Milk Adiponectin and Leptin Concentrations

(57) Abrégé/Abstract:
Methods for treating various disorders by orally administering adiponectin or a biologically active fragment thereof are described.
Milk Adiponectin and Leptin Concentrations

(57) Abstract: Methods for treating various disorders by orally administering adiponectin or a biologically active fragment thereof are described.
For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
ADIPONECTIN FOR TREATMENT OF VARIOUS DISORDERS

BACKGROUND

Breast fed children tend to be healthier, with lower incidence of allergy and infectious disease, and tend to be leaner than formula fed children [1]. Although the reasons for these protective effects are not completely understood, milk proteins clearly play a role. In addition, previous studies have demonstrated that human milk proteins influence gastrointestinal, neural, and immunologic development in the nursing infant [2-6].

Adiponectin (also called ACRP30, adipoQ or GBP28), a protein produced primarily in adipose tissue by adipocytes [7-10], influences several physiologic processes that may impact human development. High concentrations of circulating adiponectin have positive health effects through the reduction of pro-inflammatory cytokines [11, 12], improvement of insulin sensitivity [13], and increase of fatty acid metabolism [14].

Human milk composition exhibits variation within and between lactating women. Intra-individual variation is likely due in part to changes in milk protein concentrations throughout lactation [15-17]. Inter-individual variability in milk protein concentrations has been attributed to genetic variation [18, 19] and maternal adiposity [20] among other factors.

In humans, adiponectin levels are inversely correlated with insulin resistance independent of adiposity [21-23], with the lowest levels of adiponectin in individuals with type 2 diabetes [24-26]. Furthermore, low adiponectin precedes the development of insulin resistance, suggesting a direct effect of adiponectin on insulin sensitivity [27-33]. Mouse studies have confirmed that adiponectin improves glucose utilization [34]. High adiponectin has also been associated with an anti-atherogenic lipid profile. Adiponectin is consistently inversely correlated with plasma triglycerides (TG) and positively correlated with plasma HDL cholesterol levels [35]. Adiponectin directly influences lipid metabolism and oxidation. Additionally, adiponectin has strong anti-inflammatory properties. Adiponectin decreases TNF-α [11] and IL-6 [11, 12] production, and increases expression of anti-inflammatory cytokines in
macrophages [36]. Adiponectin also works downstream of TNF-α to suppress its ability to activate the NF-κB pathway [37]. Adiponectin inhibits the formation of granulocyte-macrophage colonies in vitro, and inhibits the phagocytic activity of mature macrophages [38].

Adiponectin exists in several oligomeric forms in vivo, the most common of which are trimers, hexamers or low molecular weight (LMW) forms, and double hexamers and higher-order structures that together are considered high molecular weight (HMW) forms.

Specific oligomers of adiponectin are associated with important metabolic outcomes in humans. The HMW form of circulating adiponectin is selectively increased in response to weight loss [39, 40] and is selectively decreased in response to infusion of insulin [41]. This is of particular interest because the HMW form of adiponectin is associated with changes in physiologic processes known to be strongly influenced by obesity: The proportion of adiponectin bound together as HMW complexes is better associated with glucose tolerance than total adiponectin levels [42]. Improvements in hepatic insulin sensitivity after treatment with anti-diabetic drugs are also more associated with the proportion of adiponectin present as HMW complexes than total adiponectin concentration [43]. HMW complexes constitute a lower percentage of total adiponectin in adults with coronary artery disease, compared with normal controls, and only the HMW form protects vascular endothelial cells from apoptosis [39]. The HMW complex is also more positively correlated with the anti-atherogenic high-density lipoprotein (HDL) cholesterol than total adiponectin, while the trimeric form is inversely associated with HDL [40].

Adiponectin oligomeric structures appear to be assembled within the cell and secreted, with little spontaneous interchange between the complexes at physiologic conditions [41, 44]. Indeed, Wang et al. [45] suggested that hydroxylation and glycosylation of specific amino acids the adiponectin gene account for the different oligomeric forms.
SUMMARY

Described herein are methods and compositions for treating or reducing the risk of obesity and certain metabolic disorders in infants and children. The methods entail administering a composition comprising adiponectin, e.g., a glycosylated form of adiponectin. In certain embodiments, the adiponectin has the amino acid sequence of adiponectin found in human milk. In some embodiments, the adiponectin has the glycosylation pattern of adiponectin found in human milk.

Human adiponectin precursor protein (GenBank® Accession No. NP_004788.1 GI:4757760) has the sequence below (the first 14 amino acid or the first 17 amino acids being the leader sequence and the remainder of the sequence being that of the mature protein):
MLLLGAVL-L-LALPGHDQETTTQPGPVLLPLPKGACTGWMAGIPGHPGHNGAPRDGDRGTPGEGKGEKGDPGLIGPKGDIGETGVPAGEGPRGFPGIQGRKGEPEGAGAYVYRSFSVGLETYVTIPNMPIRFTKIFYNQQNHYDSTGKHFHCNIPGLYFYAYHITVYMKDVKVSLFKKDKAMLFTYDQYQENNVDQASGSVLHLLEVGDQVWLQVYTEGRNGLYADNDNDSTFTGFLLYHDTN (SEQ ID NO:1)

