(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum

(40) Internationale Veröffentlichungsnummer
WO 2004/103676 A2

(51) Internationale Patentklassifikation:
B29C 45/00,
45/16, 45/04

(21) Internationales Aktenzeichen:
PCT/EP2004/050891

(22) Internationales Anmeldedatum:

(25) Einreichungssprache:
Deutsch

(26) Veröffentlichungssprache:
Deutsch

(30) Angaben zur Priorität:
2003 091003
22. Mai 2003 (22.05.2003) CH

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US):
FOBOHA GMBH FORMENBAU [DE/DE];
Im Mühlegrün 8, 77716 Haslach (DE).

(72) Erfinder: und
(75) Erfinder/Anmelder (nur für US): ARMBRUSTER, Rainer [DE/DE]; Ziegelmiitte 1, 77709 Wollbach (DE).

(74) Anwalt: RENTSCH, Rudolf; c/o IP & T Rentsch und Partner, Postfach 2441, CH-8022 Zürich (CH).

(Fortsetzung auf der nächsten Seite)

(54) Title: METHOD AND DEVICE FOR THE PRODUCTION OF MULTI-PART OBJECTS

(54) Bezeichnung: VERFAHREN UND VORRICHTUNG ZUM HERSTELLEN VON MEHRTEILIGEN GEGENSTÄNDEN

(57) Abstract: The invention relates to a method for the production of an object by means of injection moulding and a device for carrying out said method. The method comprises four method areas on four different planes, also comprising, essentially, four isochronous steps.

Veröffentlicht: ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.
Beschreibung

Verfahren und Vorrichtung zum Herstellen von mehrteiligen Gegenständen

[001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von mehrteiligen Gegenständen aus Kunststoff gemäß den unabhängigen Patentansprüchen.

[003] Aus dem Stand der Technik sind Vorrichtungen und Verfahren bekannt, die zum Herstellen von mehrteiligen Gegenständen oder Gegenständen die aus mehreren Komponenten bestehen in einer Form geeignet sind, wobei die mehreren Teile in der Form miteinander in Wirkverbindung gebracht werden („In-Mold-Assembly“). Diese Verfahren bieten die Möglichkeit insbesondere hohle Gegenstände herzustellen, die mit herkömmlichen Mitteln nicht erzeugbar wären.

[005] Es ist Aufgabe der Erfindung ein Verfahren und eine Vorrichtung zur Durchführung des Verfahrens zu zeigen, die zur Herstellung von mehrteiligen Gegenständen aus Kunststoff geeignet ist und eine verbesserte Ausnutzung einer Spritzgießmaschine, respektive einer Spritzgießform ermöglicht.

[006] Die Aufgabe wird durch die in den Patentansprüchen definierte Erfindung gelöst.

[007] Vorteilhaft ist die Herstellung von mehrteiligen Gegenständen aus Kunststoff indem die mehreren Teile in ein und derselben Form hergestellt und montiert werden. Im Unterschied zum Stand der Technik beruht die Erfindung auf einem Verfahren das vorzugsweise vier, in mehreren Ebenen angeordnete Verfahrensbereiche aufweist, die vor-

[008] Einzelne Verfahrensschritte werden anhand des nachfolgenden Beispiels an einem zweiteiligen Gegenstand näher erläutert.

1. Herstellen eines ersten und eines zweiten Teils aus einer oder mehreren Materialkomponenten durch Einspritzen von Kunststoff in eine erste und eine zweite Kavität, welche durch erste Kavitätshälften einer ersten Formhälfe und zweite Kavitätshälften einer um eine Hauptdrehachse drehbar angeordneten zweiten Formhälfe in einem ersten Verarbeitungsbereich gebildet werden;

2. Öffnen der ersten und der zweiten Kavität entlang einer ersten Schliessebene, durch relatives Verschieben der ersten gegenüber der zweiten Formhälfte entlang einer ersten Bewegungsrichtung, die vorzugsweise im Wesentlichen senkrecht zur Hauptdrehachse angeordnet ist, wobei das erste und das zweite Teil mit der zweiten, drehbar angeordneten Formhälfte werkverbunden bleiben;

