4, and methods for treating an aggrecanase-related disease using anti-mTS4 antibodies or inhibitors of mTS4.

In one embodiment, the mTS4 protein of the present invention are used for the development of inhibitors of aggrecanases and antibodies to aggrecanases for treatment of aggrecanase-related diseases such as osteoarthritis. The embodiment specifically includes methods for identifying and developing inhibitors of aggrecanase that block the enzyme's 5 activity.

In another embodiment, the invention provides pharmaceutical compositions for inhibiting the activity of aggrecanases, wherein the compositions comprise an anti-mTS4 antibody and/or an inhibitor of mTS4 of the present invention, and a pharmaceutical carrier. In another embodiment, the invention provides methods for inhibiting 10 aggrecanase activity in a mammal comprising administering to the mammal an effective amount of a pharmaceutical composition comprising an anti-mTS4 antibody and/or an inhibitor of mTS4 of the present invention.

In yet another embodiment, the invention provides methods for treating patients suffering from conditions characterized by a degradation of aggrecan or preventing such 15 conditions. These methods entail administering to a patient needing such treatment an effective amount of a pharmaceutical composition comprising an anti-mTS4 antibody and/or an inhibitor of mTS4 of the present invention.

Additional aspects of the disclosure will be set forth in part in the description, will 20 in part be obvious from the description, and/or may be learned from practicing the invention. The invention is set forth and particularly pointed out in the claims, and the disclosure should not be construed as limiting the scope of the claims. The following detailed description includes exemplary representations of various embodiments of the invention which are not restrictive of the invention as claimed. The accompanying figures constitute a part of this specification and, together with the description, serve to 25 illustrate embodiments and not limit the invention.

DESCRIPTION OF THE DRAWINGS

Figure 1 is a schematic showing the auto-digested isoforms of ADAMTS4 (panel A) and the cleavage sites (panel B).

Figure 2 is a schematic showing various embodiments of modified mTS4 30 molecules (constructs B-I).

DETAILED DESCRIPTION OF THE INVENTION

I. Definitions

In order that the present invention may be more readily understood, certain terms are first defined. Additional definitions are set forth throughout the detailed description.

The term "aggrecanase activity" refers to at least one cellular process interrupted or initiated by an aggrecanase enzyme binding to aggrecan. Generally, aggrecanase activity refers to proteolytic cleavage of aggrecan at glu373-ala374. Aggrecanase activities include, but are not limited to, binding of aggrecanase to aggrecan and cleavage 5 of aggrecan by aggrecanase. Aggrecanase activity can also include a biological response resulting from the binding to or cleavage of aggrecan by the modified aggrecanases of the present invention.

The term "modified aggrecanase," as used herein, refers to an aggrecanase that is altered by substitution, insertion, deletion, or modification of at least one amino acid 10 comparing to the native aggrecanase. Modified aggrecanases of the present invention may have greater stability than the corresponding native aggrecanase molecule. Modified aggrecanases of the invention can also be expressed at higher levels both *in vivo* and *in vitro* than the corresponding native aggrecanase proteins. A modified aggrecanase is "biologically active" if it retains at least one aggrecanase activity defined in the prior 15 paragraph. Modified aggrecanases may contain multiple alterations, such as amino acid substitutions, modifications, insertions, and deletions in different parts of the protein.

The term "stability," as used herein, generally refers to a decrease in the rate of degradation of a protein, thereby increasing its half-life, solubility and/or expression 20 levels. Several factors affect protein stability *in vitro* and *in vivo*, for example, pH, salt concentration, temperature, protein degradation, for example by proteases, metal ions, auto-catalysis of proteins, hydrophobicity etc. Conditions that make a protein more stable generally include conditions that keep the protein in a folded conformation for longer than normal, thereby preserving its biological activity for a longer period of time. An increase in stability of a protein generally increases its half-life and expression levels, 25 thereby making it possible to purify the protein in large amounts for therapeutic purposes and for development of inhibitors.

Various aspects of the invention are described in further detail in the following subsections. The patent and scientific literature referred to herein establishes knowledge 30 that is available to those of skill in the art. The issued U.S. patents, allowed applications, published applications (U.S. and foreign) and references, including GenBank database sequences, that are cited herein are hereby incorporated by reference to the same extent as if each was specifically and individually indicated to be incorporated by reference.

II. Modified ADAMTS4 (mTS4) Molecules and Their Utilities

The human ADAMTS4 gene, located at loci 1q21-q23 of human chromosome 1, encodes a pro-protein of 837 amino acids (SEQ ID NO:1). The protein contains an N-terminal pro-peptide (amino acid residue 1-212), a metalloproteinase catalytic domain (amino acid residue 213-436), a disintegrin-like domain (amino acid residue 437-519), a TSP-1 motif (amino acid residue 520-576), a cysteine rich domain (amino acid residue 577-685), and a spacer (amino acid residue 686-837). Unlike other proteins in the ADAMTS family, ADAMTS4 protein completely lacks a C-terminal TSP-1 motif.

The N-terminal pro-peptide of ADAMTS4 pro-protein can be cleaved by furin or related pro-protein convertase(s) within the trans-Golgi, resulting in secretion of mature enzyme lacking the pro-peptide region. The furin-processed ADAMTS4 is enzymatically active and is normally referred to as the “full-length” ADAMTS4 enzyme.

ADAMTS4 is responsible for the degradation of aggrecan, a major proteoglycan of cartilage, and of brevican, a brain-specific extracellular matrix protein. The degradation of aggrecan and brevican by ADAMTS4 suggests key roles for this enzyme in arthritic disease, in the function of the central nervous system, and potentially in the progression of glioma.

The inhibition of ADAMTS4 enzyme activity may prevent the loss of aggrecan and ameliorate cartilage degradation associated with osteoarthritis. However, efforts to develop ADAMTS4 inhibitors have been hampered by the fact that it is difficult to isolate and purify ADAMTS4 protein in large amounts due to the generally low expression levels and poor stability of the enzyme. Accordingly, there is a need to identify novel forms of ADAMTS4 and further develop ways to isolate and purify ADAMTS4 protein in large amounts in order to investigate the role of ADAMTS4 in disease states and also to develop therapies and compositions to treat diseases involving aggrecan cleavage. Modified ADAMTS4 molecules may be biologically active for the cleavage of aggrecan and can be expressed at levels higher than that of their full-length counterparts. They can be used to screen inhibitors to ADAMTS4 and other aggrecanase and to develop antibodies to ADAMTS4. The more stable mTS4 molecules also allow better biochemical and biophysical characterization of the ADAMTS4 protein through enzyme kinetic and crystallographic studies.

As used hereinafter, the modified ADAMTS4 (mTS4) molecules of the present invention include both isolated polypeptides and isolated polynucleotides.

Isolated Polypeptides

One aspect of the invention pertains to isolated mTS4 proteins. In one embodiment, the mTS4 proteins have an aggrecanase activity and can be used to screen inhibitors for aggrecanase. In another embodiment, the mTS4 proteins are used to 5 develop antibodies to aggrecanase.

Modified ADAMTS4 proteins may be produced using standard molecular biology and cell biology techniques. Modified ADAMTS4 proteins having aggrecanase activity can be identified by screening combinatorial libraries of ADAMTS4 fragments. Libraries of fragments of ADAMTS4 coding sequence can be used to generate a variegated 10 population of ADAMTS4 fragments for screening and subsequent selection of modified ADAMTS4. In one embodiment, a library of coding sequence fragments can be generated by treating a double-stranded PCR fragment of ADAMTS4 coding sequence with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double-stranded DNA, renaturing the DNA to form double-stranded DNA 15 which can include sense/antisense pairs from different nicked products, removing single-stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes N-terminal, C-terminal and internal fragments of various sizes of the ADAMTS4 protein.

20 Several techniques are known in the art for screening gene products of combinatorial libraries made by truncation, and for screening cDNA libraries for gene products having a selected property. The most widely used techniques, which are amenable to high-throughput analysis for screening large gene libraries, typically include cloning the gene library into replicable expression vectors, transforming appropriate cells 25 with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique that enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify mTS4 mutants (DeLagrange *et al.*, 30 *Protein Engineering*, 6:327-331, 1993).

Portions of the ADAMTS4 protein having less than about 100 amino acids, and generally less than about 50 amino acids, may also be generated by synthetic means, using techniques well-known to those of ordinary skill in the art. For example, such polypeptides may be synthesized using any of the commercially available solid-phase

techniques, such as the Merrifield solid-phase synthesis method, where amino acids are sequentially added to a growing amino acid chain.

The invention also provides mTS4 fusion protein. An mTS4 fusion protein contains an ADAMTS4-related polypeptide and a non-ADAMTS4 polypeptide fused in-frame to each other. The ADAMTS4-related polypeptide corresponds to all or a portion of the modified ADAMTS4 protein or its variant.

A peptide linker sequence may be employed to separate the ADAMTS4-related polypeptide from non-ADAMTS4 polypeptide components by a distance sufficient to ensure that each polypeptide folds into its secondary and tertiary structures. Such a peptide linker sequence is incorporated into the fusion protein using standard techniques well known in the art. Suitable peptide linker sequences may be chosen based on the following factors: (1) their ability to adopt a flexible extended conformation; (2) their inability to adopt a secondary structure that can interact with functional epitopes on the ADAMTS4-related polypeptide and non-ADAMTS4 polypeptide; and (3) the lack of hydrophobic or charged residues that might react with the polypeptide functional epitopes. Preferred peptide linker sequences contain gly, asn and ser residues. Other near neutral amino acids, such as thr and ala, may also be used in the linker sequence. Amino acid sequences which may be usefully employed as linkers are well known in the art. The linker sequence may generally be from 1 to about 50 amino acids in length. Linker sequences are not required when the ADAMTS4-related polypeptide and non-ADAMTS4 polypeptide have non-essential N-terminal amino acid regions that can be used to separate the functional domains and prevent steric interference.

The mTS4 protein may contain a peptide tag to facilitate the identification and/or purification of the mTS4 protein. The peptide tags are short pieces of well-defined peptides (*e.g.*, Poly-His, Flag-epitope, strep-tag, c-myc epitope, HA-tag) or small proteins (bacterial glutathione s-transferase (GST), maltose binding protein (MBP), thioredoxin, β -galactosidase, VSV-glycoprotein etc.). The tag sequence may be placed anywhere in the protein sequence. Preferably, the tag sequence is placed at the C-terminal of the protein or is inserted between two domain structures of the protein. The tag sequences are often cloned along with the target gene and are expressed as part of the fusion proteins. Generally, antibodies to these fusion-tags are already available to monitor fusion protein expression and purification. Therefore, fusion-tags serve as universal tags much like secondary antibodies. Many tags have their own characteristics. Poly-His-

fusion proteins (6 x His) can bind to Nickel-Sepharose or Nickel-HRP. GST-fusion proteins can bind to glutathione-Sepharose. Therefore, a high degree of purification of fusion protein can be achieved in just one affinity purification step. Purity of fusion proteins can be followed by Tag-antibodies. Very often, fusion proteins are directly 5 injected into animals to generate antibodies. Some fusion tags can be removed later by treatment with enzymes to generate tag-free recombinant proteins.

Preferably, an mTS4 fusion protein of the present invention is produced by standard recombinant DNA techniques. The fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR 10 amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and reamplified to generate a chimeric gene sequence. Moreover, many expression vectors are commercially available that already encode a 15 fusion moiety (e.g., a GST polypeptide). An ADAMTS4-related polynucleotide can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the ADAMTS4-related polypeptide.

A signal sequence can be used to facilitate secretion and isolation of mTS4 or mTS4 fusion proteins of the present invention. Signal sequences are typically characterized by a core of hydrophobic amino acids that are generally cleaved from the 20 mature protein during secretion in one or more cleavage events. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass through the secretory pathway.

The invention further includes fragments and variants of the modified ADAMTS4 proteins. It is known, for example, that numerous conservative amino acid substitutions 25 are possible without significantly modifying the structure and conformation of a protein, thus maintaining the biological properties as well. For example, it is recognized that conservative amino acid substitutions may be made among amino acids with basic side chains, such as lysine, arginine and histidine; amino acids with acidic side chains, such as aspartic acid and glutamic acid; amino acids with uncharged polar side chains, such as 30 asparagine, glutamine, serine, threonine, and tyrosine; and amino acids with non-polar side chains, such as alanine, glycine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan and cysteine. Thus, these modifications and deletions of the original mTS4 protein may be employed as biologically-active substitutes for the original mTS4 protein. It can be readily determined whether a given variant of an mTS4 or mTS4

fusion protein maintains the biological activity of the original protein by subjecting both proteins (the original protein and the variant) to the biological activity assays described in the examples.

Substitution of like amino acids can also be made on the basis of hydrophilicity, 5 particularly where the biological functional equivalent polypeptide or polypeptide fragment is intended for use in immunological embodiments. U.S. Patent No. 4,554,101, incorporated hereinafter by reference, states that the greatest local average hydrophilicity of a polypeptide, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, *i.e.*, with a biological property of the 10 polypeptide. It is understood that an amino acid can be substituted for another having a similar hydrophilicity value and still obtain a biologically equivalent, and, in particular, an immunologically equivalent polypeptide.

In one embodiment, active site mutations are introduced into an mTS4 molecule to intentionally block the catalytic activity of the enzyme. This approach is especially 15 useful for the purposes of crystallization and structural determination of mTS4 protein and subsequently to identify and develop inhibitors of mTS4. Increased stability of active-site mutant of mTS4 of the present invention makes it possible to purify and isolate large amounts of mTS4 molecules for subsequent use in the development of inhibitors for treatment of diseases. For example, the E362Q mutation makes the mTS4 biologically 20 inactive, thereby enabling purification of the inactive protein in large amounts for crystallization.

Desired amino acid substitutions (whether conservative or nonconservative) can be determined by those skilled in the art at the time such substitutions are desired. For example, amino acid substitutions can be used to identify important amino acid residues 25 of the proteins or polypeptides of the invention or to increase or decrease the activity of the aggrecanases of the invention described. Exemplary amino acid substitutions are set forth in Table 1.

Table 1: Amino Acid Substitutions

Original Residues	Exemplary Substitutions	More Conservative Substitutions
ala (A)	val, leu, ile	val
arg (R)	lys, gln, asn	lys
asn (N)	gln	gln
asp (D)	glu	glu
cys (C)	ser, ala	ser
gln (Q)	asn	asn
his (H)	asn, gln, lys, arg	arg
ile (I)	leu, val, met, ala, phe, norleucine	leu
leu (L)	norleucine, ile, val, met, ala, phe	ile
lys (K)	arg, 1, 4 diamino-butyric acid, gln, asn	arg
met (M)	leu, phe, ile	leu
phe (F)	leu, val, ile, ala, tyr	leu
pro (P)	ala	gly
ser (S)	thr, ala, cys	thr
thr (T)	ser	ser
trp (W)	tyr, phe	tyr
tyr (Y)	trp, phe, thr, ser	phe
val (V)	ile, met, leu, phe, ala, norleucine	leu

In certain embodiments, conservative amino acid substitutions also encompass non-naturally-occurring amino acid residues which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems.

Other specific mutations of the sequences of aggrecanase proteins described herein involve modifications of glycosylation sites. These modifications may involve O-linked or N-linked glycosylation sites. For instance, the absence of glycosylation or only partial glycosylation results from amino acid substitution or deletion at asparagine-linked glycosylation recognition sites. The asparagine-linked glycosylation recognition sites comprise tripeptide sequences which are specifically recognized by appropriate cellular glycosylation enzymes. These tripeptide sequences are either asparagine-X-threonine or asparagine-X-serine, where X is usually any amino acid. A variety of amino acid substitutions or deletions at one or both of the first or third amino acid positions of a glycosylation recognition site (and/or amino acid deletion at the second position) results in non-glycosylation at the modified tripeptide sequence. Additionally, bacterial expression of aggrecanase-related protein will also result in production of a non-glycosylated protein, even if the glycosylation sites are left unmodified.

Isolated polynucleotides

Another aspect of the invention pertains to isolated polynucleotides that encode an mTS4 protein. A polynucleotide molecule comprising the nucleotide sequence of an mTS4 molecule can be prepared using standard molecular biology techniques and the sequence information provided herein as well as sequence information known in the art. The native or modified ADAMTS4 gene sequences can be amplified using cDNA, mRNA or alternatively, genomic DNA as a template, and appropriate oligonucleotide primers according to standard PCR amplification techniques. The polynucleotide so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to the native or modified ADAMTS4 sequences can be prepared by standard synthetic techniques, *e.g.*, using an automated DNA synthesizer. In one embodiment, the mTS4 sequence may include a modified Kozak sequence to improve translation efficiency.

It will be appreciated by those of ordinary skill in the art that, as a result of the degeneracy of the genetic code, there are many polynucleotide variants that encode the same polypeptide. Some of these polynucleotide variants bear minimal sequence homology to the original polynucleotide. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention.

The invention also pertains to polynucleotides encoding variants of the mTS4 proteins. An isolated polynucleotide molecule encoding a variant of an mTS4 protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of the polynucleotide, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein. Such techniques are well-known in the art. Mutations can be introduced into an mTS4 protein by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Alternatively, mutations can be introduced randomly along all or part of a coding sequence of an mTS4 protein, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that are capable of inhibiting wild-type protein activity (the dominant negative mutant). Following mutagenesis, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.

A polynucleotide may be further modified to increase stability *in vivo*. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2-o-methyl rather than phosphodiesterase

linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine and wybutosine, as well as acetyl- methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine and uridine.

III. Expression Vectors

5 Another aspect of the present invention includes vectors for use in a method of expression of mTS4 proteins. Preferably, vectors of the present invention contain a DNA sequence described above which encodes an mTS4 or an active site mutant of an mTS4. Vectors may contain appropriate expression control sequences permitting expression of the modified ADAMTS4 protein of the invention.

10 In one embodiment, the vector of the invention is an expression vector comprising a polynucleotide encoding an mTS4 in a form suitable for expression of the polynucleotide in a host cell. The vectors generally have one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operatively linked to the polynucleotide sequence to be expressed. It will be appreciated 15 by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by polynucleotides as described herein

20 The expression vectors of the invention can be designed for expression of the mTS4 in prokaryotic or eukaryotic cells. For example, the mTS4 can be expressed in bacterial cells such as *E. coli*, insect cells (using baculovirus expression vectors), yeast cells or mammalian cells. Alternatively, the expression vector can be transcribed and translated *in vitro*, for example, using T7 promoter regulatory sequences and T7 25 polymerase.

The expression of proteins in prokaryotes is most often carried out in *E. coli* with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion 30 vectors typically serve three purposes: 1) to increase expression of the recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the

recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Piscataway, NJ), pMAL (New England Biolabs, Beverly, MA) and pRITS (Pharmacia, 5 Piscataway, NJ) which fuse GST, MBP, or protein A, respectively, to the target recombinant protein.

Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc and pET 11d. Target gene expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target gene expression 10 from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a coexpressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21(DE3) or HSLE174(DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.

One strategy to maximize recombinant protein expression in *E. coli* is to express 15 the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein. Another strategy is to alter the polynucleotide sequence of the polynucleotide to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in *E. coli*. Such alteration of 20 polynucleotide sequences of the invention can be carried out by standard DNA synthesis techniques.

In another embodiment, the mTS4 expression vector is a yeast expression vector. Examples of vectors for expression in yeast *S. cerevisiae* include pYEPSec1, pMFA, pJRY88, pYES2 (Invitrogen Corporation, San Diego, CA), and picZ (Invitrogen Corp, San Diego, CA).

25 Alternatively, an mTS4 can be expressed in insect cells using baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf9 cells) include the pAc series and the pVL series.

In yet another embodiment, an mTS4 is expressed in mammalian cells using a 30 mammalian expression vector. Examples of mammalian expression vectors include pCDM8, pMT2PC and pHTop. When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus and Simian Virus 40. Alternatively, the expression vector's control functions may be provided by the native ADAMTS4 promoter or a tissue-specific regulatory elements.

The invention further provides gene delivery vehicles for the delivery of polynucleotides to cells, tissue, or a mammal for expression. For example, a polynucleotide sequence of the invention can be administered either locally or systemically in a gene delivery vehicle. These constructs can utilize viral or non-viral 5 vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequences can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence *in vivo* can be either constituted or regulated. The invention includes gene delivery vehicles capable of expressing the contemplated polynucleotides. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, lentiviral, 10 adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector.

Delivery of the mTS4 constructs of the present invention into cells is not limited to the above-mentioned viral vectors. Other delivery methods and media may be 15 employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, liposomes, ligand linked DNA, eukaryotic cell delivery vehicles, deposition of photopolymerized hydrogel materials, handheld gene transfer particle gun, ionizing radiation, nucleic charge neutralization or fusion with cell membranes. Particle mediated gene transfer may be employed. For 20 example, the sequence can be inserted into conventional vectors that contain conventional control sequences for high-level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose or transferrin. Naked DNA may also be employed. The uptake 25 efficiency of the naked DNA may be improved using biodegradable latex beads.

IV. Production of Aggrecanase Proteins

Modified ADAMTS4 protein of the invention may be produced by culturing a cell transformed or infected with an expression vector described above. The protein may be purified with standard protein purification techniques. Purified mTS4 proteins are 30 substantially free from other proteinaceous materials with which they are co-produced, as well as from other contaminants. A recovered purified protein is contemplated to exhibit proteolytic aggrecanase activity by cleaving aggrecan. Thus, proteins of the invention may be further characterized by their ability to demonstrate aggrecan proteolytic activity in an assay which determines the presence of an aggrecan-degrading molecule. These

assays or the development thereof is within the knowledge of one skilled in the art. Such assays may involve contacting an aggrecan substrate with the aggrecanase molecule and monitoring the production of aggrecan fragments (See, for example, Hughes *et al.*, Biochem. J. 305:799-804, 1995; Mercuri *et al.*, J. Bio. Chem. 274:32387-32395, 1999).

5 Suitable cells or cell lines may be mammalian cells, such as Chinese hamster ovary cells (CHO). The selection of suitable mammalian host cells and methods for transformation, culture, amplification, screening, product production, and purification are known in the art. Another suitable mammalian cell line, which is described in the accompanying examples, is the monkey COS-1 cell line. The mammalian cell line CV-1
10 may also be suitable.

Bacterial cells may also be suitable hosts. For example, the various strains of *E. coli* (e.g., HB101, MC1061) are well-known as host cells in the field of biotechnology. Various strains of *B. subtilis*, *Pseudomonas*, other bacilli and the like may also be employed in this method. For expression of mTS4 proteins of the invention in bacterial
15 cells, DNA encoding the pro-peptide of an aggrecanase is generally not necessary.

Many strains of yeast cells known to those skilled in the art may also be available as host cells for expression of polypeptides of the present invention. Additionally, where desired, insect cells may be utilized as host cells in the method of the present invention. See, e.g. Miller *et al.*, Genetic Engineering, 8:277-298 (Plenum Press 1986) and
20 references cited therein.

Modified ADAMTS4 proteins produced in host cells can be isolated from the host cells by an appropriate purification scheme using standard protein purification techniques. Standard purification methods include electrophoretic, molecular, immunological and chromatographic techniques, including ion exchange, hydrophobic, affinity, and reverse-
25 phase HPLC chromatography, and chromatofocusing. For example, the mTS4 protein may be purified using an anti-mTS4 antibody column. Ultrafiltration and diafiltration techniques, in conjunction with protein concentration, are also useful. The degree of purification necessary will vary depending on the use of the modified ADAMTS4 protein. In some instances no purification will be necessary.