Mature adiponectin has the following amino acid sequence:
GHDQETTTQPGPVLLPLPKGACTGWMAGIPGHPGHNGAPGRDGDRDGTPGEGKGEKGDPGLIGPKGDIGETGVPAGEGPRGFPGIQGRKGEPEGAGAYVYRSFSVGLETYVTIPNMPIRFTKIFYNQQNHYDSTGKHFHCNIPGLYFYAYHITVYMKDVKVSLFKKDKAMLFTYDQYQENNVDQASGSVLHLLEVGDQVWLQVYTEGRNGLYADNDNDSTFTGFLLYHDTN (SEQ ID NO:2) or the following amino acid sequence:
QETTTQPGPVLLPLPKGACTGWMAGIPGHPGHNGAPGRDGDRDGTPGEGKGEKGDPGLIGPKGDIGETGVPAGEGPRGFPGIQGRKGEPEGAGAYVYRSFSVGLETYVTIPNMPIRFTKIFYNQQNHYDSTGKHFHCNIPGLYFYAYHITVYMKDVKVSLFKKDKAMLFTYDQYQENNVDQASGSVLHLLEVGDQVWLQVYTEGRNGLYADNDNDSTFTGFLLYHDTN (SEQ ID NO:3)

In some cases it can be desirable to administer a polypeptide fragment of SEQ ID NO:1 that includes some or all of the so-called globular head of adiponectin. For example, one can orally administer a composition comprising (consisting of or
consisting essentially of) amino acids: 84-244, 85-244, 86-244, 87-244, 88-244, 89-244, 90-244, 91-244, 92-244, 93-244, 94-244, 95-244, 96-244, 97-244, 98-244, 99-244, 100-244, 101-244, 102-244, 103-244, 104-244, 105-244, 106-244, 107-244, 108-244, 109-244, 110-244 or 111-244 of SEQ ID NO:1 (full-length human adiponectin).

In other cases one can orally administer a composition containing a polypeptide fragment of SEQ ID NO:1 comprising, consisting of or consisting essentially a polypeptide fragment of amino acids: 84-244, 85-244, 86-244, 87-244, 88-244, 89-244, 90-244, 91-244, 92-244, 93-244, 94-244, 95-244, 96-244, 97-244, 98-244, 99-244, 100-244, 101-244, 102-244, 103-244 104-244, 105-244, 106-244, 107-244, 108-244, 109-244, 110-244 or 111-244 of SEQ ID NO:1 (full-length human adiponectin).

In some cases one can orally administer a composition comprising a trimer (complex of three polypeptide chains), hexamer (complex of 6 polypeptide chains), 12mer (complex of 12 polypeptide chains) or 18mer (complex of 18 polypeptide chains).

Several lysine residues in the protein have the potential to be glycosylated (e.g., lysine 65, 68, 77 and 101 referring to the numbering of the immature protein) and several proline residues have the potential to be hydroxylated.

In some cases, a useful composition containing adiponectin is relatively enriched in adiponectin relative to some or all of the components present in human milk. For example, the adiponectin can be 10%, 20%, 50%, 70%, 90% or more enriched relative to one or more of the proteins and fats (or all of the components) in human milk.

Described herein is a method for treating or reducing the risk of obesity in a patient comprising orally administering a composition comprising purified adiponectin or a fragment thereof; a method of treating or reducing the risk of metabolic syndrome in a patient comprising orally administering a composition comprising purified adiponectin or a fragment thereof; a method of treating or reducing the risk of a disorder selected from inflammatory bowel disease, hyperglycemia, insulin resistance, metabolic syndromes associated with insulin resistance, Type 2 diabetes mellitus, metabolic syndromes including hypertension, atherosclerosis, coronary heart disease or ischemic heart disease in a patient
comprising orally administering a composition comprising purified adiponectin or a fragment thereof; and a method of treating or reducing the risk of necrotizing enterocolitis in an infant comprising orally administering a composition comprising purified adiponectin or a fragment thereof.

In some cases, the adiponectin or fragment thereof can be orally administered to: reduce body mass, reduce the rate of increase in body mass, treat glucose intolerance, treat insulin resistance, treat type II diabetes, treat hyperlipidemia, treat hyperuricemia, control blood glucose, treat patients with elevated fasting glucose that are not suffering from diabetes.

In some cases, the adiponectin or fragment thereof is administered to a patient that is also being administered insulin or an insulin sensitizing agent (e.g., metformin).

In various embodiments: the patient is less than 18 years old; the patient is less than 15 years old; the patient is less than 10 years old; the patient is less than 1 year old; and the patient is an infant that was born prematurely.

In some instances the adiponectin or fragment thereof is glycosylated. In other instances it is hydroxylated and glycosylated. In various embodiments: at least one amino acid of the adiponectin or fragment thereof is substituted with a glucosylgalactosyl residue; the adiponectin comprises the amino acid sequence of SEQ ID NO:1, 2 or 3 and is glycosylated at one or more of lysine residues 65, 68, 77 and 101. In other embodiments, the adiponectin comprises the amino acid sequence of SEQ ID NO:2. In some cases a polypeptide comprising SEQ ID NO:2 is glycosylated at one or more of lysines 51, 54 and 87.

In some cases the adiponectin is in the form found in human milk, e.g., the glycosylation of the purified adiponectin is that same as that found in human milk.

In some circumstances the purified adiponectin bears at least one moiety selected from a glucosylgalactosyl moiety, a glucosylglucosyl moiety, a galactosylglucosyl moiety, or a galactosylgalactosyl moiety.

