发明名称
一种桥下积水深度的检测装置及智能预警方法

摘要
本发明特别涉及一种桥下积水深度的检测装置及智能预警方法，属于检测技术领域。本发明的目的在于防止大量汽车在桥下涉水前进中熄火，给人民生命及财产安全带来极大的隐患，便于即时桥下积水信息的获取及有效交通疏导。该装置由探头、开关、浮漂、红外发射器、第一红外接收器、第二红外接收器、第三红外接收器、LED显示屏、短信发射器、传感器控制器、LED控制器、电源线、电源和进水口组成；本发明根据不同车型进气口高度不同，分级别预警。本发明简化了传统设备繁杂结构，体积小并且电能的消耗少，增加了安全系数。本发明提高了设备的智能化程度。
1. 一种桥下积水深度的检测装置，其特征在于，该装置由管子⑴、开关⑵、浮标⑶、红外发射器⑷、第一红外接收器⑸、第二红外接收器⑹、第三红外接收器⑺、LED显示屏⑻、短信发射器⑼、传感器控制器⑽、LED控制器⑾、电源线⑿、电源⒀和进水口⒁组成，其中，

所述管子⑴的靠近底部处开设有一个进水口⒁；在进水口⒁下方的管子⑴壁上固定安装有开关⑵；

所述进水口⒁的上方，所述浮标⑶嵌入安装于管子⑴的内壁上，且随水位的变化浮标⑶沿内壁上下移动；

所述红外发射器⑷嵌在或固定安装于浮标⑶的上方；

所述进水口的上方及管子⑴下部的外壁的上固定装有第一红外接收器⑸；在第一红外线接收器⑸的上方，管子⑴中部的外壁上固定装有第二红外接收器⑹；在第二红外线接收器⑹的上方，管子⑴上部的外壁上固定装有第三红外接收器⑺；

所述短信发射器⑼分别与第一红外接收器⑸、第二红外线接收器⑹和第三红外接收器⑺相连；

所述LED显示屏⑻、LED控制器⑾和传感器控制器⑽依次相连；

传感器控制器⑽通过电源线⑿与电源⒀相连；

所述短信发射器⑼与传感器控制器⑽相连。

2. 根据权利要求1所述一种桥下积水深度的检测装置，其特征在于，所述传感器控制器⑽采用C51单片机。

3. 根据权利要求1所述一种桥下积水深度的检测装置，其特征在于，所述管子⑴采用透明玻璃钢，管子⑴形状为中空的长方体或正方体，且顶部开口的与大气相连。

4. 根据权利要求1所述一种桥下积水深度的检测装置，其特征在于，所述LED显示屏⑻，设置在立交桥的前方或道路旁边的醒目处。

5. 根据权利要求1所述一种桥下积水深度的检测装置，其特征在于，所述传感器控制器⑽、LED控制器⑾和电源⒀根据实际情况固定安装在待检测桥梁的下方。

6. 一种桥下积水深度的检测智能预警方法，其特征在于，该方法包括以下步骤：

步骤1：当桥下积水通过进水口⑽进入管子⑴，开关⑵自动接通；

步骤2：红外发射器⑷开始发射红外信号，第一红外接收器⑸、第二红外接收器⑹和第三红外接收器⑺开始检测外线信号；

步骤3：浮标⑶随管子⑴内的水位的上升而上升；

步骤4：第一红外接收器⑸判断是否检测到红外信号，如果检测到红外信号时，执行步骤5；否则，执行步骤2；

步骤5：传感器控制器⑽对接收到的第一红外接收器⑸红外信号进行分析，并将分析得到的数据送LED控制器⑾和短信发射器⑼；

步骤6：LED控制器⑾控制LED显示屏⑻输出“紧凑型车禁止通行”，短信发射器⑼向周围行人和车辆及智能交通系统发送“紧凑型车禁止通行”的短信息；

步骤7：第二红外接收器⑹判断是否检测到红外信号，如果检测到红外信号时，执行步骤8，否则，执行步骤2；

步骤8：传感器控制器⑽对接收到的第二红外接收器⑹红外信号进行分析，并将分
析得到的数据送 LED 控制器（11）和短信发射器（9）；

步骤 9 : LED 控制器（11）控制 LED 显示屏（8）输出“中级车及紧凑型车禁止通行”，短信发射器（11）向周围行人和车辆及智能交通系统发送“中级车及紧凑型车禁止通行”的短信息；

步骤 10 : 第三红外接收器（7）判断是否检测到红外信号，如果检测到红外信号时，执行步骤 11，否则，执行步骤 2；

步骤 11 : 传感器控制器（10）对接收到的第二红外接收器（6）红外信号进行分析，并将分析得到的数据送 LED 控制器（11）和短信发射器（9）；

步骤 12 : LED 控制器（11）控制 LED 显示屏（8）输出“所有车辆禁止通行”，短信发射器（11）向周围行人和车辆及智能交通系统发送“所有车辆禁止通行”的短信息；