30 **V. Generation of Antibodies**

In accordance with another aspect of the present invention, antibodies specific to mTS4 ADAMTS4, or other ADAMTS4-related proteins are prepared. Anti-mTS4 antibodies include both antibodies that block aggrecanase activity of mTS4 and antibodies that do not. Anti-mTS4 antibodies also include "neoepitope antibodies" which

refer to antibodies that specifically recognizes a new N- or C-terminal amino acid sequence exposed by proteolytic cleavage of ADAMTS4 or mTS4, but does not bind to such an epitope on the original (uncleaved) molecule. The anti-mTS4 antibodies may be useful for detection and/or purification of aggrecanase or related proteins, or for

5 inhibiting or preventing the effects of aggrecanase.

An mTS4 protein, or an antigenic fragment of the mTS4 protein can be used as an immunogen. The antigenic peptide of the mTS4 protein comprises at least 8 amino acid residues of the mTS4 amino acid sequence, and encompasses an epitope of the mTS4 protein such that an antibody raised against the peptide forms a specific immune complex

10 with the mTS4 protein. Preferably, the antigenic peptide comprises at least 8 amino acid residues, more preferably at least 12 amino acid residues, even more preferably at least 16 amino acid residues, and most preferably at least 20 amino acid residues.

An mTS4 immunogen (e.g., the mTS4 protein, a fragment thereof, or an mTS4 fusion protein) typically is used to prepare antibodies by immunizing a suitable subject,

15 (e.g., rabbit, goat, mouse or other mammal) with the immunogen. An appropriate immunogenic preparation can contain, for example, recombinantly expressed mTS4 immunogen or a chemically synthesized mTS4 immunogen. The preparation can further include an adjuvant, such as Freund's complete or incomplete adjuvant, or similar immunostimulatory agent. Immunization of a suitable subject with the immunogenic

20 preparation induces an anti-mTS4 antibody response. Techniques for preparing, isolating and using monoclonal and polyclonal anti-mTS4 antibodies are well known in the art.

Accordingly, another aspect of the invention pertains to monoclonal or polyclonal anti-mTS4 antibodies. The invention provides polyclonal and monoclonal antibodies that bind to mTS4 protein.

25 An anti-mTS4 antibody can be used to isolate the mTS4 protein or mTS4-related protein by standard techniques, such as affinity chromatography or immunoprecipitation. An anti-mTS4 antibody can facilitate the purification of an mTS4 protein or mTS4-related proteins, such as full-length ADAMTS4 protein, mTS4-fusion protein, or variants and mutants thereof, from cells. Moreover, an anti-mTS4 antibody can be used to detect

30 an mTS4 protein or an mTS4-related protein in order to evaluate the abundance and pattern of expression of the protein. Anti-mTS4 antibodies that cross-react with ADAMTS4 protein can be used diagnostically to monitor ADAMTS4 protein levels in tissue as part of a clinical testing procedure to, for example, determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (*i.e.*, physically

linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, galactosidase, or 5 acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and 10 aequorin; and examples of suitable radioactive material include ^{125}I , ^{131}I , ^{35}S and ^3H .

15 Anti-mTS4 antibodies that cross-react with ADAMTS4 protein are also useful for targeting a therapeutic to a cell or tissue having elevated ADAMTS4 expression. For example, a therapeutic such as a small molecule ADAMTS4 antagonist can be linked to the anti-modified ADAMTS4 antibody in order to target the therapeutic to the cell or tissue having elevated ADAMTS4 expression.

20 A therapeutic agent may be coupled (*e.g.*, covalently bonded) to a suitable monoclonal antibody either directly or indirectly (*e.g.*, via a linker group). A direct reaction between an agent and an antibody is possible when each possesses a substituent capable of reacting with the other. For example, a nucleophilic group, such as an amino or sulphhydryl group, on one may be capable of reacting with a carbonyl-containing group, such as an anhydride or an acid halide, or with an alkyl group containing a good leaving 25 group (*e.g.*, a halide) on the other.

30 Alternatively, it may be desirable to couple a therapeutic agent and an antibody via a linker group. A linker group can function as a spacer to distance an antibody from an agent in order to avoid interference with binding capabilities. A linker group can also serve to increase the chemical reactivity of a substituent on an agent or an antibody, and thus increase the coupling efficiency. An increase in chemical reactivity may also facilitate the use of agents, or functional groups on agents, which otherwise would not be possible.

35 It will be evident to those skilled in the art that a variety of bifunctional or polyfunctional reagents, both homo- and hetero-functional (such as those described in the catalog of the Pierce Chemical Co., Rockford, Ill.), may be employed as the linker group. Coupling may be effected, for example, through amino groups, carboxyl groups, sulphhydryl groups or oxidized carbohydrate residues.

Where a therapeutic agent is more potent when free from the antibody portion of the immunoconjugates of the present invention, it may be desirable to use a linker group that is cleavable during or upon internalization into a cell. A number of different cleavable linker groups have been described. The mechanisms for the intracellular 5 release of an agent from these linker groups include cleavage by reduction of a disulfide bond, by irradiation of a photolabile bond, by hydrolysis of derivatized amino acid side chains, by serum complement-mediated hydrolysis, and acid-catalyzed hydrolysis.

It may be desirable to couple more than one agent to an antibody. In one embodiment, multiple molecules of an agent are coupled to one antibody molecule. In 10 another embodiment, more than one type of agent may be coupled to one antibody. Regardless of the particular embodiment, immunoconjugates with more than one agent may be prepared in a variety of ways. For example, more than one agent may be coupled directly to an antibody molecule, or linkers that provide multiple sites for attachment can be used.

15 VI. Development of Inhibitors

The mTS4 protein of the present invention may be used for the development of inhibitors to ADAMTS4 and other aggrecanases. The aggrecanase inhibitors may be used in the treatment for aggrecanase-related diseases. For example, increased breakdown of aggrecan is associated with the development of osteoarthritis. Two 20 cartilage aggrecanases, ADAMTS4 and ADAMTS5, are primarily responsible for the catabolism and loss of aggrecan from articular cartilage in the early stages of arthritic joint diseases that precede overt collagen catabolism and disruption of the tissue integrity. (Caterson *et al.*, *Matrix Biol.* 19:333-44, 2000). Inhibiting ADAMTS4 and ADAMTS5 activity is therefore a potential treatment for osteoarthritis.

25 Various efforts have been made to develop inhibitors to aggrecanase. The N-terminal inhibitory domain of endogenous tissue inhibitors of metalloproteases 3 (TIMP-3) is a strong inhibitor of human ADAMTS4 and ADAMTS5, with K(i) values in the subnanomolar range (Kashiwagi *et al.* *J. Biol. Chem.* 276:12501-12504, 2001). Further studies revealed that other TIMPs may also inhibit ADAMTS4 activity. For example, 30 TIMP-3 inhibited ADAMTS4 activity most efficiently with an IC(50) value of 7.9 nM, which was at least 44-fold lower than that of TIMP-1 (350 nM) and TIMP-2 (420 nM) and at least 250-fold less than that of TIMP-4 (2 uM for 35% inhibition) (Hashimoto *et al.*, *FEBS Lett.* 494:192-195, 2001).

There is evidence that cyclosporin A can inhibit IL-1-induced aggrecanase-mediated proteoglycan catabolism in articular cartilage explants (Little *et al.*, *Arthritis Rheum.* 46:124-129, 2002). Suppression of ADAMTS1 activity was also accomplished with a specific monoclonal antibody and some metalloprotease inhibitors, including 5 TIMP-2 and 3 (Rodriguez-Manzaneque *et al.*, *Biochem. Biophys. Res. Commun.* 293:501-508, 2002).

Modified ADAMTS4 proteins with increased stability and expression levels make it possible to generate aggrecanase molecules in large amounts in order to develop inhibitors to aggrecanases. Accordingly, the invention also provides methods (also 10 referred to herein as "screening assays") for identifying aggrecanase inhibitors. Such methods typically comprise a reaction between the mTS4 protein and one or more test components. The other components may be either the test compound itself, or a combination of the test compound and a binding partner of the mTS4 protein.

One aspect of the present invention provides methods for screening compounds 15 that interfere with binding of an mTS4 protein and its binding partner, *e.g.* aggrecan and brevican. In one embodiment, a scintillation proximity assay is used. In this assay, the mTS4 protein is labeled with an isotope such as ^{125}I . The binding partner is labeled with a scintillant, which emits light when proximal to radioactive decay (*i.e.*, when the mTS4 protein is bound to its binding partner). A reduction in light emission will indicate that a 20 compound has interfered with the binding of the two proteins.

Alternatively a fluorescence energy transfer (FRET) assay could be used. In an FRET assay, a fluorescence energy donor is comprised of one protein (*e.g.*, an mTS4 protein and a fluorescence energy acceptor is comprised on a second protein (*e.g.*, a binding partner of the mTS4 protein). If the absorption spectrum of the acceptor 25 molecule overlaps with the emission spectrum of the donor fluorophore, the fluorescent light emitted by the donor is absorbed by the acceptor. The donor molecule can be a fluorescent residue on the protein (*e.g.*, intrinsic fluorescence such as a tryptophan or tyrosine residue), or a fluorophore which is covalently conjugated to the protein (*e.g.*, fluorescein isothiocyanate, FITC). An appropriate donor molecule is then selected with 30 the above acceptor/donor spectral requirements in mind.

Thus, in this example, an mTS4 protein is labeled with a fluorescent molecule (*i.e.*, a donor fluorophore) and its binding partner is labeled with a quenching molecule (*i.e.*, an acceptor). When the mTS4 protein and its binding partner are bound, fluorescence emission will be quenched or reduced relative to the mTS4 protein alone.

Similarly, a compound which can dissociate the interaction of the mTS4 protein-partner complex will result in an increase in fluorescence emission. The increase in fluorescence indicates that the compound has interfered with the binding of the mTS4 protein to its binding partner.

5 In another embodiment, a FRET peptide that constitute an aggrecanase-susceptible protein sequence is used substrates of aggrecanase. When aggrecanase cleaves the peptide, the fluor is released from the quencher on the same peptide and fluorescence results. Inhibition of this generation of fluorescence by compounds is judged a positive result.

10 Another assay to detect binding or dissociation of two proteins is fluorescence polarization or anisotropy. In this assay, the investigated protein (*e.g.*, mTS4 protein) is labeled with a fluorophore with an appropriate fluorescence lifetime. The protein sample is then excited with vertically polarized light. The value of anisotropy is then calculated by determining the intensity of the horizontally and vertically polarized emission light.

15 Next, the labeled protein (the mTS4 protein) is mixed with an mTS4 protein binding partner and the anisotropy is measured again. Because fluorescence anisotropy intensity is related to the rotational freedom of the labeled protein, the more rapidly a protein rotates in solution, the smaller the anisotropy value. Thus, if the labeled mTS4 protein is part of a complex (*e.g.*, mTS4 protein-partner), the mTS4 protein rotates more slowly in 20 solution (relative to free, unbound mTS4 protein) and the anisotropy intensity increases. Subsequently, a compound which can dissociate the interaction of the mTS4 protein-partner complex will result in a decrease in anisotropy (*i.e.*, the labeled mTS4 protein rotates more rapidly), which indicates the compound has interfered with the binding of mTS4 protein to its binding partner.

25 A more traditional assay would involve labeling the mTS4 protein-binding partner with an isotope such as ^{125}I , incubating with the mTS4 protein, then immunoprecipitating the mTS4 protein. Compounds that increase the free mTS4 protein will decrease the precipitated counts. To avoid using radioactivity, the mTS4 protein-binding partner could be labeled with an enzyme-conjugated antibody instead.

30 Alternatively, the mTS4 protein-binding partner could be immobilized on the surface of an assay plate and the mTS4 protein could be labeled with a radioactive tag. A rise in the number of counts would identify compounds that had interfered with binding of the mTS4 protein and its binding partner.

Evaluation of binding interactions may further be performed using Biacore technology, wherein the mTS4 protein or its binding partner is bound to a micro chip, either directly by chemical modification or tethered via antibody-epitope association (e.g., antibody to the mTS4 protein), antibody directed to an epitope tag (e.g., His tagged) or 5 fusion protein (e.g., GST). A second protein or proteins is/are then applied via flow over the “chip” and the change in signal is detected. Finally, test compounds are applied via flow over the “chip” and the change in signal is detected.

The test compounds of the present invention are generally either small molecules or biomolecules. Small molecules include, but are not limited to, inorganic molecules 10 and small organic molecules. Biomolecules include, but are not limited to, naturally-occurring and synthetic compounds that have a bioactivity in mammals, such as lipids, steroids, polypeptides, polysaccharides, and polynucleotides. In one preferred embodiment, the test compound is a small molecule. In another preferred embodiment, the test compound is a biomolecule.

15 The test compounds of the present invention may be obtained from any available source, including systematic libraries of natural and/or synthetic compounds. Test compounds may also be obtained by any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries (libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the ‘one-bead one-compound’ library method; and synthetic library methods using affinity chromatography selection. The biological library and peptoid library approaches are limited to peptide libraries, while the 20 other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds. As used herein, the term “binding partner” refers to a molecule 25 which serves as either a substrate for an mTS4 protein, or alternatively, as a ligand having binding affinity to the mTS4 protein.

In another embodiment, the assay involves determining the level of aggrecanase 30 expression in a cell or a tissue before and after exposing the cell/tissue to a test compound. The aggrecanase expression may be determined on the protein level or RNA level using standard techniques such as ELISA, western blot, Northern blot, RT-PCR, and real-time PCR.

The invention provides methods of conducting high-throughput screening for test compounds capable of inhibiting activity or expression of an mTS4 protein of the present invention. In one embodiment, the method of high-throughput screening involves combining test compounds and the mTS4 protein and detecting the effect of the test compound on the mTS4 protein.

A variety of high-throughput functional assays well-known in the art may be used in combination to screen and/or study the reactivity of different types of activating test compounds. Since the coupling system is often difficult to predict, a number of assays may need to be configured to detect a wide range of coupling mechanisms. A variety of fluorescence-based techniques are well-known in the art and are capable of high-throughput and ultra high throughput screening for activity, including but not limited to BRET® or FRET® (both by Packard Instrument Co., Meriden, CT). The ability to screen a large volume and a variety of test compounds with great sensitivity permits analysis of the therapeutic targets of the invention to further provide potential inhibitors of aggrecanase.

By combining test compounds with modified ADAMTS4 proteins of the invention and determining the binding activity between them, diagnostic analysis can be performed to elucidate the coupling systems. Generic assays using cytosensor microphysiometer may also be used to measure metabolic activation, while changes in calcium mobilization can be detected by using the fluorescence-based techniques such as FLIPR® (Molecular Devices Corp, Sunnyvale, CA). In addition, the presence of apoptotic cells may be determined by TUNEL assay, which utilizes flow cytometry to detect free 3-OH termini resulting from cleavage of genomic DNA during apoptosis. As mentioned above, a variety of functional assays well-known in the art may be used in combination to screen and/or study the reactivity of different types of activating test compounds. Preferably, the high-throughput screening assay of the present invention utilizes label-free plasmon resonance technology as provided by BIACORE® systems (Biacore International AB, Uppsala, Sweden). Plasmon free resonance occurs when surface plasmon waves are excited at a metal/liquid interface. By reflecting directed light from the surface as a result of contact with a sample, the surface plasmon resonance causes a change in the refractive index at the surface layer. The refractive index change for a given change of mass concentration at the surface layer is similar for many bioactive agents (including proteins, peptides, lipids and polynucleotides), and since the BIACORE® sensor surface can be

functionalized to bind a variety of these bioactive agents, detection of a wide selection of test compounds can thus be accomplished.

A high-throughput screening assay for inhibitors of aggrecan cleavage using luminescent oxygen channeling was recently developed by Peppard *et al.* (Peppard *et al.*, 5 J. Biomol. Screen. 8:149-156, 2003). The assay utilizes the AlphaScreen™ technology. In this technology, a “donor” bead and an “acceptor” bead are brought into proximity by a specific biological interaction and are stimulated with laser light generate a signal through luminescent oxygen tunneling. The screening assay uses specific antibodies to the carbohydrate side chains of aggrecan to create a scaffold whereby aggrecan could form a 10 cross-link between donor and acceptor beads, thus bringing the beads into proximity to produce a signal upon illumination with laser light. Digested aggrecan will fail to form such a cross-link and generate no signal. The inhibitors of the digestion can be detected as a restoration of signal.

An assay for identification and development of aggrecanase inhibitors may also 15 involve, for example, contacting a mixture of aggrecan and an inhibitor with an mTS4 protein followed by measurement of the degree of aggrecanase activity inhibition; for instance, by detection and measurement of aggrecan fragments produced by cleavage at an aggrecanase susceptible site. Inhibitors may be proteins, peptides, antibodies, or 20 chemical compounds. In one embodiment, inhibitors are peptide molecules that bind an active site on aggrecanase molecules. For example, active site mutants of mTS4 molecules can be used for the development of peptide inhibitors.

VII. Disease Treatment and Diagnosis

Inhibitors of aggrecanase and antibodies that block aggrecanase activity may be used in the treatment of aggrecanase-related diseases. Various diseases that are 25 contemplated as being treatable by using inhibitors of aggrecanases or antibodies of the present invention include, but are not limited to, osteoarthritis, glioma, cancer, inflammatory joint disease, rheumatoid arthritis, septic arthritis, periodontal diseases, corneal ulceration, proteinuria, coronary thrombosis from atherosclerotic plaque rupture, aneurysmal aortic disease, inflammatory bowel disease, Crohn's disease, emphysema, 30 acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, Alzheimer's disease, brain and hematopoietic malignancies, osteoporosis, Parkinson's disease, migraine, depression, peripheral neuropathy, Huntington's disease, multiple sclerosis, ocular angiogenesis, macular degeneration, aortic aneurysm, myocardial infarction, autoimmune disorders, degenerative cartilage loss following traumatic joint

injury, head trauma, dystrophic epidermolysis bullosa, spinal cord injury, acute and chronic neurodegenerative diseases, osteopenias, temporomandibular joint disease, demyelinating diseases of the nervous system, organ transplant toxicity and rejection, cachexia, allergy, tissue ulcerations, restenosis, and other diseases characterized by
5 altered aggrecanase activity or altered aggrecanase level.

Inhibitors and antibodies of the present invention that inhibit activity of aggrecanases and/or compounds that lower expression of aggrecanases may be used in the treatment of any disease in a mammal that involves degradation of the extracellular matrix. An effective amount of an anti-aggrecanase antibody, or an aggrecanase
10 inhibitor, or both, can be used for treatment of diseases, such as osteoarthritis, or other diseases disclosed which are characterized by degradation of matrix proteins, such as aggrecan, by aggrecanases and aggrecanase-related proteins.

VIII. Pharmaceutical Compositions

Another aspect of the present invention provides a pharmaceutical composition
15 comprising (1) an mTS4 inhibitor or an anti-mTS4 antibody and (2) a pharmaceutically acceptable carrier. The composition of the present invention may be used in the treatment of diseases characterized by the degradation of aggrecan by an aggrecanase enzyme or a protein with aggrecanase-like activity.

As used herein the language "pharmaceutically acceptable carrier" is intended to
20 include any and all solvents, solubilizers, fillers, stabilizers, binders, absorbents, bases, buffering agents, lubricants, controlled release vehicles, diluents, emulsifying agents, humectants, lubricants, dispersion media, coatings, antibacterial or antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances
25 is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, use thereof in the compositions is contemplated. Supplementary agents can also be incorporated into the compositions. A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include
30 parenteral, *e.g.*, intravenous, intradermal, subcutaneous, oral (*e.g.*, inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine; propylene glycol or other synthetic solvents; antibacterial

agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfate; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as 5 hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.

10 Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the injectable composition should be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such 15 as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants.

20 Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, such as sodium chloride, sugars, polyalcohols (e.g., manitol, sorbitol, *etc.*) in the composition. Prolonged absorption of the injectable compositions can be brought about 25 by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

30 Sterile injectable solutions can be prepared by incorporating the aggrecanase inhibitor or anti-aggrecanase antibody in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are

vacuum drying and freeze-drying which yields a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose; a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Stertes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from a pressured container or dispenser that contains a suitable propellant, *e.g.*, a gas such as carbon dioxide, or a nebulizer.

In one embodiment, the therapeutic moieties, which may contain a bioactive compound, are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from, *e.g.*, Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein includes physically discrete units suited as unitary dosages for the subject to be treated; each unit contains a predetermined quantity of active compound calculated

to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding 5 such an active compound for the treatment of individuals.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

IX. Administration

The present invention includes methods for treating patients suffering from 10 conditions characterized by a degradation of aggrecan. These methods entail administering, to a patient needing such treatment, an effective amount of a composition comprising an aggrecanase inhibitor or an anti-aggrecanase antibody that inhibits the proteolytic activity. It is contemplated that aggrecanase inhibitors of the present invention may function either by inhibiting aggrecanase activity or simply by regulating 15 levels of aggrecanases in a disease state.

Anti-aggrecanase antibodies and aggrecanase inhibitors of the present invention are useful to diagnose or treat various medical disorders in humans or animals. In one embodiment, the antibodies of the invention can be used to inhibit or reduce at least one activity associated with an aggrecanase protein, relative to an aggrecanase protein not 20 bound by the same antibody. Generally, compositions of the present invention are administered to a patient so that antibodies or their binding fragments are administered at a dose ranging from about 1 μ g/kg to about 100 mg/kg, about 1 μ g/kg to about 10 mg/kg, about 1 μ g/kg to about 1 mg/kg, about 10 μ g/kg to about 1 mg/kg, about 10 μ g/kg to about 100 μ g/kg, or about 100 μ g to about 1 mg/kg. Antibodies are administered as a 25 bolus dose, to maximize the interval of time that the antibodies can circulate in the patient's body following their administration to the patient. Continuous infusion may also be used after an initial bolus dose.

In another embodiment, the invention is directed to administration of inhibitors of aggrecanases, such as biomolecules and chemical compounds. The effective amount of 30 an inhibitor is a dosage which is useful for reducing activity of aggrecanases to achieve a desired biological outcome. Generally, appropriate therapeutic dosages for administering an inhibitor may range, for example, from about 1 ng/kg to about 100 mg/kg, about 1 ng/kg to about 1 μ g/kg, about 1 μ g/kg to about 1 mg/kg, or about 1mg/kg to about 100

mg/kg. Inhibitors can be administered in one dose, or at intervals such as once daily, once weekly, or once monthly. Dosage schedules for administration of an aggrecanase inhibitor can be adjusted based on, for example, the affinity of the inhibitor for its aggrecanase target, the half-life of the inhibitor, and the severity of the patient's condition.

5 Generally, inhibitors are administered as a bolus dose, to maximize their circulating levels. Continuous infusions may also be used after the bolus dose.

Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell culture or experimental animal models, *e.g.*, for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the 10 dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Inhibitors that exhibit large therapeutic indices are generally preferred.