A composition comprising purified adiponectin or a biologically active fragment thereof can further comprise an oligosaccharide found in human milk. In
various cases, the composition comprises: at least one α1,2-linked fucosylated oligosaccharide or at least one oligosaccharide selected from: lacto-N-fucopentaose I [LNF-I], 2-fucosyllactose [2'-FL], lacto-N-difucohexaose I [LDFH-I], lactodifucohexaose [LDFT]), lacto-N-fuco-pentaose II [LNF-II], 3-fucosyllactose [3-FL], lacto-N-fucopentaose III [LNF-III], lacto-N-tetraose [LNT], and lacto-N-neotetraose [LNneoT].

In some cases the purified adiponectin or fragment thereof is modified to include at one group groups selected from: Lacto-N-fucopentaose I; Lacto-N-fucopentaose II; 3'-Fucosyllactose; Lacto-N-fucopentaose II; Lacto-N-difucohexaose I; actodifucohexaose; LactoN-tetraose; LactoN-neotetraose; 3'-Sialyllactose; 3'-Sialyllactosamine; 6'-Sialyllactose; 6'-Sialyllactosamine; Sialyllacto-N-neotetraose c; Monosialyllacto-N-hexaoe; Disialyllacto-N-hexaoe I; Monosialyllacto-N-neohexaoe I; Monosialyllacto-N-neohexaoe II; Disialyllacto-N-neohexaoe; Disialyllacto-N-tetraose; Disialyllacto-N-hexaoe II; Sialyllacto-N-tetraose a; Disialyllacto-N-hexaoe I; Sialyllacto-N-tetraose b; 3'-Sialyl-3-fucosyllactose; Disialomonofoceucoxyllacto-N-neohexaoe; Monofucosylmonosialyllacto-N-octaose (sialyl Lea); Sialyllacto-N-fucohexaoe II; Disialyllacto-N-fucopentaose II; and Monofucosyldisialyllacto-N-tetraose.

In some cases the purified adiponectin or biologically active fragment thereof bears at least one moiety selected from a glucosylgalactosyl moiety, a glucosylglucosyl moiety, a galactosylglucosyl moiety, or a galactosylgalactosyl moiety.

In various cases the adiponectin or biologically active fragment thereof is orally administered so as to achieve a plasma concentration of between 10 µg/ml and 100 µg/ml; between 10 µg/ml and 75 µg/ml; between 20 µg/ml and 60 µg/ml; or between 1 µg/ml and 100 µg/ml.

In various aspects of the methods described herein the adiponectin is administered so as to achieve a plasma concentration of adiponectin between 10 µg/ml and 100 µg/ml; the adiponectin is administered so as to achieve a plasma concentration of adiponectin between 10 µg/ml and 75 µg/ml; the adiponectin is
administered so as to achieve a plasma concentration of adiponectin between 20 μg/ml and 60 μg/ml; and the adiponectin is administered so as to achieve a plasma concentration of adiponectin between 1 μg/ml and 100 μg/ml.

Also describe are a nutritional supplement comprising purified adiponectin and an infant formula comprising purified adiponectin.

A “purified protein” (e.g., purified adiponectin), as used herein, refers to a protein that has been separated from other proteins, lipids, and nucleic acids with which it is naturally associated. The protein can constitute at least 10, 20, 50 70, 80 or 95% by dry weight of the purified preparation.

The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.

DESCRIPTION OF DRAWINGS

FIGURE 1 is a graph depicting a comparison of milk adiponectin and leptin concentrations and (inset) detail of milk leptin distribution in 30 cross-sectional milk samples from the RHMB-Ad hoc cohort. Interquartile range defined by box; median represented by horizontal line. Whiskers represent 95th and 5th percentiles of distribution. Difference between medians: p<0.0001 by Wilcoxon Signed Rank test.

FIGURE 2 is a graph depicting the relationship between milk adiponectin and duration of lactation. Solid line is the predicted regression line determined from the repeated measures analysis of month of lactation and log(milk adiponectin): β ± SE: -0.059 ±0.007. A total of three data points from two individuals are not presented, with milk adiponectin concentrations between 45 and 60 ng/mL.

FIGURE 3 is a graph depicting the relationship between milk adiponectin and ethnicity. Milk samples from approximately one-month lactation in 37 Mexican and 19 non-Hispanic white from the Cincinnati area women. Inter-quartile range defined by box; median represented by horizontal line. Whiskers represent 95th and 5th percentiles of distribution. Difference between medians: p=0.003 by Wilcoxon Signed Rank test.
FIGURE 4 is a graph depicting the relationship between milk adiponectin concentration by maternal BMI. Solid line is the predicted regression line determined from the repeated measures analysis of maternal BMI and ln(milk adiponectin), excluding two women (n=14 longitudinal samples) with milk adiponectin concentrations above 50 ng/mL ($\beta \pm SE: 0.08 \pm 0.02$). Dashed line is the predicted regression line including these outliers ($\beta \pm SE: 0.10 \pm 0.02$). A total of three data points from two individuals are not presented, with milk adiponectin concentrations between 45 and 60 ng/mL.

FIGURE 5 is a graph depicting the relationship between milk adiponectin concentration and infant body weight.

FIGURE 6 is a graph depicting the relationship between adiponectin exposure and infant growth velocity.

FIGURE 7 is a graph depicting the level of adiponectin in mouse milk over the course of several days.

FIGURE 8 is graph depicting the serum level of adiponectin in nursing mice over the course of several days.

FIGURE 9 is a graph depicting human adiponectin levels in the luminal fluids, intestine and serum of mice orally administered human adiponectin.

