Antisense compounds, compositions and methods are provided for modulating the expression of stearoyl-CoA desaturase. The compositions comprise antisense compounds, particularly antisense oligonucleotides, targeted to nucleic acids encoding stearoyl-CoA desaturase. Methods of using these compounds for modulation of stearoyl-CoA desaturase expression and for treatment of diseases associated with expression of stearoyl-CoA desaturase are provided.

ANTISENSE MODULATION OF STEAROYL-COA DESATURASE EXPRESSION

CROSS-REFERENCE TO RELATED APPLICATIONS

0001 This application is a continuation of U.S. application Ser. No. 11/613,144, filed Dec. 19, 2006, allowed Feb. 7, 2011, which is a continuation of U.S. application Ser. No. 10/619,253, filed Jul. 15, 2003, each of which is incorporated by reference in its entirety.

INCORPORATION OF SEQUENCE LISTING

0002 The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled SPH5050U/SC2SEQ.txt created May 5, 2011, which is 123 Kb in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

0003 Saturated fatty acids are known to be the precursors of unsaturated fatty acids in higher organisms. However, the control mechanisms that govern the conversion of saturated fatty acids to unsaturated fatty acids are not well understood. The relative amounts of different fatty acids have effects on the physical properties of membranes. Furthermore, regulation of unsaturated fatty acids is important because they play a role in cellular activity, metabolism and nuclear events that govern gene transcription.

0004 A critical committed step in the biosynthesis of mono-unsaturated fatty acids is the introduction of the first cis-double bond in the delta-9 position (between carbons 9 and 10). This oxidative reaction is catalyzed by stearoyl-CoA desaturase (SCD, also known as delta-9-desaturase) and involves cytochrome b5, NADH(P)-cytochrome b5 reductase and molecular oxygen (Ntambi, J. Lipid Res., 1999, 40, 1549-1558). Although the insertion of the double bond occurs in several different methylene-interrupted fatty acyl-CoA substrates, the preferred substrates are palmitoyl- and stearoyl-CoA, which are converted to palmitoleyl- and oleyl-CoA respectively (Ntambi, J. Lipid Res., 1999, 40, 1549-1558).

0005 It has been recognized that, regardless of diet, the major storage fatty acids in human adipose tissue are oleic acid, an 18 carbon unsaturated fatty acid, and palmitoleic acid, a 16 carbon unsaturated fatty acid (Ntambi, J. Lipid Res., 1999, 40, 1549-1558). During the de novo synthesis of fatty acids, the fatty acid synthesis enzyme stops at palmitoleic acid but the end product of the pathway is usually oleic acid (Ntambi, J. Lipid Res., 1999, 40, 1549-1558).

0006 The stearoyl-CoA desaturase gene was partially characterized in 1994 via isolation of a 0.76 kb partial cDNA from human adipose tissue (Li et al., Int. J. Cancer, 1994, 57, 348-352). Increased levels of stearoyl-CoA desaturase mRNA were found in colonic and esophageal carcinomas and in hepatocellular carcinoma (Li et al., Int. J. Cancer, 1994, 57, 348-352). The gene was fully characterized in 1999 and it was found that alternative usage of polyadenylation sites generates two transcripts of 3.9 and 5.2 kb (Zhang et al., Biochem. J., 1999, 340, 255-264). Two loci for the stearoyl-CoA desaturase gene were mapped to chromosomes 10 and 17 and it was determined that the chromosome 17 loci encodes a transcriptionally inactive pseudogene (Ntambi, J. Lipid Res., 1999, 40, 1549-1558).

0007 A nucleic acid molecule encoding the human stearoyl-CoA desaturase and a nucleic acid molecule, which under suitable conditions, specifically hybridizes to the nucleic acid molecule encoding the human stearoyl-CoA desaturase, have been described (Stenn et al., International patent publication WO 00/09754, 2000).

0008 Stearoyl-CoA desaturase affects the ratio of stearate to oleate, which in turn, affects cell membrane fluidity. Alterations of this ratio have been implicated in various disease states including cardiovascular disease, obesity, non-insulin-dependent diabetes mellitus, skin disease, hypertension, neurological diseases, immune disorders and cancer (Ntambi, J. Lipid Res., 1999, 40, 1549-1558). Stearoyl-CoA desaturase has been viewed as a lipogenic enzyme not only for its key role in the biosynthesis of monounsaturated fatty acids, but also for its pattern of regulation by diet and insulin (Ntambi, J. Lipid Res., 1999, 40, 1549-1558).

0009 The regulation of stearoyl-CoA desaturase is therefore of considerable physiologic importance and its activity is sensitive to dietary changes, hormonal imbalance, developmental processes, temperature changes, metals, alcohol, peroxisomal proliferators and phenolic compounds (Ntambi, J. Lipid Res., 1999, 40, 1549-1558).

0010 Animal models have been very useful in investigations of the regulation of stearoyl-CoA by polyunsaturated fatty acids (PUFAs). For example, in adipose tissue of lean and obese Zucker rats, a 75% decrease in stearoyl-CoA desaturase mRNA was observed when both groups were fed a diet high in PUFAs relative to a control diet (Jones et al., Am. J. Physiol., 1996, 271, E44-49).

0011 Similar results have been obtained with tissue culture systems. In the murine 3T3-L1 adipocyte cell line, arachidonic linoleic, linolenic, and eicosapentaenoic acids decreased stearoyl-CoA desaturase expression in a dose-dependent manner (Sessler et al., J. Biol. Chem., 1996, 271, 29854-29858).

0012 The molecular mechanisms by which PUFAs regulate stearoyl-CoA desaturase gene expression in different tissues are still poorly understood. The current understanding of the regulatory mechanisms involves binding of PUFAs to a putative PUFA-binding protein, after which repression transcription occurs via binding of the PUFA-binding protein to a cis-acting PUFA response element of the stearoyl-CoA desaturase gene (SREBP) (Ntambi, J. Lipid Res., 1999, 40, 1549-1558; Zhang et al., Biochem. J., 2001, 357, 183-193).

0013 Cholesterol has also been identified as a regulator of stearoyl-CoA desaturase gene expression by a mechanism involving repression of the maturation of the sterol regulatory element binding protein (Bene et al., Biochem. Biophys. Res. Commun., 2001, 284, 1194-1198; Ntambi, J. Lipid Res., 1999, 40, 1549-1558).

0014 Thiazolidinediones have been employed as regulators of stearoyl-CoA desaturase activity in murine 3T3-L1 adipocytes (Kim et al., J. Lipid Res., 2000, 41, 1310-1316), and in diabetic rodents (Singh Ahuja et al., Mol. Pharmacol., 2001, 59, 765-773).

0015 Compositions comprising a saponin in an amount effective to inhibit stearoyl-CoA desaturase enzyme activity were described. The saponin was derived from a source selected from the group consisting of Quillaja saponaria,

[0016] An inhibitor of stearyl-CoA desaturase was prepared in a form suitable for oral, parenteral, rectal or dermal administration for use in modifying the lipid structure of cell membranes. The inhibitor was described as consisting of a saturated fatty acid having from 12 to 28 carbon atoms in the alkyl chain, e.g. stearic acid, or a pharmaceutically acceptable derivative thereof in a form suitable for parenteral, rectal or dermal administration (Wood et al., European Patent No. EP 238198 1987). A stearyl-CoA desaturase antisense vector has been used to reduce expression levels of stearyl-CoA desaturase in chicken LMH hepatoma cells (Diot et al., Arch. Biochem. Biophys., 2000, 380, 243-250).

[0017] To date, investigative strategies aimed at inhibiting stearyl-CoA desaturase function include the previously cited uses of polysaturated fatty acids, saturated fatty acids, thiazolidinediones, cholesterol, and an antisense vector. However, these strategies are untested as therapeutic protocols. Consequently, there remains a long felt need for additional agents capable of effectively inhibiting stearyl-CoA desaturase.

SUMMARY OF THE INVENTION

[0018] The present invention provides compositions and methods for modulating the expression of stearyl-CoA desaturase. Such compositions and methods are shown to modulate the expression of stearyl-CoA desaturase, including inhibition of both isoforms of stearyl-CoA desaturase.

[0019] In particular, this invention relates to compounds, particularly oligonucleotides, specifically hybridizable with nucleic acids encoding stearyl-CoA desaturase. Such compounds, particularly antisense oligonucleotides, are targeted to a nucleic acid encoding stearyl-CoA desaturase, and modulate the expression of stearyl-CoA desaturase. Pharmacological and other compositions comprising the compounds of the invention are also provided.

[0020] Further provided are methods of modulating the expression of stearyl-CoA desaturase in cells or tissues comprising contacting the cells or tissues with one or more of the antisense compounds or compositions of the invention. Further provided are methods of treating an animal, particularly a human, suspected of having or being prone to a disease or condition associated with expression of stearyl-CoA desaturase, by administering a therapeutically or prophylactically effective amount of one or more of the antisense compounds or compositions of the invention.

DETAILED DESCRIPTION OF THE INVENTION

[0021] The present invention employs oligomeric compounds, particularly antisense oligonucleotides, for use in modulating the function of nucleic acid molecules encoding stearyl-CoA desaturase, ultimately modulating the amount of stearyl-CoA desaturase produced. This is accomplished by providing antisense compounds that specifically hybridize with one or more nucleic acids encoding stearyl-CoA desaturase.

[0022] Antisense technology is emerging as an effective means of reducing the expression of specific gene products and is uniquely useful in a number of therapeutic, diagnostic and research applications involving modulation of stearyl-CoA desaturase expression.

[0023] As used herein, the terms “target nucleic acid” and “nucleic acid encoding stearyl-CoA desaturase” encompass DNA encoding stearyl-CoA desaturase, RNA (including pre-mRNA and mRNA) transcribed from such DNA, and also cDNA derived from such RNA. The specific hybridization of an oligomeric compound with its target nucleic acid interferes with the normal function of the nucleic acid. This modulation of function of a target nucleic acid by compounds that specifically hybridize to it is generally referred to as “antisense”. The functions of DNA to be interfered with include replication and transcription. The functions of RNA to be interfered with include all vital functions such as, for example, translation of the RNA to the site of protein translation, translation of protein from the RNA, splicing of the RNA to yield one or more mRNA species, and catalytic activity which may be engaged in or facilitated by the RNA. The overall effect of such interference with target nucleic acid function is modulation of the expression of stearyl-CoA desaturase. In the context of the present invention, “modulation” means either an increase (stimulation) or a decrease (inhibition) in the expression of a gene. In one embodiment of the present invention, inhibition is a preferred form of modulation of gene expression and mRNA is a preferred target.

[0024] For example, in one embodiment of the present invention, the compounds of the present invention inhibit expression of stearyl-CoA desaturase by at least 10% as measured in a suitable assay, such as those described in the examples below. In another embodiment, the compounds of the present invention inhibit expression of stearyl-CoA desaturase by at least 25%. In still another embodiment of the invention, the compounds of the present invention inhibit expression of stearyl-CoA desaturase by at least 40%. In yet further embodiment of this invention, the compounds of the present invention inhibit expression of stearyl-CoA desaturase by at least 50%. In a further embodiment of this invention, the compounds of the present invention inhibit expression of stearyl-CoA desaturase by at least 60%. In another embodiment of this invention, the compounds of the present invention inhibit expression of stearyl-CoA desaturase by at least 70%. In still another embodiment of this invention, the compounds of this invention inhibit expression of stearyl-CoA desaturase by at least 80%. In another embodiment of this invention, the compounds of this invention inhibit expression of stearyl-CoA desaturase by at least 90% or higher. Exemplary compounds are illustrated in Examples 15, and 17 to 24 below.

[0025] It is preferred to target specific nucleic acids for antisense. “Targeting” an antisense compound to a particular nucleic acid, in the context of this invention, is a multistep process. The process as described herein begins with the identification of a nucleic acid sequence encoding stearyl-CoA desaturase. This may be, for example, a cellular gene (or mRNA transcribed from the gene). The targeting process also includes determination of a site or sites within this gene for the antisense interaction to occur such that the desired effect, e.g., detection or modulation of expression of the protein, results. In one embodiment of the present invention, a preferred intragenic site is the region encompassing the translation initiation codon of the open reading frame (ORF) of the gene. Since, as is known in the art, the translation initiation codon is typically 5'-AUG (in transcribed mRNA molecules; 5'-ATG in the corresponding DNA molecule), the translation initiation codon is also referred to as the “AUG codon,” the “start codon” or the “AUG start codon.” A
minority of genes has a translation initiation codon having the RNA sequence 5'-GUG, 5'-UUG or 5'-CUG; and 5'-AUA, 5'-ACG and 5'-CUG have been shown to function in vivo. Thus, the terms “translation initiation codon” and “start codon” can encompass many codon sequences, even though the initiator amino acid in each instance is typically methionine (in eukaryotes) or formylmethionine (in prokaryotes). It is also known in the art that eukaryotic and prokaryotic genes may have two or more alternative start codons, any one of which may be preferentially utilized for translation initiation in a particular cell type or tissue, or under a particular set of conditions. In the context of the invention, “start codon” and “translation initiation codon” refer to the codon or codons that are used in vivo to initiate translation of an mRNA molecule transcribed from a gene encoding stearyl-CoA desaturase, regardless of the sequence(s) of such codons.

[0026] It is also known in the art that a translation termination codon (or “stop codon”) of a gene may have one of three sequences, i.e., 5'-UAA, 5'-UAG and 5'-UGA (the corresponding DNA sequences are 5'-TAA, 5'-TAG and 5'-TGA, respectively). The terms “start codon region” and “translation initiation codon region” refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation initiation codon. Similarly, the terms “stop codon region” and “translation termination codon region” refer to a portion of such an mRNA or gene that encompasses from about 25 to about 50 contiguous nucleotides in either direction (i.e., 5' or 3') from a translation termination codon.