步骤 13 : 当管子（1）里面的桥下积水退去后，管子（1）里没有水时，开关（2）自动断开，该装置停止工作。
一种桥下积水深度的检测装置及智能预警方法

技术领域
[0001] 本发明特别涉及一种桥下积水深度的检测装置及智能预警方法，属于检测技术领域。

背景技术
[0002] 7月21日，北京遭遇特大级别暴雨，全市平均降水170毫米。这是继1951年有气象观测记录以来观测到的最大值。而数据表明，同一时期城市汛期雨量比以往增加了近三成。北京市气象局，人们意识到目前国内外在遇到特大暴雨后，对于下凹式立交桥桥下积水的预警能力不足，造成大量汽车不得不在桥下涉水前进，其中的很多车辆在水中熄火，给人民生命及财产安全带来极大的隐患。下凹式立交桥划水位标，但是这种措施仅能起到有限范围内的提示效果。司机需要将车辆驶到距离桥下很近的位置才能看到警示信息。此外，北京市交通局也无车辆即时的信息，进行有效的交通疏导，来提醒司机提前绕行，以防发生拥堵。

[0003] 为了防止大量汽车在桥下涉水前进中熄火，给人民生命及财产安全带来极大的隐患。北京市交通局利用即时桥下积水的信息，进行有效的交通疏导，来提醒司机提前绕行，以防发生拥堵。发明一种桥下积水深度的检测装置与方法及智能预警方法。它能够有效准确检测积水深度，积水深度能够在水位到达一定高度后，自动开启设备，根据不同水深高度，分别对不同车型进行LED滚动字幕预警，并通过短信方式把预警信息发送至智能交通系统处理。整个设备精巧、安全、节能、智能，生产成本低，有很好的经济效益与社会效益。

[0004] SUA圆，是指发动机进气口高度为80cm～82cm，主要有本田CR-V和大众途观这两种品牌车；中级车，是指发动机进气口高度为71cm～78cm，主要有新奥迪A4和北京现代索纳塔这两种品牌的车；紧凑型车，是指发动机进气口高度为60.5cm～70cm，主要有雪佛兰科鲁兹和标致307三厢这两种品牌的车。

发明内容
[0005] 本发明的目的在于防止大量汽车在桥下涉水前进中熄火，给人民生命及财产安全带来极大的隐患，便于即时桥下积水的信息，进行有效的交通疏导，来提醒司机提前绕行，以防发生拥堵，提出了一种桥下积水深度的检测装置及智能预警方法。

[0006] 一种桥下积水深度的检测装置，该装置由管子1、开关2、浮漂3、红外发射器4、第一红外接收器5、第二红外接收器6、第三红外接收器7、LED显示屏8、短信发射器9、传感器控制器10、LED控制器11、电源线12、电源13和进水口14组成，其中，