The data obtained from cell culture assays and animal studies can be used in formulating a range of dosages for use in humans. The dosage of such compounds may 15 lie within a range of circulating concentrations that exhibit an ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any inhibitor used according to the present invention, a therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating 20 plasma concentration range that exhibits an IC50 (*i.e.*, the concentration of the test antibody which achieves a half-maximal inhibition of symptoms) as determined by cell culture assays. Levels in plasma may be measured, for example, by high performance liquid chromatography. The effects of any particular dosage can be monitored by suitable bioassays. Examples of suitable bioassays include assays for measuring aggrecanase 25 activity such as monitoring synovial fluid for the presence or reduction in aggrecan neoepitopes using antibody reagents such as BC-3 (Roberts *et al.*, *Arthritis Rheum.* 44:2586-98, 2001) as well as assays described in Example 7, DNA replication assays, transcription-based assays, and immunological assays.

Therapeutic methods of the invention include administering an aggrecanase 30 inhibitor composition topically, systemically, or locally as an implant or a device. The dosage regimen for the administration of composition will be determined by the attending physician based on various factors which modify the action of the aggrecanase protein, the site of pathology, the severity of disease, the patient's age, sex, and diet, the severity of any inflammation, time of administration and other clinical factors. Generally,

systemic or injectable administration will be initiated at a dose which is minimally effective, and the dose will be increased over a pre-selected time course until a positive effect is observed. Subsequently, incremental increases in dosage will be made limiting to levels that produce a corresponding increase in effect, while taking into account any 5 adverse affects that may appear. The addition of other known factors, to a final composition, may also affect the dosage.

Progress can be monitored by periodic assessment of disease progression. The progress can be monitored, for example, by X-rays, MRI or other imaging modalities, synovial fluid analysis, and/or clinical examination.

10 **X. Assays and Methods of Detection.**

The inhibitors and antibodies of the present invention can be used in assays and methods of detection to determine the presence or absence of, or quantify aggrecanase in a sample. The inhibitors and antibodies of the present invention may be used to detect aggrecanase proteins, *in vivo* or *in vitro*. By correlating the presence or level of these 15 proteins with a disease, one of skill in the art can diagnose the associated disease or determine its severity. Diseases that may be diagnosed by the presently disclosed inhibitors and antibodies are set forth above.

20 Detection methods for use with antibodies are well known in the art and include ELISA, radioimmunoassay, immunoblot, western blot, immunofluorescence, immuno- precipitation, and other comparable techniques. The antibodies may further be provided in a diagnostic kit that incorporates at least one of these techniques to detect a protein (e.g., an aggrecanase protein). Such a kit may contain other components, packaging, 25 instructions, or other material to aid the detection of an aggrecanase protein, and instructions regarding use of the kit. When protein inhibitors, for example, peptide inhibitors, are used in such diagnostic assays, protein-protein interaction assays can be employed.

30 Where inhibitors are intended for diagnostic purposes, it may be desirable to modify them; for example, with a ligand group (such as biotin) or a detectable marker group (such as a fluorescent group, a radioisotope or an enzyme). If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms, electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase can be detected by its ability to convert tetra methyl benzidine (TMB) to a blue pigment,

quantifiable with a spectrophotometer. Other suitable binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art.

5 The following examples illustrate practice of the present invention in expressing, isolating and characterizing ADAMTS4 and mTS4 proteins.

XI. EXAMPLES

EXAMPLE 1: Cloning and purification of full-length human ADAMTS4

Human ADAMTS4 cDNA was cloned using a PCR strategy. Two sets of oligonucleotide primers were designed to amplify overlapping portions of the 5'- and 3'- halves of the cDNA. Of the seven human multiple-tissue cDNA libraries that were used as PCR templates, only the uterus cDNA library resulted in PCR products of the appropriate size (5'-amplimer of 1294bp (SEQ ID NO:2) and 3'-amplimer of 1421bp (SEQ ID NO:3)). PCR-amplified fragments were digested with *Eco*RI and *Bam*HI (5'-product) or *Bam*HI and *Not*I (3'-product), ligated into *Eco*RI- and *Not*I-digested COS 10 expression vector pED6-dpc2, and transformed into ElectroMAX DH10B cells (Invitrogen). Cloned PCR fragments of ADAMTS4 were sequenced and found to have three silent changes as compared with the published nucleotide sequence for ADAMTS4 cDNA (SEQ ID NO:4) (Tortorella *et al.*, Science 284:1664-1666, 1999). These changes were C to T at base pair 466, A to G at base pair 2131, and A to G at base pair 2758 of 15 SEQ ID NO:4. The 5'-primer set was 5'-

AAATGGGCGAATTCCCACCATGTCCCAGACAGGCTCGCATCC-3' (SEQ ID NO:5)(this primer incorporated an 8-bp tail (AAATGGGC)(SEQ ID NO:6), an *Eco*RI site (GAATTC)(SEQ ID NO:7), and an optimized Kozak sequence (CCACC)(SEQ ID NO:8) upstream of the ATG start codon) and 5'-TAAGAGACAGTGCCCATAGCCATTGT-3'

20 (SEQ ID NO:9). The 3'-primer set was 5'-CTCCAAGCCATGCATCAGTTGAATG-3' (SEQ ID NO:10) and 5'-

GACTGACTGCGGCCGCATAGTGAGGTTATTCCTGCCGCC-3' (SEQ ID NO:11) (this primer incorporated an 8-bp tail (GACTGACT) (SEQ ID NO:12) and a *Not*I site (GCGGCCGC) (SEQ ID NO:13) downstream of the TAA stop codon for ADAMTS4).

25 The *Eco*RI-*Not*I fragment (SEQ ID NO:14) containing the intact ADAMTS4 coding sequence was subcloned into pHTop. This plasmid was derived from pED (Kaufman *et al.*, Nucleic Acids Res. 19:4485-4490, 1991) by removing the majority of the adenovirus major late promoter and inserting six repeats of the *tet* operator (Gossen *et al.*, Proc. Natl. Acad. Sci. USA 89:5547-5551, 1992). A CHO cell line stably expressing

ADAMTS4 was obtained by transfecting pHTop/ ADAMTS4 into CHO/A2 cells and selecting clones in 0.05 μ M methotrexate. The CHO/A2 cell line was derived from CHO DUKXB11 cells (Urlaub *et al.*, Proc. Natl. Acad. Sci. USA 77:4216-4220, 1980) by stably integrating a transcriptional activator, a fusion between the *tet* repressor and the 5 herpesvirus VP16 transcription activation domain (Gossen *et al.*, Proc. Natl. Acad. Sci. USA 89:5547-5551, 1992).

The CHO cell-conditioned medium was harvested and diluted 3-fold with buffer A (20mM Tris (pH 7.2), 5mM CaCl₂, and 10 μ M ZnCl₂) and applied to a 50 μ Poros HQ column (PE Biosystems, Foster City, CA). The column was washed with buffer B (20mM 10 Tris (pH 7.2), 50mM NaCl, 5mM CaCl₂, and 10 μ M ZnCl₂), and the protein was eluted with a linear gradient of buffer B containing 50mM to 1.0M NaCl. The ADAMTS4-containing fraction was further purified by application to a 50 μ Poros HS column after a 10-fold dilution with buffer C (20mM Tris (pH 6.8), 50mM NaCl, 5mM CaCl₂, and 10 μ M ZnCl₂), and the column was washed with 10 column volumes. Protein was eluted from the 15 column with a linear gradient of buffer C containing 50mM to 1.0M NaCl, and the calculated extinction coefficient at 280nm was used for protein concentration determination as outlined by Gill and von Hippel (Gill and von Hippel, Anal. Biochem. 182:319-326, 1989).

EXAMPLE 2: Generation of Truncated ADAMTS4 Molecules by Auto-digestion

20 Purified recombinant human ADAMTS4 migrated on SDS-PAGE gels predominantly as a 68kD band, together with a small amount (<5% of total protein) of 53kD material. Autocatalytic digestions were performed at 37°C by incubating purified ADAMTS4 at concentrations ranging from 10 pg/ml to 569 pg/ml in 50mM Tris-acetate, pH 7.3 containing 5mM CaCl₂ and 0.1-1.0M NaCl. Auto-digested products were 25 visualized by Coomassie blue staining, by silver staining, or by Western immunoblot analysis with the L9026 antibody.

Following incubation at 37°C for various times up to 16h, ADAMTS4 was detected as isoforms of 68kD (ADAMTS4(p68)), 53kDa (ADAMTS4(p53)) and 40kD (ADAMTS4(p40)). Results from incubations performed using ADAMTS4 at 30 concentrations ranging from 10pg/ml to 569pg/ml, and at salt concentrations up to 1.0M, were essentially identical. Incubation of ADAMTS4 ASM under the same condition resulted in no detectable isoforms, thus confirming that the processing of ADAMTS4 was autocatalytic (Flannery *et al.*, J. Biol. Chem. 277:42775-42780).

EXAMPLE 3: Amino Acid Sequencing and Mass Spectrometry Analyses of Auto-digested ADAMTS4 Isoforms

For N-terminal sequence analysis, aliquots of auto-digested ADAMTS4 isoforms were separated on 10% Bis-Tris NuPage SDS-PAGE gels and transferred to PVDF 5 membranes which were stained with Coomassie blue. Excised bands corresponding to ADAMTS4(p68), ADAMTS4(p53) and ADAMTS4(p40) were subjected to automated sequencing on a PE Biosystems 491A Pulsed-Liquid Sequencer on-line with a PE-Biosystems 140S PTH Analyzer (Procise-HT).

For C-terminal sequence analysis, auto-digested ADAMTS4 isoforms were 10 separated by fractionation on a column of Poros HQ. Unbound ADAMTS4(p53) and ADAMTS4(p40) were subsequently fractionated on a column of Poros HS eluted using an isocratic gradient of 0.05-1.0 M NaCl in 25mM HEPES, pH 6.8, 5mM CaCl₂ and 5pM ZnCl₂. Mass spectrometry analyses were performed using a Micromass LCT (LC-TOF-MS) analyzer (Micromass UK, Ltd, Manchester, U.K.). Samples were concentrated and 15 desalted using ABI ProSorb cartridges. C-terminal sequence analyses were performed at the Mayo Protein Core Facility, Rochester, MN, on an ABI Procise C instrument using thiohydantoin derivitization chemistry.

Figure 1 shows a schematic representation of the structure of furin-processed full-length ADAMTS4 mature enzyme (ADAMTS4(p68)) and the auto-digested isoforms 20 ADAMTS4(p53) and ADAMTS4(p40). The full-length ADAMTS4 mature enzyme contains 625 amino acids (phe213-lys837, SEQ ID NO:15, which is encoded by a nucleotide sequence (SEQ ID NO:16) corresponding to position 648-2522 of SEQ ID NO:14. The auto-digested isoform ADAMTS4(p53) contains 482 amino acids (phe213-lys694, SEQ ID NO:17, which is encoded by a nucleotide sequence (SEQ ID NO:18) 25 corresponding to position 648-2093 of SEQ ID NO: 14). The auto-digested isoform ADAMTS4(p40) contains 369 amino acids (phe213-thr581, SEQ ID NO:19, which is encoded by a nucleotide sequence (SEQ ID NO:20) corresponding to position 648-1754 of SEQ ID NO: 14).

The sequence for ADAMTS4(p68) contains no consensus attachment sites for 30 Winked oligosaccharides, and it is apparent that the recombinant ADAMT4 used in this study was indeed non-glycosylated. Consequently, the measured mass of 52,356 dalton for ADAMTS4(p53) (determined by LC-TOF-MS) was consistent with the detected C-terminal sequence of -Phe-Arg-Lys694-OH, indicating an auto-catalytic cleavage of the Lys694-Phe695 peptide bond. Similarly, the C-terminal sequence -Ser-Ala-Leu-Thr581-

OH detected for ADAMTS-4(p40) indicates auto-catalytic cleavage at Thr581-Phe582, and the calculated mass for Phe213-Thr581 (39,757 dalton) is in good agreement with the mass of 40,040 dalton measured by LC-TOF-MS.

EXAMPLE 4: Affinity of Auto-catalytically Generated ADAMTS4 Isoforms for Sulfated

5 GAGs

Purified ADAMTS4 and auto-catalytic ADAMTS4 isoforms were separated by SDS-PAGE under non-reducing conditions and transferred to nitrocellulose membranes. Affinity blotting with biotinylated heparin (bHep), a commercially available (labeled) sulfated GAG, was performed by incubating the membrane with bHep (Calbiochem, San 10 Diego, CA, 0.05pg/ml) in 20mM Tris, pH 7.4, containing 0.5M NaCl. For binding-competition experiments, membranes were pre-incubated for 1h with unlabelled heparin (0.5-50pg/ml). Additional competition experiments were performed using bovine 15 articular cartilage D1 aggrecan prepared from 4M guanidine HC1 extracts fractionated by equilibrium density centrifugation in cesium chloride as previously described and treated with or without chondroitinase ABC, keratanase and keratanase II as previously 15 described. ADAMTS4 auto-catalytic isoforms were also separated using a heparin-sepharose affinity column (Amersham Pharmacia Biotech) eluted with a step-wise gradient of 0.1-1.0M NaCl in 10mM sodium phosphate, pH 7.0.

The affinity blotting experiments revealed that whereas ADAMTS4(p68) bound 20 biotinylated heparin in the presence of 0.5M NaCl, no such binding was observed for ADAMTS4(p53) or ADAMTS4(p40). Likewise, the ADAMTS4 ASM C-terminal deletion mutant (Met1-phe575), lacking the "spacer" domain, did not bind bHep under these conditions (Flannery *et al.*, J. Biol. Chem. 277:42775-42780). The auto-catalytic 25 ADAMTS4 isoforms also showed reduced binding to heparin-sepharose. Compared to ADAMTS4(p68), which was eluted from the heparin-sepharose column in the presence of 0.8M NaCl, ADAMTS4(p53) and ADAMTS4(p40) were eluted at 0.3M NaCl and 0.4M NaCl, respectively. In binding-competition experiments, pre-incubation of affinity blots with unlabelled heparin blocked binding of bHep to ADAMTS4(p68) in a dose-dependent manner. In addition, bovine aggrecan also blocked binding of bHep to ADAMTS4(p68), 30 and this binding-competition was dependent on the presence of aggrecan GAGs (Flannery *et al.*, J. Biol. Chem. 277:42775-42780). Since both of the truncated isoforms retain the TSP-1 motif (see Figure 1), it is evident that additional sites located within the ADAMTS4 "spacer" domain contribute to GAG binding and interaction with glycosylated aggrecan (Flannery *et al.*, J. Biol. Chem. 277:42775-42780).

EXAMPLE 5: Aggrecanase Activity of Auto-catalytically Generated ADAMTS4 Isoforms

The aggrecanase activity of the auto-catalytically generated ADAMTS4 isoforms, ADAMTS4(p53) and ADAMTS4(p40), were determined using methods described in Example 7. Briefly, bovine aggrecan was incubated with purified ADAMTS4(p53) and 5 ADAMTS4(p40) for 16h at 37°C. Digestion products were deglycosylated with chondroitinase ABC and keratanases, separated by SDS-PAGE, and visualized by Western blot using monoclonal antibody BC-3, which specifically detects the neoepitope sequences ₃₇₄ARGXX (SEQ ID NO:21) generated by aggrecanase cleavage of the glu373-ala374 peptide bond within the aggrecan interglobular domain. The result showed 10 that both isoforms have aggrecanase activity (Flannery *et al.*, J. Biol. Chem. 277:42775-42780).

EXAMPLE 6: Generation and Purification of Modified Human ADAMTS4 Molecules

Figure 2 shows schematics of the native, unprocessed ADAMTS4 molecule (construct A) and various modified human ADAMTS4 molecules (constructs B-I). As 15 shown in construct A, the unprocessed pro-protein of ADAMTS4 (SEQ ID NO:1) contains a signal peptide (sp), a pro-peptide (pro), a catalytic domain, a disintegrin-like domain, a TSP-1 domain, a cysteine-rich domain, and a spacer domain.

Constructs B-D are truncated ADAMTS4 constructs generated using standard molecular biology techniques. Construct B (SEQ ID NO:22) is a truncated ADAMTS4 20 molecule lacking the disintegrin-like domain, the TSP-1 motif, the cysteine rich domain and the spacer, but containing a His tag (HHHHHH, SEQ ID NO:23). The furin-processed protein from this construct is enzymatically inactive (SEQ ID NO:46). Construct C (SEQ ID NO:24) contains a tag sequence (GSAWSHPQFEK, SEQ ID NO:25) and a C-terminal deletion that removed most of the spacer region. Construct D 25 (SEQ ID NO:26) is an untagged version of construct C. Both constructs C and D can be expressed in CHO cells. The furin-processed mature proteins of construct C and D (SEQ ID NOS:47 and 48, respectively) have aggrecanase activity.

Construct E (SEQ ID NO:27) was made by inserting, in frame, coding sequence 30 for the amino acids -GSGSGDDDDK- (SEQ ID NO:28) between the catalytic domain and the disintegrin-like domain of ADAMTS4, along with a Strep-tag on the C-terminus. The -GSGSG- constitutes a flexible amino acid spacer and the -DDDDK- constitutes a recognition site for the highly specific protease enterokinase. This construct was prepared after results obtained with construct B in Fig. 2 showed that removal of coding sequence for the C-terminal domains following the catalytic domain resulted in a protein

that was inactive. Protein derived from construct B was appropriately processed (furin cleavage of the pro-domain), but the pro-peptide remained associated with the catalytic domain. It is possible that the presence of the C-terminal disintegrin-like, TSP-1, cys-rich, and spacer domains might facilitate folding of the catalytic domain and/or 5 displacement of the cleaved pro-peptide to generate active enzyme. The intent of construct E was to allow the full-length ADAMTS4 protein to be translated and fold, to be purified by virtue of the C-terminal tag (GSAWSHPQFEK, SEQ ID NO:25), and then cleaved with exogenously added enterokinase to produce intact catalytic domain, amenable to activity assays and structural determinations.

10 Constructs F-I are modified ADAMTS4 molecules carrying an active-site mutation (ASM). The full-length ASM construct G (SEQ ID NO:29) was created by introducing a single basepair change (G to C at position 1084) into the wild-type ADAMTS4 using the Quick Change Site Directed Mutagenesis Kit (Stratagene, La Jolla, CA). The nucleotide change resulted in a single amino acid change from glu to gln at 15 position 362 (E₃₆₂Q). Construct G, which also contains a FLAG tag (VDYKDDDDK, SEQ ID NO:30) was expressed in CHO cells and purified as described in Example 1. The E₃₆₂Q mutation abolished the aggrecanase activity of the mature protein (SEQ ID NO:50) of construct G. The mature protein, however, is more stable than the native ADAMTS4 protein.

20 Truncated ASM constructs H (SEQ ID NO:31) and I (SEQ ID NO:32) were generated by PCR amplification of part of construct G using PCR primers with incorporated restriction sites. Construct H lacks the spacer domain and contains a C-terminal FLAG epitope tag. Construct I lacks the spacer and the TSP-1 domain and contains a C-terminal FLAG epitope tag. For construct H, the 5'-primer was: Ag1B1F: 25 5' TAAATCGAATTCCCACCATGTCCCAGACAGGCTCGCATCCG 3' (SEQ ID NO:33). The 3'-primer was Ag1B2R: 5' TATTATGTCTACTGGGCAGTCCTCAGTGTGCAGGAG 3' (SEQ ID NO:34). For construct I, the 5'-primer was: Ag1B1F: 5' TAAATCGAATTCCCACCATGTCCCAGACAGGCTCGCATCCG 3' (SEQ ID NO:33). The 3'-primer was Ag1B1R: 5' TATTATGTCTACAGCCTGTGGAATTGAAGTCCTGG 3' (SEQ ID NO:35).

The PCR amplification was performed using standard conditions described by BD Biosciences BD AdvantageTM-GC 2 Polymerase Mix. The amplified products, which contained the unique restriction sites EcoRI at 5' end and AccI at 3' end, were subcloned

in two steps to end up in pHTop with a C-terminal FLAG tag. Briefly, the PCR products were digested using standard conditions with the restriction enzymes EcoR1 and AccI. The digested products were fractionated on an agarose gel and bands corresponding to the predicted size were excised from the gel. DNA was recovered from the gel utilizing a 5 Prep-A-Gene kit from BioRad according to the manufacture directions. The recovered DNA was directionally cloned (EcoRI – AccI) into the intermediate vector pTAdv-FLAG, which was constructed by annealing the two synthetic oligonucleotides Flag1 5' 10 AATTCCTATGCTAGTGCTATCGTAGACTACAAGGATGACGATGACAAGTAAG C 3' (SEQ ID NO:36), and Flag2 5' 15 GGCCGCTTACTTGTCACTCGTCATCCTGTAGTCTACGATAGCACTAGCATAGG 3' (SEQ ID NO:37) together and cloning directionally (EcoRI – NotI) into Clontech pTAdv vector. The complete nucleotide sequence of the pTAdv-FLAG cloning vector is 15 recited in SEQ ID NO:38.

Sequence confirmed recombinant plasmids were then amplified using standard techniques and digested with the restriction enzymes EcoRI and NotI. The EcoRI – NotI fragments were then gel purified as described above and cloned directionally into the pHTop vector (SEQ ID NO:39).

20 The two constructs were expressed in CHO/A2 cells, and purified from conditioned media using anti-FLAG agarose affinity gel (Sigma-Aldrich, St. Louis, MO). Polyclonal rabbit anti-human ADAMTS4 antisera L9026, generated using an immunizing mixture of eight distinct synthetic peptides derived from all domains of the enzyme, was purified on a HiTrap Protein G HP affinity column (Amersham Pharmacia Biotech, 25 Piscataway, NJ). Following protein separation on 10% SDS-PAGE gels (Invitrogen, Carlsbad, CA), the antibody was used at a concentration of 1.5pg/ml for Western immunoblotting and detection on Hybond nitrocellulose membranes with ECL reagents (Amersham Pharmacia Biotech). Furin-processed construct H (SEQ ID NO:51) and construct I (SEQ ID NO:52) lack aggrecanase activity but are more stable than the wild-type ADAMTS4 protein.

30 A full-length ADAMTS4 ASM construct with an insertion was also created (construct F, SEQ ID NO:40). The construct contains a strep tag (WSHPQFEK, SEQ ID NO:41) inserted between the disintegrin-like domain and the TSP-1 motif. Construct F was designed in an attempt to solve the problems that we encountered with poor yield of

purified full-length ADAMTS4. C-terminal tagging of ADAMTS4 proved to be sub-optimal due to loss of the tag by auto-catalytic C-terminal processing. In construct F, the Strep tag was moved internally, between the disintegrin-like and Tsp domains. In this position, any auto-catalysis within the cys-rich and spacer domains would not release the 5 Strep tag.

EXAMPLE 7: Biological Activity of Expressed Aggrecanase

The biological activity of the expressed aggrecanase proteins, such as the modified aggrecanases of the present invention, may be assayed in accordance with the following assays:

10 Fluorescent peptide assay: Expressed protein is incubated with a synthetic peptide which encompasses amino acids at the aggrecanase cleavage site of aggrecan. Either the N-terminus or the C-terminus of the synthetic peptide is labeled with a fluorophore and the other terminus includes a quencher. Cleavage of the peptide separates the fluorophore and quencher and elicits fluorescence. From this assay it is determined that the expressed 15 aggrecanase protein can cleave aggrecan at the aggrecanase site, and relative fluorescence is a determination the relative activity of the expressed protein.