[0027] The open reading frame (ORF) or “coding region,” which is known in the art to refer to the region between the translation initiation codon and the translation termination codon, is another embodiment of a region of the nucleic acid sequence encoding stearyl-CoA desaturase which may be targeted effectively. Other target regions of this invention include the 5' untranslated region (5'UTR) of the nucleic acid sequence encoding stearyl-CoA desaturase, known in the art to refer to the portion of an mRNA in the 5' direction from the translation initiation codon, and thus including nucleotides between the 5' cap site and the translation initiation codon of an mRNA or corresponding nucleotides on the gene. Still another target region is the 3' untranslated region (3'UTR) of the nucleic acid sequence encoding stearyl-CoA desaturase, known in the art to refer to the portion of an mRNA in the 3' direction from the translation termination codon, and thus including nucleotides between the translation termination codon and 3' end of an mRNA or corresponding nucleotides on the gene. The 5' cap of an mRNA comprises an N7-methylated guanosine residue joined to the 5'-most residue of the mRNA via a 5'-5' triphosphate linkage. The 5' cap region of an mRNA is considered to include the 5' cap structure itself as well as the first 50 nucleotides adjacent to the cap. The 5' cap region of the nucleic acid sequence encoding stearyl-CoA desaturase may also be a preferred target region.

[0028] Although some eukaryotic mRNA transcripts are directly translated, many contain one or more regions, known as “introns,” which are excised from a transcript before it is translated. The remaining (and therefore translated) regions are known as “exons” and are spliced together to form a continuous mRNA sequence. mRNA splice sites, i.e., intron-exon junctions, of the nucleic acid sequence encoding stearyl-CoA desaturase may also be preferred target regions, and are particularly useful in situations where aberrant splicing is implicated in disease, or where an overproduction of a particular mRNA splice product is implicated in disease. Aberrant fusion junctions of the nucleic acid sequence encoding stearyl-CoA desaturase, due to rearrangements or deletions, are also preferred targets. In another embodiment of this invention, introns of the nucleic acid sequence encoding stearyl-CoA desaturase can also be effective target regions for antisense compounds targeted, for example, to DNA or pre-mRNA of the nucleic acid sequence encoding stearyl-CoA desaturase.

[0029] Once one or more target sites have been identified, oligonucleotides are chosen which are sufficiently complementary to the target, i.e., hybridize sufficiently well and with sufficient specificity, to give the desired effect. See, e.g., Tables 1-5 below.

[0030] For example, Tables 1 and 2 illustrate antisenes oligonucleotides that hybridize to target regions of nucleotide 9 to 5100 of the nucleotide sequence of human stearyl CoA desaturase SEQ ID NO: 3. In one embodiment, for example, desirable oligonucleotides target regions within nucleotides 13 to 71. In another example, desirable oligonucleotides target regions within nucleotides 178 to 247. In another example, desirable oligonucleotides target regions within nucleotides 482 to 843. In another example, desirable oligonucleotides target regions within nucleotides 892 to 1064. In another example, desirable oligonucleotides target regions within nucleotides 1303-1502. In another example, desirable oligonucleotides target regions within nucleotides 1597-2233. In another example, desirable oligonucleotides target regions within nucleotides 2245-2589. In another example, desirable oligonucleotides target regions within nucleotides 2676-3278. In another example, desirable oligonucleotides target regions within nucleotides 3342-3499. In another example, desirable oligonucleotides target regions within nucleotides 3655-3674. In another example, desirable oligonucleotides target regions within nucleotides 3825-3853. In another example, desirable oligonucleotides target regions within nucleotides 3911-4072. In another example, desirable oligonucleotides target regions within nucleotides 4261-4398. In another example, desirable oligonucleotides target regions within nucleotides 4420-4554. In another example, desirable oligonucleotides target regions within nucleotides 4645-4677. In another example, desirable oligonucleotides target regions within nucleotides 4834-4865. In another example, desirable oligonucleotides target regions within nucleotides 4892-5100. Oligonucleotides that target any nucleotide sequence within SEQ ID NO: 3, with the explicit exclusion of target regions between nucleotides 70-91, 242-262 and 860-882, are included within this invention.

[0031] As another example, Table 2 indicates illustrative oligonucleotides that hybridize to target regions found within nucleotides 505 to 14020 of the nucleotide sequence of human stearyl CoA desaturase SEQ ID NO: 81.

[0032] Tables 3-5 illustrate oligonucleotides that bind to target regions within nucleotides 1 to 5366 of the nucleotide sequence of mouse stearyl CoA desaturase SEQ ID NO: 222. In the context of this invention, “hybridization” means hydrogen bonding, which may be Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding, between complementary nucleoside or nucleotide bases. For example, adenine and thymine are complementary nucleobases that
pair through the formation of hydrogen bonds. "Complementary," as used herein, refers to the capacity for precise pairing between two nucleotides. For example, if a nucleotide at a certain position of an oligonucleotide is capable of hydrogen bonding with a nucleotide at the same position of a DNA or RNA molecule, then the oligonucleotide and the DNA or RNA are considered to be complementary to each other at that position. The oligonucleotide and the DNA or RNA are complementary to each other when a sufficient number of corresponding positions in each molecule are occupied by nucleotides which can hydrogen bond with each other. Thus, "specifically hybridizable" and "complementary" are terms which are used to indicate a sufficient degree of complementarity or precise pairing such that stable and specific binding occurs between the oligonucleotide and the target nucleic acid sequence (DNA or RNA) encoding stearoyl-CoA desaturase.

It is understood in the art that the sequence of an antisense compound need not be 100% complementary to that of its target nucleic acid to be specifically hybridizable. An antisense compound is specifically hybridizable when binding of the compound to the target DNA or RNA molecule interferes with the normal function of the target DNA or RNA to cause a loss of utility of the stearoyl-CoA desaturase enzyme. There also must be a sufficient degree of complementarity to avoid non-specific binding of the antisense compound to non-stearoyl-CoA desaturase target sequences under conditions in which specific binding is desired. Such conditions include physiological conditions in the case of in vivo assays or therapeutic treatment, and in the case of in vitro assays, include conditions in which the assays are performed.

For example, in one embodiment, the antisense compounds of the present invention comprise at least 80% sequence complementarity to a target region within the target nucleic acid of stearoyl-CoA desaturase to which they are targeted. In another embodiment, the antisense compounds of the present invention comprise at least 90% sequence complementarity to a target region within the target nucleic acid of stearoyl-CoA desaturase to which they are targeted. In still another embodiment of this invention, the antisense compounds of the present invention comprise at least 95% sequence complementarity to a target region within the target nucleic acid sequence of stearoyl-CoA desaturase to which they are targeted.

Antisense compounds are commonly used as research reagents and diagnostics. For example, antisense oligonucleotides, which are able to inhibit gene expression with exquisite specificity, are often used by those of ordinary skill to elucidate the function of particular genes. Antisense compounds are also used, for example, to distinguish between functions of various members of a biological pathway. Antisense modulation has, therefore, been harnessed for research use.

For use in kits and diagnostics, the antisense compounds of the present invention, either alone or in combination with other antisense compounds or therapeutics, can be used as tools in differential and/or combinatorial analyses to elucidate expression patterns of a portion or the entire complement of genes expressed within cells and tissues.

Expression patterns within cells or tissues treated with one or more antisense compounds are compared to control cells or tissues not treated with antisense compounds and the patterns produced are analyzed for differential levels of gene expression as they pertain, for example, to disease association, signaling pathway, cellular localization, expression level, size, structure or function of the genes examined. These analyses can be performed on stimulated or unstimulated cells and in the presence or absence of other compounds that affect expression patterns.

[0042] The specificity and sensitivity of antisense is also harnessed by those of skill in the art for therapeutic uses. Antisense oligonucleotides have been employed as therapeutic moieties in the treatment of disease states in animals, particularly mammals, and including man. Antisense oligonucleotide drugs, including ribozymes, have been safely and effectively administered to humans and numerous clinical trials are presently underway. It is thus established that oligonucleotides can be useful therapeutic modalities that can be configured to be useful in treatment regimes for treatment of cells, tissues and animals, especially humans.

[0043] In the context of the invention, the term “oligonucleotide” refers to an oligomer or polymer of ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) or mimetics thereof. This term includes oligonucleotides composed of naturally-occurring nucleobases, sugars and covalent internucleoside (backbone) linkages as well as oligonucleotides having non-naturally-occurring portions which function similarly. Such modified or substituted oligonucleotides are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target and increased stability in the presence of nucleases.

[0044] While antisense oligonucleotides are a preferred form of antisense compound, the present invention comprehends other oligomeric antisense compounds, including but not limited to oligonucleotide mimetics such as are described below. Antisense compounds include ribozymes, external guide sequence (EGS) oligonucleotides (oligozymes), and other short catalytic RNAs or catalytic oligonucleotides which hybridize to the target nucleic acid encoding stearoyl-CoA desaturase and modulate expression of that enzyme.

[0045] The antisense compounds in accordance with this invention preferably comprise from at least 8 nucleobases (i.e. about 8 linked nucleosides). Particularly preferred antisense compounds are antisense oligonucleotides. In one embodiment, antisense compounds of this invention are antisense oligonucleotides of at least about 15 nucleobases in length. In another embodiment, antisense compounds of this invention comprise about 25 nucleobases in length. In still another embodiment, antisense compounds of this invention comprise about 40 nucleobases in length. In yet another embodiment, antisense compounds of this invention comprise about 50 nucleobases in length. In another embodiment, antisense compounds of this invention comprise about 60 nucleobases in length. In still another embodiment, antisense compounds of this invention comprise about 70 nucleobases in length. In yet another embodiment, antisense compounds of this invention comprise about 80 nucleobases in length.

[0046] In other embodiments, exemplary antisense compounds include DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 5′-terminus of one of the illustrative antisense compounds (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately upstream of the 5′-terminus of the antisense compound which is specifically hybridizable to the target nucleic acid and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). Similarly, in another embodiment, such antisense compounds include at least 12 consecutive nucleobases from the 5′-terminus of one of the illustrative antisense compounds. In yet another embodiment, the antisense compound includes at least 25 consecutive nucleobases from the 5′-terminus of one of the illustrative antisense compounds. In a further embodiment, the antisense compound includes at least 30 consecutive nucleobases from the 5′-terminus of one of the illustrative antisense compounds. In yet another embodiment, the antisense compound includes at least 50 consecutive nucleobases from the 5′-terminus of one of the illustrative antisense compounds. In still another embodiment, the antisense compound includes at least 60 or more consecutive nucleobases from the 5′-terminus of one of the illustrative antisense compounds.

[0047] Similarly in another embodiment antisense compounds are represented by DNA or RNA sequences that comprise at least the 8 consecutive nucleobases from the 3′-terminus of one of the illustrative antisense compounds (the remaining nucleobases being a consecutive stretch of the same DNA or RNA beginning immediately downstream of the 3′-terminus of the antisense compound which is specifically hybridizable to the target nucleic acid and continuing until the DNA or RNA contains about 8 to about 80 nucleobases). In another embodiment, such antisense compounds include at least 12 consecutive nucleobases from the 3′-terminus of one of the illustrative antisense compounds. In yet another embodiment, the antisense compound includes at least 25 consecutive nucleobases from the 3′-terminus of one of the illustrative antisense compounds. In a further embodiment, the antisense compound includes at least 30 consecutive nucleobases from the 3′-terminus of one of the illustrative antisense compounds. In yet another embodiment, the antisense compound includes at least 50 consecutive nucleobases from the 3′-terminus of one of the illustrative antisense compounds. In yet another embodiment, the antisense compound includes at least 60 or more consecutive nucleobases from the 3′-terminus of one of the illustrative antisense compounds. One having skill in the art, once armed with the antisense compounds illustrated, and other teachings herein will be able, without undue experimentation, to identify further antisense compounds of this invention.

[0048] Specific sequences of particular exemplary target regions of stearoyl-CoA desaturase and representative antisense and other compounds of the invention, which hybridize to the target, and inhibit expression of the target, are identified below are set forth below in Tables 1-5. One of skill in the art will recognize that these serve to illustrate and describe particular embodiments within the scope of the present invention. Once armed with the teachings of the illustrative target
regions described herein may without undue experimentation identify further target regions, as described above. In addition, one having ordinary skill in the art using the teachings contained herein will also be able to identify additional compounds, including oligonucleotide probes and primers, that specifically hybridize to these illustrative target regions using techniques available to the ordinary practitioner in the art.

[0049] As is known in the art, a nucleoside is a base-sugar combination. The base portion of the nucleoside is normally a heterocyclic base. The two most common classes of such heterocyclic bases are the purines and the pyrimidines. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to either the 2', 3' or 5' hydroxyl moiety of the sugar. In forming oligonucleotides, the phosphate groups covalently link adjacent nucleosides to one another to form a linear polymeric compound. In turn the respective ends of this linear polymeric structure can be further joined to form a circular structure, however, open linear structures are generally preferred. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside backbone of the oligonucleotide. The normal linkage or backbone of RNA and DNA is a 3' to 5' phosphodiester linkage.

[0050] Specific examples of preferred antisense compounds useful in this invention include oligonucleotides containing modified backbones or non-natural internucleoside linkages. As defined in this specification, oligonucleotides having modified backbones include those that retain a phosphorus atom in the backbone and those that do not have a phosphorus atom in the backbone. For the purposes of this specification, and as sometimes referenced in the art, modified oligonucleotides that do not have a phosphorus atom in their internucleoside backbone can also be considered to be oligonucleosides.

[0051] Preferred modified oligonucleotide backbones include, for example, phosphorothioates, chiral phosphorothioates, phosphorodithioates, phosphorothiosters, aminoalkylphosphorothioates, methyl and other alkyl phosphonates including 3'-alkyl phosphonates, 5'-alkyl phosphonates and chiral phosphonates, phosphonamidates including 3'-amino phosphorimidate and aminoalkylphosphorimidates, thionophosphoramidates, thionalkylphosphonates, thionalkylphosphorothioates, selenophosphates and boronophosphates having normal 3'-5' linkages, 2'-5' linked analogs of these, and those having inverted polarity wherein one or more internucleoside linkages is a 3' to 3', 5' to 5' or 2' to 2' linkage. Preferred oligonucleotides having inverted polarity comprise a single 3' to 3' linkage at the 3'-most internucleoside linkage, i.e. a single inverted nucleoside residue that may be a basic (the nucleobase is missing or has a hydroxyl group in place thereof). Various salts, mixed salts and free acid forms are also included.