DETAILED DESCRIPTION

Described below are studies demonstrating that adiponectin is present in human milk and its concentrations are associated with duration of lactation, ethnicity, and maternal adiposity. The presence of adiponectin in human milk and the fact that breast fed children are leaner than those fed formula suggests that adiponectin would be useful for treating infants to treat or reduce the risk of obesity and to treat or reduce the risk of other metabolic disorders.

Example 1

Milk Samples
We analyzed human milk samples from two distinct populations of women: 1) donors to the Cincinnati Children’s Research Human Milk Bank (RHMB) in Cincinnati, Ohio, and 2) participants from an NICHD-funded grant entitled “The Role of Human Milk in Infant Nutrition and Health” (P01 HD 13021; PI: Morrow) in Mexico City. These two populations were chosen because of the availability of milk samples using uniform collection procedures. The Institutional Review Board (IRB) at Cincinnati Children’s Hospital Medical Center approved the protocols and consent forms for both of these studies, and the IRB at the National Institute of Medical Sciences and Nutrition in Mexico City also approved the protocol for the Mexican population.

The Cincinnati Children’s Research Human Milk Bank (RHMB) is a repository in which any lactating women may voluntarily donate breast milk as either a one-time donation (RHMB-Ad hoc cohort) or regularly throughout the course of lactation (Cincinnati Breastfeeding Cohort, or RHMB-longitudinal) [46].

For the RHMB-Ad hoc cohort, the following information is collected at the time of donation: gestational age of the infant at delivery, day of lactation when milk was expressed, volume donated, and whether the milk was brought for donation to the bank fresh or frozen. However, as the mothers provide the expressed milk, this is a non-standardized collection. From the RHMB-Ad hoc cohort, 30 cross-sectional milk samples from donor mothers were randomly selected for this analysis.

For women who wish to take part in the longitudinal donation protocol (RHMB-longitudinal), a more extensive process is involved. To be a longitudinal donor, mothers must provide consent within one week after delivery, and all infants must be full-term (at least 37 weeks gestation), singleton infants without any congenital or medical complications. Mothers must commit to breastfeed, at least partially, for at least six months, speak English, and live within a 25-mile radius from the medical center. Women of all races and ethnic groups are eligible. Milk collection in the RHMB-longitudinal follows a standardized procedure (see Milk collection, below). To be selected for this analysis from the RHMB-longitudinal cohort, mothers had to donate at least seven samples by 7 months of lactation. A total of 199 milk samples from 22 mothers were included in this study.
At the time of the first visit, the research nurse conducts an extensive questionnaire-based interview. Data collected during this interview include demographics, reproductive history, previous breastfeeding experience, general health status of the mother and infant since birth, and medication and environmental exposure. During subsequent visits, an abbreviated questionnaire is administered to obtain updates on medications, health status, etc. Maternal anthropomorphic measurements are taken during each home visit with portable scales that are calibrated regularly.

The Mexican Human Milk study cohort is a collaborative effort between Cincinnati Children’s Hospital Medical Center and the National Institute of Medical Sciences and Nutrition in Mexico City. Mothers were included in the study if they had a healthy, full-term infant born without congenital malformations, and if the mother intended to breastfeed. Mothers received three visits from a peer counselor to support exclusive breastfeeding. Mothers provided milk samples weekly for the first month and then monthly for the duration of lactation. No data on maternal height or weight or infant gestational age at birth was collected. From the Mexican cohort, 37 mothers were randomly selected from subjects who had donated milk samples at approximately one-month lactation. Characteristics of all selected participants in the three cohorts are described in Table 1.

Table 1. Description of Study Cohorts

<table>
<thead>
<tr>
<th>Research Human Milk Bank (RHMB)</th>
<th>Ad hoc</th>
<th>Longitudinal</th>
<th>Mexico</th>
</tr>
</thead>
<tbody>
<tr>
<td>N mothers</td>
<td>30</td>
<td>22</td>
<td>37</td>
</tr>
<tr>
<td>N samples</td>
<td>30</td>
<td>199</td>
<td>37</td>
</tr>
<tr>
<td>Data Structure</td>
<td>Cross-sectional</td>
<td>Longitudinal</td>
<td>Cross-sectional</td>
</tr>
<tr>
<td>Days of lactation sampled (range)</td>
<td>1-401</td>
<td>4-242</td>
<td>31-40</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-Hispanic White</td>
<td>30</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Hispanic/Mexican</td>
<td>0</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>
Gestational age, weeks | 34-42 | 38-42 | N/A*
(range)
Maternal post-pregnancy BMI, kg/m² median (range) | N/A | 24.5 (19.5, 34.2) | N/A
*All infants were full-term

Milk Collection
For the RHMB-Ad hoc cohort, milk collection involved the mother bringing her milk sample to the RHMB at Cincinnati Children’s Hospital Medical Center. For the RHMB-longitudinal and Mexico breastfeeding cohorts, milk collection occurred during home visits by the study nurse, for the duration of lactation. Milk collection involved draining an entire breast using a standard electric pump. A single study nurse for each cohort collected milk between 10:00 am and 1:00 pm. Collected milk was stored on ice for transportation to the local institution, where it was aliquotted and frozen at -80 °C.

Maternal Anthropometrics
In the RHMB-longitudinal cohort only, a single trained research nurse measured maternal anthropometrics (B.S.D.). Maternal weight was measured at each monthly visit using an E-Z Carry Portable Digital Scale (Hopkins Medical Products, Baltimore, MD). Women were measured in street clothing without shoes. Height was measured at the initial visit with the subject in the standing position wearing socks, heels together, toes apart at a 45 degree angle and head in the Frankfort horizontal plane. The height was marked on the wall and the vertical distance to the floor was measured. Body mass index (BMI) was calculated as weight in kg divided by the square of height in meters (kg/m²).