20 Neoepitope western blot: Expressed aggrecanase protein is incubated with intact aggrecan. After several biochemical manipulations of the resulting sample (dialysis, chondroitinase treatment, lyophilization and reconstitution) the sample is run on an SDS-PAGE gel. The gel is incubated with an antibody that is specific to a site on aggrecan which is only exposed after aggrecanase cleavage. The gel is transferred onto nitrocellulose paper and developed using a secondary antibody (called a western assay) which subsequently results in a banding pattern indicative of products with a molecular weight consistent with aggrecanase generated cleavage products of aggrecan. This assay 25 results in the finding that the expressed aggrecanase protein cleaved native aggrecan at the aggrecanase cleavage site, and also gives the molecular weight of the cleavage products. Relative density of the bands can give an indication of relative aggrecanase activity.

30 In one embodiment, bovine articular cartilage aggrecan was incubated with purified ADAMTS4 or modified ADAMTS4 protein for 16h at 37°C in 50mM Tris, pH 7.3, containing 100mM NaCl and 5mM CaCl₂. Digestion products were deglycosylated by incubation for 2h at 37°C in the presence of chondroitinase ABC (Seikagaku America, Falmouth, MA; 1mU/μg aggrecan), keratanase (Seikagaku; 1mU/μg aggrecan) and

keratanase II (Seikagaku; 0.02mU/µg aggrecan). Digestion products were separated on 4-12% Bis-Tris NuPAGE SDS PAGE gels (Invitrogen, Carlsbad, CA) and then electrophoretically transferred to nitrocellulose. Immunoreactive products were detected by Western blotting with monoclonal antibody (MAb) AGG-C1 (0.04µg/ml) or MAb BC-5 (generously provided by Dr. C. Hughes and Prof. B. Caterson, Cardiff University, UK; 1:100 of hybridoma culture supernatant). Alkaline-phosphatase-conjugated secondary goat anti-mouse IgG (Promega Corp., Madison, WI; 1:7500) was subsequently incubated with the membranes, and NBT/BCIP substrate (Promega) was used to visualize immunoreactive bands. All antibody incubations were performed for 1h at room 10 temperature, and the immunoblots were incubated with the substrate for 5-15min at room temperature to achieve optimum color development.

Aggrecan ELISA: Expressed protein is incubated with intact aggrecan which had been previously adhered to plastic wells. The wells are washed and then incubated with an antibody that detects aggrecan. The wells are developed with a secondary antibody. If 15 the original amount of aggrecan remains in the wells, the antibody staining is dense. If aggrecan was digested by aggrecanase activity of the expressed aggrecanase protein, the aggrecan comes off the plate and the subsequent staining of the aggrecan-coated wells by the antibody is reduced. This assay tells whether an expressed protein is capable of cleaving aggrecan (anywhere in the protein, not only at the aggrecanase site) and can 20 further determine relative aggrecan cleavage.

Briefly, microtiter plates (Costar) were coated with hyaluronic acid (ICN), followed by chondroitinase (Seikagaku Chemicals)-treated bovine aggrecan. Conditioned medium from CHO cells expressing modified aggrecanase was added to the aggrecan-coated plates. Aggrecan cleaved at the glu373-ala374 within the interglobular domain 25 was washed away. The remaining uncleaved aggrecan was detected with the 3B3 monoclonal antibody (ICN), followed by anti-mouse IgM-HRP secondary antibody (Southern Biotechnology). Final color development was with 3,3", 5,5" tetramethylbenzidine (TMB, BioFx Laboratories). Alternatively, modified aggrecanase can be synthesized in the inactive pro-form and can be processed by furin to yield the 30 mature species.

EXAMPLE 8: Construction of Expression Vectors for Modified Aggrecanase

One skilled in the art can construct expression vectors for modified aggrecanase by inserting sequences encoding modified aggrecanase into known mammalian

expression vectors, such as pCD (Okayama *et al.*, Mol. Cell Biol. 2:161-170, 1982), pJL3, pJL4 (Gough *et al.*, EMBO J. 4:645-653, 1985) and pMT2 CXM.

The mammalian expression vector pMT2 CXM is a derivative of p91023(b) (Wong *et al.*, Science 228:810-815, 1985) differing from the latter in that it contains the 5 ampicillin resistance gene in place of the tetracycline resistance gene and further contains a Xhol site for insertion of cDNA clones. The functional elements of pMT2 CXM have been described (Kaufman, *et al.*, Proc. Natl. Acad. Sci. USA 82:689693, 1985) and include the adenovirus VA genes, the SV40 origin of replication including the 72 bp enhancer, the adenovirus major late promoter including a 5' splice site and the majority of 10 the adenovirus tripartite leader sequence present on adenovirus late mRNAs, a 3' splice acceptor site, a dihydrofolate reductase (DHFR) insert, the SV40 early polyadenylation site (SV40), and pBR322 sequences needed for propagation in *E. coli*.

Plasmid pMT2 CXM is obtained by EcoR1 digestion of pMT2-VWF, which has been deposited with the American Type Culture Collection (ATCC, Rockville, Maryland, 15 USA) under accession number ATCC 67122. EcoR1 digestion excises the cDNA insert present in pMT2-VWF, yielding pMT2 in linear form which can be ligated and used to transform *E. coli* HB 101 or DH-5 to ampicillin resistance. Plasmid pMT2 DNA can be prepared by conventional methods. pMT2 CXM is then constructed using loopout/in mutagenesis (Morinaga, *et al.*, Biotechnology 84: 636, 1984). This removes bases 1075 20 to 1145 relative to the Hind III site near the SV40 origin of replication and enhancer sequences of pMT2. In addition it inserts the following sequence: 5'- CATGGGCAGCTCGAG-3' (SEQ ID NO:42) at nucleotide 1145. This sequence contains the recognition site for the restriction endonuclease Xho I. A derivative of pMT2CXM, termed pMT23, contains recognition sites for the restriction endonucleases PstI, EcoR1, 25 Sall and Xhol. Plasmid pMT2 CXM and pMT23 DNA may be prepared by conventional methods.

pEMC281 derived from pMT21 may also be suitable in practice of the invention. pMT21 is derived from pMT2 which is derived from pMT2-VWF. As described above EcoR1 digestion excises the cDNA insert present in pMT-VWF, yielding pMT2 in linear 30 form which can be ligated and used to transform *E. Coli* HB 101 or DH-5 to ampicillin resistance. Plasmid pMT2 DNA can be prepared by conventional methods.

pMT21 is derived from pMT2 through the following two modifications. First, 76 bp of the 5' untranslated region of the DHFR cDNA including a stretch of 19 G residues

from G/C tailing for cDNA cloning is deleted. In this process, a *Xba*I site is inserted to obtain the following sequence immediately upstream from DHFR:

5' CTGCAGGCGAGCCTGAATTCTCGAGCCATCATG 3' (SEQ ID NO:43)

5 Second, a unique ClaI site is introduced by digestion with EcoRV and XbaI, treatment with Klenow fragment of DNA polymerase I, and ligation to a ClaI linker (CATCGATG, SEQ ID NO:44). This deletes a 250 bp segment from the adenovirus associated RNA (VAI) region but does not interfere with VAI RNA gene expression or function. pMT21 is digested with EcoRI and XbaI, and used to derive the vector
10 pEMC2B1.

A portion of the EMCV leader is obtained from pMT2-ECAT1 (S.K. Jung, *et al*, J. Virol. 63:1651-1660, 1989) by digestion with EcoRI and PstI, resulting in a 2752 bp fragment. This fragment is digested with TaqI yielding an EcoRI-TaqI fragment of 508 bp which is purified by electrophoresis on low melting agarose gel. A 68 bp adapter and its complementary strand are synthesized with a 5' TaqI protruding end and a 3' Xhol protruding end which has the following sequence:

51

CGAGGTTAAAAACGTCTAGGCCCGAACACGGGACGTGGTTTCCTT

Taq1

20 GAAAAACACGATTGC 3' (SEQ ID NO:46)

Xhol

This sequence matches the EMC virus leader sequence from nucleotides 763 to 827. It also changes the ATG at position 10 within the EMC virus leader to an ATT and is followed by a Xhol site. A three way ligation of the pMT21 EcoRI-16hol fragment, the EMC virus EcoRI-Tag1 fragment, and the 68 bp oligonucleotide adapter Tag1-16hol adapter results in the vector pEMC2/61.

This vector contains the SV40 origin of replication and enhancer, the adenovirus major late promoter, a cDNA copy of the majority of the adenovirus tripartite leader sequence, a small hybrid intervening sequence, an SV40 polyadenylation signal and the adenovirus VA I gene, DHFR and Q-lactamase markers and an EMC sequence, in appropriate relationships to direct the high level expression of the desired cDNA in mammalian cells.

The construction of expression vectors may involve modification of the aggrecanase-related DNA sequences. For instance, a cDNA encoding an aggrecanase can

be modified by removing the non-coding nucleotides on the 5' and 3' ends of the coding region. The deleted non-coding nucleotides may or may not be replaced by other sequences known to be beneficial for expression. These vectors are transformed into appropriate host cells for expression of aggrecanase or aggrecanase-like proteins.

5 Additionally, the aggrecanase sequences can be manipulated to express an aggrecanase or aggrecanase-like protein by deleting aggrecanase encoding pro-peptide sequences and replacing them with sequences encoding the complete pro-peptides of other aggrecanase proteins. It is also possible to replace a protein domain in a modified aggrecanase (e.g., a modified ADAMTS4) with the corresponding domain from a different aggrecanase (e.g., a modified ADAMTS5).

10 One skilled in the art can also manipulate the sequences of expression vectors by eliminating or replacing the mammalian regulatory sequences flanking the coding sequence with bacterial sequences to create bacterial vectors for intracellular or extracellular expression of modified aggrecanase molecules. For example, the coding 15 sequences could be further manipulated (e.g. ligated to other known linkers or modified by deleting non-coding sequences therefrom or altering nucleotides therein by other known techniques). A modified aggrecanase encoding sequence could then be inserted into a known bacterial vector using procedures such as described by Taniguchi *et al.*, (Taniguchi *et al.*, Proc. Natl Acad. Sci. USA, 77:5230-5233, 1980). This exemplary 20 bacterial vector could then be transformed into bacterial host cells to express an aggrecanase protein of the invention. For a strategy for producing extracellular expression of aggrecanase-related proteins in bacterial cells, see, e.g. European patent application EP 177,343.

25 Similar manipulations can be performed for construction of an insect vector (see, e.g., procedures described in published European patent application EP 155,476) for expression in insect cells. A yeast vector could also be constructed employing yeast regulatory sequences for intracellular or extracellular expression of the factors of the present invention by yeast cells. (See, e.g., procedures described in published PCT application W086/00639 and European patent application EP 123,289).

30 A method for producing high levels of an aggrecanase-related protein of the invention in mammalian, bacterial, yeast or insect host cell systems may involve the construction of cells containing multiple copies of the heterologous aggrecanase-related gene. The heterologous gene is linked to an amplifiable marker e.g., the dihydrofolate reductase (DHFR) gene for which cells containing increased gene copies can be selected

for propagation in increasing concentrations of methotrexate (MTX) (Kaufman and Sharp, *J. Mol. Biol.*, 159:601-629, 1982). This approach can be employed with a number of different cell types.

For example, an expression plasmid containing coding sequence of a modified aggrecanase and the DHFR expression plasmid pAdA26SV(A)3 (Kaufman and Sharp, *Mol. Cell. Biol.*, 2:1304, 1982) can be co-introduced into DHFR-deficient CHO cells, DUKX-1311, by various methods including calcium phosphate co-precipitation and transfection, electroporation or protoplast fusion. DHFR expressing transformants are selected for growth in alpha media with dialyzed fetal calf serum, and subsequently selected for amplification by growth in increasing concentrations of MTX (*e.g.* sequential steps in 0.02, 0.2, 1.0 and 5pM MTX) (Kaufman *et al.* *Mol. Cell Biol.*, 5:1750, 1983). Transformants are cloned, and biologically active modified aggrecanase expression is monitored by at least one of the assays described above. Aggrecanase protein expression should increase with increasing levels of MTX resistance. Modified aggrecanase polypeptides are characterized using standard techniques known in the art such as pulse labeling with ³⁵S methionine or cysteine and polyacrylamide gel electrophoresis. Similar procedures can be followed to produce other modified aggrecanases or aggrecanase-like proteins.

EXAMPLE 9: Preparation of Antibodies

An antibody against a modified aggrecanase of the present invention is prepared. To develop an antibody capable of inhibiting aggrecanase activity, a group of mice are immunized every two weeks with a modified aggrecanase protein mixed in Freunds complete adjuvant for the first two immunizations, and incomplete Freunds adjuvant thereafter. Throughout the immunization period, blood is sampled and tested for the presence of circulating antibodies. At week 9, an animal with circulating antibodies is selected, immunized for three consecutive days, and sacrificed. The spleen is removed and homogenized into cells. The spleen cells are fused to a myeloma fusion partner (line P3-x63-Ag8.653) using 50% PEG 1500 by an established procedure (Oi and Herzenberg, *Selected Methods in Cellular Immunology*, W. J. Freeman Co., San Francisco, CA, 351, 1980). The fused cells are plated into 96-well microtiter plates at a density of 2×10^5 cells/well. After 24 hours, the cells are subjected to HAT selection (Littlefield *et al.*, *Science*, 145:709, 1964) effectively killing any unfused and unproductively fused myeloma cells.

Successfully fused hybridoma cells secreting anti-aggrecanase antibodies are identified by solid and solution phase ELISAs. The modified aggrecanase protein is prepared from CHO cells as described above and coated on polystyrene (for solid phase assays) or biotinylated (for a solution based assay). Neutralizing assays are also 5 employed where aggrecan is coated on a polystyrene plate and aggrecanase activity is inhibited by the addition of hybridoma supernatant. Hybridomas expressing aggrecanase antibodies are cultured and expanded for further study. Selected hybridomas are cloned by limiting dilution and cryopreserved. Isotypes of the antibodies produced by the hybridomas are determined using a mouse immunoglobulin isotyping kit (Zymed™ 10 Laboratories, Inc., San Francisco, CA).

EXAMPLE 10: Method of Treating a Patient with an Anti-aggrecanase Antibody

The antibody developed according to Example 10 can be administered to patients suffering from a disease or disorder related to the loss of aggrecan, or excess aggrecanase activity. Patients take the composition one time or at intervals, such as once daily, and 15 the symptoms and signs of their disease or disorder improve. For example, loss of aggrecan would decrease or cease and degradation of articular cartilage would decrease or cease. Symptoms of osteoarthritis would be reduced or eliminated. This shows that the composition of the invention is useful for the treatment of diseases or disorders related to the loss of aggrecan, or excess aggrecanase activity. The antibodies can also be used with 20 patients susceptible to osteoarthritis, such as those who have a family history or markers of the disease, but have not yet begun to suffer its effects. A tentative experimental design is shown in Table 2.

Table 2. Treating osteoarthritis with anti-aggrecanase antibody

Patient's Condition	Route of Administration	Dosage	Frequency	Predicted Results
Osteoarthritis	Subcutaneous	500 µg/kg	Daily	Decrease in symptoms
	"	1 mg/kg	Weekly	"
	Intramuscular	500 µg/kg	Daily	"
	"	1 mg/kg	Weekly	"
	Intravenous	500 µg/kg	Daily	"
	"	1 mg/kg	Weekly	"
Family History of Osteoarthritis	Subcutaneous	500 µg/kg	Daily	Prevention of condition
	Intramuscular	500 µg/kg	Daily	"
	Intravenous	500 µg/kg	Daily	"

The foregoing descriptions detail presently preferred embodiments of the present invention. Numerous modifications and variations in practice thereof are expected to occur to those skilled in the art upon consideration of these descriptions. Those modifications and variations are believed to be encompassed within the claims appended 5 hereto. All of the documents cited in this application are incorporated by reference in their entirety. Additionally, all sequences cited in databases and all references disclosed are incorporated by reference in their entirety.

We claim:

1. An isolated, modified ADAMTS4 protein with improved stability compared to a naturally-occurring, full-length ADAMTS4 protein, said modified ADAMTS4 protein differing from the naturally-occurring, full-length ADAMTS4 protein by at least one 5 amino acid.
2. The modified ADAMTS4 protein of claim 1, wherein the naturally-occurring, full-length ADAMTS4 protein comprises the amino acid sequence recited in SEQ ID NO:15.
3. The modified ADAMTS4 protein of claim 1, wherein a difference in amino acid 10 sequences between the modified ADAMTS4 protein and the naturally-occurring, full-length ADAMTS4 protein is introduced by altering at least one amino acid in the naturally-occurring, full-length ADAMTS4 protein using a method selected from the group consisting of substituting, deleting, inserting, and chemically modifying amino acid residues.
4. The isolated, modified ADAMTS4 protein of claim 1, comprising a deletion of all 15 or a portion of an ADAMTS4 spacer domain, wherein the modified ADAMTS4 protein has aggrecanase activity.
5. The isolated, modified ADAMTS4 protein of claim 1, wherein said protein does not have auto-catalytic activity.
6. The isolated, modified ADAMTS4 protein of claim 1, wherein said protein comprises a peptide tag.
7. The isolated, modified ADAMTS4 protein of claim 1, wherein said protein comprises a mutation in ADAMTS4 catalytic domain that abolishes the aggrecanase activity of said modified ADAMTS4 protein.
8. The isolated, modified ADAMTS4 protein of claim 7, further comprising a 25 deletion of all or a portion of ADAMTS4 spacer domain.
9. An isolated, modified ADAMTS4 protein with improved stability compared to an ADAMTS4 protein having an amino acid sequence recited in SEQ ID NO:15, said modified ADAMTS4 protein comprising an amino acid sequence selected from the group 30 consisting of SEQ ID NOS:17, 19, 22, 24, 26, 27, 29, 31, 32, 40, and 46-53.
10. An isolated polynucleotide, said polynucleotide comprising a nucleotide sequence encoding the modified ADAMTS4 protein of claim 1.
11. An isolated polynucleotide, said polynucleotide comprising a nucleotide sequence encoding the modified ADAMTS4 protein of claim 9.

12. A vector comprising the polynucleotide of claim 10 in operative association with an expression control sequence.
13. A vector comprising the polynucleotide of claim 11 in operative association with an expression control sequence.
- 5 14. A method for producing a modified ADAMTS4 protein, said method comprising:
 - introducing a polynucleotide comprising a nucleotide sequence encoding the modified ADAMTS4 protein of claim 1 into a host cell;
 - incubating said host cell under conditions that allow expression of the modified ADAMTS4 protein from the polynucleotide; and
- 10 purifying the modified ADAMTS4 protein from the host cell.
15. A method for producing a modified ADAMTS4 protein, said method comprising:
 - introducing a polynucleotide comprising a nucleotide sequence encoding the modified ADAMTS4 protein of claim 9 into a host cell;
 - incubating said host cell under conditions that allow expression of the modified ADAMTS4 protein from the polynucleotide; and
- 15 purifying the modified ADAMTS4 protein from the host cell.
16. A method of identifying an inhibitor of the modified ADAMTS4 protein of claim 1, said method comprising the steps of:
 - determining the aggrecanase activity of the modified ADAMTS4 protein;
 - 20 contacting the modified ADAMTS4 protein with a candidate agent;
 - determining the aggrecanase activity of the modified ADAMTS4 protein in the presence of said candidate agent; and
 - determining whether said candidate agent affects the activity of the modified ADAMTS4 protein.
- 25 17. A pharmaceutical composition for treating an aggrecanase-related disease, comprising:
 - (a) an inhibitor of the modified ADAMTS4 protein of claim 1 or an antibody that binds specifically of the modified ADAMTS4 protein of claim 1; and
 - (b) a pharmaceutically acceptable carrier.
- 30 18. The pharmaceutical composition of claim 17, wherein the antibody inhibits the aggrecanase activity of the modified ADAMTS4 protein.
19. A method for treating an aggrecanase-related disease in a mammal, said method comprising the step of:

introducing into the mammal an effective amount of the pharmaceutical composition of claim 17.