[0052] Representative United States patents that teach the preparation of the above oligonucleotides include, but are not limited to, U.S. Pat. Nos.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,487,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,672,437; 5,792,608; 5,646,269 and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

[0053] Preferred modified oligonucleotide backbones that do not include a phosphorus atom therein have backbones that are formed by short chain alkyl or cycloalkyl internucleoside linkages, mixed heteroatom and alkyl or cycloalkyl internucleoside linkages, or one or more short chain heteroatomic or heterocyclic internucleoside linkages. These include those having morpholino linkages (formed in part from the sugar portion of a nucleoside); siloxane backbones; sulfide, sulfoxide and sulfone backbones; formamidino and thioformamidino backbones; methylene formacetyl and thiiformacetyl backbones; riboacetyl backbones; alkene containing backbones; sulfamate backbones; methyleneimino and methylenehydrazino backbones; sulfonate and sulfonamide backbones; amide backbones; and others having mixed N, O, S and CH₂ component parts.

[0054] Representative United States patents that teach the preparation of the above oligonucleotides include, but are not limited to, U.S. Pat. Nos.: 5,034,506; 5,166,315; 5,185,444; 5,214,134; 5,216,141; 5,235,033; 5,264,562; 5,264,564; 5,405,938; 5,434,257; 5,466,677; 5,470,967; 5,487,677; 5,541,307; 5,561,225; 5,596,086; 5,602,240; 5,610,289; 5,602,240; 5,608,046; 5,610,289; 5,618,704; 5,623,070; 5,663,312; 5,633,360; 5,672,437; 5,792,608; 5,646,269 and 5,677,439, certain of which are commonly owned with this application, and each of which is herein incorporated by reference.

[0055] In other preferred oligonucleotide mimetics, both the sugar and the internucleoside linkage, i.e., the backbone, of the nucleotide units are replaced with novel groups. The base units are maintained for hybridization with an appropriate nucleic acid target compound. One such oligomeric compound, an oligonucleotide mimetic that has been shown to have excellent hybridization properties, is referred to as a peptide nucleic acid (PNA). In PNA compounds, the sugar backbone of an oligonucleotide is replaced with an amide containing backbone, in particular an aminoethylglycine backbone. The nucleobases are retained and are bound directly or indirectly to aza nitrogen atoms of the amide portion of the backbone. Representative United States patents that teach the preparation of PNA compounds include, but are not limited to, U.S. Pat. Nos. 5,539,082; 5,714,331; and 5,718,292, each of which is herein incorporated by reference. Further teaching of PNA compounds can be found in Nielsen et al., Science, 1991, 254, 1497-1500.

[0056] Most preferred embodiments of the invention are oligonucleotides with phosphorothioate backbones and oligonucleotides with heteroatom backbones, and in particular -CH₂- NH-O-CH₂-, -CH₂-N(CH₃)₂-O-CH₂- [known as a methylene (methylimino) or MMI backbone], -CH₂-O-N(CH₃)-CH₂-, -CH₂-N(CH₃)-N(CH₃)-CH₂- and -O-N(CH₃)-CH₂-CH₂- wherein the native phosphodiester backbone is represented as -O-P-O-CH₂- of the above referenced U.S. Pat. No. 5,489,677, and the amide backbones of the above referenced U.S. Pat. No. 5,602,240. Also preferred are oligonucleotides having morpholino backbone structures of the above referenced U.S. Pat. No. 5,054,506.

[0057] Modified oligonucleotides may also contain one or more substituted sugar moieties. Preferred oligonucleotides comprise one of the following at the 2' position: OH; F; O-, S-, or N-alkyl; O-, S-, or N-alkenyl; O-, S-, or N-alkynyl; or O-alkyl-O-alkyl, wherein the alkyl, alkenyl and alkynyl may
be substituted or unsubstituted C₁ to C₁₀ alkyl or C₂ to C₁₀ alkenyl and alkynyl. Particularly preferred are O(CH₂)nOCH₂OH, O(CH₂)nO(CH₂)nNH₂, O(CH₂)nCH₂OH, O(CH₂)nONH₂, and O(CH₂)nON(CH₂)nCH₃, where n and m are from 1 to about 10. Other preferred oligonucleotides comprise one of the following at the 2' position: C₆ to C₁₀ lower alkyl, substituted lower alkyl, alkyl, alkenyl, alkyln, alkylaryl, O-alkylaryl or O-alkaryl, SH, SCHO, OCN, Cl, Br, CN, CF₃, OCF₃, SOCH₃, SO₂CH₂, ONOO₂, NO₂, N₃, NH₂, heterocycloalkyl, heterocycloalkenyl, aminoalkylalkylamide, p-alicyclamino, substituted silyl, an anionic cleaving group, an intercalator, an adapter, a group for improving the pharmacokinetic properties of an oligonucleotide, or a group for improving the pharmacodynamic properties of an oligonucleotide, and other substituents having similar properties. A preferred modification includes 2'-methoxyethoxy (2'-O-CH₂CH₂CH₂OCH₃, also known as 2'-O-(2-methoxyethyl) or 2'-MOE) (Martin et al., Helv. Chim. Acta, 1995, 78, 486-504) i.e., an alkoxyalkoxy group. A further preferred modification includes 2'-dimethylaminooxyethoxy, i.e., a O(CH₂)nON(CH₃)₂ group, also known as 2'-DMAOEO and as described in examples hereinbelow, and 2'-dimethylaminoethoxyethoxy (also known in the art as 2'-O-dimethylaminoethoxymethyl or 2'-DMAEO), i.e., 2'-O-CH₂O-CH₂O-N(CH₃)₂ also described in examples hereinbelow.

[0058] A further preferred modification includes Locked Nucleic Acids (LNAs) in which the 2'-hydroxyl group is linked to the 3' or 4' carbon atom of the sugar ring thereby forming a bicyclic sugar moiety. The linkage is preferably a methylene (-CH₂-) group bridging the 2' oxygen atom and the 4' carbon atom wherein n is 1 or 2. LNAs and preparation thereof are described in International patent publications Nos. WO 98/39552 and WO 99/14226.

[0059] Other preferred modifications include 2' methoxy (2'-O-CH₃), 2'-aminopropoxy (2'-OCH₂CH₂CH₂NH₂), 2'-allyl (2'-CH₂-CH=CH₂), 2'-O-allyl (2'-O-CH₂-CH=CH₂) and 2'-fluoro (2'-F). The 2'-modification may be in the arabinose (up) position or ribose (down) position. A preferred 2'-arabinof modification is 2'-F. Similar modifications may also be made at other positions on the oligonucleotide, particularly the 3' position of the sugar on the 3' terminal nucleotide or in 2'5' linked oligonucleotides and the 5' position of 3' terminal nucleotide. Oligonucleotides may also have sugar mimetics such as cyclobutyl moieties in place of the pentofuranosyl sugar. Representative United States patents that teach the preparation of such modified sugar structures include, but are not limited to, U.S. Pat. Nos. 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,395,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,765; 5,658,873; 5,670,633; 5,792,747; and 5,700,920, each of which is commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety.

[0060] Oligonucleotides may also include nucleobase modifications or substitutions. As used herein, "unnmodified" or "natural" nucleobases include the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U). Modified nucleobases include other synthetic and natural nucleobases such as 5-methyluracil (5-me-C), 5-hydroxymethyl cytosine, xanthine, hypoxanthine, 2-amino adenine, 6-methyl and other alkyl derivatives of adenine and guanine, 2-propyl and other alkyl derivatives of adenine and guanine, 2-thiouracil, 2-thiothymine and 2-thiocytosine, 5-halouracil and cytosine, 5-propynyl (—C=C—CH₃) uracil and cytosine and other alkyl derivatives of pyrimidine bases, 6-azo uracil, cytosine and thymine, 5-uracil (psuedouracil), 4-thiouracil, 8-halo, 8-amino, 8-thiol, 8-thio- alkyl, 8-hydroxyl and other 8-substituted adenosines and guanines, 5-halo particularly 5-bromo, 5-trifluoromethyl and other 5-substituted uracils and cytosines, 7-methylguanine and 7-methyladenine, 2-F-adenine, 2-amino-adenine, 8-aza- guanine and 8-azaadenine, 7-deazaguanine and 7-deazadenine and 3-deazaguanine and 3-deazadenine. Further modified nucleobases include tricyclic pyrimidines such as phenoxazine cytidine (1H-pyrimido-[5,4-b]-1,4benzoxazin-2(3H)-one), phenothiazine cytidine (1H-pyrimido-[5,4-b]-1,4benzothiazin-2(3H)-one), G-clamps such as a substituted phenoxazine cytidine (e.g. 9-(2-aminoethoxy)-1H-pyrimido-[5,4-b]-1,4benzoxazin-2(3H)-one), carbazolyl cytidine (1H-pyrimido[4,5-i]indol-2-one), pyridinoindole cytidine (H-pyridilo[3',3':2,4]pyrrolo[2,3-d]pyrimidin-2-one). Modified nucleobases may also include those in which the purine or pyrimidine base is replaced with other heterocycles, for example 7-deza-adenine, 7-deazaguanosine, 2-aminothymine and 2- pyridine. Further nucleobases include those disclosed in U.S. Pat. No. 3,687,808, those disclosed in The Concise Encyclopedia Of Polymer Science And Engineering, pages 858-859, Kroschwitz, J. I., ed. John Wiley & Sons, 1990, those disclosed by Englsche et al., Angewandte Chemie, International Edition, 1991, 30, 613, and those disclosed by Sanghvi, Y. S., Chapter 15, Antisense Research and Applications, pages 289-302, Crooke, S. T. and Leiblue, B., ed., CRC Press, 1993. Certain of these nucleobases are particularly useful for increasing the binding affinity of the oligomeric compounds of the invention. These include 5-substituted pyrimidines, 6-aza pyrimidines and N-2, N-6 and O-6 substituted purines, including 2-aminopropyladenine, 2-propynyluracil and 5-propynylcytosine. 5-methylcytosine substitutions have been shown to increase nucleic acid duplex stability by 0.6-1.2° C. (Sanghvi, Y. S., Crooke, S.T. and Leblue, B., eds., Antisense Research and Applications, CRC Press, Boca Raton, 1993, pp. 276-278) and are presently preferred base substitutions, even more particularly when combined with 2'-O-methoxyethyl sugar modifications.

[0061] Representative United States patents that teach the preparation of certain of the above noted modified nucleobases as well as other modified nucleobases include, but are not limited to, the above noted U.S. Pat. Nos. 3,687,808, as well as U.S. Pat. Nos. 4,845,205; 5,130,302; 5,134,066; 5,175,273; 5,367,066; 5,432,272; 5,457,187; 5,459,255; 5,484,908; 5,502,177; 5,525,711; 5,552,540; 5,587,469; 5,594,121; 5,596,091; 5,614,617; 5,645,985; 5,830,653; 5,763,588; 6,005,096; and 5,681,941, each of which is commonly owned with the instant application, and each of which is herein incorporated by reference, and U.S. Pat. No. 5,750,692, which is commonly owned with the instant application and also herein incorporated by reference.