Assay of Adiponectin and Leptin
Because lipids interfere with radioimmunoassays (RIA), skimmed milk was used, and the same individual (W.B.) assayed all samples from the three cohorts. Milk samples were thawed and vortexed. Skim milk (aqueous phase) was prepared by centrifugation (1,500μg, 20 min, 4 °C) after which the fat layer was removed.
Immunoreactive adiponectin was measured in duplicate using a commercial RIA kit (Linco Research, St. Charles, MO) using a 100 µL of a 1:3 dilution of skim milk (33.3 µL equivalent). The inter- and intra-assay coefficients of variation were 8.5 and 3.9% respectively. In the RHMB-Ad hoc samples, leptin was also assayed in duplicate in skim milk using a commercial RIA kit (Linco Research, St. Charles, MO) following the protocol of Houseknecht and colleagues [47]. The inter- and intra-assay CVs were 4.5 and 5.0%, respectively, with a limit of detection of 0.3 ng/mL.

The assay methods for adiponectin were validated using standards, and skim milk samples were spiked with the 5, 20, and 100 ng/mL human adiponectin standard to determine the recovery of added mass.

Statistical Analyses
Statistical analyses were conducted using SAS version 9.1.3. Descriptive statistics are reported as medians and ranges, due to non-normality of the data. To improve normality of milk adiponectin for use in statistical models, the data were natural log (ln) transformed. Eight milk leptin concentrations were below the limit of detection (0.3 ng/mL), these values were set at 0.2 ng/mL. Analyses were also conducted with the values below the detection limit set at 0; however, the results did not change substantially and thus are not reported.

To examine the effect of lactation on ln(milk adiponectin) concentrations, we used RHMB Ad hoc and longitudinal data. In cross-sectional analyses, linear regression models were constructed using ln(milk adiponectin) as the dependent variable. In the longitudinal analyses, mixed models with repeated measures were constructed where intercepts for each donor is treated as random. The best correlation structure (in this case equal correlation among ln(milk adiponectin) obtained across different time points) is selected using the Bayesian Information Criterion (BIC) derived based on the data. The dependent variable was ln(milk adiponectin) and the independent variable was day of lactation.

To determine the effect of ethnicity on milk adiponectin concentrations, median milk adiponectin at approximately one-month lactation from non-Hispanic
whites in the RHMB-longitudinal cohort (range: 26 to 42 days) and Hispanics in the Mexican cohort (range: 31 to 40 days) were compared using a Wilcoxon Rank Sum test.

To determine the effect of maternal adiposity on milk adiponectin concentrations, maternal BMI from the RHMB-longitudinal cohort was examined cross-sectionally and longitudinally. In cross-sectional analyses, ln(milk adiponectin) was regressed against maternal BMI at each time point. In longitudinal analyses, repeated measures of ln(milk adiponectin) was modeled as influenced by repeated measures of maternal BMI mixed model procedures.

Validation of Adiponectin Assay for Human Milk.

Adiponectin concentrations of serial dilutions (10 – 40 μL) of skim milk were parallel to the standard curve. Skim milk samples were spiked with the 5, 20, and 100 ng/mL human adiponectin standard, and recovery of added mass averaged 109%.

Adiponectin and Leptin in Human Milk

Immunoreactive adiponectin was detected in skim milk in all samples (Table 2). Milk adiponectin concentration was not associated with gestational age (p ≥ 0.18).

<table>
<thead>
<tr>
<th>Table 2. Human Milk Adiponectin and Leptin Concentrations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Human Milk Bank (RHMB)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ad hoc</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Milk adiponectin concentration, ng/mL median (range)</td>
</tr>
<tr>
<td>Milk leptin concentration, ng/mL median (range)</td>
</tr>
</tbody>
</table>

In the RHMB-Ad hoc samples, both leptin and adiponectin concentrations were assayed in milk (Figure 1). Median adiponectin concentrations were over 40
times greater than leptin concentrations (16.6 versus 0.4 ng/mL, respectively, p<0.0001 by Wilcoxon Rank Sum test). Concentrations of milk adiponectin and milk leptin were positively correlated with each other (Spearman r = 0.37, p = 0.046).

The concentration of adiponectin in milk is much lower than in serum. In neonates, serum adiponectin concentrations have been reported to range from 20-60 ug/mL [48, 49] while we found milk adiponectin concentrations to range from 4.2 to 87.9 ng/mL. However, milk adiponectin concentrations are consistent with concentrations of expressed adiponectin mRNA from mesenteric adipose tissue [50], perhaps suggesting local effects.

Leptin is the only other adipokine that has been measured in human milk [47, 51-53]. In the RHMB-Ad hoc samples in this study, milk leptin concentrations were forty-fold lower than adiponectin. The leptin concentrations in milk measured in this study were slightly lower than reported for leptin in other studies [20, 47, 51]. The lower concentrations may be due to the extended lactation period examined in this study.

Adiponectin Declines through Lactation

In the RHMB-Ad hoc samples (n = 30), month of lactation was negatively associated with ln(milk adiponectin), β = -0.059 ± 0.024, p = 0.02. These results were verified in RHMB-longitudinal samples, in which the month of lactation was also negatively associated with ln(milk adiponectin), β = -0.059 ± 0.007, p < 0.0001 (Figure 2). Based on these results, milk adiponectin is predicted to be 6.9 ng/mL lower by 7 months’ lactation compared with 1-week lactation.