20. The method of claim 19, wherein the aggrecanase-related disease is osteoarthritis.

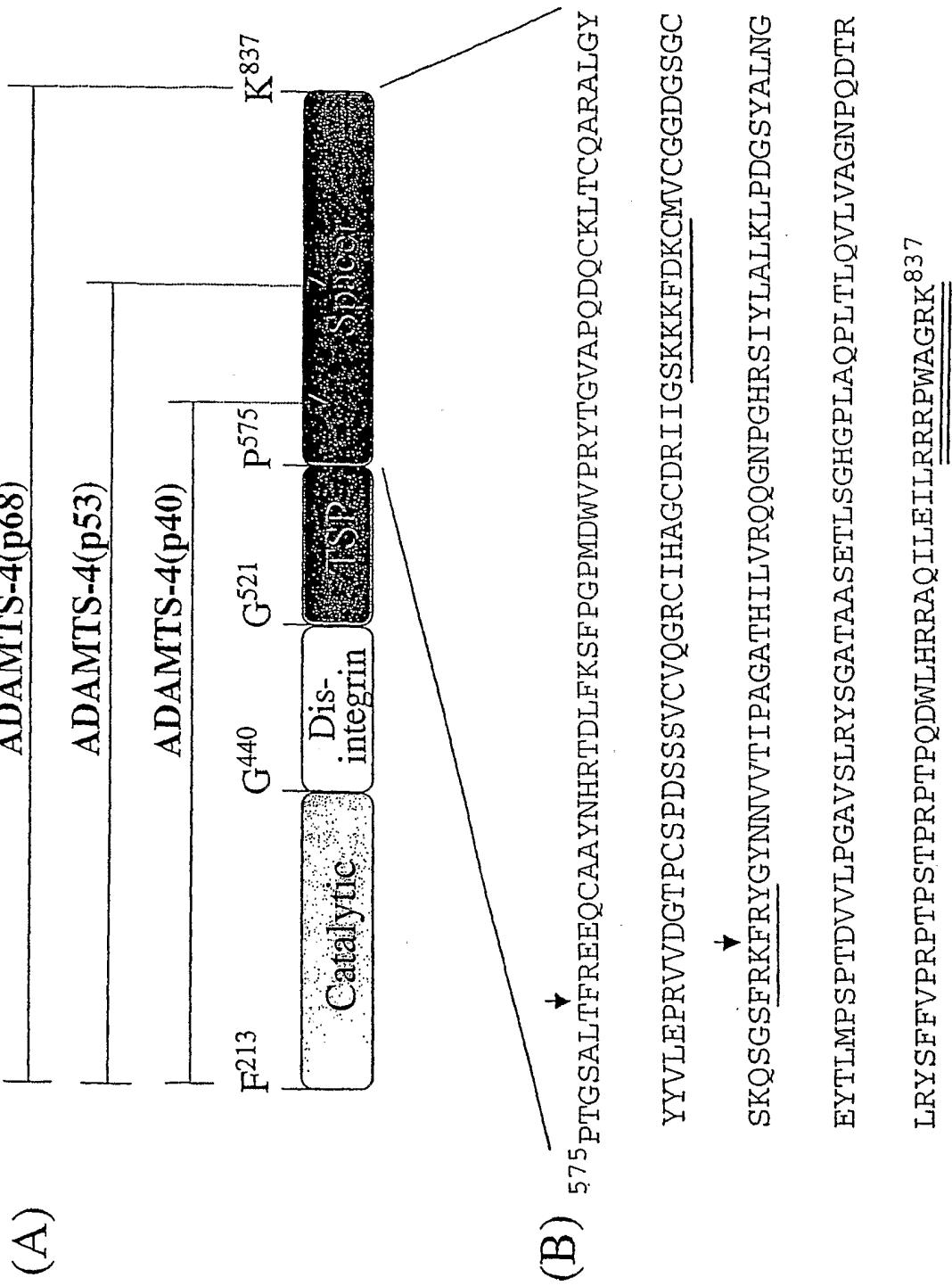
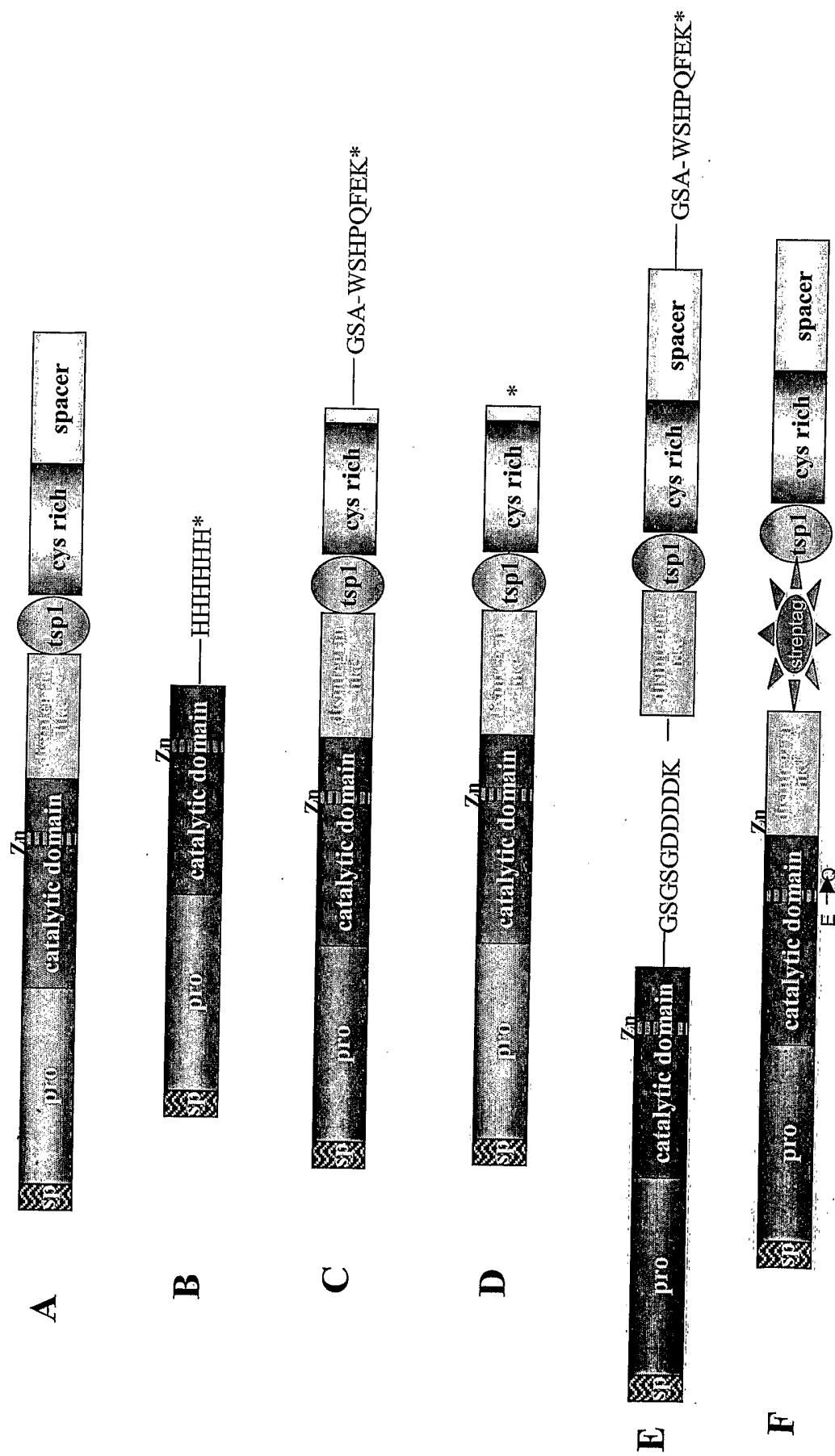
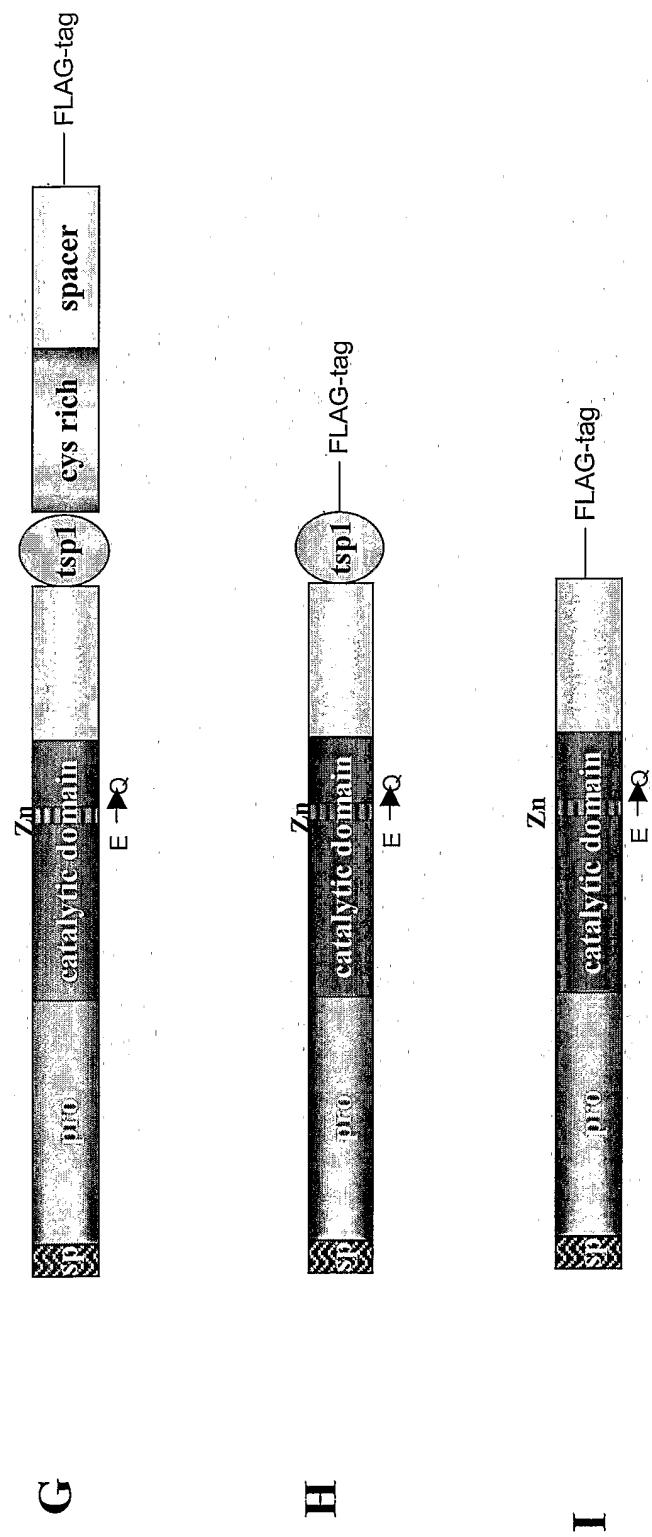



FIG. 1

FIG. 2

3/3

CONT.
FIG. 2

AM101378.seq listings.txt
SEQUENCE LISTING

<110> Wyeth

<120> Modified ADAMTS4 molecules

<130> AM101378

<160> 53

<170> PatentIn version 3.1

<210> 1

<211> 837

<212> PRT

<213> Homo sapiens

<400> 1

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp
1 5 10 15Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser
20 25 30Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser
35 40 45Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro
50 55 60Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg
65 70 75 80Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu
85 90 95Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu
100 105 110Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu
115 120 125Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp
130 135 140Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu
145 150 155 160His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro
165 170 175Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro
180 185 190Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg
Page 1

AM101378.seq listings.txt
195 200 205Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val
210 215 220Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg
225 230 235 240Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro
245 250 255Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu
260 265 270Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr
275 280 285Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp
290 295 300Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp
305 310 315 320Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly
325 330 335Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly
340 345 350Leu Gln Ser Ala Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn
355 360 365Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu
370 375 380Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro
385 390 395 400Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu
405 410 415Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu
420 425 430His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln
435 440 445Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro
450 455 460Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala
Page 2

465 470 AM101378.seq listings.txt 475 480

Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly
485 490 495

Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu
500 505 510

Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro
515 520 525

Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser
530 535 540

Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu
545 550 555 560

Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr
565 570 575

Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His
580 585 590

Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro
595 600 605

Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln
610 615 620

Ala Arg Ala Leu Gly Tyr Tyr Val Leu Glu Pro Arg Val Val Asp
625 630 635 640

Gly Thr Pro Cys Ser Pro Asp Ser Ser Val Cys Val Gln Gly Arg
645 650 655

Cys Ile His Ala Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Phe
660 665 670

Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln
675 680 685

Ser Gly Ser Phe Arg Lys Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr
690 695 700

Ile Pro Ala Gly Ala Thr His Ile Leu Val Arg Gln Gln Gly Asn Pro
705 710 715 720

Gly His Arg Ser Ile Tyr Leu Ala Leu Lys Leu Pro Asp Gly Ser Tyr
725 730 735

Ala Leu Asn Gly Glu Tyr Thr Leu Met Pro Ser Pro Thr Asp Val Val

AM101378.seq listings.txt

740

745

750

Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser Gly Ala Thr Ala Ala Ser
 755 760 765

Glu Thr Leu Ser Gly His Gly Pro Leu Ala Gln Pro Leu Thr Leu Gln
 770 775 780

Val Leu Val Ala Gly Asn Pro Gln Asp Thr Arg Leu Arg Tyr Ser Phe
 785 790 795 800

Phe Val Pro Arg Pro Thr Pro Ser Thr Pro Arg Pro Thr Pro Gln Asp
 805 810 815

Trp Leu His Arg Arg Ala Gln Ile Leu Glu Ile Leu Arg Arg Arg Pro
 820 825 830

Trp Ala Gly Arg Lys
 835

<210> 2

<211> 1294

<212> DNA

<213> Artificial

<220>

<223> This is an artificial DNA sequence cloned by PCR amplification

<220>

<221> misc_feature

<222> (1)..(1294)

<223> artificial DNA sequence

<400> 2	60
ccatgtccca gacaggctcg catcccgaga ggggcttggc agggcgctgg ctgtggggag	60
cccaaccctg cctcctgctc cccattgtgc cgctctcctg gctggtgtgg ctgcttctgc	120
tactgctggc ctctctcctg ccctcagccc ggctggccag cccccctcccc cgggaggagg	180
agatcgtgtt tccagagaag ctcaacggca gcgtcctgcc tggctcgggc gcccctgcca	240
ggctgttgtg ccgcttgcag gccttgggg agacgctgct actagagctg gagcaggact	300
ccggtgtgca ggtcgagggg ctgacagtgc agtacctggg ccaggcgcct gagctgctgg	360
gtggagcaga gcctggcacc tacctgactg gcaccatcaa tggagatccg gagtcggtgg	420
catctctgca ctggatggg ggagccctgt taggcgtgtt acaatatcgg ggggctgaac	480
tccacctcca gccccctggag ggaggcaccc ctaactctgc tgggggacct ggggctcaca	540
tcctacgccc gaagagtcct gccagcggtc aaggtccat gtgcaacgtc aaggctcctc	600
ttggaagccc cagccccaga ccccgaagag ccaaggcgtt tgcttcactg agtagatttg	660
tggagacact ggtggtggca gatgacaaga tggccgcatt ccacggtgcg gggctaaagc	720
gctacctgct aacagtgtat gcagcagcag ccaaggcctt caagcaccca agcatccgca	780

AM101378.seq listings.txt

atccgtcag	cttggtggtg	actcggttag	tgatcctggg	gtcaggcgag	gagggggcccc	840
aagtggggcc	cagtgtgcc	cagaccctgc	gcagcttctg	tgcctggcag	cggggcctca	900
acaccctga	ggactcggac	cctgaccact	ttgacacagc	cattctgtt	acccgtcagg	960
acctgtgtgg	agtctccact	tgcacacgc	tgggtatggc	tgatgtggc	accgtctgt	1020
acccggaaat	ggcgaattc	ccactcggag	ctgtgccatt	gtggaggatg	atgggctcca	1080
gtcagccttc	actgctgctc	atgaactggg	tcatgtcttc	aacatgctcc	atgacaactc	1140
caagccatgc	atcagttga	atgggcctt	gagcacctct	cgcctatgtca	tggccctgt	1200
gatggctcat	gtggatcctg	aggagccctg	gtcccccgtc	agtgcccgt	tcatcactga	1260
cttcctggac	aatggctatg	ggcactgtct	ctta			1294

<210> 3

<211> 1421

<212> DNA

<213> Artificial

<220>
<223> This is an artificial DNA sequence cloned by PCR

<400> 3						
ctccaagcca	tgcatacgat	tgaatggcc	ttttagcacc	tctcgccatg	tcatggcccc	60
tgtgatggct	catgtggatc	ctgaggagcc	ctggtcccc	tgcagtgc	gtttcatcac	120
tgacttcctg	gacaatggct	atggcactg	tctcttagac	aaaccagagg	ctccattgca	180
tctgcctgt	actttccctg	gcaaggacta	tgatgctgac	cgcgcgt	agctgac	240
cggcccgac	tcacgcccatt	gtccacagct	gccgcgc	tgtgctgc	tctgggt	300
tggccacctc	aatggccatg	ccatgtgcca	gaccaa	tgc	ccgatggcac	360
accctgcggg	ccgcacagg	cctgc	gggtcg	ctccacatgg	accag	420
ggacttcaat	attccacagg	ctgg	gggtc	gggatgg	gtgactg	480
tcggacctgt	gggggtgg	tcc	ctccc	ggac	ctgtcccc	540
gaatggtggc	aagtactgt	agg	cg	tgc	acc	600
ctgcccact	ggctcagccc	tgac	cgagg	tgt	acaaccacc	660
caccgacctc	ttcaagagct	tccc	catgg	gtt	acacagg	720
ggccccc	gacc	actcac	ccagg	gact	gt	780
gctggagcca	cgggtgg	atgg	ctgt	actactat	gt	840
ccagggccga	tgc	ccat	tcg	gtc	cc	900
caagtgc	gtgt	ggag	ggat	gac	atgt	960
gaaattcagg	tacggata	acaatgt	ca	gtc	gtt	1020
tgtccggc	caggaaacc	ctgg	ccac	gag	ccat	1080
tggctcctat	gccctcaat	gt	gat	act	ccat	1140
gcctgggca	gtc	agctt	gct	acag	gaga	1200

AM101378.seq listings.txt

ccatggggcca	ctggcccagc	ctttgacact	gcaagtccct	gtggctggca	accccccagga	1260
cacacgcctc	cgatacagct	tcttcgtgcc	ccggccgacc	ccttcaacgc	cacgccccac	1320
tccccaggac	tggctgcacc	gaagagcaca	gattctggag	atccttcggc	ggcgccccctg	1380
ggcgggcagg	aaataacctc	actatgcggc	cgcagtcagt	c		1421

<210> 4
<211> 4307

<212> DNA

<213> Homo sapiens

<400> 4						
cacagacaca	tatgcacgag	agagacagag	gaggaaagag	acagagacaa	aggcacagcg	60
gaagaaggca	gagacagggc	aggcacagaa	gcggcccaga	cagagtccct	cagagggaga	120
ggccagagaa	gctgcagaag	acacaggcag	ggagagacaa	agatccagga	aaggagggt	180
caggaggaga	gtttggagaa	gccagacccc	tgggcacctc	tcccaagccc	aaggactaag	240
ttttctccat	ttccttaac	ggtcctcagc	ccttctgaaa	actttgcctc	tgaccttggc	300
aggagtccaa	gcccccaggc	tacagagagg	agctttccaa	agcttagggt	tggaggactt	360
ggtgccctag	acggcctcag	tccctccag	ctgcagtcacc	agtgcctatgt	cccagacagg	420
ctcgcatccc	gggaggggct	tggcagggcg	ctggctgtgg	ggagcccaac	cctgcctcct	480
gctccccatt	gtgccgctct	cctggctggt	gtggctgctt	ctgctactgc	tggcctctct	540
cctgccccta	gcccggctgg	ccagccccct	ccccccggag	gaggagatcg	tgtttccaga	600
gaagctcaac	ggcagcgtcc	tgcctggctc	gggcacccct	gccaggctgt	tgtgccgctt	660
gcaggccttt	ggggagacgc	tgctactaga	gctggagcag	gactccggtg	tgcaggtcga	720
ggggctgaca	gtgcagtcacc	tggccaggc	gcctgagctg	ctgggtggag	cagagcctgg	780
cacctacctg	actggcacca	tcaatggaga	tccggagtcg	gtggcatctc	tgcactggga	840
tgggggagcc	ctgttaggcg	tgttacaata	tcggggggct	gaactccacc	tccagccct	900
ggagggaggc	acccctaact	ctgctgggg	acctggggct	cacatcctac	gccggaagag	960
tcctgccagc	ggtcaaggtc	ccatgtccaa	cgtcaaggct	cctcttggaa	gccccagccc	1020
cagaccccgaa	agagccaagc	gctttgcttc	actgagtaga	tttgtggaga	cactgggtgt	1080
ggcagatgac	aagatggccg	cattccacgg	tgcggggcta	aagcgctacc	tgctaacagt	1140
gatggcagca	gcagccaagg	ccttcaagca	cccaagcatc	cgcaatcctg	tcagcttggt	1200
ggtgactcgg	ctagtatcc	tgggtcagg	cgaggagggg	ccccaaagtgg	ggcccagtgc	1260
tgcccagacc	ctgcgcagct	tctgtgcctg	gcagcggggc	ctcaacacccc	ctgaggactc	1320
ggaccctgac	cactttgaca	cagccattct	gtttacccgt	caggacctgt	gtggagtctc	1380
cacttgcac	acgctgggt	tggctgatgt	gggcaccgtc	tgtgaccgg	ctcggagctg	1440
tgcattgtg	gaggatgatg	ggctccagtc	agccttcaact	gctgctcatg	aactgggtca	1500
tgtcttcaac	atgctccatg	acaactccaa	gccatgcac	agtttgaatg	ggcctttgag	1560
cacctctcgc	catgtcatgg	cccccgtgat	ggctcatgtg	gatcctgagg	agccctggtc	1620

AM101378.seq listings.txt

ccccctgcagt	gcccgc	tta	tcactgactt	cctggaca	aat	ggctatgggc	actgtcttt	1680	
agacaaacca	gaggctccat	tgcatctgcc	tgtgac	tttc	cctggcaagg	actatgatgc	1740		
tgaccgccc	ag	tgccagctga	ccttcggg	cc	cgactcacgc	cattgtccac	agctgccg	1800	
gccc	ctgtgt	ctgtgtgt	gctctgg	cc	cctcaatggc	catgccatgt	gccagac	1860	
acactcgccc	tgggccgat	gcacacc	ctg	cg	ggccgc	caggcctg	ca	1920	
ctgc	cctccac	atggacc	agc	tccaggactt	caatattcc	caggctgg	tg	1980	
ttgggg	acca	tgggtg	act	gctctcg	ac	ctgtgggg	gt	2040	
agactgcac	aggcctgt	cc	cg	gaatgg	tggcaag	tgtgagg	gc	2100	
cttccg	ctcc	tgcaac	actg	aggactg	ccc	actgg	ctg	2160	
gcagtgt	gct	gcctaca	acc	accg	cacc	ccttt	caag	2220	
ctgggtt	cct	cgctac	acac	ag	gtggcccc	ccaggacc	tg	2280	
ccggg	cact	gg	ctact	at	gtgctg	ga	gccacgg	gt	2340
cccgg	acag	tc	cctcg	gt	gtccagg	ccgat	cat	2400	
cattgg	ctcc	aagaaga	agt	ttgaca	agg	catgg	tg	2460	
cagcaag	cg	tcagg	ctt	tcaggaa	att	caggtac	g	2520	
ccccgc	gggg	gccaccc	aca	ttctgt	cc	gaggg	gg	2580	
ctacttgg	cc	ctgaag	ctgc	cagatgg	ctat	ggctt	gc	2640	
gccctccc	cc	acagatgt	gg	tactgc	ctgg	ggc	actaca	2700	
tgcagc	ctca	gagac	actgt	caggccat	gg	gcagtc	tta	2760	
cctagtgg	ct	ggcaac	cccc	aggacac	cc	tgcgtaca	gcgggg	2820	
gacc	cc	ac	ccac	cc	actgg	cacc	ttt	2880	
ggagatc	tt	cg	ggcg	cc	ctggcg	gg	cactat	2940	
tttctgg	ca	cc	gggg	cc	ctggcg	gg	acttag	3000	
catgcta	aga	ct	ca	gtgg	gg	gacttag	ct	3060	
aatgc	gc	tg	gg	cc	ttcc	tt	gg	3120	
tgaaagg	gg	tg	ac	ccat	cc	ttcc	ttcc	3180	
gaggg	gg	ga	aggc	agg	cc	cagg	ttgt	3240	
cttttatt	ta	gc	accagg	ga	gg	gaca	at	3300	
ccc	ctcat	g	gggct	ag	gg	actagg	gt	3360	
gtgtgt	at	gc	gtgtgt	gt	gtgtgt	at	gtgttat	3420	
acctgtt	ct	tt	c	tta	ttt	tttgg	aaaagaaa	3480	
ggtgggc	tt	c	tttgg	tttgg	ttt	tttgg	tttgg	3540	
ttttttt	gag	ac	agaat	ctc	g	ct	gtcaatgg	3600	
ctca	ctgc	at	cc	ccgc	cc	gggtt	caa	3660	

AM101378.seq listings.txt

ctgggattac aggctcctgc caccacgccc agctaatttt tgttttgttt tgtttggaga	3720
cagagtctcg ctattgtcac cagggctgga atgatttcag ctcactgcaa ccttcgcccac	3780
ctgggttcca gcaattctcc tgccctcagcc tcccgagtag ctgagattat aggcacctac	3840
caccacgccc ggctaatttt tgtatTTTA gtagagacgg ggTTTcacca tgTTTggccag	3900
gctggtctcg aactcctgac cttaggtgat ccactcgct tcataCTCCCA aagtgtgggg	3960
attacaggcg tgagccaccc tgccTggcca cGCCCAacta atttttgtat ttttagtaga	4020
gacagggttt caccatgttgc ccaggctgc tcttgaactc ctgacccatcg gtaatcgacc	4080
tgcctcggcc tcccaaagtg ctgggattac aggtgtgagc caccacgccc ggtacatatt	4140
ttttaaattt aattctacta tttatgtgat cttttggag tcagacagat gtgggtgcatt	4200
cctaactcca tgtctctgag cattagattt ctcatttgcc aataataata cctcccttag	4260
aagtttggtaa tgaggattaa ataatgtaaa taaagaacta gcataac	4307