[0062] Another modification of the oligonucleotides of the invention involves chemically linking to the oligonucleotide one or more moieties or conjugates that enhance the activity, cellular distribution or cellular uptake of the oligonucleotide. The compounds of the invention can include conjugate groups covalently bound to functional groups such as primary or secondary hydroxy groups. Conjugate groups of the invention include intercalators, reporter molecules, polynucleotides, polynucleotides, polyelectrolytes, polyelectrolytes,
groups that enhance the pharmacodynamic properties of oligomers, and groups that enhance the pharmacokinetic properties of oligomers. Typical conjugates groups include cholesterol, lipids, phospholipids, biotin, pherase, folate, phenanthridine, antraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes. Groups that enhance the pharmacodynamic properties, in the context of this invention, include groups that improve oligomer uptake, enhance oligomer resistance to degradation, and/or strengthen sequence-specific hybridization with RNA. Groups that enhance the pharmacokinetic properties, in the context of this invention, include groups that improve oligomer uptake, distribution, metabolism or excretion. Representative conjugate groups are disclosed in International Patent Publication WO93/07883 (Application PCT/US92/0196, filed Oct. 23, 1992) the entire disclosure of which is incorporated herein by reference. Conjugate moieties include but are not limited to lipid moieties such as a cholesterol moiety (Leisinger et al., *Proc. Natl. Acad. Sci. USA*, 1989, 86, 6555-6556), cholic acid (Manoharan et al., *Biorg. Med. Chem. Lett.*, 1994, 4, 1053-1060), a thioether, e.g., hexyl-5-trityltiol (Manoharan et al., *Ann. N.Y. Acad. Sci.*, 1992, 660, 366-390; Manoharan et al., *Bioorg. Med. Chem. Lett.*, 1993, 3, 2765-2770), a thiocholesterol (Oberhauser et al., *Nucl. Acids Res.*, 1992, 20, 533-538), an aliphatic chain, e.g., docencandiol or undecyl residues (Snois-Behmouar et al., *EMBO J.*, 1991, 10, 1111-1118; Kabanov et al., *FEBS Lett.*, 1990, 259, 327-330; Synivarchuk et al., *Biochimie*, 1993, 75, 49-54), a phospholipid, e.g., cl-hexadecyl-rac-glycerol or tritylammonium 1,2-di-O-hexadecyl-rac-glycerol-3-ribo-phosphate (Manoharan et al., *Tetrahedron Lett.*, 1995, 36, 3651-3654; Shen et al., *Nucl. Acids Res.*, 1990, 18, 3777-3783), a polyanamide or a polyethylene glycol chain (Manoharan et al., *Nucleosides & Nucleotides*, 1995, 14, 969-973), or adamantane acetic acid (Manoharan et al., *Tetrahedron Lett.*, 1995, 36, 3651-3654), a palmitoyl moiety (Mishra et al., *Biochim. Biophys. Acta*, 1995, 1264, 229-237) or an octadecylamine or hexylamino-carbonyl-oxocholesterol moiety (Crooke et al., *J. Pharmaceutical Exp. Ther.*, 1996, 277, 923-937). Oligonucleotides of the invention may also be conjugated to active drug substances, for example, aspirin, warfarin, phenylbutazone, ibuprofen, suprofen, fenbufen, ketoprofen, (5H-)(+)-praprofen, carprofen, dapsynarcosine, 2,3,5-triiodobenzoic acid, flufenamic acid, folinic acid, a benzothiadiazide, chlorothiazide, a diuretic, indomethacin, a barbiturate, a cephalosporin, a sulfa drug, an antidiabetic, an antibiotic, and an antioxidant. Oligonucleotide-drug conjugates and their preparation are described in U.S. patent application Ser. No. 09/334,130 (filed Jun. 15, 1999), which is incorporated herein by reference in its entirety. [0063] Representative United States patents that teach the preparation of such oligonucleotide conjugates include, but are not limited to, U.S. Pat. Nos. 4,828,979; 4,948,882; 5,218,105; 5,525,465; 5,541,313; 5,545,730; 5,552,538; 5,578,717, 5,580,731; 5,580,731; 5,591,584; 5,109,124; 5,118,802; 5,138,045; 5,414,077; 5,486,603; 5,512,439; 5,578,718; 5,608,046; 4,857,044; 4,660,735; 4,667,025; 4,762,779; 4,789,737; 4,824,941; 4,835,263; 4,875,335; 4,904,582; 4,958,013; 5,082,830; 5,112,963; 5,214,136; 5,082,830; 5,112,963; 5,214,136; 5,245,022; 5,254,469; 5,258,506; 5,262,566; 5,272,250; 5,292,873; 5,317,098; 5,371,241; 5,391,233; 5,416,203; 5,451,463; 5,510,475; 5,512,607; 5,514,785; 5,565,552; 5,567,810; 5,574,142; 5,585,481; 5,587,371; 5,595,726; 5,597,696; 5,599,923; 5,599,928 and 5,688,941, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference. [0064] It is not necessary for all positions in a given compound to be uniformly modified, and in fact more than one of the aforementioned modifications may be incorporated in a single compound or even at a single nucleoside within an oligonucleotide. The present invention also includes antisense compounds that are chimeric compounds. “Chimeric” antisense compounds or “chimeras,” in the context of this invention, are antisense compounds, particularly oligonucleotides, which contain two or more chemically distinct regions, each made up of at least one monomer unit, i.e., a nucleotide in the case of an oligonucleotide compound. These oligonucleotides typically contain at least one region wherein the oligonucleotide is modified so as to confer upon the oligonucleotide increased resistance to nuclease degradation, increased cellular uptake, and/or increased binding affinity for the target nucleic acid. An additional region of the oligonucleotide may serve as a substrate for enzymes capable of cleaving RNA:DNA or RNA:RNA hybrids. By way of example, RNase H is a cellular endonuclease which cleaves the RNA strand of an RNA:DNA duplex. Activation of RNase H, therefore, results in cleavage of the RNA target, thereby greatly enhancing the efficiency of oligonucleotide inhibition of gene expression. Consequently, comparable results can often be obtained with shorter oligonucleotides when chimeric oligonucleotides are used, compared to phosphorothioate deoxyoligomeric nucleotides hybridizing to the target region. Cleavage of the RNA target can be routinely detected by gel electrophoresis and, if necessary, associated nucleic acid hybridization techniques known in the art. [0065] Chimeric antisense compounds of the invention may be formed as composite structures of two or more oligonucleotides, modified oligonucleotides, oligonucleosides and/or oligonucleotide mimetics as described above. Such compounds have also been referred to in the art as hybrids or gapmers. Representative United States patents that teach the preparation of such hybrid structures include, but are not limited to, U.S. Pat. Nos. 5,013,830; 5,149,797; 5,220,007; 5,256,775; 5,366,878; 5,403,711; 5,491,133; 5,565,350; 5,623,065; 5,652,355; 5,652,356; and 5,700,322, certain of which are commonly owned with the instant application, and each of which is herein incorporated by reference in its entirety. [0066] The antisense compounds used in accordance with this invention may be conveniently and routinely made through the well-known technique of solid phase synthesis. Equipment for such synthesis is sold by several vendors including, for example, Applied Biosystems (Foster City, Calif.). Any other means for such synthesis known in the art may additionally or alternatively be employed. It is well known to use similar techniques to prepare oligonucleotides such as the phosphorothioates and alkylated derivatives. [0067] The antisense compounds of the invention are synthesized in vitro and do not include antisense compositions of biological origin, or genetic vector constructs designed to direct the in vivo synthesis of antisense molecules. [0068] The compounds of the invention may also be admixed, encapsulated, conjugated or otherwise associated with other molecules, molecule structures or mixtures of compounds, as for example, liposomes, receptor targeted molecules, oral, rectal, topical or other formulations, for assisting in uptake, distribution and/or absorption. Represente-
tative United States patents that teach the preparation of such uptake, distribution and/or absorption assisting formulations include, but are not limited to, U.S. Pat. Nos. 5,108,921; 5,554,844; 5,416,016; 5,459,127; 5,521,291; 5,545,158; 5,547,932; 5,583,020; 5,591,721; 4,426,330; 4,534,899; 5,013,556; 5,108,921; 5,213,804; 5,227,170; 5,264,221; 5,356,633; 5,395,619; 5,416,016; 5,417,978; 5,462,854; 5,469,854; 5,512,295; 5,527,528; 5,534,259; 5,543,152; 5,556,948; 5,580,575; and 5,595,756, each of which is herein incorporated by reference.

[0069] The antisense compounds of the invention encompass any pharmaceutically acceptable salts, esters, or salts of such esters, or any other compound which, upon administration to an animal including a human, is capable of providing (directly or indirectly) the biologically active metabolite or residue thereof. Accordingly, for example, the disclosure is also drawn to prodrugs and pharmaceutically acceptable salts of the compounds of the invention, pharmaceutically acceptable salts of such prodrugs, and other bio equivalents.

[0070] The term "prodrug" indicates a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions. In particular, prodrug versions of the oligonucleotides of the invention are prepared as SATE [(S-acetyl-2-thioethyl) phosphates] derivatives according to the methods disclosed in International Patent Application Nos. WO 93/24510 to Gosselin et al., published Dec. 9, 1993 or WO 94/26764 and U.S. Pat. No. 5,770,713 to Linnbach et al.

[0071] The term "pharmaceutically acceptable salts" refers to physiologically and pharmaceutically acceptable salts of the compounds of the invention: i.e., salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects thereto.

[0072] Pharmaceutically acceptable base addition salts are formed with metals or amines, such as alkali and alkaline earth metals or organic amines. Examples of metals used as cations are sodium, potassium, magnesium, and calcium, and the like. Examples of suitable amines are N,N'-dibenzylethylene diamine, chloroprocaine, choline, diethanolamine, dicyclohexylamine, ethylenediamine, N-methylglucamine, and procaine (see, for example, Berge et al., "Pharmaceutical Salts," J. of Pharma. Sci., 1977, 66, 1-19). The base addition salts of the acidic compounds are prepared by contacting the free acid form with a sufficient amount of the desired base to produce the salt in the conventional manner. The free acid form may be regenerated by contacting the salt form with an acid and isolating the free acid in the conventional manner. The free acid forms differ from their respective salt forms somewhat in certain physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid for purposes of the present invention. As used herein, a "pharmaceutical addition salt" includes a pharmaceutically acceptable salt of an acid form of one of the components of the compositions of the invention. These include organic or inorganic acid salts of the amines. Preferred acid salts are the hydrochlorides, acetates, salicylates, nitrates and phosphates. Other suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of a variety of inorganic and organic acids, such as, for example, with inorganic acids, such as for example hydrochloric acid, hydrobromic acid, sulfuric acid or phosphoric acid; with organic carboxylic, sulfonic, sulfo or phospho acids or N-substituted sulfamic acids, for example acetic acid, propionic acid, glycolic acid, succinic acid, maleic acid, hydroxymaleic acid, methylemaleic acid, furmaric acid, malic acid, tartaric acid, lactic acid, oxalic acid, glutaric acid, glutaric acid, gluconic acid, citric acid, benzoic acid, cinnamic acid, mandelic acid, salicylic acid, 4-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxibenzoic acid, 2-acetylsalicilic acid, nicoctin acid or isonicotin acid; and with amino acids, such as the 20 alpha-amino acids involved in the synthesis of proteins in nature, for example glutamic acid or aspartic acid, and also with phenylactic acid, methanesulfonic acid, ethanesulfonic acid, 2-hydroxyethanesulfonic acid, ethane-1,2-disulfonic acid, benzenesulfonic acid, 4-methylbenzenesulfonic acid, naphthalene-2-sulfonic acid, naphthalene-1,5-disulfonic acid, 2- or 3-phosphoglycereate, glucose-6-phosphate, N-cyclohexylsulfamic acid (with the formation of cyclamates), or with other acid organic compounds, such as ascorbic acid. Pharmaceutically acceptable salts of compounds may also be prepared with a pharmaceutically acceptable cation. Suitable pharmaceutically acceptable cations are well known to those skilled in the art and include alkaline, alkaline earth, ammonium and quaternary ammonium cations. Carbonates or hydrogen carbonates are also possible.

[0073] For oligonucleotides, preferred examples of pharmaceutically acceptable salts include but are not limited to (a) salts formed with cations such as sodium, potassium, ammonium, magnesium, calcium, polyamines such as spermine and spermidine, etc.; (b) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; (c) salts formed with organic acids such as, for example, acetic acid, oxalic acid, tartaric acid, succinic acid, maleic acid, furmaric acid, glutaric acid, citric acid, malic acid, ascorbic acid, benzoic acid, tannic acid, palmitic acid, alginic acid, polyglutamic acid, naphthalenesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; and (d) salts formed from elemental anions such as chloride, bromide, and iodide.

[0074] The antisense compounds of the present invention can be utilized for diagnostics, therapeutics, prophylaxis and as research reagents and kits. For therapeutics, an animal, preferably a human, suspected of having a disease or disorder that can be treated by modulating the expression of stearyl-CoA desaturase is treated by administering antisense compounds in accordance with this invention. Among such diseases or disorders are included, for example, cardiovascular disease, obesity, non-insulin-dependent diabetes mellitus, skin disease, hypertension, neurological diseases, immune disorders and cancer.

[0075] The compounds of the invention can be utilized in pharmaceutical compositions by adding an effective amount of an antisense compound to a suitable pharmaceutically acceptable diluent or carrier. Use of the antisense compounds and methods of the invention may also be useful prophylactically to prevent such diseases or disorders, e.g., to prevent or delay infection, undue weight gain, inflammation or tumor formation, for example.

[0076] The antisense compounds of the invention are useful for research and diagnostics, because these compounds hybridize to nucleic acids encoding stearyl-CoA desaturase, enabling sandwich and other assays to easily be constructed to exploit this fact. Hybridization of the antisense oligonucleotides of the invention with a nucleic acid encoding stearyl-CoA desaturase can be detected by means known in the art.
Such means may include conjugation of an enzyme to the oligonucleotide, radio/labeling of the oligonucleotide or any other suitable detection means. Kits using such detection means for detecting the level of stearyl-CoA desaturase in a sample may also be prepared.

[0077] The present invention also includes pharmaceutical compositions and formulations that include the antisense compounds of the invention. The pharmaceutical compositions of the present invention may be administered in a number of ways depending upon whether local or systemic treatment is desired and upon the area to be treated. Administration may be topical (including ophthalmal and to mucous membranes including vaginal and rectal delivery), pulmonary, e.g., by inhalation or insufflation of powders or aerosols, including nebulizer; intratracheal, intra nasal, epidermal and transdermal; oral or parenteral. Parenteral administration includes intravenous, intraarterial, subcutaneous, intraperitoneal or intramuscular injection or infusion; or intracranial, e.g., intrathecal or intraventricular administration. Oligonucleotides with at least one 2’-O-methoxymethyl modification are believed to be particularly useful for oral administration.

[0078] Pharmaceutical compositions and formulations for topical administration may include transdermal patches, ointments, lotions, creams, gels, drops, suppositories, sprays, liquids and powders. Conventional pharmaceutical carriers, aqueous, powder or oily bases, thickeners and the like may be necessary or desirable. Coated condoms, gloves and the like may also be useful. Preferred topical formulations include those in which the oligonucleotides of the invention are in admixture with a topical delivery agent such as lipids, liposomes, fatty acids, fatty acid esters, steroids, chelating agents and surfactants. Preferred lipids and liposomes include neutral (e.g. dioleoylphosphatidylDOPE ethanolamine, dimyristoylphosphatidylcholine DMPC, distearoylphosphatidylcholine) negative (e.g. dimyristoylphosphatidylglycerol DMPG) and cationic (e.g. dioleoyltrimethylammoniumpropyl DOTAP and dioleoylphosphatidyl ethanolamine DOTMA) Oligonucleotides of the invention may be encapsulated within liposomes or may form complexes thereto, in particular to cationic liposomes. Alternatively, oligonucleotides may be complexed to lipids, in particular to cationic lipids. Preferred fatty acids and esters include but are not limited arachidonic acid, oleic acid, eicosanoic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stea ric acid, linoleic acid, linolenic acid, docosapentaenoic acid, docosahexaenoic acid, gamma-linolenic acid, dihomo- gamma-linolenic acid, arachidonic acid, eicosapentaenoic acid, or a C16-20 alkyl ester (e.g. isopropylmyristate IPM), monoglyceride, diglyceride or pharmaceutically acceptable salt thereof. Topical formulations are described in detail in U.S. patent application Ser. No. 09/315,298 filed on May 20, 1999, which is incorporated herein by reference in its entirety.