Milk adiponectin concentrations decline throughout lactation. This is in agreement with previous studies documenting a decline of many milk proteins throughout lactation [15-17]. We also examined the effect of ethnicity on adiponectin concentrations. Hispanic mothers of Mexican descent had significantly lower concentrations of milk adiponectin than the non-Hispanic white donors at one-month lactation. These differences most likely have a physiological basis, as milk samples for non-Hispanic whites and Hispanics were collected using the same protocol, during
the same period of lactation, and were assayed by the same individual, thereby minimizing sampling and assay error. Further, the ethnic difference in adiponectin concentration in milk parallels adiponectin concentrations in serum. Several studies have demonstrated that whites have higher serum adiponectin concentrations than Asians [54, 55], Amerindians [29], and African-Americans [56]. Although there has been no direct comparison serum concentration of adiponectin between Non-Hispanic whites and Hispanics, the Mexican population is considered to be primarily a combination of Amerindian and white populations [57]. Therefore, the finding of lower concentrations of adiponectin in milk in Mexicans is expected.

Human Milk Adiponectin is Associated with Post-Pregnancy Maternal Weight

Cross-sectionally in the RHMB-longitudinal cohort, post-pregnancy maternal BMI was significantly positively associated with ln(milk adiponectin) concentration at most time-points (Table 3). Even when statistical significance was not achieved, the magnitude of the relationship was relatively consistent from 1 to 7 months of lactation (β (range) =0.08 to 0.13, p(range)=0.01 to 0.16).

Table 3. Cross-sectional β Coefficients of Maternal BMI Regressed on ln(Milk Adiponectin) Concentration

<table>
<thead>
<tr>
<th>Month of Lactation</th>
<th>N</th>
<th>R-square (%)</th>
<th>$\beta \pm SE$</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td>21.0</td>
<td>0.09 \pm 0.04</td>
<td>0.03</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>16.1</td>
<td>0.08 \pm 0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>20.4</td>
<td>0.08 \pm 0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>26.2</td>
<td>0.10 \pm 0.04</td>
<td>0.02</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td>29.2</td>
<td>0.11 \pm 0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>29.2</td>
<td>0.13 \pm 0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td>16.0</td>
<td>0.10 \pm 0.07</td>
<td>0.16</td>
</tr>
</tbody>
</table>

In longitudinal analyses (Figure 4), maternal post-pregnancy BMI was significantly associated with ln(milk adiponectin) ($\beta = 0.10 \pm 0.02$, $p < 0.0001$). When excluding outlier milk adiponectin concentrations greater than 50 ng/mL
(excluding 14 longitudinal values from 2 individuals), this relationship remained highly significant ($\beta = 0.08 \pm 0.02$, $p < 0.0001$).

In contrast to concentrations in serum, where adiposity is negatively correlated with adiponectin [58], a positive association was found between adiponectin concentrations in milk and maternal adiposity. One potential explanation for this finding is the relationship between adiponectin, prolactin and adiposity. Adiponectin is negatively regulated by prolactin [59, 60], a major determinant of mammary gland development in lactating women. Prolactin secretion is dampened in obesity [61, 62]. Thus, reduced negative regulation by prolactin in heavier mothers may positively impact concentrations of adiponectin produced locally in the breast tissue and its secretion into human milk.

Previous studies have demonstrated that milk components are not often degraded in the stomach, in part because the composition of human milk forms a protective environment for proteins [63] and in part because of the reduced acidity of the infant stomach [64] and limited gastric proteolysis [65]. Indeed, oral insulin is not degraded and thus can stimulate gut maturation [63, 66, 67]. As adiponectin has been demonstrated to increase insulin sensitivity [68, 69], it may also augment insulin’s action in the infant gut. Adiponectin may also have direct effects on infant gut, as previous studies have documented that adiponectin receptor 1 is expressed in fetal small intestine [70].

Adiponectin In Human Milk Is Associated With Infant Weight

Using the 22 sets of longitudinal samples from the CBC as described above, the longitudinal relationships between adiponectin in human milk and infant weight were explored. After accounting for the correlated structure of the data and repeated measures, adiponectin concentration in milk is negatively associated with weight gain in infants up to 28 weeks ($\beta \pm SE: -0.20 \pm 0.12$ kg, $p=0.082$), adjusting for infant age and age. While this relationship is not statistically significant, our small sample size was not powered to detect this effect. This relationship is displayed in Figure 5 where the natural log of milk adiponectin is plotted against the residual of infant weight.
adjusted for age. To further examine the relationship between human milk adiponectin and infant growth, 36 samples collected at one month postpartum were randomly selected from a cohort of 306 Mexican mother-infant pairs. Despite differences in total milk adiponectin level between Mexican and U.S. mothers, correlations between the natural logarithm of milk adiponectin at one month and infant adiposity at one and four months postpartum is similar in magnitude in the Mexico and Cincinnati cohorts (Table 4).

<table>
<thead>
<tr>
<th>Table 4: Correlations Between ln(milk Adiponectin) and Growth Status at One Month Post-partum (* = p < 0.10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>Weight (kg)</td>
</tr>
<tr>
<td>Weight/Length (kg/m)</td>
</tr>
</tbody>
</table>

Analysis of the milk adiponectin exposure metric in 11 mother-infant pairs with complete data revealed a cumulative exposure of infants to milk adiponectin by 24 weeks postpartum ranging from 123.2 to 220.5 ng/ml. This exposure metric, divided by 25 for more clinically meaningful interpretation, was negatively associated with infant growth velocity (weight gain) between birth and 24 weeks (growth velocity/24 weeks [kg]=5.76-0.28 [APN exposure], p=0.06, Figure 6).