<210> 5
<211> 42
<212> DNA
<213> Artificial

<220>
<223> PCR primer

<400> 5 aaatgggcga attcccacca tgtcccagac aggctcgcat cc	42
---	----

<210> 6
<211> 8
<212> DNA
<213> artificial

<220>
<223> 8-bp tail sequence

<400> 6 aaatgggc	8
---------------------	---

<210> 7
<211> 6
<212> DNA
<213> Artificial

<220>
<223> EcoRI site

<400> 7 gaattc	6
-------------------	---

<210> 8
<211> 5
<212> DNA
<213> Artificial

<220>
<223> Kozak sequence

AM101378.seq listings.txt

<400> 8
ccacc 5

<210> 9
<211> 26
<212> DNA
<213> Artificial

<220>
<223> PCR primer

<400> 9
taagagacag tgcccatagc cattgt 26

<210> 10
<211> 26
<212> DNA
<213> Artificial

<220>
<223> PCR primer

<400> 10
ctccaagcca tgcatcagtt tgaatg 26

<210> 11
<211> 41
<212> DNA
<213> Artificial

<220>
<223> PCR fragment

<400> 11
gactgactgc ggccgcata g tgaggttatt tcctgcccgc c 41

<210> 12
<211> 8
<212> DNA
<213> Artificial

<220>
<223> 8-bp tail sequence

<400> 12
gactgact 8

<210> 13
<211> 8
<212> DNA
<213> Artificial

<220>
<223> NotI site

<400> 13
gcggccgc 8

<210> 14
<211> 2542
<212> DNA
<213> Artificial

AM101378.seq listings.txt

<220>
<223> PCR cloned ADAMTS4 cDNA
<400> 14
gaattccac catgtccac acaggctcgc atccgggag gggcttggca gggcgctggc 60
tgtggggagc tcaaccctgc ctccctgctcc ccatttgcc gctctcctgg ctggtgtggc 120
tgcttctgct actgctggcc tctctcctgc cctcagcccg gctggccagc cccctcccc 180
gggaggagga gatcgtgttt ccagagaagc tcaacggcag cgtcctgcct ggctcggcg 240
cccctgccag gctgttgtgc cgcttgcagg cctttggga gacgctgcta ctagagctgg 300
agcaggactc cggtgtgcag gtcgaggggc tgacagtgcg gtacctggc caggcgccctg 360
agctgctggg tggagcagag cctggcacct acctgactgg caccatcaat ggagatccgg 420
agtcgggtggc atctctgcac tggatgggg gagccctgtt aggcgtgtt caatatcggg 480
gggctgaact ccacccctcag cccctggagg gaggcacccc taactctgct gggggacctg 540
gggctcacat cctacgcccgg aagagtcctg ccagcggtca aggtcccattg tgcaacgtca 600
aggctcctct tggaaagccccc agcccccagac cccgaagagc caagcgctt gcttcaactga 660
gtagatttgt ggagacactg gtggtgtggcag atgacaagat ggccgcattc cacggtgtcgg 720
ggctaaagcg ctacactgcta acagtgtatgg cagcagcagc caaggccttc aagcacccaa 780
gcattccgcaaa tcctgtcagc ttggatggta ctccggctgtt gatcctgggg tcaggcgagg 840
agggggccca agtggggccc agtgcgtcccc agaccctgcg cagcttctgt gcctggcagc 900
ggggcctcaa cacccttgag gactcggacc ctgaccactt tgacacagcc attctgttta 960
cccgctcagga cctgtgtggc gtctccactt gcgcacacgct gggtatggct gatgtggca 1020
ccgtctgtga cccggctcgg agctgtgcca ttgtggagga tggatggctc cagtcagcct 1080
tcagtgcgtc tcataactg ggtcatgtct tcaacatgct ccatgacaac tccaaaggccat 1140
gcatacgatgggtaatgggcattt tgagcacctt ctgcctcatgt catggccctt gtgtggctc 1200
atgtggatcc tgaggagcccc ttggatggggccctt gcagtggccctt cttcatcaact gatccctgg 1260
acaatggcta tgggcactgt ctcttagaca aaccagaggc tccattgcat ctgcctgtga 1320
ctttccctgg caaggactat gatgtgtacc gcccggccctt gtgtggctctt ggccacccat 1380
cacccatttgc tccacagctg cccggccctt gtgtggctctt ctgggtgtt ggccacccat 1440
atggccatgc catgtgtccag accaaacact cccctggc cgtggcaca ccctgcgggc 1500
ccgcacaggc ctgcgtgggtt ggtcgctgcc tccacatggc ccagctccag gacttcaata 1560
ttccacaggc tggatggctgg ggtccttggg gaccatgggg tggatggctctt cggaccctgt 1620
gggggtgggtt ccagttctcc tcccgagact gcacgaggcc tggatggggcc aatggatggca 1680
agtactgtga gggccggccgt accccgttcc gctcctgcaaa cactgaggac tggccactgt 1740
gctcagccctt gacccctccgc gaggagcgtt gtgtggctca caaccaccgc accgaccctct 1800
tcaagagctt cccaggggccc atggactggg ttccctgctca cacaggcggtt gccccccagg 1860
accagtgc当地 aactcacctgc caggcccggg cactgggctca ctactatgtg ctggagccac 1920

AM101378.seq listings.txt

gggtggtaga	tgggacccccc	tgttcccccgg	acagctcctc	ggtctgtgtc	cagggccgat	1980
gcatccatgc	tggctgtgat	cgcacattcattg	gctccaagaa	gaagtttgac	aagtgcattgg	2040
tgtgcggagg	ggacggttct	ggttgcagca	agcagtcagg	ctccttcagg	aaattcaggt	2100
acggatacaa	caatgtggtc	actatccccg	cgggggcccac	ccacattctt	gtccggcagc	2160
agggaaaccc	tggccaccgg	agcatctact	tggccctgaa	gctgccagat	ggctccatag	2220
ccctcaatgg	tgaatacacg	ctgatccct	cccccacaga	tgtggtactg	cctggggcag	2280
tcagcttgcg	ctacagcggg	gccactgcag	cctcagagac	actgtcaggc	catgggcccac	2340
tggcccagcc	tttgacactg	caggtcctag	tggctggcaa	cccccaggac	acacccctcc	2400
gatacagctt	cttcgtgccc	cggccgaccc	cttcaacgcc	acgccccact	ccccaggact	2460
ggctgcaccg	aagagcacag	attctggaga	tccttcggcg	gcgcccctgg	gcgggcagga	2520
aataacctca	ctatgcggcc	gc				2542

<210> 15
 <211> 625
 <212> PRT
 <213> Homo sapiens

<400> 15

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
 1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
 20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
 35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
 50 55 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
 65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
 85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
 100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
 115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
 130 135 140

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp
 Page 11

AM101378.seq listings.txt

145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val
210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr
225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala
245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr
260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala
275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn
290 295 300

Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys
305 310 315 320

Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr
325 330 335

Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr
340 345 350

Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu
355 360 365

Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu
370 375 380

Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly
385 390 395 400

Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu
405 410 415

Gly Tyr Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys

AM101378.seq Listings.txt
420 425 430

Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala
435 440 445

Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys Met
450 455 460

Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe
465 470 475 480

Arg Lys Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr Ile Pro Ala Gly
485 490 495

Ala Thr His Ile Leu Val Arg Gln Gln Gly Asn Pro Gly His Arg Ser
500 505 510

Ile Tyr Leu Ala Leu Lys Leu Pro Asp Gly Ser Tyr Ala Leu Asn Gly
515 520 525

Glu Tyr Thr Leu Met Pro Ser Pro Thr Asp Val Val Leu Pro Gly Ala
530 535 540

Val Ser Leu Arg Tyr Ser Gly Ala Thr Ala Ala Ser Glu Thr Leu Ser
545 550 555 560

Gly His Gly Pro Leu Ala Gln Pro Leu Thr Leu Gln Val Leu Val Ala
565 570 575

Gly Asn Pro Gln Asp Thr Arg Leu Arg Tyr Ser Phe Phe Val Pro Arg
580 585 590

Pro Thr Pro Ser Thr Pro Arg Pro Thr Pro Gln Asp Trp Leu His Arg
595 600 605

Arg Ala Gln Ile Leu Glu Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg
610 615 620

Lys
625

<210> 16
<211> 1875
<212> DNA
<213> Homo sapiens

<400> 16	tttcttcac ttagtagatt tgtggagaca ctgggtgg cagatgacaa gatggccgca	60
	ttcacggtg cggggctaaa gcgcgtacgt ctaacagtga tggcagcagc agccaaaggcc	120
	ttcaagcacc caagcatccg caatcctgtc agcttgggtgg tgactcggct agtgatcctg	180
	gggtcaggcg aggagggggcc ccaagtgggg cccagtgctg cccagaccct ggcgcagcttc	240

AM101378.seq listings.txt

tgtgcctggc	agcggggcct	caacacccct	gaggactcg	accctgacca	ctttgacaca	300
gccattctgt	ttacccgtca	ggacctgtgt	ggagtc	cttgcacac	gctgggtatg	360
gctgatgtgg	gcaccgtctg	tgacccggct	cggagctgt	ccattgtgga	ggatgatggg	420
ctccagtcag	ccttcagtgc	tgctcatcaa	ctgggtcatg	tcttcaacat	gctccatgac	480
aactccaagc	catgcatcag	tttgaatggg	ccttgagca	cctctcgcca	tgtcatggcc	540
cctgtgatgg	ctcatgtgga	tcctgaggag	ccctggtccc	cctgcagtgc	ccgcttcatc	600
actgacttcc	tggacaatgg	ctatggcac	tgtctcttag	acaaaccaga	ggctccattg	660
catctgcctg	tgactttccc	tggcaaggac	tatgatgctg	accgccagtg	ccagctgacc	720
ttcgggccc	actcacgcca	ttgtccacag	ctgcccgc	cctgtgctgc	cctctggtgc	780
tctggccacc	tcaatggcca	tgccatgtgc	cagaccaa	actcgccctg	ggccgatggc	840
acaccctgcg	ggcccgac	ggcctgc	gggtggcg	gcctccacat	ggaccagctc	900
caggacttca	atattccaca	ggctggtg	tgggtcc	ggggaccatg	gggtgactgc	960
tctcggac	gtgggggtgg	tgtccagttc	tcctcccgag	actgcacgag	gcctgtcccc	1020
cggaaatgg	gcaagtactg	tgagggccgc	cgtaccgc	tccgctc	caacactgag	1080
gactgcccga	ctggctc	cctgac	cgcgaggagc	agtgtgctgc	ctacaaccac	1140
cgcaccgacc	tcttcaagag	cttcccagg	ccatggact	gggttc	ctacacaggc	1200
gtggcccccc	aggaccagt	caaactcacc	tgccaggccc	ggcactggg	ctactactat	1260
gtgctggagc	cacgggtggt	agatggacc	ccctgttccc	cggacagctc	ctcggctgt	1320
gtccagg	gatgc	tgctggctgt	gatgc	ttggctccaa	gaagaagttt	1380
gacaagtgc	tgg	tgcgg	agggacgg	tctgg	gcaagcagtc	1440
agaaattca	ggtacggata	caacaatgt	gtcactatcc	ccgcggggc	caccacatt	1500
cttgtccggc	agcaggaaa	ccctggccac	cggagcatct	acttggcc	gaagctgcca	1560
gatggctc	atgc	ttgtgaata	acg	cctccccac	agatgtggta	1620
ctgcctggg	cagtc	tgctacagc	ggggccactg	cagc	gacactgtca	1680
ggccatggc	cactggcc	gccttgaca	ctgcagg	tagtgg	caaccc	1740
gacacacg	tccgata	cc	ccccggcc	ccc	ttcaac	1800
actccccagg	actggctg	ccgaagag	cagattctgg	agatc	ttcg	1860
tggcgggca	ggaaa					1875

<210> 17
 <211> 482
 <212> PRT
 <213> Homo sapiens

<400> 17

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
 1 5 10 15

AM101378.seq listings.txt

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
20 25 30

Val Met Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
50 55 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
130 135 140

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp
145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val
210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr
225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala
245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr
260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala
275 280 285

AM101378.seq listings.txt

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn
290 295 300

Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys
305 310 315 320

Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr
325 330 335

Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr
340 345 350

Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu
355 360 365

Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu
370 375 380

Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly
385 390 395 400

Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu
405 410 415

Gly Tyr Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys
420 425 430

Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala
435 440 445

Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys Met
450 455 460

Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe
465 470 475 480

Arg Lys

<210> 18
<211> 1446
<212> DNA
<213> Homo sapiens

<400> 18	
tttgcttcac ttagtagatt tgtggagaca ctgggtgtgg cagatgacaa gatggccgca	60
ttcacggtg cggggctaaa gcgcgtacctg ctaacagtga tggcagcagc agccaaggcc	120
ttcaagcacc caagcatccg caatcctgtc agcttggtgg tgactcggct agtgatcctg	180
gggtcaggcg aggaggggccc ccaagtgggg cccagtgctg cccagaccct ggcgcagcttc	240
tgtgcctggc agcggggcct caacacccct gaggactcgg accctgacca ctttgacaca	300

AM101378.seq listings.txt

gccattctgt ttacccgtca ggacctgtgt ggagtctcca cttgcacac gctgggtatg	360
gctgatgtgg gcaccgtctg tgacccggct cggagctgtg ccattgtgga ggtatgtgg	420
ctccagtcag cttcagtgc tgctcatcaa ctgggtcatg tcttcaacat gctccatgac	480
aactccaagc catgcatcag tttgaatggg cctttgagca cctctcgcca tgtcatggcc	540
cctgtatgg ctcatgtgga tcctgaggag ccctggtccc cctgcagtgc ccgcttcatc	600
actgacttcc tggacaatgg ctatggcac tgcgtcttag acaaaccaga ggctccattg	660
catctgcctg tgactttccc tggcaaggac tatgtatgtc accgcccagtg ccagctgacc	720
ttcgggcccc actcacgcca ttgtccacag ctgcccgc cctgtgctgc cctctgggtgc	780
tctggccacc tcaatggcca tgccatgtgc cagaccaaac actcgccctg ggccgatggc	840
acaccctgcg ggcccgacca ggcctgcatt ggtggtcgct gcctccacat ggaccagctc	900
caggacttca atattccaca ggctgggtgc tggggccctt ggggaccatg gggtaactgc	960
tctcggaccc gtgggggtgg tgcgttttc tcctcccgag actgcacgag gcctgtcccc	1020
cggaaatggtg gcaagtactg tgagggccgc cgtaccgc tccgctcctg caacactgag	1080
gactgcccga ctggctcagc cctgaccctc cgccgaggagc agtgtgctgc ctacaaccac	1140
cgcaccgacc tcttcaagag cttcccaggg cccatggact ggtttccctg ctacacaggc	1200
gtggcccccc aggaccagtg caaactcacc tgccaggccc gggcactggg ctactactat	1260
gtgctggagc cacgggtggt agatgggacc ccctgttccc cggacagctc ctcggctgt	1320
gtccagggcc gatgcatcca tgctggctgt gatgcatca ttggctccaa gaagaagttt	1380
gacaagtgcg tgggtgcgg agggacggg tctgggtgca gcaagcagtc aggctccccc	1440
aggaaa	1446

<210> 19
 <211> 369
 <212> PRT
 <213> Homo sapiens

<400> 19

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
 1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
 20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
 35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
 50 55 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
 65 70 75 80

AM101378.seq listings.txt

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
130 135 140

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp
145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val
210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr
225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala
245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr
260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala
275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn
290 295 300

Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys
305 310 315 320

Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr
325 330 335

Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr
340 345 350

AM101378.seq listings.txt

Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu
355 360 365

Thr

<210> 20
<211> 1107
<212> DNA
<213> Homo sapiens

<400> 20
tttgcttcac tgagtagatt tgtggagaca ctgggtgg cagatgacaa gatggccgca 60
ttccacggtg cggggctaaa gcgcgtacctg ctaacagtga tggcagcagc agccaaggcc 120
ttcaaggcacc caagcatccg caatcctgtc agcttggtgg tgactcggct agtgcaccc 180
gggtcaggcg aggaggggcc ccaagtgggg cccagtgtg cccagaccct ggcgcagcttc 240
tgtgcctggc agcggggcct caacacccct gaggactcgg accctgacca ctttgacaca 300
gccattctgt ttacccgtca ggacctgtgt ggagtctcca cttgcacac gctgggtatg 360
gctgatgtgg gcaccgtctg tgacccggct cggagctgtg ccattgtgga ggatgatggg 420
ctccagtcag cttcagtgc tgctcatcaa ctgggtcatg tcttcaacat gctccatgac 480
aactccaagc catgcattcag tttgaatggg cctttgagca cctctcgcca tgtcatggcc 540
cctgtatgg ctcatgtgga tcctgaggag ccctggtccc cctgcagtgc ccgcttcatc 600
actgacttcc tggacaatgg ctatggcac tgtctcttag acaaaccaga ggctccattg 660
catctgcctg tgactttccc tggcaaggac tatgatgtgc accgcccagtgc ccagctgacc 720
ttcggccccc actcacgcca ttgtccacag ctggccgc cctgtgtgc cctctgggtgc 780
tctggccacc tcaatggcca tgccatgtgc cagaccaaac actgcaccc 840
acaccctgcg ggcccgacaa ggccctgcatt ggtggcgct gcctccacat ggaccagctc 900
caggacttca atattccaca ggctggtggc tggggccctt ggggaccatg gggtgactgc 960
tctcggaccc gtgggggtgg tgtccagttc tcctcccgag actgcacgag gcctgtcccc 1020
cggaatggtg gcaagtactg tgagggccgc cgtacccgct tccgctcctg caacactgag 1080
gactgcccga ctggctcagc cctgacc 1107

<210> 21
<211> 5
<212> PRT
<213> Artificial

<220>
<223> Neopeptide

<220>
<221> MISC_FEATURE
<222> (4)..(5)
<223> X can be any amino acid

AM101378.seq listings.txt

<400> 21

Ala Arg Gly Xaa Xaa
1 5

<210> 22

<211> 435

<212> PRT

<213> Artificial

<220>

<223> Original catalytic construct

<400> 22

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp
1 5 10 15Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser
20 25 30Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser
35 40 45Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro
50 55 60Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg
65 70 75 80Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu
85 90 95Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu
100 105 110Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu
115 120 125Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp
130 135 140Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu
145 150 155 160His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro
165 170 175Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro
180 185 190Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg
195 200 205

AM101378.seq listings.txt

Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val
210 215 220

Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg
225 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Lys Ala Phe Lys His Pro
245 250 255

Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu
260 265 270

Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr
275 280 285

Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp
290 295 300

Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp
305 310 315 320

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly
325 330 335

Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly
340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn
355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu
370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro
385 390 395 400

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu
405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu His His His
420 425 430

His His His
435

<210> 23
<211> 6
<212> PRT
<213> Artificial
<220>
<223> His tag

AM101378.seq Listings.txt

<400> 23

His His His His His His
1 5<210> 24
<211> 697
<212> PRT
<213> Artificial<220>
<223> Truncated ADAMTS4 molecule

<400> 24

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp
1 5 10 15Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser
20 25 30Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser
35 40 45Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro
50 55 60Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg
65 70 75 80Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu
85 90 95Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu
100 105 110Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu
115 120 125Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp
130 135 140Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu
145 150 155 160His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro
165 170 175Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro
180 185 190Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg
195 200 205

AM101378.seq listings.txt

Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val
210 215 220

Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg
225 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro
245 250 255

Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu
260 265 270

Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr
275 280 285

Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp
290 295 300

Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp
305 310 315 320

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly
325 330 335

Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly
340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn
355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu
370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro
385 390 395 400

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu
405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu
420 425 430

His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln
435 440 445

Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro
450 455 460

Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala
465 470 475 480

AM101378.seq listings.txt

Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly
485 490 495

Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu
500 505 510

Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro
515 520 525

Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser
530 535 540

Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu
545 550 555 560

Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr
565 570 575

Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His
580 585 590

Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro
595 600 605

Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln
610 615 620

Ala Arg Ala Leu Gly Tyr Tyr Val Leu Glu Pro Arg Val Val Asp
625 630 635 640

Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg
645 650 655

Cys Ile His Ala Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe
660 665 670

Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Gly Ser
675 680 685

Ala Trp Ser His Pro Gln Phe Glu Lys
690 695

<210> 25
<211> 11
<212> PRT
<213> Artificial

<220>
<223> Construct C tag sequence

<400> 25

Gly Ser Ala Trp Ser His Pro Gln Phe Glu Lys
1 5 10

AM101378.seq listings.txt

<210> 26
<211> 686
<212> PRT
<213> Artificial

<220>
<223> Truncated ADAMTS4 construct D

<400> 26
Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp
1 5 10 15
Leu Trp Gly Ala Gln Pro Cys Leu Leu Pro Ile Val Pro Leu Ser
20 25 30
Trp Leu Val Trp Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser
35 40 45
Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro
50 55 60
Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg
65 70 75 80
Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu
85 90 95
Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu
100 105 110
Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu
115 120 125
Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp
130 135 140
Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu
145 150 155 160
His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro
165 170 175
Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro
180 185 190
Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg
195 200 205
Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val
210 215 220

AM101378.seq listings.txt

Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg
225 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Lys Ala Phe Lys His Pro
245 250 255

Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu
260 265 270

Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr
275 280 285

Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp
290 295 300

Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp
305 310 315 320

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly
325 330 335

Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly
340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn
355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu
370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro
385 390 395 400

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu
405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu
420 425 430

His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln
435 440 445

Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro
450 455 460

Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala
465 470 475 480

Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly
485 490 495

AM101378.seq listings.txt

Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu
500 505 510

Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro
515 520 525

Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser
530 535 540

Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys. Glu
545 550 555 560

Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr
565 570 575

Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His
580 585 590

Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro
595 600 605

Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln
610 615 620

Ala Arg Ala Leu Gly Tyr Tyr Val Leu Glu Pro Arg Val Val Asp
625 630 635 640

Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg
645 650 655

Cys Ile His Ala Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe
660 665 670

Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser
675 680 685

<210> 27

<211> 858

<212> PRT

<213> Artificial

<220>
<223> modified ADAMTS4 molecule

<400> 27

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp
1 5 10 15

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser
20 25 30

Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser
35 40 45

AM101378.seq listings.txt

Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro
50 55 60

Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg
65 70 75 80

Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu
85 90 95

Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu
100 105 110

Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu
115 120 125

Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp
130 135 140

Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu
145 150 155 160

His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro
165 170 175

Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro
180 185 190

Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg
195 200 205

Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val
210 215 220

Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg
225 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Lys Ala Phe Lys His Pro
245 250 255

Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu
260 265 270

Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr
275 280 285

Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp
290 295 300

Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp
305 310 315 320

AM101378.seq listings.txt

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly
325 330 335

Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly
340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn
355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu
370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro
385 390 395 400

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu
405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Gly Ser Gly
420 425 430

Ser Gly Asp Asp Asp Asp Lys Ala Pro Leu His Leu Pro Val Thr Phe
435 440 445

Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr Phe Gly
450 455 460

Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala Ala Leu
465 470 475 480

Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr Lys His
485 490 495

Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala Cys Met
500 505 510

Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn Ile Pro
515 520 525

Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys Ser Arg
530 535 540

Thr Cys Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr Arg Pro
545 550 555 560

Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe
565 570 575

Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe
580 585 590

AM101378.seq listings.txt

Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu Phe Lys
595 600 605

Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly Val Ala
610 615 620

Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu Gly Tyr
625 630 635 640

Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys Ser Pro
645 650 655

Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala Gly Cys
660 665 670

Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys Met Val Cys
675 680 685

Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe Arg Lys
690 695 700

Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr Ile Pro Ala Gly Ala Thr
705 710 715 720

His Ile Leu Val Arg Gln Gln Gly Asn Pro Gly His Arg Ser Ile Tyr
725 730 735

Leu Ala Leu Lys Leu Pro Asp Gly Ser Tyr Ala Leu Asn Gly Glu Tyr
740 745 750

Thr Leu Met Pro Ser Pro Thr Asp Val Val Leu Pro Gly Ala Val Ser
755 760 765

Leu Arg Tyr Ser Gly Ala Thr Ala Ala Ser Glu Thr Leu Ser Gly His
770 775 780

Gly Pro Leu Ala Gln Pro Leu Thr Leu Gln Val Leu Val Ala Gly Asn
785 790 795 800

Pro Gln Asp Thr Arg Leu Arg Tyr Ser Phe Phe Val Pro Arg Pro Thr
805 810 815

Pro Ser Thr Pro Arg Pro Thr Pro Gln Asp Trp Leu His Arg Arg Ala
820 825 830

Gln Ile Leu Glu Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg Lys Gly
835 840 845

Ser Ala Trp Ser His Pro Gln Phe Glu Lys
850 855

AM101378.seq listings.txt

<210> 28
<211> 10
<212> PRT
<213> Artificial

<220>
<223> construct E insertion sequence

<400> 28

Gly Ser Gly Ser Gly Asp Asp Asp Asp Lys
1 5 10

<210> 29
<211> 846
<212> PRT
<213> Artificial

<220>
<223> ADAMTS4 with active-site mutation

<400> 29

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp
1 5 10 15

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser
20 25 30

Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser
35 40 45

Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro
50 55 60

Gl u Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg
65 70 75 80

Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu
85 90 95

Gl u Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu
100 105 110

Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu
115 120 125

Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp
130 135 140

Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu
145 150 155 160

His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro
165 170 175

AM101378.seq listings.txt

Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro
180 185 190

Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg
195 200 205

Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val
210 215 220

Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg
225 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro
245 250 255

Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu
260 265 270

Gly Ser Gly Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr
275 280 285

Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp
290 295 300

Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp
305 310 315 320

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly
325 330 335

Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly
340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn
355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu
370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro
385 390 395 400

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu
405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu
420 425 430

His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln
435 440 445

AM101378.seq listings.txt

Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro
450 455 460

Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala
465 470 475 480

Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly
485 490 495

Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu
500 505 510

Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro
515 520 525

Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser
530 535 540

Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu
545 550 555 560

Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr
565 570 575

Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His
580 585 590

Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro
595 600 605

Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln
610 615 620

Ala Arg Ala Leu Gly Tyr Tyr Val Leu Glu Pro Arg Val Val Asp
625 630 635 640

Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg
645 650 655

Cys Ile His Ala Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe
660 665 670

Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln
675 680 685

Ser Gly Ser Phe Arg Lys Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr
690 695 700

Ile Pro Ala Gly Ala Thr His Ile Leu Val Arg Gln Gln Gly Asn Pro
705 710 715 720

AM101378.seq listings.txt

Gly His Arg Ser Ile Tyr Leu Ala Leu Lys Leu Pro Asp Gly Ser Tyr
725 730 735

Ala Leu Asn Gly Glu Tyr Thr Leu Met Pro Ser Pro Thr Asp Val Val
740 745 750

Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser Gly Ala Thr Ala Ala Ser
755 760 765

Glu Thr Leu Ser Gly His Gly Pro Leu Ala Gln Pro Leu Thr Leu Gln
770 775 780

Val Leu Val Ala Gly Asn Pro Gln Asp Thr Arg Leu Arg Tyr Ser Phe
785 790 795 800

Phe Val Pro Arg Pro Thr Pro Ser Thr Pro Arg Pro Thr Pro Gln Asp
805 810 815

Trp Leu His Arg Arg Ala Gln Ile Leu Glu Ile Leu Arg Arg Arg Pro
820 825 830

Trp Ala Gly Arg Lys Val Asp Tyr Lys Asp Asp Asp Asp Lys
835 840 845

<210> 30
<211> 9
<212> PRT
<213> Artificial

<220>
<223> FLAG tag sequence

<400> 30

Val Asp Tyr Lys Asp Asp Asp Asp Lys
1 5

<210> 31
<211> 584
<212> PRT
<213> Artificial

<220>
<223> Truncated ADAMTS4 ASM

<400> 31

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp
1 5 10 15

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser
20 25 30

Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser
35 40 45

AM101378.seq listings.txt

Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro
50 55 60

Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg
65 70 75 80

Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu
85 90 95

Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu
100 105 110

Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu
115 120 125

Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp
130 135 140

Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu
145 150 155 160

His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro
165 170 175

Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro
180 185 190

Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg
195 200 205

Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val
210 215 220

Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg
225 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Lys Ala Phe Lys His Pro
245 250 255

Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu
260 265 270

Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr
275 280 285

Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp
290 295 300

Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp
305 310 315 320

AM101378.seq listings.txt

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly
325 330 335

Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly
340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn
355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu
370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro
385 390 395 400

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu
405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu
420 425 430

His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln
435 440 445

Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro
450 455 460

Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala
465 470 475 480

Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly
485 490 495

Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu
500 505 510

Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro
515 520 525

Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser
530 535 540

Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu
545 550 555 560

Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Val
565 570 575

Asp Tyr Lys Asp Asp Asp Asp Lys
580

AM101378.seq Listings.txt

<210> 32
<211> 529
<212> PRT
<213> Artificial

<220>
<223> Truncated ADAMTS4 ASM

<400> 32
Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp
1 5 10 15
Leu Trp Gly Ala Gln Pro Cys Leu Leu Pro Ile Val Pro Leu Ser
20 25 30
Trp Leu Val Trp Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser
35 40 45
Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro
50 55 60
Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg
65 70 75 80
Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu
85 90 95
Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu
100 105 110
Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu
115 120 125
Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp
130 135 140
Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu
145 150 155 160
His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro
165 170 175
Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro
180 185 190
Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg
195 200 205
Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val
210 215 220

AM101378.seq Listings.txt

Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg
225 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Lys Ala Phe Lys His Pro
245 250 255

Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu
260 265 270

Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr
275 280 285

Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp
290 295 300

Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp
305 310 315 320

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly
325 330 335

Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly
340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn
355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu
370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro
385 390 395 400

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu
405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu
420 425 430

His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln
435 440 445

Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro
450 455 460

Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala
465 470 475 480

Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly
485 490 495

AM101378.seq listings.txt

Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu
500 505 510

Gln Asp Phe Asn Ile Pro Gln Ala Val Asp Tyr Lys Asp Asp Asp Asp
515 520 525

Lys

<210> 33
<211> 42
<212> DNA
<213> Artificial

<220>
<223> PCR primer

<400> 33
taaatcaat tcccaccatg tcccaagacag gctcgcatcc cg 42

<210> 34
<211> 37
<212> DNA
<213> Artificial

<220>
<223> PCR primer

<400> 34
tattatgtct actgggcagt cctcagtgtt gcaggag 37

<210> 35
<211> 37
<212> DNA
<213> Artificial

<220>
<223> PCR primer

<400> 35
tattatgtct acagcctgtg gaatattgaa gtcctgg 37

<210> 36
<211> 53
<212> DNA
<213> Artificial

<220>
<223> Flag1 sequence

<400> 36
aattcctatg ctatgtctat cgttagactac aaggatgacg atgacaagta agc 53

<210> 37
<211> 53
<212> DNA
<213> Artificial

<220>
<223> Flag2 sequence

AM101378.seq listings.txt

<400> 37	ggccgcttac ttgtcatcgt catccttgcgtacgtacgtatgg	53
<210> 38		
<211> 3916		
<212> DNA		
<213> Artificial		
<220>		
<223> cloning vector		
<400> 38	agcgcctaat acgcaaaccg cctctcccg cgcggtggcc gattcattaa tgcagctggc	60
	acgacagggtt tcccgactgg aaagcgggca gtgagcgcaa cgcaattaat gtgagttac	120
	tcactcatta ggcaccccg gctttacact ttatgcttcc ggctcgatg ttgtgtggaa	180
	ttgtgagcgg ataacaattt cacacaggaa acagctatga ccatgattac gccaagcttg	240
	gtaccgagct cggatccact agtaacggcc gccagtggtgc tggaaattcct atgctagtgc	300
	tatcgttagac tacaaggatg acgatgacaa gtaagcggcc gctcgagcat gcatctagag	360
	ggcccaattt gcccataagt gagtcgtatt acaatttactt ggcgtcggtt ttacaacgtc	420
	gtgactggga aaaccctggc gttacccaaac ttaatcgctt tgcagcacat ccccccgg	480
	ccagctggcg taatagcgaa gaggcccgca ccgatcgccc ttcccaacag ttgcgcagcc	540
	tgaatggcga atgggacgcg ccctgttagcg gcgcattaaag cgccggcggtt gtgggtggta	600
	cgccgcgtt gaccgctaca cttgccagcg ccctagcgcc cgctcccttc gctttttcc	660
	cttcctttctt cgccacgttc gcccgttttcc cccgtcaagc tctaaatcggtt gggctccctt	720
	tagggttccg atttagagct ttacggcacc tcgaccgaa aaaacttgat ttgggtgtat	780
	gttcacgtatg tggccatcg ccctgtataga cggttttcg ccctttgacg ttggagtc	840
	cgttctttaa tagtgactc ttgttccaaa ctggaaacaac actcaaccct atcgccgtct	900
	attctttga ttataaggg attttgccga tttcgcccta ttggtaaaaa aatgagctga	960
	tttaacaaat tcagggcgca agggctgcta aaggaaccgg aacacgtaga aagccagtcc	1020
	gcagaaacgg tgctgacccc ggtatgtatgt cagctactgg gctatctggca aaggaaaa	1080
	cgcaagcgca aagagaaagc agtagctt cagtggtttt acatggcgat agctagactg	1140
	ggcggtttta tggacagcaa gcgaaccggaa attgccagct gggcgccct ctggtaaggt	1200
	tggaaagccc tgcaaagtaa actggatggc tttctgccc ccaaggatct gatggcgacg	1260
	ggatcaaga tctgtatcaag agacaggatg aggatcgatcgatcgatcgatcgatcgatcg	1320
	attgcacgca ggttctccgg ccgttgggtt ggagaggcta ttcggctatg actggcaca	1380
	acagacaatc ggctgctctg atgcccgtt gttccggctg tcagcgagg ggcgcgggt	1440
	tcttttgc aagaccgacc tgcgggtgc cctgaatgaa ctgcaggacg aggacgcgcg	1500
	gctatctgg ctggccacga cggcggtcc ttgcgcagct gtgcgtacg ttgtactga	1560
	agcggaaagg gactggctgc tattggcga agtgcgggg caggatctcc tgtcatctcg	1620
	cctgctcctt gcccggaaat tatccatcat ggctgtatgcgatgcggcggc tgcatacgct	1680

AM101378.seq listings.txt

tgatccggct acctgccat tcgaccacca agcgaaacat cgcatcgagc gagcacgtac 1740
tcggatggaa gccggcttg tcgatcagga tggatctggac gaagagcatc aggggctcgc 1800
gccagccaa ctgttcgcca ggctcaaggc gcgcatgccc gacggcgagg atctcgtcgt 1860
gatccatggc gatgcctgct tgccgaatat catggtggaa aatggccgct tttctggatt 1920
caacgactgt ggccggctgg gtgtggcggc ccgctatcg gacatagcgt tggataccgg 1980
tgatattgct gaagagcttg gcggcgaatg ggctgaccgc ttccctgtgc tttacggat 2040
cgccgctccc gattcgcagc gcatgcctt ctatgcctt cttgacgagt tcttctgaat 2100
tgaaaaagga agagtatgag tattcaacat ttccgtgtcg cccttattcc cttttttgcg 2160
gcattttgcc ttccctgttt tgctcaccca gaaacgctgg tgaaagtaaa agatgctgaa 2220
gatcagttgg gtgcacgagt gggttacatc gaactggatc tcaacagcgg taagatcctt 2280
gagagtttc gccccgaaga acgtttcca atgatgagca cttttaaagt tctgctatgt 2340
catacactat tatcccgtat tgacgccggg caagagcaac tcggcgccg ggcgcggat 2400
tctcagaatg acttgggttga gtactcacca gtcacagaaaa agcatcttac ggtatggcatg 2460
acagtaagag aattatgcag tgctgccata accatgagtg ataacactgc ggccaactta 2520
cttctgacaa cgatcggagg accgaaggag ctaaccgctt tttgcacaa catgggggat 2580
catgttaactc gccttgatcg ttgggaaccg gagctgaatg aagccatacc aaacgacgag 2640
agtgacacca cgatgcctgt agcaatgcca acaacgttgc gcaaactatt aactggcgaa 2700
ctacttactc tagcttcccg gcaacaatta atagactgga tggaggcgga taaagttgca 2760
ggaccacttc tgcgctcgcc cttccggct ggctggtttta ttgctgataa atctggagcc 2820
ggtgagcgtg ggtctcgccg tatcattgca gcactgggc cagatggtaa gccctccgt 2880
atcgttagtta tctacacgac ggggagtcag gcaactatgg atgaacgaaa tagacagatc 2940
gctgagatag gtgcctcact gattaagcat tggtaactgt cagaccaagt ttactcatat 3000
atactttaga ttgatttaaa acttcatttt taatttaaaa ggatcttagt gaagatcctt 3060
tttgcataatc tcatgaccaa aatcccttaa cgtgagttt cgttccactg agcgtcagac 3120
cccgtagaaa agatcaaagg atcttcttga gatcctttt ttctgcgcgt aatctgctgc 3180
ttgcaaaacaa aaaaaccacc gctaccagcg gtggtttgg tgccggatca agagctacca 3240
actcttttc cgaaggtaac tggcttcagc agagcgcaga taccaaatac tgccttcta 3300
gtgttagccgt agttaggcca ccacttcaag aactctgttag caccgcctac atacctcgct 3360
ctgctaattcc tgttaccagt ggctgctgcc agtggcgata agtcgtgtct taccgggtt 3420
gactcaagac gatagttacc ggataaggcg cagcggtcgg gctgaacggg gggttcgtgc 3480
acacagccca gcttggagcg aacgacctac accgaactga gataacctaca gcgtgagcat 3540
tgagaaagcg ccacgcttcc cgaagggaga aaggcggaca ggtatccggt aagcggcagg 3600
gtcggaaacag gagagcgcac gagggagctt ccagggggaa acgcctggta tctttatagt 3660
cctgtcgggt ttcgcccacct ctgactttag cgtcgatttt tggatgtcgc gtcagggggg 3720

AM101378.seq listings.txt

cgaggcctat	ggaaaaacgc	cagcaacgcg	gccttttac	ggttcctggc	ctttgctgg	3780
cctttgctc	acatgttctt	tcctgcgtta	tccctgatt	ctgtggataa	ccgtattacc	3840
gccttgagt	gagctgatac	cgctcgccgc	agccgaacga	ccgagcgcag	cgagtcagt	3900
agcgaggaag	cggaag					3916

<210> 39
 <211> 5676
 <212> DNA
 <213> Artificial

<220>
 <223> cloning vector

<400> 39	aagctcgagc	gcgggacgtc	ctttgttac	gtcccgtcg	cgctgaatcc	cgccggacgac	60
	ccctctcg	ggccgttgg	agtctctcg	cccctctcc	gtctgcgtt	ccagccgacc	120
	acggggcgca	cctctcttta	cgccgtctcc	ccgtctgtgc	cttctcatct	gccggtccgt	180
	gtgcacttcg	ttcacctct	gcacgttgca	tggagaccac	cgtgaacgcc	catcagatcc	240
	tgccaaggt	tttacataag	aggactcttgc	gactctcagc	aatgtcaacg	accgaccttgc	300
	aggcctactt	caaagactgt	gtgtttaagg	actgggagga	gctggggag	gagattaggt	360
	taaaggcttt	tgtattagga	ggctgttaggc	ataaaattgg	ctgcgcacca	gcaccatgca	420
	actttttcac	ctctgcctaa	tcatctcttgc	tacatgtccc	actgttcaag	cctccaagct	480
	gtgccttgg	tggctttgg	gcatggacat	tgacccttat	aaagaatttgc	gagctactgt	540
	ggagttactc	tcgttttgc	cttctgactt	ctttccttcc	gtcagctcga	gtttaccact	600
	ccctatcagt	gatagagaaa	agtgaaagtc	gagtttacca	ctccctatca	gtgatagaga	660
	aaagtgaaag	tcgaggtcga	gtttaccact	ccctatcagt	gatagagaaa	agtgaaagtc	720
	gaggtcgagt	ttaccactcc	ctatcagtga	tagagaaaag	tgaaagtcga	gtttaccact	780
	ccctatcagt	gatagagaaa	agtgaaagtc	gaggtcgagt	ttaccactcc	ctatcagtga	840
	tagaaaagt	aaagtgaaag	tcgaggtcga	gtcgaggggg	gctataaaaag	gggggtgggg	900
	cgcgttcgtc	ctcactctct	tccgcacgc	tgtctgcgag	ggccagctgt	tgggctcgc	960
	gttggggaca	aactcttcgc	ggtctttcca	gtactcttgg	atcggaaacc	cgtcgccctc	1020
	cgaacggta	tccgcacccg	aggacactga	gcgagtcgc	atcgaccgga	tcggaaaacc	1080
	tctcgactgt	tgggtgag	actccctctc	aaaagcgggc	atgacttctg	cgctaagatt	1140
	gtcagttcc	aaaaacgagg	aggatttgat	attcacctgg	cccgccgtga	tgcctttgag	1200
	ggtggccgc	tccatctggt	cagaaaagac	aatcttttg	ttgtcaagct	tgaggtgtgg	1260
	caggcttgc	atctggccat	acacttgagt	gacaatgaca	tccactttgc	ctttctctcc	1320
	acaggtgtcc	actcccaggt	ccaactgcag	acttcgaatt	ctactgagtc	gacacttcta	1380
	gactaccgg	aatgcggcc	gccgcaaatt	ctaacgttac	tggccgaagc	cgcttggaaat	1440
	aaggccgtg	tgcgtttgtc	tatatgttat	tttccaccat	attgccgtct	tttggcaatg	1500

AM101378.seq listings.txt

tgagggcccg gaaacctggc cctgtttct tgacgagcat tcctagggt cttccctc	1560
tcgc当地 aatgcaaggt ctgttgaatg tcgtgaagga agcagttcct ctggaagctt	1620
cttgaagaca aacaacgtct gtagcgtccc tttgcaggca gcggaaacccc ccacctggcg	1680
acaggtgcct ctggccaa aagccacgtg tataagatac acctgcaaag gcggcacaac	1740
cccagtgc当地 cggtgtgagt tggatagttt tggaaagagt caaatggctc tcctcaagcg	1800
tattcaacaa ggggctgaag gatgcccaga aggtacccca ttgtatgggaa tctgatctgg	1860
ggcctcggtg cacatgc当地 acatgtgtt agtcgagggtt aaaaaacgtc taggcccccc	1920
gaaccacggg gacgtggttt tccttgaaa aacacgattt ctcgagccat catggttcga	1980
ccattgaact gcatcgtc当地 cgtgtccaa aatatgggaa ttggcaagaa cggagaccta	2040
ccctggccctc cgctcaggaa cgagttcaag tacttccaa gaatgaccac aacctttca	2100
gtggaaaggta aacagaatct ggtgattatg ggttagaaaa cctggttctc cattcctgag	2160
aagaatcgac cttaaagga cagaattat atagttctca gttagagaact caaagaacca	2220
ccacgaggag ctcatttct tgccaaaagt ttggatgatg ccttaagact tattgaacaa	2280
ccggaattgg caagtaaagt agacatggtt tggatagtcg gaggcagttc tggattaccag	2340
gaagccatga atcaaccagg ccacctcaga ctcttgc当地 caaggatcat gcaggaattt	2400
gaaagtgaca cgttttccc agaaattgat ttggggaaat ataaacttct cccagaatac	2460
ccaggcgtcc tctctgaggt ccaggaggaa aaaggcatca agtataagtt tgaagtctac	2520
gagaagaaag actaacagga agatgc当地 aagttctctg ctcccctcct aaagctatgc	2580
atttttata agaccatggg acttttgctg gctttagatc ataatcagcc ataccacatt	2640
tgttagaggta ttacttgctt taaaaaacct cccacacctc cccctgaacc taaaacataa	2700
aatgaatgca attgttggg ttaacttgc当地 tattgcagct tataatggtt acaaataaag	2760
caatagcatc acaaatttca caaataaagc attttttca ctgcattcta gttgtggttt	2820
gtccaaactc atcaatgtat cttatcatgt ctggatcccc ggccaaacggg ctggtagcc	2880
ggctgc当地 gctcggtgta cctgagacgc gagtaagccc ttgagtc当地 gacgtagtcg	2940
ttgcaagtcc gcaccaggta ctgatcatcg atgctagacc gtgcaaaagg agacgc当地	3000
agcgggact cttccgtggt ctggatggata aattcgcaag ggtatcatgg cgacgaccg	3060
gggttcaac cccggatccg gccgtccgccc gtgatccatc cggttaccgc ccgc当地	3120
aaccaggta tgc当地 gacaacgggg gagcgctc当地 ttggcttcc ttccaggcgc	3180
ggcggctgct gcgctagctt tttggcgag ctc当地 attaa ttctgc当地 atgaatcg	3240
caacgc当地 ggagaggcgg tttgc当地 tttgc当地 ggacgc当地 ccgc当地 gctactgac	3300
tcgctgc当地 cggtc当地 gctgc当地 gcggtatc当地 ctc当地 attaa ggccgtaata	3360
cggtt当地 cagaatcagg ggataacgc当地 ggaaagaaca tggatggcaaa aggccagcaa	3420
aaggccagga accgtaaaaa ggccgc当地 ctggcg当地 tccataggct ccgc当地	3480
gacgagcatc acaaaaatcg acgctcaagt cagaggc当地 gaaacccgac aggactataa	3540