3. Drehen der zweiten Formhälfe und mit ihr das erste und das zweite Teil um einen Winkel W um die Hauptdrehachse in einem zweiten Verarbeitungsbereich;
4. Falls vorgesehen, Wirkverbinden des ersten mit dem zweiten Teil und/oder Befüllen des ersten und/oder des zweiten Teil, wobei vorzugsweise mindestens eines der beiden Teile mit der zweiten, drehbar angeordneten Formhälftte wirkverbunden bleibt;

5. Drehen der zweiten Formhälfte und mit ihr das erste und das zweite Teil um den Winkel W, so dass die beiden wirkverbundenen Teile im Bereich einer zweiten Schliesssebene in einen dritten Verarbeitungsbereich zu liegen kommen;

6. Einschliessen der beiden Teile im Bereich der zweiten Schliesssebene in mindestens einer dritten Kavität, welche durch die zweite und eine dritte Formhälfte, sowie Bereichsweise durch mindestens eines der beiden Teile gebildet wird und entlang der zweiten Schliesssebene trennbar ist;

7. Einspritzen von Kunststoff in die mindestens eine dritte Kavität zur Bildung eines dritten Bereichs/Teils, so dass die beiden Teile durch den dritten Bereich/Teil bevorzugt zumindest Bereichsweise umspritzt oder durchdrungen sind.

8. Öffnen der dritten Kavität entlang der zweiten Schliesssebene durch relatives Verschieben der dritten gegenüber der zweiten Formhälfte.

10. Entnahme der fertigen Teile aus der Spritzgießvorrichtung.

Vorzugsweise werden die Schritte 1 und 7, die Schritte 4 und 10, sowie die Schritte 3, 5 und 9 im Wesentlichen gleichzeitig durchgeführt. Je nach Anwendungsgebiet sind anstelle der Schritte 6 und 7 andere Verbindungsverfahren/Verfahrensschritte möglich.

Die Erfindung ermöglicht eine Herstellung von ein oder mehrteiligen Produkten, respektive Produkten, die aus mehreren Komponenten bestehen, in einer einzigen Spritzgießvorrichtung mit mehreren, vorzugsweise parallel zueinander angeordneten Schliesssebenen.

Die Weiterentwicklung des Wendesystems, wie es vorzugsweise verwendet wird, weist zwei gemeinsam und bei Bedarf relativ zueinander verschiebbare Traversen auf, die vorzugsweise an Holmen einer Spritzgießmaschine befestigt sind. Die Traversen

[015] Das hier beschriebene Verfahren eignet sich beispielsweise für die Herstellung von Produkten im Zusammenhang mit der Medizintechnik (Spritzen, Pumpen, usw.), der Automobilindustrie (Filtergehäuse, Behälter, usw.), mit Computern und Computerzubehör, Sportartikel (Turnschuhe, Schläger), Telekommunikation (Mobiltelefone und Bestandteile, usw.).

[016] Die hier offenbarte Erfindung bietet unter anderem folgende Möglichkeiten:
• Spritzen von zwei unterschiedlichen Teilen in einer ersten Station
• Zusammenführen der Teile mittels eines in der Werkzeug-Maschine integrierten Montagesystems in einer zweiten Station
• Überspritzen der in der zweiten Station zusammengeführten Teile in einer dritten Station
Entnehmen der fertigen Teile in einer vierten Station

Daraus ergeben sich folgende Vorteile gegenüber herkömmlichen Technologien:
- Herstellung eines komplexen Teiles auf einer Maschine, einem System
- keine komplexen Montagesysteme
- kein Logistikaufwand
- kürzest möglicher Zyklus durch simultane Montage und Entnahme zum Spritzvorgang
- höchstmögliche Qualität, da immer das gleiche Unterteil auf das gleiche Oberteil montiert wird
- komplette Anlage aus einer Hand.

Ausführungsformen der Erfindung werden anhand der nachfolgenden Figuren näher erläutert. Es zeigen:

Fig.1 Eine Spritzgiessvorrichtung in einer perspektivischen Darstellung;
Fig. 2 eine Detailansicht der Spritzgiessvorrichtung gemäss Figur 1;
Fig. 3 ein erfindungsgemässes Verfahren;
Fig. 4 einen quaderförmigen Hohlkörper;
Fig. 5 ein Detail des quaderförmigen Hohlkörpers aus Figur 4.