Thus, our data suggest that adiponectin in human milk is associated with lower weight among breastfed infants in the first six months of life, independent of age. These findings provide an intriguing potential explanation for why breast-fed infants are typically leaner than formula fed infants.

Serum adiponectin levels in nursing mice correlate with adiponectin levels in mouse milk.
The natural levels of adiponectin in mouse milk were measured over the course of lactation. It was found that adiponectin levels are highest early in lactation and lowest later in lactation (FIGURE 7). If adiponectin in milk is absorbed into the serum, the levels in the serum of nursing pups should be influenced by differences in the level of adiponectin in consumed milk. Serum from the nursing pups was analyzed for adiponectin levels, and it was found that serum adiponectin is highest during the initial days of lactation and lowest late in lactation (FIGURE 8). These data are consistent with milk adiponectin being a source of serum adiponectin in nursing mammals.

Orally administered adiponectin can be absorbed into serum

To measure the ability of adiponectin to cross the intestinal mucosa and be absorbed into the serum of young mammals, functional recombinant human adiponectin (expressed in mammalian cells) was orally administered to the stomach of mouse pups. Saline was administered as a control. Human adiponectin was measured in luminal fluids, the intestine and serum using an ELISA assay that is specific for human adiponectin. As shown in FIGURE 9, the intestinal luminal fluid of mice that were orally administered human adiponectin contained levels of human adiponectin in proportion to the amount of human adiponectin administered. As shown in FIGURE 9, the mice administered the highest amounts of human adiponectin had the highest levels of human adiponectin in the gut lumen, while those administered only saline had no human adiponectin in the gut lumen. Thus, oral administration successfully resulted in intact adiponectin in the gut. The human adiponectin was transported into the tissues of the gut, and again the mice administered the highest amounts of adiponectin had the highest levels in their intestinal tissues. Moreover, the human adiponectin administered into the gut was absorbed into the serum. As shown in FIGURE 9, the mice administered the highest amount of human adiponectin exhibited the highest serum adiponectin levels. Thus, human adiponectin is able to be absorbed from the gut into the serum in young mammals, and the absorbed adiponectin could be responsible for the relationship between milk levels of adiponectin and physiologic consequences in the nursing infant.
Compositions containing adiponectin

Adiponectin can be administered in a composition that includes a pharmaceutically acceptable carrier, e.g., phosphate buffered saline solution, mixtures of ethanol in water, water and emulsions such as an oil/water or water/oil emulsion, as well as various wetting agents or excipients. Adiponectin can be combined with materials that do not produce an adverse, allergic or otherwise unwanted reaction when administered to a patient. The carriers or mediums used can include solvents, dispersants, coatings, absorption promoting agents, controlled release agents, and one or more inert excipients (which include starches, polyols, granulating agents, microcrystalline cellulose, diluents, lubricants, binders, disintegrating agents, and the like), etc. If desired, tablet dosages of the disclosed compositions may be coated by standard aqueous or nonaqueous techniques.

Adiponectin can be administered orally, e.g., as a tablet, pellet, gel, paste, syrup, bolus, eectuary, slurry, capsule, powder, granules, as a solution or a suspension in an aqueous liquid or a non-aqueous liquid; as an oil-in-water liquid emulsion or a water-in-oil liquid emulsion, or in some other form. Orally administered compositions can include binders, lubricants, inert diluents, lubricating, surface active or dispersing agents, flavoring agents, and humectants. Orally administered formulations such as tablets may optionally be coated or scored and may be formulated so as to provide sustained, delayed or controlled release of the active ingredient therein. Adiponectin can also be administered by rectal suppository, aerosol tube, naso-gastric tube, direct infusion into the GI tract or stomach or parenterally.

Pharmaceutical compositions containing adiponectin can also include therapeutic agents such as antiviral agents, antibiotics, probiotics, analgesics, and anti-inflammatory agents.

The proper dosage is determined by one of ordinary skill in the art and depends upon such factors as, for example, the patient's immune status, body weight and age. In some cases, the dosage will be at a concentration similar to that found for adiponectin present in human breast milk.
Adiponectin can also be added to other compositions. For example, it can be added to an infant formula or a nutritional composition or a milk fortifier (e.g., a human milk fortifier such as Enfamil™).

Adiponectin can be included in compositions that include macronutrients such as edible fats, carbohydrates and proteins. Edible fats include, for example, coconut oil, soy oil and monoglycerides and diglycerides. Carbohydrates include, for example, glucose, edible lactose and hydrolyzed cornstarch. Protein sources include, for example, protein source may be, for example, soy protein, whey, and skim milk.

Compositions, including nutritional compositions, containing the oligosaccharide agents can also include vitamins and minerals (e.g., calcium, phosphorus, potassium, sodium, chloride, magnesium, manganese, iron, copper, zinc, selenium, iodine, and Vitamins A, E, D, C, and B complex).

A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the claims.

References

CLAIMS

1. A method for treating or reducing the risk of obesity in a patient comprising orally administering a composition comprising purified adiponectin or a biologically active fragment thereof.

2. A method of treating or reducing the risk of metabolic syndrome in a patient comprising orally administering a composition comprising purified adiponectin or a biologically active fragment thereof.