AM101378.seq listings.txt

agataccagg	cgtttccccc	tggaagctcc	ctcgtgcgt	ctccctgttcc	gaccctgccc	3600
cttaccggat	acctgtccgc	ctttctccct	tcgggaagcg	tggcgctttc	tcaatgctca	3660
cgctgttaggt	atctcagttc	ggtgttaggtc	gttcgctcca	agctgggctg	tgtgcacgaa	3720
ccccccgttc	agcccgaccg	ctgcgcctta	tccggtaact	atcgtcttga	gtccaaacccg	3780
gtaagacacg	acttatcgcc	actggcagca	gccactggta	acaggattag	cagagcgagg	3840
tatgttaggcg	gtgctacaga	gttcttgaag	tggtggccta	actacggcta	cactagaagg	3900
acagtatttgc	gtatctgcgc	tctgctgaag	ccagttacct	tcggaaaaag	agttggtagc	3960
tcttgatccg	gcaaacaaac	caccgctgg	agcggtggtt	tttttggttt	caagcagcag	4020
attacgcgca	aaaaaaaagg	atctcaagaa	gatccttga	tctttctac	ggggtctgac	4080
gctcagtgg	acgaaaactc	acgtaaggg	atttggtca	ttagattatc	aaaaaggatc	4140
ttcacctaga	tcctttaaa	ttaaaaatga	agttttaaat	caatctaaag	tatatatgag	4200
taaacttgg	ctgacagtt	ccaatgctta	atcagtgagg	cacctatctc	agcgatctgt	4260
ctatttcgtt	catccatagt	tgcctgactc	cccgctgtgt	agataactac	gatacggag	4320
ggcttaccat	ctggccccag	tgctgcaatg	ataccgcgag	acccacgctc	accggctcca	4380
gatttatcag	caataaacca	gccagccgga	agggccgagc	gcagaagtgg	tcctgcaact	4440
ttatccgcct	ccatccagtc	tattaattgt	tgccggaaag	ctagagtaag	tagttcgcca	4500
gttaatagtt	tgcgcaacgt	tgttgccatt	gctacaggca	tcgtgggtgc	acgctcgtcg	4560
tttggtatgg	tttcatttcag	ctccgggttcc	caacgatcaa	ggcgagttac	atgatcccc	4620
atgttgtgca	aaaaagcggt	tagctccccc	ggtcctccga	tcgttgtcag	aagtaagtt	4680
gccgcagtgt	tatcactcat	ggttatggca	gcactgcata	attctcttac	tgtcatgcca	4740
tccgtaagat	gctttctgt	gactggtgag	tactcaacca	agtcatctg	agaatagtgt	4800
atgcggcgac	cgagttgctc	ttgccccgg	tcaatacggg	ataataccgc	gccacatagc	4860
agaactttaa	aagtgctcat	cattggaaaa	cgttcttcgg	ggcgaaaact	ctcaaggatc	4920
ttaccgctgt	tgagatccag	ttcgatgtaa	cccactcgt	cacccaactg	atcttcagca	4980
tctttactt	tcaccagcgt	ttctgggtga	gcaaaaacag	gaaggcaaaa	tgccgcaaaa	5040
aaggaataa	gggcgacacg	gaaatgtga	atactcatac	tcttcctttt	tcaatattat	5100
tgaagcattt	atcagggtta	ttgtctcatg	agcggataca	tatgtaatg	tattagaaa	5160
aataaacaaa	taggggttcc	gcmcacattt	ccccgaaaag	tgcacacatgc	cgtctaagaa	5220
accatttata	tcatgacatt	aacctataaa	aataggcgta	tcacgaggcc	ctttcgtctc	5280
gcgcgtttcg	gtgatgacgg	tgaaaacctc	tgacacatgc	agctcccgg	gacggtcaca	5340
gcttgtctgt	aagcggatgc	cgggagcaga	caagccg	agggcgcgtc	agcgggtgtt	5400
ggcggtgtc	ggggctggct	taactatgcg	gcatcagagc	agattgtact	gagagtgcac	5460
catatgcgtt	gtgaaatacc	gcacagatgc	gtaaggagaa	aataccgcac	caggcgccat	5520
tcgcccattca	ggctgcgcaaa	ctgttgggaa	ggcgatcg	tgcggccctc	ttcgcttatt	5580

AM101378.seq listings.txt

cgccagctgg cgaaaggggg atgtgctgca aggcgattaa gttggtaac gccagggttt 5640
 tcccaagtcac gacgttgtaa aacgacggcc agtgcc 5676

<210> 40
 <211> 845
 <212> PRT
 <213> Artificial

<220>
 <223> ADAMTS4 ASM with insertion

<400> 40

Met Ser Gln Thr Gly Ser His Pro Gly Arg Gly Leu Ala Gly Arg Trp
 1 5 10 15

Leu Trp Gly Ala Gln Pro Cys Leu Leu Leu Pro Ile Val Pro Leu Ser
 20 25 30

Trp Leu Val Trp Leu Leu Leu Leu Leu Ala Ser Leu Leu Pro Ser
 35 40 45

Ala Arg Leu Ala Ser Pro Leu Pro Arg Glu Glu Glu Ile Val Phe Pro
 50 55 60

Glu Lys Leu Asn Gly Ser Val Leu Pro Gly Ser Gly Ala Pro Ala Arg
 65 70 75 80

Leu Leu Cys Arg Leu Gln Ala Phe Gly Glu Thr Leu Leu Leu Glu Leu
 85 90 95

Glu Gln Asp Ser Gly Val Gln Val Glu Gly Leu Thr Val Gln Tyr Leu
 100 105 110

Gly Gln Ala Pro Glu Leu Leu Gly Gly Ala Glu Pro Gly Thr Tyr Leu
 115 120 125

Thr Gly Thr Ile Asn Gly Asp Pro Glu Ser Val Ala Ser Leu His Trp
 130 135 140

Asp Gly Gly Ala Leu Leu Gly Val Leu Gln Tyr Arg Gly Ala Glu Leu
 145 150 155 160

His Leu Gln Pro Leu Glu Gly Gly Thr Pro Asn Ser Ala Gly Gly Pro
 165 170 175

Gly Ala His Ile Leu Arg Arg Lys Ser Pro Ala Ser Gly Gln Gly Pro
 180 185 190

Met Cys Asn Val Lys Ala Pro Leu Gly Ser Pro Ser Pro Arg Pro Arg
 195 200 205

AM101378.seq listings.txt

Arg Ala Lys Arg Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val
210 215 220

Val Ala Asp Asp Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg
225 230 235 240

Tyr Leu Leu Thr Val Met Ala Ala Ala Lys Ala Phe Lys His Pro
245 250 255

Ser Ile Arg Asn Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu
260 265 270

Gly Ser Gly Glu Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr
275 280 285

Leu Arg Ser Phe Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp
290 295 300

Ser Asp Pro Asp His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp
305 310 315 320

Leu Cys Gly Val Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly
325 330 335

Thr Val Cys Asp Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly
340 345 350

Leu Gln Ser Ala Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn
355 360 365

Met Leu His Asp Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu
370 375 380

Ser Thr Ser Arg His Val Met Ala Pro Val Met Ala His Val Asp Pro
385 390 395 400

Glu Glu Pro Trp Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu
405 410 415

Asp Asn Gly Tyr Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu
420 425 430

His Leu Pro Val Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln
435 440 445

Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro
450 455 460

Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala
465 470 475 480

AM101378.seq listings.txt

Met Cys Gln Thr Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly
485 490 495

Pro Ala Gln Ala Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu
500 505 510

Gln Asp Phe Asn Ile Pro Gln Trp Ser His Pro Gln Phe Glu Lys Ala
515 520 525

Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys
530 535 540

Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr Arg Pro Val Pro
545 550 555 560

Arg Asn Gly Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe Arg Ser
565 570 575

Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe Arg Glu
580 585 590

Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu Phe Lys Ser Phe
595 600 605

Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly Val Ala Pro Gln
610 615 620

Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu Gly Tyr Tyr Tyr
625 630 635 640

Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser
645 650 655

Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala Gly Cys Asp Arg
660 665 670

Ile Ile Gly Ser Lys Lys Phe Asp Lys Cys Met Val Cys Gly Gly
675 680 685

Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe Arg Lys Phe Arg
690 695 700

Tyr Gly Tyr Asn Asn Val Val Thr Ile Pro Ala Gly Ala Thr His Ile
705 710 715 720

Leu Val Arg Gln Gln Gly Asn Pro Gly His Arg Ser Ile Tyr Leu Ala
725 730 735

Leu Lys Leu Pro Asp Gly Ser Tyr Ala Leu Asn Gly Glu Tyr Thr Leu
740 745 750

AM101378.seq listings.txt

Met Pro Ser Pro Thr Asp Val Val Leu Pro Gly Ala Val Ser Leu Arg
755 760 765

Tyr Ser Gly Ala Thr Ala Ala Ser Glu Thr Leu Ser Gly His Gly Pro
770 775 780

Leu Ala Gln Pro Leu Thr Leu Gln Val Leu Val Ala Gly Asn Pro Gln
785 790 795 800

Asp Thr Arg Leu Arg Tyr Ser Phe Phe Val Pro Arg Pro Thr Pro Ser
805 810 815

Thr Pro Arg Pro Thr Pro Gln Asp Trp Leu His Arg Arg Ala Gln Ile
820 825 830

Leu Glu Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg Lys
835 840 845

<210> 41
<211> 8
<212> PRT
<213> Artificial

<220>
<223> strep tag

<400> 41

Trp Ser His Pro Gln Phe Glu Lys
1 5

<210> 42
<211> 15
<212> DNA
<213> Artificial

<220>
<223> DNA insert

<400> 42
catgggcagc tcgag 15

<210> 43
<211> 34
<212> DNA
<213> Artificial

<220>
<223> insert in pMT21

<400> 43
ctgcaggcga gcctgaattc ctcgagccat catg 34

<210> 44
<211> 8
<212> DNA
<213> Artificial

<220> Page 48

AM101378.seq listings.txt

<223> Cla1 linker

<400> 44
catcgatg

8

<210> 45
<211> 68
<212> DNA
<213> Artificial<220>
<223> DNA adaptor<400> 45
cgaggtaaa aaacgtctag gccccccgaa ccacggggac gtggtttcc tttgaaaaac 60
acgattgc 68<210> 46
<211> 223
<212> PRT
<213> Artificial<220>
<223> furin-processed construct B

<400> 46

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
1 5 10 15Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
20 25 30Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
35 40 45Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
50 55 60Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
65 70 75 80Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
100 105 110Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
115 120 125Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
130 135 140Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp
145 150 155 160

AM101378.seq listings.txt

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu His His His His His His
210 215 220

<210> 47
<211> 485
<212> PRT
<213> Artificial

<220>
<223> furin-processed construct C

<400> 47

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
20 25 30

Val Met Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
50 55 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
130 135 140

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp
145 150 155 160

AM101378.seq listings.txt

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val
210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr
225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Cys Ala
245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr
260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala
275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn
290 295 300

Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys
305 310 315 320

Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr
325 330 335

Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr
340 345 350

Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu
355 360 365

Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu
370 375 380

Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly
385 390 395 400

Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu
405 410 415

Gly Tyr Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys
420 425 430

AM101378.seq listings.txt

Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala
435 440 445

Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys Met
450 455 460

Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Gly Ser Ala Trp Ser His
465 470 475 480

Pro Gln Phe Glu Lys
485

<210> 48
<211> 474
<212> PRT
<213> Artificial

<220>
<223> furin-processed construct D

<400> 48

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
50 55 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
130 135 140

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp
145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

AM101378.seq listings.txt

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val
210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr
225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala
245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr
260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala
275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn
290 295 300

Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys
305 310 315 320

Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr
325 330 335

Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr
340 345 350

Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu
355 360 365

Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu
370 375 380

Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly
385 390 395 400

Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu
405 410 415

Gly Tyr Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys
420 425 430

Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala
435 440 445

AM101378.seq listings.txt

Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys Met
450 455 460

Val Cys Gly Gly Asp Gly Ser Gly Cys Ser
465 470

<210> 49
<211> 646
<212> PRT
<213> Artificial

<220>
<223> furin-processed construct E

<400> 49

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
50 55 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
130 135 140

Phe Thr Ala Ala His Glu Leu Gly His Val Phe Asn Met Leu His Asp
145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

AM101378.seq listings.txt

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val
210 215 220

Gly Ser Gly Ser Gly Asp Asp Asp Asp Lys Thr Phe Pro Gly Lys Asp
225 230 235 240

Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr Phe Gly Pro Asp Ser Arg
245 250 255

His Cys Pro Gln Leu Pro Pro Pro Cys Ala Ala Leu Trp Cys Ser Gly
260 265 270

His Leu Asn Gly His Ala Met Cys Gln Thr Lys His Ser Pro Trp Ala
275 280 285

Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala Cys Met Gly Gly Arg Cys
290 295 300

Leu His Met Asp Gln Leu Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly
305 310 315 320

Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly
325 330 335

Gly Val Gln Phe Ser Ser Arg Asp Cys Thr Arg Pro Val Pro Arg Asn
340 345 350

Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn
355 360 365

Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln
370 375 380

Cys Ala Ala Tyr Asn His Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly
385 390 395 400

Pro Met Asp Trp Val Pro Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln
405 410 415

Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu Gly Tyr Tyr Val Leu
420 425 430

Glu Pro Arg Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser
435 440 445

Val Cys Val Gln Gly Arg Cys Ile His Ala Gly Cys Asp Arg Ile Ile
450 455 460

AM101378.seq listings.txt

Gly Ser Lys Lys Lys Phe Asp Lys Cys Met Val Cys Gly Gly Asp Gly
465 470 475 480

Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe Arg Lys Phe Arg Tyr Gly
485 490 495

Tyr Asn Asn Val Val Thr Ile Pro Ala Gly Ala Thr His Ile Leu Val
500 505 510

Arg Gln Gln Gly Asn Pro Gly His Arg Ser Ile Tyr Leu Ala Leu Lys
515 520 525

Leu Pro Asp Gly Ser Tyr Ala Leu Asn Gly Glu Tyr Thr Leu Met Pro
530 535 540

Ser Pro Thr Asp Val Val Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser
545 550 555 560

Gly Ala Thr Ala Ala Ser Glu Thr Leu Ser Gly His Gly Pro Leu Ala
565 570 575

Gln Pro Leu Thr Leu Gln Val Leu Val Ala Gly Asn Pro Gln Asp Thr
580 585 590

Arg Leu Arg Tyr Ser Phe Phe Val Pro Arg Pro Thr Pro Ser Thr Pro
595 600 605

Arg Pro Thr Pro Gln Asp Trp Leu His Arg Arg Ala Gln Ile Leu Glu
610 615 620

Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg Lys Gly Ser Ala Trp Ser
625 630 635 640

His Pro Gln Phe Glu Lys
645

<210> 50

<211> 634

<212> PRT

<213> Artificial

<220>
<223> furin-processed construct G

<400> 50

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
20 25 30

Val Met Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
35 40 45

AM101378.seq listings.txt

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
50 55 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
130 135 140

Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn Met Leu His Asp
145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val
210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr
225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala
245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr
260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala
275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn
290 295 300

Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys
305 310 315 320

AM101378.seq listings.txt

Ser Arg Thr Cys Gly Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr
325 330 335

Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr
340 345 350

Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Thr Gly Ser Ala Leu
355 360 365

Thr Phe Arg Glu Glu Gln Cys Ala Ala Tyr Asn His Arg Thr Asp Leu
370 375 380

Phe Lys Ser Phe Pro Gly Pro Met Asp Trp Val Pro Arg Tyr Thr Gly
385 390 395 400

Val Ala Pro Gln Asp Gln Cys Lys Leu Thr Cys Gln Ala Arg Ala Leu
405 410 415

Gly Tyr Tyr Tyr Val Leu Glu Pro Arg Val Val Asp Gly Thr Pro Cys
420 425 430

Ser Pro Asp Ser Ser Ser Val Cys Val Gln Gly Arg Cys Ile His Ala
435 440 445

Gly Cys Asp Arg Ile Ile Gly Ser Lys Lys Lys Phe Asp Lys Cys Met
450 455 460

Val Cys Gly Gly Asp Gly Ser Gly Cys Ser Lys Gln Ser Gly Ser Phe
465 470 475 480

Arg Lys Phe Arg Tyr Gly Tyr Asn Asn Val Val Thr Ile Pro Ala Gly
485 490 495

Ala Thr His Ile Leu Val Arg Gln Gln Gly Asn Pro Gly His Arg Ser
500 505 510

Ile Tyr Leu Ala Leu Lys Leu Pro Asp Gly Ser Tyr Ala Leu Asn Gly
515 520 525

Glu Tyr Thr Leu Met Pro Ser Pro Thr Asp Val Val Leu Pro Gly Ala
530 535 540

Val Ser Leu Arg Tyr Ser Gly Ala Thr Ala Ala Ser Glu Thr Leu Ser
545 550 555 560

Gly His Gly Pro Leu Ala Gln Pro Leu Thr Leu Gln Val Leu Val Ala
565 570 575

Gly Asn Pro Gln Asp Thr Arg Leu Arg Tyr Ser Phe Phe Val Pro Arg
580 585 590

AM101378.seq listings.txt

Pro Thr Pro Ser Thr Pro Arg Pro Thr Pro Gln Asp Trp Leu His Arg
595 600 605

Arg Ala Gln Ile Leu Glu Ile Leu Arg Arg Arg Pro Trp Ala Gly Arg
610 615 620

Lys Val Asp Tyr Lys Asp Asp Asp Asp Lys
625 630

<210> 51
<211> 372
<212> PRT
<213> Artificial

<220>
<223> furin-processed construct H

<400> 51

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
50 55 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
130 135 140

Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn Met Leu His Asp
145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

AM101378.seq listings.txt

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val
210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr
225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala
245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr
260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala
275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn
290 295 300

Ile Pro Gln Ala Gly Gly Trp Gly Pro Trp Gly Pro Trp Gly Asp Cys
305 310 315 320

Ser Arg Thr Cys Gly Gly Val Gln Phe Ser Ser Arg Asp Cys Thr
325 330 335

Arg Pro Val Pro Arg Asn Gly Gly Lys Tyr Cys Glu Gly Arg Arg Thr
340 345 350

Arg Phe Arg Ser Cys Asn Thr Glu Asp Cys Pro Val Asp Tyr Lys Asp
355 360 365

Asp Asp Asp Lys
370

<210> 52
<211> 317
<212> PRT
<213> Artificial

<220>
<223> furin-processed construct I

<400> 52

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
20 25 30

AM101378.seq listings.txt

val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
50 55 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
130 135 140

Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn Met Leu His Asp
145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val
210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr
225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala
245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr
260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala
275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Asp Gln Leu Gln Asp Phe Asn
290 295 300

AM101378.seq listings.txt

Ile Pro Gln Ala Val Asp Tyr Lys Asp Asp Asp Asp Lys
305 310 315

<210> 53
<211> 633
<212> PRT
<213> Artificial

<220>
<223> furin-processed construct F

<400> 53

Phe Ala Ser Leu Ser Arg Phe Val Glu Thr Leu Val Val Ala Asp Asp
1 5 10 15

Lys Met Ala Ala Phe His Gly Ala Gly Leu Lys Arg Tyr Leu Leu Thr
20 25 30

Val Met Ala Ala Ala Ala Lys Ala Phe Lys His Pro Ser Ile Arg Asn
35 40 45

Pro Val Ser Leu Val Val Thr Arg Leu Val Ile Leu Gly Ser Gly Glu
50 55 60

Glu Gly Pro Gln Val Gly Pro Ser Ala Ala Gln Thr Leu Arg Ser Phe
65 70 75 80

Cys Ala Trp Gln Arg Gly Leu Asn Thr Pro Glu Asp Ser Asp Pro Asp
85 90 95

His Phe Asp Thr Ala Ile Leu Phe Thr Arg Gln Asp Leu Cys Gly Val
100 105 110

Ser Thr Cys Asp Thr Leu Gly Met Ala Asp Val Gly Thr Val Cys Asp
115 120 125

Pro Ala Arg Ser Cys Ala Ile Val Glu Asp Asp Gly Leu Gln Ser Ala
130 135 140

Phe Thr Ala Ala His Gln Leu Gly His Val Phe Asn Met Leu His Asp
145 150 155 160

Asn Ser Lys Pro Cys Ile Ser Leu Asn Gly Pro Leu Ser Thr Ser Arg
165 170 175

His Val Met Ala Pro Val Met Ala His Val Asp Pro Glu Glu Pro Trp
180 185 190

Ser Pro Cys Ser Ala Arg Phe Ile Thr Asp Phe Leu Asp Asn Gly Tyr
195 200 205

AM101378.seq listings.txt
Gly His Cys Leu Leu Asp Lys Pro Glu Ala Pro Leu His Leu Pro Val
210 215 220

Thr Phe Pro Gly Lys Asp Tyr Asp Ala Asp Arg Gln Cys Gln Leu Thr
225 230 235 240

Phe Gly Pro Asp Ser Arg His Cys Pro Gln Leu Pro Pro Pro Cys Ala
245 250 255

Ala Leu Trp Cys Ser Gly His Leu Asn Gly His Ala Met Cys Gln Thr
260 265 270

Lys His Ser Pro Trp Ala Asp Gly Thr Pro Cys Gly Pro Ala Gln Ala
275 280 285

Cys Met Gly Gly Arg Cys Leu His Met Trp Ser His Pro Gln Phe Glu
290 295 300

Lys Asp Gln Leu Gln Asp Phe Asn Ile Pro Gln Ala Gly Gly Trp Gly
305 310 315 320

Pro Trp Gly Pro Trp Gly Asp Cys Ser Arg Thr Cys Gly Gly Gly Val
325 330 335

Gln Phe Ser Ser Arg Asp Cys Thr Arg Pro Val Pro Arg Asn Gly Gly
340 345 350

Lys Tyr Cys Glu Gly Arg Arg Thr Arg Phe Arg Ser Cys Asn Thr Glu
355 360 365

Asp Cys Pro Thr Gly Ser Ala Leu Thr Phe Arg Glu Glu Gln Cys Ala
370 375 380

Ala Tyr Asn His Arg Thr Asp Leu Phe Lys Ser Phe Pro Gly Pro Met
385 390 395 400

Asp Trp Val Pro Arg Tyr Thr Gly Val Ala Pro Gln Asp Gln Cys Lys
405 410 415

Leu Thr Cys Gln Ala Arg Ala Leu Gly Tyr Tyr Tyr Val Leu Glu Pro
420 425 430

Arg Val Val Asp Gly Thr Pro Cys Ser Pro Asp Ser Ser Ser Val Cys
435 440 445

Val Gln Gly Arg Cys Ile His Ala Gly Cys Asp Arg Ile Ile Gly Ser
450 455 460

Lys Lys Lys Phe Asp Lys Cys Met Val Cys Gly Gly Asp Gly Ser Gly
465 470 475 480

AM101378.seq listings.txt
Cys Ser Lys Gln Ser Gly Ser Phe Arg Lys Phe Arg Tyr Gly Tyr Asn
485 490 495
Asn Val Val Thr Ile Pro Ala Gly Ala Thr His Ile Leu Val Arg Gln
500 505 510
Gln Gly Asn Pro Gly His Arg Ser Ile Tyr Leu Ala Leu Lys Leu Pro
515 520 525
Asp Gly Ser Tyr Ala Leu Asn Gly Glu Tyr Thr Leu Met Pro Ser Pro
530 535 540
Thr Asp Val Val Leu Pro Gly Ala Val Ser Leu Arg Tyr Ser Gly Ala
545 550 555 560
Thr Ala Ala Ser Glu Thr Leu Ser Gly His Gly Pro Leu Ala Gln Pro
565 570 575
Leu Thr Leu Gln Val Leu Val Ala Gly Asn Pro Gln Asp Thr Arg Leu
580 585 590
Arg Tyr Ser Phe Phe Val Pro Arg Pro Thr Pro Ser Thr Pro Arg Pro
595 600 605
Thr Pro Gln Asp Trp Leu His Arg Arg Ala Gln Ile Leu Glu Ile Leu
610 615 620
Arg Arg Arg Pro Trp Ala Gly Arg Lys
625 630