Figur 1 zeigt eine Spritzgiessvorrichtung 1 zur Durchführung des erfindungsgemässen Verfahrens. Die Spritzgiessvorrichtung 1 weist eine erste, eine zweite und eine dritte Formhälfe 2, 3, 4 auf. Die erste Formhälfe 2 ist an einer feststehenden ersten Maschinenplatte 7 einer Spritzgiessmaschine (nicht näher dargestellt) mit Holmen 9 befestigt. Die dritte Formhälfe 4 ist an einer entlang von Holmen 9 in y-Richtung verschiebbar angeordneten zweiten Maschinenplatte 8 befestigt. Die zweite Formhälfe 3 ist zwischen der ersten und der dritten Formhälfe 2, 4 angeordnet und wird mittels einer ersten, unteren und einer zweiten, oberen Traverse 10, 11 gehalten. Sowohl die erste als auch die zweite Traverse 10, 11 sind so auf den Holmen 9 gelagert, dass sie entlang von diesem verschiebbar sind. Der Antrieb jeder Traverse 10, 11 erfolgt mittels je zwei Hydraulikzylindern 12. Der Antrieb der zweiten Maschinenplatte 8 entlang der Holmen 9 erfolgt mittels einer Schliessvorrichtung der Spritzgiessmaschine (beides nicht näher dargestellt). Die Bewegung der zweiten Formhälfe 3 ist mittels eines Pfeils A und die Bewegung der dritten Formhälfe 4 ist mittels eines Pfeils B angedeutet. Beim Öffnen und beim Schliessen der Spritzgiessvorrichtung 1 ist die Geschwindigkeit der zweiten Formhälfe 3 etwa halb so gross wie die Geschwindigkeit der dritten Formhälfe 4, so dass die zweite Formhälfe 3 in etwa die Hälfte des Weges der dritten Formhälfe zurücklegt. Die erste und die zweite Formhälfe 2, 3 sind entlang einer ersten Schliessebene 5 und die zweite und die dritte Formhälfe 3, 4 entlang einer zweiten Schliessebene 6 wirkverbindbar und bilden im wirkverbundenen Zustand erste und zweite, respektive dritte Kavitätten 13, 14, 15 zum
Einspritzen von Kunststoff durch Einspritzkanäle (nicht näher dargestellt).

[027] Jeder der Adapter 20 ist um eine Achse c', respektive c'' (hier parallel zu einer z-Richtung) drehbar angeordnet. Bei übereinander liegenden Traversen 10, 11 fluchten die erste und die zweite Achse c', c'' miteinander, so dass die zweite Formhälfte 3 bei geöffneter Spritzgiessvorrichtung 1 um eine Hauptdrehachse c drehbar ist. Der Antrieb der zweiten Formhälfte 3 erfolgt vorzugsweise über einen in der Dreheinheit 21 integrierten Hydraulik- oder Elektromotor (beide nicht näher dargestellt). Um möglichst zeitoptimiert zu Verfahren kann die zweite Formhälfte schon während dem Öffnen der Spritzgiessvorrichtung 1 um die Drehachse c um den Winkel W gedreht werden.

[028] Bei geschlossener Spritzgiessvorrichtung 1 bilden erste und zweite Kavitätenhälfte 17, 18 der zweiten Formhälfte 3 zusammen mit dritten und vierten Kavitätenhälfte 29, 30 der ersten Formhälfte 2 erste und zweite Kavitäten 13, 14 eines ersten Verarbeitungsbereichs 22 in welchem als erster Arbeitsschritt bei der Herstellung eine oder mehrere Kunststoffkomponenten eingespritzt werden, so dass erste und zweite Teile 26, 27 (vgl. Figur 3) gebildet werden.

[029] Nach dem Einspritzen des Kunststoff in die ersten und die zweiten Kavitäten 13, 14 wird die Spritzgiessvorrichtung 1 geöffnet und die mittlere Formhälfte 3 zusammen mit den ersten und den zweiten Teilen 26, 27 um die Drehachse c um einen Winkel W, der hier im Wesentlichen 90° beträgt, rotiert, bis die ersten und die zweiten Teile 26, 27 in einem zweiten Verarbeitungsbereich 23 zu liegen kommen, der im Wesentlichen in einem 90°-Winkel zum ersten Verarbeitungsbereich 22 angeordnet ist. Durch die Rotation um die Achse c wird gleichzeitig die in Rotationsrichtung gesehen nachfolgende Seitenfläche 16 der zweiten Formhälfte von einem vierten Verarbeitungsbereich 25 in den ersten Verarbeitungsbereich 22 gebracht.