[0079] Compositions and formulations for oral administration include powders or granules, micro particulates, nanoparticles, suspensions or solutions in water or non-aqueous media, capsules, gel capsules, sachets, tablets or minitablets. Thickeners, flavoring agents, diluents, emulsifiers, dispersing aids or binders may be desirable. Preferred oral formulations are those in which oligonucleotides of the invention are administered in conjunction with one or more penetration enhancers, surfactants and chelators. Preferred surfactants include fatty acids and/or esters or salts thereof, bile acids and/or salts thereof. Preferred bile acids/salts include chenodeoxycholic acid (CDCA) and ursodeoxychenedoxycholic acid (UDCA), cholic acid, dehydrocholic acid, deoxycholic acid, cholic acid, glucuronic acid, glycolic acid, glycodelxycholic acid, taurocholic acid, taurodeoxycholic acid, sodium tauro-24,25-dihydro-fusidate, sodium glycodeoxyhydrastate. Preferred fatty acids include arachidonic acid, undecanoic acid, oleic acid, lauric acid, caprylic acid, capric acid, myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein, dilaurin, glyceryl 1-monocaprate, 1-dodecylazacycloheptan-2-one, acetylcarnitine, acylcholine, or a monoglyceride, a diglyceride or a pharmaceutically acceptable salt thereof (e.g. sodium). Also preferred are combinations of penetration enhancers, for example, fatty acids/salts in combination with bile acids/salts. A particularly preferred combination is the sodium salt of lauric acid, capric acid and UDCA. Further penetration enhancers include polyoxyethylene-9-lauryl ether, polyoxyethylene-20-cetyl ether. Oligonucleotides of the invention may be delivered orally in granular form including sprayed dried particles, or complexed to form micro or nanoparticles. Oligonucleotide complexing agents include poly-amino acids; polyamines; polyacrylates; polyalkylacrylates, polyoxyethanes, polyalkylenoacrylates; eelotened gelsatin, albitum, starches, acrylates, polyethylene glycols (PEG) and starches; polyalkyleneacrylates; DEAE-derivatized polyamines, pollulans, celluloses and starches. Particularly preferred complexing agents include chitosan, N-trimethylchi tosan, poly-L-lysine, polystyridine, polynorhine, polypeptides, protamine, polyvinylpyridine, polyhistidine, etamino-methylethylene (PDAE), polyaminostyrene (e.g. p-amino, poly(methylethylacrylate), poly(ethylacrylate), poly(butylacrylate), poly(isobutylacrylate), poly(hexylacrylate), DEAE-methacrylate, DEAE-hexacrylate, DEAE-acrylamide, DEAE-albumin and DEAE-dextran, polyethyleneacrylate, polyethylene glycol, poly(D,L-lactic acid), poly(D,L-lactic-coglycolic acid (PLGA), alginates, and polyethylene glycol (PEG). Oral formulations for oligonucleotides and their preparation are described in detail in U.S. Published Patent Application No. 2003/0004097 (Feb. 27, 2003) and its parent applications; U.S. Published Patent Application No. 2003/0027780 (Feb. 6, 2003) and its parent applications; and U.S. patent application Ser. No. 09/082,624 (filed May 21, 1998), each of which is incorporated herein by reference in its entirety.

[0080] Compositions and formulations for parenteral, intrathecal or intraventricular administration may include sterile aqueous solutions, which may also contain buffers, diluents and other suitable additives such as, but not limited to, penetration enhancers, carrier compounds and other pharmaceutically acceptable carriers or excipients.

[0081] Pharmaceutical compositions of the present invention include, but are not limited to, solutions, emulsions, and liposome-containing formulations. These compositions may be generated from a variety of components that include, but are not limited to, preformed liquids, self-emulsifying solids and self-emulsifying semisolids.

[0082] The pharmaceutical formulations of the present invention, which may conveniently be presented in unit dosage form, may be prepared according to conventional techniques well known in the pharmaceutical industry. Such techniques include the step of bringing into association the active ingredients with the pharmaceutical carrier(s) or excipient(s). In general the formulations are prepared by uniformly and
intimately bringing into association the active ingredients with liquid carriers or finely divided solid carriers or both, and then, if necessary, shaping the product.

[0083] The compositions of the present invention may be formulated into any of many possible dosage forms such as, but not limited to, tablets, capsules, gel capsules, liquid syrups, soft gels, suppositories, and enemas. The compositions of the present invention may also be formulated as suspensions in aqueous, non-aqueous or mixed media. Aqueous suspensions may further contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcelullose, sorbitol and/or dextran. The suspension may also contain stabilizers.

[0084] In one embodiment of the present invention the pharmaceutical compositions may be formulated and used as foams. Pharmaceutical foams include formulations such as, but not limited to, emulsions, microemulsions, creams, jellies and liposomes. While basically similar in nature these formulations vary in the components and the consistency of the final product. The preparation of such compositions and formulations is generally known to those skilled in the pharmaceutical and formulation arts and may be applied to the formulation of the compositions of the present invention.

Emulsions

[0085] The compositions of the present invention may be prepared and formulated as emulsions. Emulsions are typically heterogeneous systems of one liquid dispersed in another in the form of droplets usually exceeding 0.1 μm in diameter. (Idson, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 109; Rosoff, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., Volume 1, p. 245; Block in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 2, p. 335; Higuchi et al., in Remington’s Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 301). Emulsions are often biphasic systems comprising of two immiscible liquid phases intimately mixed and dispersed with each other. In general, emulsions may be either water-in-oil (w/o) or of the oil-in-water (o/w) variety. When an aqueous phase is finely divided into and dispersed as minute droplets into a bulk oily phase the resulting composition is called a water-in-oil (w/o) emulsion. Alternatively, when an oily phase is finely divided into and dispersed as minute droplets into a bulk aqueous phase the resulting composition is called an oil-in-water (o/w) emulsion. Emulsions may contain additional components in addition to the dispersed phases and the active drug, which may be present as a solution in either the aqueous phase, oily phase or itself as a separate phase. Pharmaceutical excipients such as emulsifiers, stabilizers, dyes, and anti-oxidants may also be present in emulsions as needed. Pharmaceutical emulsions may also be multiple emulsions that are comprised of more than two phases such as, for example, in the case of oil-in-water-in-oil (o/w/o) and water-in-oil-in-water (w/o/w) emulsions. Such complex formulations often provide certain advantages that simple binary emulsions do not. Multiple emulsions in which individual oil droplets of an o/w emulsion enclose small water droplets constitute a w/o/w emulsion. Likewise a system of oil droplets enclosed in globules of water stabilized in an oily continuous provides an o/w/o emulsion.

[0086] Emulsions are characterized by little or no thermodynamic stability. Often, the dispersed or discontinuous phase of the emulsion is well dispersed into the external or continuous phase and maintained in this form through the means of emulsifiers or the viscosity of the formulation. Either of the phases of the emulsion may be a semisolid or a solid, as is the case of emulsion-style ointment bases and creams. Other means of stabilizing emulsions entail the use of emulsifiers that may be incorporated into either phase of the emulsion. Emulsifiers may broadly be classified into four categories: synthetic surfactants, naturally occurring emulsifiers, absorption bases, and finely dispersed solids (Idson, cited above).

[0087] Synthetic surfactants, also known as surface active agents, have found wide applicability in the formulation of emulsions and have been reviewed in the literature (Rieger, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 285; Idson, cited above). Surfactants are typically amphiphilic and comprise a hydrophilic and a hydrophobic portion. The ratio of the hydrophilic to the hydrophobic nature of the surfactant has been termed the hydrophilic/lipophilic balance (HLB) and is a valuable tool in categorizing and selecting surfactants in the preparation of formulations. Surfactants may be classified into different classes based on the nature of the hydrophilic group: nonionic, anionic, cationic and amphoteric (Rieger, cited above).

[0088] Naturally occurring emulsifiers used in emulsion formulations include lanolin, beeswax, phosphatides, lecithin and acacia. Absorption bases possess hydrophilic properties such that they can soak up water to form w/o emulsions yet retain their semisolid consistencies, such as anhydrous lanolin and hydrophilic petrolatum. Finely divided solids have also been used as good emulsifiers especially in combination with surfactants and in viscous preparations. These include polar inorganic solids, such as heavy metal hydroxides, non-swelling clays such as bentonite, attapulgite, hectorite, kaolin, montmorillonite, colloidal aluminum silicate and colloidal magnesium aluminum silicate, pigments and nonpolar solids such as carbon or glycerol tristearate.

[0089] A large variety of non-emulsifying materials are also included in emulsion formulations and contribute to the properties of emulsions. These include fats, oils, waxes, fatty acids, fatty alcohols, fatty esters, humectants, hydrophilic colloids, preservatives and antioxidants (Block, in Pharmaceutical Dosage Forms, Lieberman, Rieger and Banker (Eds.), 1988, Marcel Dekker, Inc., New York, N.Y., volume 1, p. 335; Idson, cited above).

[0090] Hydrophilic colloids or hydrocolloids include naturally occurring gums and synthetic polymers such as polysaccharides (for example, acacia, agar, alganic acid, carrageenan, guar gum, karaya gum, and tragacanth), cellulose derivatives (for example, carboxymethylcellulose and carboxypropyl-cellulose), and synthetic polymers (for example, caromers, cellulose ethers, and carboxylvinyl polymers). These disperse or swell in water to form colloidal solutions that stabilize emulsions by forming strong interfacial films around the dispersed-phase droplets and by increasing the viscosity of the external phase.

[0091] Since emulsions often contain a number of ingredients such as carbohydrates, proteins, steroids and phosphatides that may readily support the growth of microbes, these formulations often incorporate preservatives. Commonly used preservatives included in emulsion formulations include
methyl paraben, propyl paraben, quaternary ammonium salts, benzalkonium chloride, esters of p-hydroxybenzoic acid, and boric acid. Antioxidants are also commonly added to emulsion formulations to prevent deterioration of the formulation. Antioxidants used may be free radical scavengers such as tocopherols, alkyl gallates, butylated hydroxyanisole, butylated hydroxytoluene, or reducing agents such as ascorbic acid and sodium metabisulfite, and antioxidant synergists such as citric acid, tartaric acid, and lecithin.

The application of emulsion formulations via dermatological, oral and parenteral routes and methods for their manufacture has been reviewed in the literature (Idson, cited above). Emulsion formulations for oral delivery have been very widely used because of reasons of ease of formulation, efficacy from an absorption and bioavailability standpoint (Rosoff, cited above; Idson, cited above). Mineral-oil base laxatives, oil-soluble vitamins and high fat nutritive preparations are among the materials that have commonly been administered orally as o/w emulsions.

In one embodiment of the present invention, the compositions of oligonucleotides and nucleic acids are formulated as microemulsions. A microemulsion may be defined as a system of water, oil and amphiphile, which is a single optically isotropic and thermodynamically stable liquid solution (Rosoff, cited above). Typically microemulsions are systems that are prepared by first dispersing an oil in an aqueous surfactant solution and then adding a sufficient amount of a fourth component, generally an intermediate chain-length alcohol to form a transparent system. Therefore, microemulsions have also been described as thermodynamically stable, isotropically clear dispersions of two immiscible liquids that are stabilized by interfacial films of surface-active molecules (Leung and Shah, in: Controlled Release of Drugs: Polymers and Aggregate Systems, Rosoff, M., Ed., 1989, VCH Publishers, New York, pages 185-215). Microemulsions commonly are prepared via a combination of three to five components that include oil, water, surfactant, cosurfactant and electrolyte. Whether the microemulsion is of the water-in-oil (w/o) or an oil-in-water (o/w) type is dependent on the properties of the oil and surfactant used and on the structure and geometric packing of the polar heads and hydrocarbon tails of the surfactant molecules (Schott, in Remington’s Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., 1985, p. 271).

The phenomenological approach utilizing phase diagrams has been extensively studied and has yielded a comprehensive knowledge, to one skilled in the art, of how to formulate microemulsions (Rosoff, cited above; Block, cited above). Compared to conventional emulsions, microemulsions offer the advantage of solubilizing water-insoluble drugs in a formulation of thermodynamically stable droplets that are formed spontaneously.

Surfactants used in the preparation of microemulsions include, but are not limited to, ionic surfactants, non-ionic surfactants, Brij 96, polyoxyethylene oleyl ethers, polyglycerol fatty acid esters, tetraglycerol monolaurate (ML310), tetraglycerol monooleate (MO310), hexaglycerol monooleate (PO310), hexaglycerol pentaoleate (PO500), decaglycerol monocaprare (MCA750), decaglycerol monooleate (MO750), decaglycerol sesquioleate (SO750), decaglycerol decanoate (DAO750), alone or in combination with cosurfactants. The cosurfactant, usually a short-chain alcohol such as ethanol, 1-propanol, and 1-butanol, serves to increase the interfacial fluidity by penetrating into the surfactant film and consequently creating a disordered film because of the void space generated among surfactant molecules. Microemulsions may, however, be prepared without the use of cosurfactants and alcohol-free self-emulsifying microemulsion systems are known in the art. The aqueous phase may typically be, but is not limited to, water, an aqueous solution of the drug, glycerol, PEG300, PEG400, polyglycerols, propylene glycols, and derivatives of ethylene glycol. The oil phase may include, but is not limited to, materials such as Captopril 300, Captopril 555, Capmul MCM, fatty acid esters, medium chain (C8-C12) mono, di, and tri-glycerides, polyoxyethylated glycerol fatty acid esters, fatty alcohols, polyglycolized glycerides, saturated polyglycolized C8-C10 glycerides, vegetable oils and silicone oil.

Microemulsions are particularly of interest from the standpoint of drug solubilization and the enhanced absorption of drugs. Lipid based microemulsions (both o/w and w/o) have been proposed to enhance the oral bioavailability of drugs, including peptides (Constantinides et al., Pharmaceutical Research, 1994, 11, 1385-1390; Ritschel, Meth. Find. Exp. Clin. Pharmacol., 1993, 13, 205). Microemulsions afford advantages of improved drug solubilization, protection of drug from enzymatic hydrolysis, possible enhancement of drug absorption due to surfactant-induced alterations in membrane fluidity and permeability, ease of preparation, ease of oral administration over solid dosage forms, improved clinical potency, and decreased toxicity (Constantinides et al., 1994 cited above; Ho et al., J. Pharm. Sci., 1996, 85, 138-143). Often microemulsions may form spontaneously when their components are brought together at ambient temperature. This may be particularly advantageous when formulating thermo-labile drugs, peptides or oligonucleotides. Microemulsions have also been effective in the transdermal delivery of active components in both cosmetic and pharmaceutical applications. It is expected that the microemulsion compositions and formulations of the present invention will facilitate the increased systemic absorption of oligonucleotides and nucleic acids from the gastrointestinal tract, as well as improve the local cellular uptake of oligonucleotides and nucleic acids within the gastro-intestinal tract, vagina, buccal cavity and other areas of administration.

Microemulsions of the present invention may also contain additional components and additives such as sorbitan monostearate (Grill 3), Labrasol, and penetration enhancers to improve the properties of the formulation and to enhance the absorption of the oligonucleotides and nucleic acids of the present invention. Penetration enhancers used in the microemulsions of the present invention may be classified as belonging to one of five broad categories—surfactants, fatty acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of these classes has been discussed above.