[0007] 所述管子1的靠近底部处开设有一个进水口14；在进水口14下方的管子1壁上固定安装有开关2；

[0008] 在所述进水口14的上方，所述浮漂3嵌入安装于管子1的内壁上，且随水位的变化浮漂3沿内壁上下移动；

[0009] 所述红外发射器4嵌在或固定安装于浮漂3的上方；
[0010] 在所述进水口 14 的上方及管子 1 下部的外壁的上固定装有第一红外接收器 5；在第一红外线接收器 5 的上方，管子 1 中部的外壁上固定装有第二红外接收器 6；在第二红外线接收器 6 的上方，管子 1 上部的外壁上固定装有第三红外接收器 7；
[0011] 所述短信发射器 9 分别与第一红外接收器 5、第二红外线接收器 6 和第三红外接收器 7 相连；
[0012] 所述 LED 显示屏 8、LED 控制器 11 和传感器控制器 10 依次相连；
[0013] 传感器控制器 10 通过电源线 12 与电源 13 相连；
[0014] 所述短信发射器 9 与传感器控制器 10 相连。
[0015] 所述传感器控制器 10 采用 C51 单片机。
[0016] 所述管子 1 采用透明玻璃钢，管子 1 形状为中空的长方体或正方体，且顶部开口的与大气相连。
[0017] 所述 LED 显示屏 8，设置在立交桥的前方或道路旁边的醒目处。
[0018] 所述传感器控制器 10、LED 控制器 11 和电源 13 根据实际情况下安装在检测桥梁的下方。
[0019] 一种桥下积水深度的检测智能预警方法，该方法包括以下步骤：
[0020] 步骤 1：当桥下积水通过进水口 14 进入管子 1，开关 2 自动接通，
[0021] 步骤 2：红外发射器 4 开始发射红外信号，第一红外接收器 5、第二红外接收器 6 和第三红外接收器 7 开始检测红外信号；
[0022] 步骤 3，浮漂 3 随管子 1 内的水位的上升而上升；
[0023] 步骤 4：第一红外接收器 5 判断是否检测到红外信号，如果检测到红外信号时，执行步骤 5，否则，执行步骤 2；
[0024] 步骤 5：传感器控制器 10 对接收到的第一红外接收器 5 红外信号进行分析，并将分析到的数据送 LED 控制器 11 和短信发射器 9；
[0025] 步骤 6：LED 控制器 11 控制 LED 显示屏 8 输出“紧凑型车禁止通行”，短信发射器 11 向周围行人和车辆及智能交通系统发送“紧凑型车禁止通行”的短信息；
[0026] 步骤 7，第二红外接收器 6 判断是否检测到红外信号，如果检测到红外信号时，执行步骤 8，否则，执行步骤 2；
[0027] 步骤 8：传感器控制器 10 对接收到的第二红外接收器 6 红外信号进行分析，并将分析到的数据送 LED 控制器 11 和短信发射器 9；
[0028] 步骤 9：LED 控制器 11 控制 LED 显示屏 8 输出“中级车及紧凑型车禁止通行”，短信发射器 11 向周围行人和车辆及智能交通系统发送“中级车及紧凑型车禁止通行”的短信息；
[0029] 步骤 10：第三红外接收器 7 判断是否检测到红外信号，如果检测到红外信号时，执行步骤 11，否则，执行步骤 2；
[0030] 步骤 11：传感器控制器 10 对接收到的第二红外接收器 6 红外信号进行分析，并将分析到的数据送 LED 控制器 11 和短信发射器 9；
[0031] 步骤 12：LED 控制器 11 控制 LED 显示屏 8 输出“所有车辆禁止通行”，短信发射器 11 向周围行人和车辆及智能交通系统发送“所有车辆禁止通行”的短信息；
[0032] 步骤 13：当管子 1 里面的水退去后，管子 1 里没有水时，开关 2 自动断开，该装置
停止工作。
【0033】本发明的有益效果：1.以智能化作为出发点，根据不同车型进气口高度不同，分级别预报警。2.对传感器采集数据进行包络分析处理，准确得到积水深度，智能预报，并将结果显示到 LED 显示屏上，并将报警信息通过信号发射装置发送到智能交通系统中。3.本发明简化了传统设备繁杂结构，体积小并且电能的消耗少，增加了安全系数。4.本发明提高了设备的智能化程度。

附图说明
【0034】图 1 为系统整体结构示意图；
【0035】图 2 为工作流程图；
【0036】其中，1-管子，2-开关，3-浮漂，4-红外发射器，5-第一红外接收器，6-第二红外接收器，7-第三红外接收器，8-LED 显示屏，9-短信发射器，10-传感器控制系统，11-LED 控制器，12-电源线，13-电源，14-进水口。

具体实施方式
【0037】以下结合附图，对本发明的技术方案作进一步的描述，本发明并不限于这些实施例。
【0038】图 1 所示，一种桥下积水深度的检测装置，该装置由管子 1、开关 2、浮漂 3、红外发射器 4、第一红外接收器 5、第二红外接收器 6、第三红外接收器 7、LED 显示屏 8、短信发射器 9、传感器控制器 10、LED 控制器 11、电源线 12、电源 13 和进水口 14 组成，其中，
【0039】所述管子 1 的靠近底部处开设有一个进水口 14；在进水口 14 下方的管子 1 壁上固定安装有开关 2；
【0040】在所述进水口 14 的上方，所述浮漂 3 嵌入安装于管子 1 的内壁上，且随水位的变化浮漂 3 沿内壁上下移动；
【0041】所述红外发射器 4 嵌入或固定安装于浮漂 3 的上方；
【0042】在所述进水口 14 的上方及管子 1 下部的外壁的上固定安装有第一红外接收器 5；在第一红外线接收器 5 的上方，管子 1 中部的外壁上固定安装有第二红外接收器 6；在第二红外线接收器 6 的上方，管子 1 上部的外壁上固定安装有第三红外接收器 7；
【0043】所述短信发射器 9 分别与第一红外接收器 5、第二红外线接收器 6 和第三红外接收器 7 相连；
【0044】所述 LED 显示屏 8、LED 控制器 11 和传感器控制系统 10 依次相连；
【0045】传感器控制器 10 通过电源线 12 与电源 13 相连；
【0046】所述短信发射器 9 与传感器控制器 10 相连。
【0047】所述传感器控制器 10 能够记录各个时间点的水位变化的情况，通过检测算法来有效模拟水流的条件干扰，准确的计算出的积水深度。且传感器控制器 10 采用 CS1 单片机，CS1 单片机具有高性能、高速度、低功耗等特点，而且体积小，价格低廉。
【0048】所述管子 1 采用透明玻璃钢，管子 1 形状为中空的长方体或正方体，且顶部开口的与大气相连。
【0049】所述 LED 显示屏 8，设置在立交桥的前方或道路旁边的醒目处。
所述传感器控制系统 10、LED 控制器 11 和电源 13 根据实际情况固定安装在待检测桥梁的下方。