[030] Im zweiten Verarbeitungsbereich 23 werden die ersten und die zweiten Teile 26, 27 hier durch eine Umsetzvorrichtung 28 (Manipulator) miteinander in Wirkverbindung gebracht indem das erste mit dem zweiten Teil 26, 27 zusammengeflöt, respektive

Die Funktionsweise einer Umsetzvorrichtung wird im Zusammenhang mit den nachfolgenden Figuren detaillierter erläutert.

Anstelle einer im Wesentlichen quaderförmigen zweiten Formhälfe (3) kann bei Bedarf eine zweite Formhälfe mit einer anderen Ausgestaltung verwendet werden. Beispielsweise kann die zweite Formhälfe mit einer hexagonalen oder oktaedrischen Grundfläche mit je drei oder vier Paaren von parallelen Seitenflächen aufweisen. Die

[036] In einem zweiten Verfahrensbereich 23 werden im Wesentlichen zeitgleich zu den Verfahrensabläufen im ersten und im dritten Verfahrensbereich 22, 24 erste und zweite Teile 26, 27 zusammengefügt, was schematisch durch die Pfeile B verdeutlicht wird. Die zweiten Teile 27 sind dabei schematisch in einer Zwischenposition dargestellt. Die Seitenflächen 16 der zweiten Formhälftte (vgl. Figur 1) sind hier nur stark vereinfacht dargestellt.

[039] **Figur 5** zeigt das Detail G aus Figur 4 im Bereich der Stossstelle zwischen den
Ansprüche

Verfahren zur Herstellung eines Gegenstandes (26, 27, 31) mittels Spritzgiessen in einer Spritzgiessvorrichtung (1) beinhaltend die folgenden Verfahrensschritte: a) Herstellen von mindestens einem Teil (26, 27) in einem ersten Verarbeitungsbereich (22) durch Einspritzen von mindestens einer Materialkomponente in mindestens eine Kavität (13, 14, 15), welche durch Kavitätenhälften (17, 18) einer ersten Formhülfe (2) und einer um eine Drehachse (c) drehbar angeordneten zweiten Formhülfe (3) gebildet werden; b) Öffnen der mindestens einen Kavität (13, 14, 15) entlang einer ersten Schliessesebene (5) durch relatives Verschieben der zweiten gegenüber der ersten Formhülfe (2, 3) in einer ersten Bewegungsrichtung (x), wobei das mindestens eine Teil (26, 27) mit der zweiten Formhülfe (3) wirkverbunden bleibt; c) Drehen der zweiten Formhülfe (3) und mit ihr das mindestens eine Teil (26, 27) um die Drehachse (c) um einen Winkel (W) in einen zweiten Verarbeitungsbereich (23); Unterziehen des mindestens einen Teils (26, 27) einem Verarbeitungsschritt im zweiten Verarbeitungsbereich (23); d) Drehen der zweiten Formhülfe (3) und mit ihr das mindestens einen Teils (26, 27) um den Winkel (W) um die Drehachse (c), so dass das mindestens eine Teil (26, 27) im Bereich einer zweiten Schliessesebene (6) in einen dritten Verarbeitungsbereich (24) zu liegen kommen; e) Unterziehen des mindestens einen Teils (26, 27) einem weiteren Spritzgiessvorgang im Bereich des dritten Verarbeitungsbereichs (24); Drehen der zweiten Formhülfe (3) und mit ihr dem mindestens einen Teil (26, 27) um den Winkel W um die Drehachse (c), so dass das mindestens eine Teil (26, 27) in einen vierten Verarbeitungsbereich (25) zu liegen kommt; f) Entnahme des mindestens einen Teils (26, 27) aus der Spritzgiessvorrichtung (1).