Liposomes

There are many organized surfactant structures besides microemulsions that have been studied and used for the formulation of drugs. These include monolayers, micelles, bilayers and vesicles. Vesicles, such as liposomes, have attracted great interest because of their specificity and the duration of action they offer from the standpoint of drug delivery. As used in the present invention, the term “liposome” means a vesicle composed of amphiphilic lipids arranged in a spherical bilayer or bilayers.
Liposomes are unilamellar or multilamellar vesicles which have a membrane formed from a lipophilic material and an aqueous interior. The aqueous portion contains the composition to be delivered. Cationic liposomes possess the advantage of being able to fuse to the cell wall. Non-cationic liposomes, although not able to fuse as efficiently with the cell wall, are taken up by macrophages in vivo.

In order to cross intact mammalian skin, lipid vesicles must pass through a series of fine pores, each with a diameter less than 50 nm, under the influence of a suitable transdermal gradient. Therefore, it is desirable to use a liposome that is highly deformable and able to pass through such fine pores.

Further advantages of liposomes include: liposomes obtained from natural phospholipids are biocompatible and biodegradable; liposomes can incorporate a wide range of water and lipid soluble drugs; liposomes can protect encapsulated drugs in their internal compartments from metabolism and degradation (Rosoff, cited above). Important considerations in the preparation of liposome formulations are the lipid surface charge, vesicle size and the aqueous volume of the liposomes.

Liposomes are useful for the transfer and delivery of active ingredients to the site of action. Because the liposomal membrane is structurally similar to biological membranes, when liposomes are applied to a tissue, the liposomes start to merge with the cellular membranes. As the merging of the liposome and cell progresses, the liposomal contents are emptied into the cell where the active agent may act.

Liposomal formulations have been the focus of extensive investigation as the mode of delivery for many drugs. There is growing evidence that for topical administration, liposomes present several advantages over other formulations. Such advantages include reduced side-effects related to high systemic absorption of the administered drug, increased accumulation of the administered drug at the desired target, and the ability to administer a wide variety of drugs, both hydrophilic and hydrophobic, into the skin.

Several reports have detailed the ability of liposomes to deliver agents including high-molecular weight DNA into the skin. Compounds including analogues, antibodies, hormones and high-molecular weight DNAs have been administered to the skin. The majority of applications resulted in the targeting of the upper epidermis.

Liposomes fall into two broad classes. Cationic liposomes are positively charged liposomes that interact with the negatively charged DNA molecules to form a stable complex. The positively charged DNA/liposome complex binds to the negatively charged cell surface and is internalized in an endosome. Due to the acidic pH within the endosome, the liposomes are ruptured, releasing their contents into the cell cytoplasm (Wang et al., Biochem. Biophys. Res. Commun., 1987, 147, 980-985).

Liposomes that are pH-sensitive or negatively-charged, entrap DNA rather than complex with it. Since both the DNA and the lipid are similarly charged, repulsion rather than complex formation occurs. Nevertheless, some DNA is entrapped within the aqueous interior of these liposomes. pH-sensitive liposomes have been used to deliver DNA encoding the thymidine kinase gene to cell monolayers in culture. Expression of the exogenous gene was detected in the target cells (Zhou et al., Journal of Controlled Release, 1992, 19, 269-274).

One major type of liposomal composition includes phospholipids other than naturally-derived phosphatidylethanolamine. Neutral liposome compositions, for example, can be formed from dimyristoyl phosphatidylcholine (DMPC) or dipalmitoyl phosphatidylcholine (DPPC). Anionic liposome compositions generally are formed from dimyristoyl phosphatidylglycerol, while anionic fusogenic liposomes are formed primarily from dioleoyl phosphatidylethanolamine (DOPE). Another type of liposomal composition is formed from phosphatidylcholine (PC) such as, for example, PC, and egg PC. Another type is formed from mixtures of phospholipid and/or phosphatidylcholine and/or cholesterol.

Several studies have assessed the topical delivery of liposomal drug formulations to the skin. Application of liposomes containing interferon to guinea pig skin resulted in a reduction of skin herpes sores while delivery of interferon via other means (e.g. as a solution or as an emulsion) were ineffective (Weiner et al., Journal of Drug Targeting, 1992, 2, 405-410). Further, an additional study tested the efficacy of interferon administered as part of a liposomal formulation to the administration of interferon using an aqueous system, and concluded that the liposomal formulation was superior to aqueous administration (du Plessis et al., Antiviral Research, 1992, 18, 259-265).

Non-ionic liposomal systems have also been examined to determine their utility in the delivery of drugs to the skin, in particular systems comprising non-ionic surfactants and cholesterol. Non-ionic liposomal formulations comprising Novasone™ I (glyceryl distearate/cholesterol/polyoxyethylene-10-stearoyl ether) and Novasone™ II (glyceryl distearate/cholesterol/polyoxyethylene-10-stearyl ether) were used to deliver cyclosporin-A into the dermis of mouse skin. Results indicated that such non-ionic liposomal systems were effective in facilitating the deposition of cyclosporin-A into different layers of the skin (Hu et al. S.T.Pharma. Sci., 1994, 4, 6, 466).

Liposomes also include “sterically stabilized” liposomes. This latter term, as used herein, refers to liposomes comprising one or more specialized lipids that, when incorporated into liposomes, result in enhanced circulation lifetimes relative to liposomes lacking such specialized lipids. Examples of sterically stabilized liposomes are those in which part of the vesicle-forming lipid portion of the liposome (A) comprises one or more glycolipids, such as monosialoganglioside GM_{1}, or (B) is derivatized with one or more hydrophilic polymers, such as a polyethylene glycol (PEG) moiety. While not wishing to be bound by any particular theory, it is thought in the art that, at least for sterically stabilized liposomes containing gangliosides, sphingomyelin, or PEG-derivatized lipids, the enhanced circulation half-life of these sterically stabilized liposomes derives from a reduced uptake into cells of the reticuloendothelial system (RES) (Allen et al., FEBS Letters, 1987, 223, 42; Wu et al., Cancer Research, 1993, 53, 3765). Various liposomes comprising one or more glycolipids are known in the art. Papahadjopoulos et al. (Ann. N.Y. Acad. Sci., 1987, 507, 64) reported the ability of monosialoganglioside GM_{1}, galactocerebroside sulfate and phosphatidylinositol to improve blood half-lives of liposomes. These findings were expounded upon by Gabizon et al. (Proc. Natl. Acad. Sci. U.S.A., 1988, 85, 6949). U.S. Pat. No. 4,837,028 and International Patent Publication No. WO 86/04924, both to Allen et al., disclose liposomes comprising (1) sphingomyelin and (2) the ganglioside GM_{1} or a galactocerebroside sulfate ester.
US 2011/0213136 A1

Sep. 1, 2011

[0111] Many liposomes comprising lipids derivatized with one or more hydrophilic polymers, and methods of preparation thereof, are known in the art. Sunamoto et al. (Bull. Chem. Soc. Jpn., 1980, 53, 2778) described liposomes comprising a nonionic detergent, 2C12,15G, that contains a PEG moiety. Ilim et al. (FEBS Lett., 1984, 167, 79) noted that hydrophilic coating of polystyrene particles with polymeric glycols results in significantly enhanced blood half-lives. Synthetic phospholipids modified by the attachment of carboxylic groups of polyalkylene glycols (e.g., PEG) are described by Sears (U.S. Pat. Nos. 4,426,330 and 4,534,899). Klíbanov et al. (FEBS Lett., 1990, 268, 235) described experiments demonstrating that liposomes comprising phosphatidylethanolamine (PE) derivatized with PEG or PEG stearate have significant increases in blood circulation half-lives. Blume et al. (Biochimica et Biophysica Acta, 1990, 1029, 91) extended such observations to other PEG-derivatized phospholipids, e.g., DSPE-PEG, formed from the combination of distearoylphosphatidylethanolamine (DSPE) and PEG. Liposomes having covalently bound PEG moieties on their external surface are described in European Patent No. EP 0 445 131 B1 and International Patent Publication No. WO 90/04384 to Fisher. Liposome compositions containing 1-20 mole percent of PE derivatized with PEG, and methods of use thereof, are described by Woodle et al. (U.S. Pat. Nos. 5,013,556 and 5,356,633) and Martin et al. (U.S. Pat. No. 5,213,804 and European Patent No. EP 0 496 813 B1). Liposomes comprising a number of other lipid-polymer conjugates are disclosed in International Patent Publication No. WO 91/05545 and U.S. Pat. No. 5,225,212 (both to Martin et al.) and in International Patent Publication No. WO 94/20073 (Zalipsky et al.). Liposomes comprising PEG-modified ceramide lipids are described in International Patent Publication No. WO 96/10391 (Choi et al.), U.S. Pat. Nos. 5,540,935 (Miyazaki et al.) and 5,556,948 (Tagawa et al.) describe PEG-containing liposomes that can be further derivatized with functional moieties on their surfaces.

[0113] Transfersomes are yet another type of liposomes, and are highly deformable lipid aggregates which are attractive candidates for drug delivery vehicles. Transfersomes may be described as lipid droplets that are so highly deformable that they are easily able to penetrate through pores that are smaller than the droplet. Transfersomes are adaptable to the environment in which they are used, e.g. they are self-optimizing (adaptive to the shape of pores in the skin), self-repairing, frequently reach their targets without fragmenting, and often self-loading. To make transfersomes it is possible to add surface edge-activators, usually surfactants, to a standard liposomal composition. Transfersomes have been used to deliver serum albumin to the skin. The transfersome-mediated delivery of serum albumin has been shown to be as effective as subcutaneous injection of a solution containing serum albumin.

[0114] Surfactants find wide application in formulations such as emulsions (including microemulsions) and liposomes. The most common way of classifying and ranking the properties of the many different types of surfactants, both natural and synthetic, is by the use of the hydrophilic/lipophilic balance (HLB). The nature of the hydrophilic group (also known as the “head”) provides the most useful means for categorizing the different surfactants used in formulations (Riegel, cited above).

[0115] If the surfactant molecule is not ionized, it is classified as a nonionic surfactant. Nonionic surfactants find wide application in pharmaceutical and cosmetic products and are usable over a wide range of pH values. In general their HLB values range from 2 to about 18 depending on their structure. Nonionic surfactants include nonionic esters such as ethylene glycol esters, propylene glycol esters, glyceryl esters, polyglyceryl esters, sorbitan esters, sucrose esters, and ethoxylated esters. Nonionic alkanolamides and ethers such as fatty alcohol ethoxylates, propoxylated alcohols, and ethoxylated/propoxylated block polymers are also included in this class. The polyoxyethylene surfactants are the most popular members of the nonionic surfactant class.

[0116] If the surfactant molecule carries a negative charge when it is dissolved or dispersed in water, the surfactant is classified as anionic. Anionic surfactants include carboxylates such as soaps, acyl lactylates, acyl amides of amino acids, esters of sulfuric acid such as alkyl sulfates and ethoxylated alkyl sulfates, sulfonates such as alkyl benzene sulfonates, acyl isethionates, acyl taurates and sulfosuccinates, and phosphates. The most important members of the anionic surfactant class are the alkyl sulfates and the soaps.

[0117] If the surfactant molecule carries a positive charge when it is dissolved or dispersed in water, the surfactant is classified as cationic. Cationic surfactants include quaternary ammonium salts and ethoxylated amines. The quaternary ammonium salts are the most used members of this class.

[0118] If the surfactant molecule has the ability to carry either a positive or negative charge, the surfactant is classified as amphoteric. Amphoteric surfactants include acrylic acid derivatives, substituted alkylamides, N-alkybetaines and phosphatides.

[0119] The use of surfactants in drug products, formulations and in emulsions has been reviewed (Riegel, cited above).

Penetration Enhancers

[0120] In one embodiment, the present invention employs various penetration enhancers to effect the efficient delivery of nucleic acids, particularly oligonucleotides, to the skin of animals. Most drugs are present in solution in both ionized and nonionized forms. However, usually only lipid soluble or lipophilic drugs readily cross cell membranes. It has been discovered that even non-lipophilic drugs may cross cell membranes if the membrane to be crossed is treated with a penetration enhancer. In addition to aiding the diffusion of non-lipophilic drugs across cell membranes, penetration enhancers also enhance the permeability of lipophilic drugs.
acids, bile salts, chelating agents, and non-chelating non-surfactants (Lee et al., Critical Reviews in Therapeutic Drug Carrier Systems, 1991, p. 92). Each of the above mentioned classes of penetration enhancers are described below in greater detail.

[0122] Surfactants: In connection with the present invention, surfactants (or “surface-active agents”) are chemical entities which, when dissolved in an aqueous solution, reduce the surface tension of the solution or the interfacial tension between the aqueous solution and another liquid, with the result that absorption of oligonucleotides through the mucosa is enhanced. In addition to bile salts and fatty acids, these penetration enhancers include, for example, sodium laurel sulfate, polyoxyethylene-9-lauryl ether and polyoxyethy-
ene-20-ethyl ether (Lee et al., 1991, cited above); and per-
fluorochemical emulsions, such as FC-43. Takahashi et al., J. Pharm. Pharmacol., 1988, 40, 252).

[0123] Fatty acids: Various fatty acids and their derivatives which act as penetration enhancers include, for example, oleic acid, lauric acid, capric acid (n-decanoic acid), myristic acid, palmitic acid, stearic acid, linoleic acid, linolenic acid, dicaprate, tricaprate, monoolein (1-monooeoyl-rac-gly-
cerol), dilaurin, caprylic acid, arachidonic acid, glycerol 1-monocaprate, 1-dodecylenecyclcopetan-2-one, acylcar-
nitines, acylcholines, C1012 alkyl esters thereof (e.g., methyl, isopropyl and t-butyl), and mono- and di-glycerides thereof (i.e., oleate, laurate, caprate, myristate, palmitate, stearate, linoleate, etc.) (Lee et al., 1991, p. 92, cited above; Muranishi, Critical Reviews in Therapeutic Drug Carrier Systems, 1990, 7, 1-33; El Hariri et al., J. Pharm. Pharmacol, 1992, 44, 651-654).