[0051] 如图所示，一种桥下积水深度的检测智能预警方法，该方法包括以下步骤；

[0052] 步骤 1：当桥下积水到达一定高度时，水通过进水口 14 进入管子 1，开关 2 自动接通；

[0053] 步骤 2；红外发射器 4 开始发射红外信号，第一红外接收器 5、第二红外接收器 6 和
第三红外接收器 7 开始检测外线信号；

[0054] 步骤 3；浮漂 3 随管子 1 内的水位的上升而上升；

[0055] 步骤 4；第一红外接收器 5 判断是否检测到红外信号，如果检测到红外信号时，执
行步骤 5；否则，执行步骤 2；

[0056] 步骤 5；传感器控制器 10 对接收到的第一红外接收器 5 红外信号进行分析，并将
分析得到的数据送给 LED 控制器 11 和短信发射器 9；

[0057] 步骤 6；LED 控制器 11 控制 LED 显示屏 8 输出“紧凑型车禁止通行”，短信发射器
11 向周围行人和车辆及智能交通系统发送“紧凑型车禁止通行”的短信息，通过 LED 显示屏
8 即会通过红色滚动字幕的形式提醒周围行人和司机，这时发动机进气口高度为 60.5cm～
70cm 的车辆不能进入该桥洞，这样可以有效避免危险的发生，同时短信发射器 11 及时向
周围行人和车辆及智能交通系统发送“紧凑型车禁止通行”的短信息，再次提醒行人和车
辆，更加确保了行人和司机的安全；

[0058] 步骤 7；第二红外接收器 6 判断是否检测到红外信号，如果检测到红外信号时，执
行步骤 8；否则，执行步骤 2；

[0059] 步骤 8；传感器控制器 10 对接收到的第二红外接收器 6 红外信号进行分析，并将
分析得到的数据送给 LED 控制器 11 和短信发射器 9；

[0060] 步骤 9；LED 控制器 11 控制 LED 显示屏 8 输出“中级车及紧凑型车禁止通行”，短
信发射器 11 向周围行人和车辆及智能交通系统发送“中级车及紧凑型车禁止通行”的短信
息；通过 LED显示屏 8 即会通过红色滚动字幕的形式提醒周围行人和司机，这时发动机进气
口高度为 60.5cm～70cm 的紧凑型车和发动机进气口高度为 71cm～78cm 的中级车不能进
入该桥洞，这样可以有效的避免危险的发生，同时短信发射器 11 及时向周围行人和车辆及
智能交通系统发送“中级车及紧凑型车禁止通行”的短信息，再次提醒行人和车辆，更加确
保了行人和司机的安全；

[0061] 步骤 10；第三红外接收器 7 判断是否检测到红外信号，如果检测到红外信号时，
执行步骤 11；否则，执行步骤 2；

[0062] 步骤 11；传感器控制器 10 对接收到的第二红外接收器 6 红外信号进行分析，并将
分析得到的数据送给 LED 控制器 11 和短信发射器 9；

[0063] 步骤 12；LED 控制器 11 控制 LED 显示屏 8 输出“所有车辆禁止通行”，短信发射器
11 向周围行人和车辆及智能交通系统发送“所有车辆禁止通行”的短信息；通过 LED 显示
屏 8 即会通过红色滚动字幕的形式提醒周围行人和司机，这时发动机进气口高度为 80cm～
82cm 的 SUA 车不能进入该桥洞啦，像 SUA 车这种发动机进气口高度最高的车辆都不能进入
该桥洞啦，所以其他车辆更不能进入该桥洞啦，这样可以有效的避免危险的发生，同时短信
发射器 11 及时向周围行人和车辆及智能交通系统发送“所有车辆禁止通行”的短信息，再
次提醒行人和车辆，更加确保了行人和司机的安全；
[0064] 步骤 13：当管子 1 里面的水退去后，管子 1 里没有水时，开关 2 自动断开，该装置停止工作。
[0065] 以智能化作为出发点，根据不同车型进气口高度不同，分级别预警，同时简化了传统设备繁杂结构，体积小并且电能的消耗少，增加了安全系数。
当管子里面的水进去后，管子里没有水时，开关自动断开，该装置停止工作

图2