Verfahren gemäss Patentanspruch 1, dadurch gekennzeichnet, dass im ersten Verarbeitungsbereich (22) ein erstes und ein zweites Teil (26, 27) hergestellt werden, indem die mindestens eine Materialkomponente in eine erste und eine zweite Kavität (13, 14) eingespritzt wird, welche durch Kavitätenhälften (17, 18) einer ersten Formhülfe (2) und einer um eine Hauptdrehachse (c) drehbar angeordneten zweiten Formhülfe (3) gebildet werden.

Verfahren gemäss Patentanspruch 2, dadurch gekennzeichnet, dass das erste und das zweite Teil (26, 27) beim Drehen um die Drehachse (c) mit der zweiten, drehbar angeordneten Formhülfe (3) wirkverbunden bleiben.

Verfahren gemäss Patentanspruch 3, dadurch gekennzeichnet, dass im zweiten Verarbeitungsbereich (23) das erste mit dem zweiten Teil (26, 27) durch Umsetzen wirkverbunden werden, wobei vorzugsweise mindestens eines der
beiden Teile (26, 27) mit der zweiten, dreieck angeordneten Formhälft e (3) werk-
verbunden bleibt.

[005] Verfahren gemäß Patentanspruch 4, dadurch gekennzeichnet, dass die beiden Wirkverbundenen Teile (26, 27) im Bereich einer zweiten Schliessebene (6), die zur ersten Schliessebene (5) im wesentlichen parallel angeordnet ist, in mindestens einer dritten Kavität (15), welche durch die zweite und eine dritte Formhälft e (3, 4), sowie Bereichsweise durch mindestens eines der beiden Teile (26, 27) gebildet wird eingeschlossen wird.

[006] Verfahren gemäß Patentanspruch 5, dadurch gekennzeichnet, dass in die mindestens eine dritte Kavität (15) zur Bildung eines dritten Teils (33) Kunststoff eingespritzt wird, so dass das erste und das zweite Teil (26, 27) durch das dritte Teil (33) zumindest Bereichsweise umspritzt oder durchdrungen sind.

[007] Verfahren gemäß Patentanspruch 6, dadurch gekennzeichnet, dass die dritte Kavität (33) entlang der zweiten Schliessebene (6) durch relatives Verschieben der dritten gegenüber der zweiten Formhälft e (3, 4) geöffnet wird.

[008] Verfahren gemäß einem der vorangehenden Patentansprüche, dadurch gekennzeichnet, dass die Verfahrensschritte a und f, sowie d und h aus Patentanspruch 1 im Wesentlichen gleichzeitig durchgeführt werden.

[009] Verfahren gemäß einem der vorangehenden Patentansprüche, dadurch gekennzeichnet, dass die Hauptdrehachse (c) im Wesentlichen senkrecht zur ersten Bewegungsrichtung (x) ausgerichtet ist.

[010] Spritzgiessvorrichtung (1) zur Durchführung des Verfahrens gemäß einem der vorangehenden Patentansprüche, gekennzeichnet durch eine erste Formhälft e (2), eine zweite, relativ zur ersten in einer ersten Richtung (x) verschiebbar und um eine Drehachse (c) dreieck angeordnete zweite Formhälft e (3) und eine relativ zur ersten und zur zweiten Formhälft e (2, 3) in der ersten Richtung (x) verschiebaren dritten Formhälft e (4), sowie mindestens einen im Wesentlichen seitlich neben den Formhälften (2, 3, 4) angeordneten Manipulator (28).

[011] Spritzgiessvorrichtung (1) gemäss Patentanspruch 10, dadurch gekennzeichnet, dass die zweite Formhälft e durch zwei Traversen im Wesentlichen symmetrisch gelagert ist, welche an Holmen (9) einer Spritzgiessvorrichtung befestigt sind.

[012] Spritzgiessvorrichtung (1) gemäss Patentanspruch 10 oder 11, dadurch gekennzeichnet, dass die zweite Formhälft e (2) einseitig, asymmetrisch gelagert ist.

[013] Spritzgiessvorrichtung (1) gemäß einem der Patentansprüche 10 oder 11, dadurch gekennzeichnet, dass die zweite Formhälft e (3) direkt oder indirekt auf dem Maschinenbett einer Spritzgießmaschine abgestützt ist.