[0124] Bile salts: The physiological role of bile includes the facilitation of dispersion and absorption of lipids and fat-soluble vitamins (Bruntion, Chapter 38 in: Goodman & Gil-
man’s The Pharmacological Basis of Therapeutics, 9th Ed., Hardman et al. Eds., McGraw-Hill, New York, 1996, pp. 934-935). Various natural bile salts, and their synthetic derivatives, act as penetration enhancers. Thus the term “bile salts” includes any of the naturally occurring components of bile as well as any of their synthetic derivatives. The bile salts of the invention include, for example, cholic acid (or its pharmaceutically acceptable sodium salt, sodium cholate), dehydrocholic acid (sodium dehydrocholate), deoxycholic acid (sodium deoxycholate), glucolic acid (sodium glucho-
late), glyciolic acid (sodium glycololate), glycodeoxy-
cholic acid (sodium glycodeoxycholate), taurocholic acid (sodium taurocholate), taurodeoxycholic acid (sodium tauro-
deoxycholate), chenodeoxycholic acid (sodium chenodeoxy-
cholate), ursodeoxycholic acid (UDCA), sodium tauro-24,
25-dihydro-fusidate (STDF), sodium glycodehydrofusidate and polyoxyethylene-9-lauryl ether (POE) (Lee et al., 1991, page 92, cited above; Swinyard, Chapter 39 in: Remington’s Pharmace-

[0125] Chelating Agents: Chelating agents, as used in connection with the present invention, can be defined as compounds that remove metallic ions from solution by forming complexes therewith, with the result that absorption of oligo-
nucleotides through the mucosa is enhanced. With regards to their use as penetration enhancers in the present invention, chelating agents have the added advantage of also serving as DNaese inhibitors, as most characterized DNA nucleases require a divalent metal ion for catalysis and are thus inhibited by chelating agents (Jurett, J. Chromatogr. 1993, 618, 315-339). Chelating agents of the invention include but are not limited to disodium ethylenediamine tetraacetate (EDTA), citric acid, salicylates (e.g., sodium salicylate, 5-methoxy-
salicylate and homovanilate), N-acyl derivatives of col-
lagen, laureth-9 and N-amino acyl derivatives of beta-dike-

[0126] Non-chelating non-surfactants: As used herein, non-chelating non-surface act penetration enhancing compounds can be defined as compounds that demonstrate insignif-
cant activity as chelating agents or as surfactants but that nonetheless enhance absorption of oligonucleotides through the alimentary mucosa (Muranishi, 1990, cited above). This class of penetration enhancers include, for example, unsaturated cyclic uracils, 1-alkyl- and 1-alkenylazacyclo-alkanone derivatives (Lee et al., 1991, page 92, cited above); and non-
steroidal anti-inflammatory agents such as diclofenac sodium, indomethacin and phenylbutazone (Yamashita et al., J. Pharm. Pharmacol., 1987, 39, 621-626).

[0127] Agents that enhance uptake of oligonucleotides at the cellular level may also be added to the pharmaceutical and other compositions of the present invention. For example, cationic lipids, such as lipofectin (Junichi et al. U.S. Pat. No. 5,705,188), cationic glycolipid derivatives, and polycationic molecules, such as polylysine (Lollo et al., International Patent Publication No. WO 97/30731), are also known to enhance the cellular uptake of oligonucleotides.

[0128] Other agents may be utilized to enhance the penetra-
tion of the administered nucleic acids, including glycols such as ethylene glycol and propylene glycol, pyrroils such as 2-pyrrol, amines, and terpenes such as limonene and menthone.

Carriers

[0129] Certain compositions of the present invention also incorporate carrier compounds in the formulation. As used herein, “carrier compound” or “carrier” can refer to a nucleic acid, or analog thereof, which is inert (i.e., does not possess biological activity per se) but is recognized as a nucleic acid by in vivo processes that reduce the bioavailability of a nucleic acid having biological activity by, for example, degrading the biologically active nucleic acid or promoting its removal from circulation. The coadministration of a nucleic acid and a carrier compound, typically with an excess of the latter substance, can result in a substantial reduction of the amount of nucleic acid recovered in the liver, kidney or other extracellular reservoirs, presumably due to competition between the carrier compound and the nucleic acid for a common receptor. For example, the recovery of a partially phosphorothiate oligonucleotide in hepatic tissue can be reduced when it is coadministered with polynosinic acid, dextran sulfate, polycytidic acid or 4-acetamido-4’isoiohydro-

Excipients

[0130] In contrast to a carrier compound, a “pharmaceuti-
cal carrier” or “excipient” is a pharmacologically acceptable
solvent, suspending agent or any other pharmaceutically inert vehicle for delivering one or more nucleic acids to an animal. The excipient may be liquid or solid and is selected, with the planned manner of administration in mind, so as to provide for the desired bulk, consistency, etc., when combined with a nucleic acid and the other components of a given pharmaceutical composition. Typical pharmaceutical carriers include, but are not limited to, binding agents (e.g., pregelatinized maize starch, polyvinylpyrrolidone or hydroxypropyl methylcellulose, etc.); fillers (e.g., lactose and other sugars, microcrystalline cellulose, pectin, gelatin, sodium sulfate, ethyl cellulose, polyacrylates or calcium hydrogen phosphate, etc.); lubricants (e.g., magnesium stearate, talc, silica, colloidal silicon dioxide, stearic acid, metallic stearates, hydrogenated vegetable oils, corn starch, polyethylene glycols, sodium benzoate, sodium acetate, etc.); disintegrants (e.g., starch, sodium starch glycolate, etc.); and wetting agents (e.g., sodium lauryl sulfate, etc.).

[0131] Pharmaceutically acceptable organic or inorganic excipient suitable for non-parenteral administration that do not deleteriously react with nucleic acids can also be used to formulate the compositions of the present invention. Suitable pharmaceutically acceptable carriers include, but are not limited to, water, salt solutions, alcohols, polyethylene glycols, gelatin, lactose, amyllose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxyethylcellulose, polyvinylpyrrolidone and the like.

[0132] Formulations for topical administration of nucleic acids may include sterile and non-sterile aqueous solutions, non-aqueous solutions in common solvents such as alcohols, or solutions of the nucleic acids in liquid or solid oil bases. The solutions may also contain buffers, diluents and other suitable additives. Pharmaceutically acceptable organic or inorganic excipients suitable for non-parenteral administration that do not deleteriously react with nucleic acids can be used.

[0133] Suitable pharmaceutically acceptable excipients include, but are not limited to, water; salt solutions, alcohol, polyethylene glycols, gelatin, lactose, amyllose, magnesium stearate, talc, silicic acid, viscous paraffin, hydroxyethylcellulose, polyvinylpyrrolidone and the like.

Other Components

[0134] The compositions of the present invention may additionally contain other adjunct components conventionally found in pharmaceutical compositions, at their art-established usage levels. Thus, for example, the compositions may contain additional, compatible, pharmaceutically-active materials such as, for example, antipruritics, astringents, local anesthetics or anti-inflammatory agents, or may contain additional materials useful in physically formulating various dosage forms of the compositions of the present invention, such as dyes, flavoring agents, preservatives, antioxidants, opacifiers, thickening agents and stabilizers. However, such materials, when added, should not unduly interfere with the biological activities of the components of the compositions of the present invention. The formulations can be sterilized and, if desired, mixed with auxiliary agents, e.g., lubricants, preservatives, stabilizers, wetting agents, emulsifiers, salts for influencing osmotic pressure, buffers, colorings, flavorings and/or aromatic substances and the like which do not deleteriously interact with the nucleic acid(s) of the formulation.

[0135] Aqueous suspensions may contain substances that increase the viscosity of the suspension including, for example, sodium carboxymethylcellulose, sorbitol and/or dextran. The suspension may also contain stabilizers.

[0136] Certain embodiments of the invention provide pharmaceutical compositions containing (a) one or more antisense compounds and (b) one or more other chemotherapeutic agents which function by a non-antisense mechanism. Examples of such chemotherapeutic agents include but are not limited to daunorubicin, daunomycin, doxorubicin, doxorubicin, epirubicin, idarubicin, esorubicin, bleomycin, mafosfamide, ifosfamide, etosine arabinoside, bis-chloroethylnitrosourea, busulfan, mitomycin C, actinomycin D, mithramycin, prednison, hydroxyprogesterone, testosterone, tamoxifen, dacarbazine, procarbazine, hexamethylmelamine, pentamethylmelamine, mitoxantrone, ansa-crine, chlorambucil, methylchlohexylnitrosourea, nitrogen mustardst, melphanal, cyclophosphamide, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-azacytidine, hydroxyurea, doxycyformycin, 4-hydroxyperoxycyclophosphamide, 5-fluorouracil (5-FU), 5-fluorodeoxyuridine (5-FUDR), methotrexate (MTX), colchicine, taxol, vincristine, vinblastine, etoposide (VP-16), trimetrexate, irinotecan, topotecan, gemcitabine, teniposide, cisplatin and diethyliostreol (DES). See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed. 1987, pp. 1206-1228, Berkow et al., eds., Rahway, N.J. When used with the compounds of the invention, such chemotherapeutic agents may be used individually (e.g., 5-FU and oligonucleotide), sequentially (e.g., 5-FU and oligonucleotide for a period of time followed by MTX and oligonucleotide), or in combination with one or more other chemotherapeutic agents (e.g., 5-FU, MTX and oligonucleotide, or 5-FU, radiotherapy and oligonucleotide). Anti-inflammatory drugs, including but not limited to nonsteroidal anti-inflammatory drugs and corticosteroids, and antiviral drugs, including but not limited to ribavirin, vidarabine, acyclovir and ganciclovir, may also be combined in compositions of the invention. See, generally, The Merck Manual of Diagnosis and Therapy, 15th Ed., Berkow et al., eds., 1987, Rahway, N.J., pages 2499-2506 and 46-49, respectively). Other non-antisense chemotherapeutic agents are also within the scope of this invention. Two or more combined compounds may be used together or sequentially.

[0137] In another related embodiment, compositions of the invention may contain one or more antisense compounds, particularly oligonucleotides, targeted to a first nucleic acid and one or more additional antisense compounds targeted to a second nucleic acid target. Numerous examples of antisense compounds are known in the art. Two or more combined compounds may be used together or sequentially.

[0138] The formulation of therapeutic compositions and their subsequent administration is believed to be within the skill of those in the art. Dosing is dependent on severity and responsiveness of the disease state to be treated, with the course of treatment lasting from several days to several months, or until a cure is effected or a diminution of the disease state is achieved. Optimal dosing schedules can be calculated from measurements of drug accumulation in the body of the patient. Persons of ordinary skill can easily determine optimum dosages, dosing methodologies and repetition rates. Optimum dosages may vary depending on the relative potency of individual oligonucleotides, and can generally be estimated based on EC₅₀'s found to be effective in in vitro and in vivo animal models. In general, dosage is from 0.01 ug to 100 g per kg of body weight, and may be given once or more daily, weekly, monthly or yearly, or even once every 2 to 20
years. Persons of ordinary skill in the art can easily estimate repetition rates for dosing based on measured residence times and concentrations of the drug in bodily fluids or tissues. Following successful treatment, it may be desirable to have the patient undergo maintenance therapy to prevent the recurrence of the disease state, wherein the oligonucleotide is administered in maintenance doses, ranging from 0.01 μg to 100 μg per kg of body weight, once or more daily; to once every 20 years. [0139] While the present invention has been described with specificity in accordance with certain of its preferred embodiments, the following examples serve only to illustrate the invention and are not intended to limit the same.

EXAMPLES
Example 1
Nucleoside Phosphoramidites for Oligonucleotide Synthesis
Deoxy and 2'-alkoxy amides
[0140] 2'-Deoxy and 2'-methoxy beta-cyanoethylisopropyl phosphoramidites were purchased from commercial sources (e.g. Chemgenes, Needham Mass. or Glen Research, Inc. Sterling Vt.). Other 2'-O-alkoxy substituted nucleoside amides are prepared as described in U.S. Pat. No. 5,506,351, herein incorporated by reference. For oligonucleotides synthesized using 2'-alkoxy amides, the standard cycle for unmodified oligonucleotides was utilized, except the wait step after pulse delivery of tetrazelate and base was increased to 360 seconds.

[0141] Oligonucleotides containing 5-methyl-2'-deoxyctydine (5-Me-C) nucleotides were synthesized according to published methods [Sanghvi, et. al., Nucleic Acids Research, 1993, 21, 3197-3203] using commercially available phosphoramidites (Glen Research, Sterling Va. or ChemGenes, Needham Mass.).

2'-Fluoro amides
2'-Fluorodeoxy adenosine amides
[0142] 2'-fluoro oligonucleotides were synthesized as described previously [Kawasaki, et. al., J. Med. Chem., 1993, 36, 831-841] and U.S. Pat. No. 5,670,633, herein incorporated by reference. Briefly, the protected nucleoside N6-benzoyl-2'-deoxy-2'-fluoroadenosine was synthesized utilizing commercially available 9-beta-D-arabinofuranosyladenine as starting material and by modifying literature procedures whereby the 2'-alpha-fluoro atom is introduced by a S2,2-displacement of a 2'-beta-trityl group. Thus N6-benzoyl-9-beta-D-arabinofuranosyladenine was selectively protected in moderate yield as the 3',5'-dichlorotriphosphorothionate (THP) intermediate. Deprotection of the THP and N6-benzoyl groups was accomplished using standard methodologies and standard methods were used to obtain the 5'-deoxythriytril (DMT) and 5'-DMT-3'-phosphoramidites intermediates.

2'-Fluorodeoxyguanosine
[0143] The synthesis of 2'-deoxy-2'-fluoroguanosine, was accomplished using tetrasopropylsiloxanoyl (TPS) protected 9-beta-D-arabinofuranosylguanine as starting material, and conversion to the intermediate disobutylxylarabinofuranosylguanine. Deprotection of the TPS group was followed by protection of the hydroxyl group with TP to give diisobutyl di-TPH protected arabinofuranosylguanine. Selective O-deacetylation and triflation was followed by treatment of the crude product with fluoride, then deprotection of the THP groups. Standard methodologies were used to obtain the 5'-DMT- and 5'-DMT-3'-phosphoramidites.

2'-Fluorouridine
[0144] Synthesis of 2'-deoxy-2'-fluorouridine was accomplished by the modification of a literature procedure in which 2',2'-anhydro-1-beta-D-arabinofuranosyluracil was treated with 70% hydrogen fluoride-pyridine. Standard procedures were used to obtain the 5'-DMT and 5'-DMT-3'-phosphoramidites.