3. A method of treating or reducing the risk of a disorder selected from inflammatory bowel disease, hyperglycemia, insulin resistance, metabolic syndromes associated with insulin resistance, Type 2 diabetes mellitus, metabolic syndromes including hypertension, atherosclerosis, coronary heart disease or ischemic heart disease in a patient comprising orally administering a composition comprising purified adiponectin or a biologically active fragment thereof.

4. A method of treating or reducing the risk of necrotizing enterocolitis in an infant comprising orally administering a composition comprising purified adiponectin or a biologically active fragment thereof.

5. The method of any of claims 1-3 wherein the patient is less than 18 years old.

6. The method of any of claims 1-3 wherein the patient is less than 15 years old.

7. The method of any of claims 1-3 wherein the patient is less than 10 years old.

8. The method of any of claims 1-3 wherein the patient is less than 1 year old.
9. The method of claim 4 wherein the infant was born prematurely.

10. The method of any of claims 1-4 wherein the adiponectin or a biologically active fragment thereof is glycosylated.

11. The method of claim 10 wherein the adiponectin or a biologically active fragment thereof is hydroxylated and glycosylated.

12. The method of claim 10 wherein at least one amino acid of the adiponectin is substituted with a glucosylgalactosyl residue.

13. The method of claim 10 wherein the adiponectin or a biologically active fragment thereof is glycosylated at one or more of lysine residues 65, 68, 77 and 101 of SEQ ID NO:1.

14. The method of any of claims 1-4 wherein the purified adiponectin or biologically active fragment thereof is the form found in human milk.

15. The method of any of claims 1-4 wherein the composition comprises lactose.

16. The method of any of claims 1-4 wherein the composition comprises an oligosaccharide found in human milk.

17. The method of claim 16 wherein the composition comprises at least one α1,2-linked fucosylated oligosaccharide.
18. The method of claim 16 wherein the composition comprises as least one oligosaccharide selected from: lacto-N-fucopentaose I [LNF-I], 2-fucosyllactose [2'-FL], lacto-N-difucohexaose I [LDFH-I], lactodifucotetraose [LDFT]), lacto-N-fuco-pentaose II [LNF-II], 3-fucosyllactose [3-FL], lacto-N-fucopentaose III [LNF-III], lacto-N-tetraose [LNT], and lacto-N-neotetraose [LNneoT].

19. The method of any of claims 1-4 wherein the purified adiponectin is modified to include at one group groups selected from: Lacto-N-fucopentaose I; Lacto-N-fucopentaose II; 3'-Fucosyllactose; Lacto-N-fucopentaose II; Lacto-N-difucohexaose I; actodifucotetraose; LactoN-tetraose; LactoN-neotetraose; 3'-Sialyllactose; 3'-Sialyllactosamine; 6'-Sialyllactose; 6'-Sialyllactosamine; Sialyllacto-N-neotetraose c; Monosialyllacto-N-hexaose; Disialyllacto-N-hexaose I; Monosialyllacto-N-neohexaose I; Monosialyllacto-N-neohexaose I; Disialyllacto-N-neohexaose; Disialyllacto-N-tetraose; Disialyllacto-N-hexaose II; Sialyllacto-N-tetraose a; Disialyllacto-N-hexaose I; Sialyllacto-N-tetraose b; 3'-Sialyl-3-fucosyllactose; Disialomonofucosyllacto-N-neohexaose; Monofucosylmonosialyllacto-N-octaose (sialyl Lea); Sialyllacto-N-fucohexaose II; Disialyllacto-N-fucopentaose II; and Monofucosyldisialyllacto-N-tetraose.

20. The method of any of claims 1-4 wherein the purified adiponectin bears at least one moiety selected from a glucosylgalactosyl moiety, a glucosylglucosyl moiety, a galactosylglucosyl moiety, or a galactosylgalactosyl moiety.

21. The method of any of claims 1-4 wherein the adiponectin is administered so as to achieve a plasma concentration of adiponectin between 10 \(\mu g/ml \) and 100 \(\mu g/ml \).

22. The method of any of claims 1-4 wherein the adiponectin is administered so as to achieve a plasma concentration of adiponectin between 10 \(\mu g/ml \) and 75 \(\mu g/ml \).
23. The method of any of claims 1-4 wherein the adiponectin is administered so as to achieve a plasma concentration of adiponectin between 20 µg/ml and 60 µg/ml.

24. The method of any of claims 1-4 wherein the adiponectin is administered so as to achieve a plasma concentration of adiponectin between 1 µg/ml and 100 µg/ml.

25. The method of any of the forgoing claims wherein the adiponectin is in the form of an oligomer comprising at least two subunits of mature adiponectin.

26. The method of any of claims 1-21 wherein the adiponectin is in the form of a trimer.

27. The method of any of claims 1-21 wherein the adiponectin is in the form of a hexamer.

28. The method of any of claims 1-21 wherein the adiponectin is in the form of an oligomer comprising at least six subunits.

29. The method of any of claims 1-21 wherein the adiponectin is in the form of an oligomer comprising at least twelve subunits.

30. A nutritional supplement comprising purified adiponectin.

31. An infant formula comprising purified adiponectin.
Figure 1: Milk Adiponectin and Leptin Concentrations
Figure 2: Milk Adiponectin Concentration by Duration of Lactation
Figure 3: Milk Adiponectin Concentration by Ethnicity
Figure 4: Milk Adiponectin Concentration by Maternal BMI
Milk Adiponectin and Leptin Concentrations

Concentration (ng/mL)

Adiponectin Leptin

Concentration (ng/mL)