2'-Fluorodeoxyctydine
[0145] 2'-deoxy-2'-fluorocytidine was synthesized via amination of 2'-deoxy-2'-fluorouridine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures were used to obtain the 5'-DMT and 5',5'-DMT-3'-phosphoramidites.

2',2'-Anhydro[1-(beta-D-arabinofuranosyl)-5-methyluridine]
[0146] 2',2'-Anhydro[1-(beta-D-arabinofuranosyl)-5-methyluridine] was synthesized via amination of 2'-deoxy-2'-fluorocytidine, followed by selective protection to give N4-benzoyl-2'-deoxy-2'-fluorocytidine. Standard procedures were used to obtain the 5'-DMT and 5',5'-DMT-3'-phosphoramidites.

2',2'-Anhydro[1-(beta-D-arabinofuranosyl)-5-methyluridine]
[0147] 5-Methyluridine (ribosylthymine, commercially available through Yamasa, Choshi, Japan) (72.0 g, 0.279 M), diphenylcarbomate (90.0 g, 0.420 M) and sodium bicarbonate (2.0 g, 0.024 M) were added to DMF (300 ml). The mixture was heated to reflux, with stirring, allowing the evolved carbon dioxide to be released in a controlled manner. After 1 hour, the slightly darkened solution was concentrated under reduced pressure. The resulting syrup was poured into diethyl ether (2.5 L), with stirring. The product formed as a gum. The ether was decanted and the residue was dissolved in a minimum amount of methanol (ca. 400 ml). The solution was poured into fresh ether (2.5 L) to yield a stiff gum. The ether was decanted and the gum was dried in a vacuum oven (60°C at 1 mm Hg for 24 h) to give a solid that was crushed to a light tan powder (57 g, 85% crude yield). The NMR spectrum was consistent with the structure, unaccompanied with phenol as its sodium salt (ca. 5%). The material was used as is for further reactions (or it can be purified further by column chromatography using a gradient of methanol in ethyl acetate (10-25%) to yield a white solid, mp 222-24°C.).

2',2'-Methoxyethyl-5-methyluridine
[0148] 2',2'-Anhydro-5-methyluridine (195 g, 0.81 M), tris (methoxyethyl)borate (231 g, 0.98 M) and 2-methoxyethanol (1.2 L) were added to a 2 L stainless steel pressure vessel and placed in a pre-heated oil bath at 160°C. After heating for 48 hours at 155-160°C, the vessel was opened and the solution evaporated to dryness and triturated with MeOH (200 ml). The residue was suspended in hot acetone (1 L). The insoluble salts were filtered, washed with acetone (150 ml) and the filtrate evaporated. The residue (280 g) was dissolved in CH3CN (600 ml) and evaporated. A silica gel column (3 kg) was packed in CH3Cl/acetone/MeOH (20:5:3) containing 0.5% Et3N. The residue was dissolved in
CH₂Cl₂ (250 mL) and adsorbed onto silica (150 g) prior to loading onto the column. The product was eluted with the packing solvent to give 160 g (63%) of product. Additional material was obtained by reworking impure fractions.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine

[0149] 2'-O-Methoxyethyl-5'-methyluridine (160 g, 0.506 M) was co-evaporated with pyridine (250 mL) and the dried residue dissolved in pyridine (1.3 L). A first aliquot of dimethoxymethyl chloride (94.3 g, 0.278 M) was added and the mixture stirred at room temperature for one hour. A second aliquot of dimethoxymethyl chloride (94.3 g, 0.278 M) was added and the reaction stirred for an additional one hour. Methanol (170 mL) was then added to stop the reaction. HPLC showed the presence of approximately 76% product. The solvent was evaporated and triturated with CH₂CN (200 mL). The residue was dissolved in CHCl₃ (1.5 L) and extracted with 2x500 mL of saturated NaHCO₃ and 2x500 mL of saturated NaCl. The organic phase was drained over Na₂SO₄, filtered and evaporated. 275 g of residue was obtained. The residue was purified on a 3.5 kg silica gel column, packed and eluted with EtOAc/hexane/acetone (5:5:1) containing 0.5% Et₃N.HCl. The pure fractions were evaporated to give 164 g of product. Approximately 20 g additional was obtained from the impure fractions to give a total yield of 183 g (57%).

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridinidine

[0150] 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (106 g, 0.167 M), DMF/pyridine (750 mL of a 3:1 mixture prepared from 562 mL of DMF and 188 mL of pyridine) and acetic anhydride (24.38 mL, 0.258 M) were combined and stirred at room temperature for 24 hours. The reaction was monitored by TLC by first quenching the TLC sample with the addition of MeOH. Upon completion of the reaction, as judged by TLC, MeOH (50 mL) was added and the mixture evaporated at 35°C. The residue was dissolved in CHCl₃ (800 mL) and extracted with 2x200 mL of saturated sodium bicarbonate and 2x200 mL of saturated NaCl. The water layers were back extracted with 200 mL of CHCl₃. The combined organics were dried with sodium sulfate and evaporated to give 122 g of residue (approx. 90% yield). The residue was purified on a 3.5 kg silica gel column and eluted using EtOAc/hexane (4:1). Pure product fractions were evaporated to yield 96 g (84%). An additional 1.5 g was recovered from later fractions.

3'-O-Acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridinidine

[0151] A first solution was prepared by dissolving 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyluridine (96 g, 0.144 M) in CH₂CN (700 mL) and set aside. Triethylamine (189 mL, 1.44 M) was added to a solution of triazole (90 g, 1.3 M) in CH₂CN (1 L), cooled to -5°C, and stirred for 0.5 h using an overhead stirrer. POCl₃ was added dropwise, over a 30 minute period, to the stirred solution maintained at 0-10°C, and the resulting mixture stirred for an additional 2 hours. The first solution was added dropwise, over a 45 minute period, to the latter solution. The resulting reaction mixture was stored overnight in a cold room. Salts were filtered from the reaction mixture and the solution was evaporated. The residue was dissolved in EtOAc (1 L) and the insoluble solids were removed by filtration. The filtrate was washed with 1x300 mL of NaHCO₃ and 2x300 mL of saturated NaCl, dried over sodium sulfate and evaporated. The residue was triturated with EtOAc to give the title compound.

2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine

[0152] A solution of 3'-O-acetyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyl-4-triazoleuridine (103 g, 0.141 M) in dioxane (500 mL) and NH₂OH (30 mL) was stirred at room temperature for 2 hours. The dioxane solution was evaporated and the residue azeotroped with MeOH (2x200 mL). The residue was dissolved in MeOH (300 mL) and transferred to a 2 liter stainless steel pressure vessel. MeOH (400 mL) saturated with NH₃ gas was added and the vessel heated to 100°C for 2 hours (TLC showed complete conversion). The vessel contents were evaporated to dryness and the residue was dissolved in EtOAc (500 mL) and washed once with saturated NaCl (200 mL). The organics were dried over sodium sulfate and the solvent was evaporated to give 85 g (95%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methylcytididine

[0153] 2'-O-Methoxyethyl-5'-O-dimethoxytrityl-5-methylcytidine (85 g, 0.134 M) was dissolved in DMF (800 mL) and benzoic anhydride (37.2 g, 0.165 M) was added with stirring. After stirring for 3 hours, TLC showed the reaction to be approximately 95% complete. The solvent was evaporated and the residue azeotroped with MeOH (200 mL). The residue was dissolved in CHCl₃ (700 mL) and extracted with saturated NaHCO₃ (2x300 mL) and saturated NaCl (2x300 mL), dried over MgSO₄ and evaporated to give a residue (96 g). The residue was chromatographed on a 1.5 kg silica column using EtOAc/hexane (1:1) containing 0.5% Et₃N as the eluting solvent. The pure product fractions were evaporated to give 90 g (90%) of the title compound.

N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyleytidine-3'-amidite

[0154] N4-Benzoyl-2'-O-methoxyethyl-5'-O-dimethoxytrityl-5-methyleytidine (74 g, 0.10 M) was dissolved in CH₂Cl₂ (1 L). Tetrazole disopropylammonium (7.1 g) and 2-ethoxymethyltetra(isopropyl)-phosphite (40.5 mL, 0.123 M) were added with stirring, under a nitrogen atmosphere. The resulting mixture was stirred for 20 hours at room temperature (TLC showed the reaction to be 95% complete). The reaction mixture was extracted with saturated NaHCO₃ (1x300 mL) and saturated NaCl (3x300 mL). The aqueous washes were back-extracted with CH₂Cl₂ (300 mL), and the extracts were combined, dried over MgSO₄, and concentrated. The residue obtained was chromatographed on a 1.5 kg silica column using EtOAc/hexane (3:1) as the eluting solvent. The pure fractions were combined to give 90.6 g (87%) of the title compound.

2'-O-(Aminoxyethyl) nucleoside amidites and 2'-O-(dimethylaminoxyethyl) nucleoside amidites

2'-O-(Dimethylaminoxyethoxy) nucleoside amidites

[0155] 2'-O-(Dimethylaminoxyethoxy) nucleoside amidites [also known in the art as 2'-O-(dimethylaminoxyethyl)
nucleoside amidites] are prepared as described in the following paragraphs. Adenosine, cytidine and guanosine nucleoside amidites are prepared similarly to the thymidine (5-methyluridine) except that the oxocyclic anines are protected with a benzoyl moiety in the case of adenosine and cytidine and with isobutyryl in the case of guanosine.

5′-O-tert-Butyldiphenylisilyl-O2′-2′-anhydro-5-methyluridine

[0156] O2′-2′-anhydro-5-methyluridine (Pro. Bio. Sint., Varese, Italy, 100.0 g, 0.416 mmol), dimethylaminopyridine (0.66 g, 0.013 eq, 0.0054 mmol) were dissolved in dry pyridine (500 ml) at ambient temperature under an argon atmosphere and with mechanical stirring. tert-Butyldiphenylchlorosilane (125.8 g, 119.0 ml, 1.1 eq, 0.458 mmol) was added in one portion. The reaction was stirred for 16 h at ambient temperature. TLC (RF 0.22, ethyl acetate) indicated a complete reaction. The solution was concentrated under reduced pressure to a thick oil. This was partitioned between dichloromethane (1 L) and saturated sodium bicarbonate (2×1 L) and brine (1 L). The organic layer was dried over sodium sulfate and concentrated under reduced pressure to a thick oil. The oil was dissolved in a 1:1 mixture of ethyl acetate and ethyl ether (600 ml) and the solution was cooled to −10°C. The resulting crystalline product was collected by filtration, washed with ethyl ether (3×200 ml) and dried (40°C, 1 mm Hg, 24 h) to 149 g (74.8%) of white solid. TLC and NMR were consistent with pure product.

5′-O-tert-Butyldiphenylisilyl-2′-O-(2-hydroxyethyl)-5-methyluridine

[0157] In a 2 L stainless steel, unstirred pressure reactor was added borane in tetrahydrofuran (1.0 M, 2.0 eq, 622 ml). In the fume hood and with manual stirring, ethylene glycol (350 ml, excess) was added cautiously at first until the evolution of hydrogen gas subsided. 5′-O-tert-Butyldiphenylisilyl-O2′-2′-anhydro-5-methyluridine (149 g, 0.311 mol)) and sodium bicarbonate (0.074 g, 0.003 eq) were added with manual stirring. The reactor was sealed and heated in an oil bath until an internal temperature of 160°C was reached and then maintained for 16 h (pressure=100 psi). The reaction vessel was cooled to ambient and opened. TLC (RF 0.67 for desired product and RF 0.82 for ara-T side product, ethyl acetate) indicated about 70% conversion to the product. In order to avoid additional side product formation, the reaction was stopped, concentrated under reduced pressure (10 to 1 mm Hg) in a warm water bath (90-100°C) with the more extreme conditions used to remove the ethylene glycol. [Alternatively, once the low boiling solvent is gone, the remaining solution can bepartitioned between ethyl acetate and water. The product will be in the organic phase.] The residue was purified by column chromatography (2 kg silica gel, ethyl acetate-hexanes gradient 1:1 to 4:1). The appropriate fractions were combined, stripped and dried to produce as a white crips from (84 g, 50%), contaminated starting material (17.4 g) and pure reusable starting material 20 g. The yield based on starting material less pure recovered starting material was 58%. TLC and NMR were consistent with 99% pure product.

2′-O-[(2-Phthalimidoxyethyl)-5′-tert-butyldiphenylisilyl-5-methyluridine

[0158] 5′-O-tert-Butyldiphenylisilyl-2′-O-(2-hydroxyethyl)-5-methyluridine (20 g, 36.98 mmol) was mixed with triphenyolphosphine (11.63 g, 44.36 mmol) and N-hydroxyphthalimide (7.24 g, 44.36 mmol). It was then dried over P2O5 under high vacuum for two days at 40°C. The reaction mixture was flushed with argon and dry THF (369.8 mL, Aldrich, sure seal bottle) was added to get a clear solution. Diethyl azodicarboxylate (6.98 mL, 44.36 mmol) was added dropwise to the reaction mixture. The rate of addition is maintained such that resulting deep red coloration is just discharged before adding the next drop. After the addition was complete, the reaction was stirred for 4 hrs. By that time TLC showed the completion of the reaction (ethylacetate: hexane, 60:40). The solvent was evaporated under vacuum. Residue obtained was placed on a flash column and eluted with ethyl acetate/hexane (60:40), to get 2′-O-[(2-phthalimidoxyethyl)-5′-tert-butyldiphenylisilyl-5-methyluridine as white foam (21.819 g, 86%).

5′-O-tert-butyldiphenylisilyl-2′-O-[(2-formadoximinoxyethyl)-5-methyluridine

[0159] 2′-O-[(2-phthalimidoxyethyl)-5′-tert-butyldiphenylisilyl-5-methyluridine (3.1 g, 4.5 mmol) was dissolved in dry CH2Cl2 (4.5 mL) and methylhydrazine (300 mL, 4.64 mmol) was added dropwise at −10°C to 0°C. After 1 h the mixture was filtered, the filtrate was washed with ice cold CH2Cl2 and the combined-organic phase was washed with water, brine and dried over anhydrous Na2SO4. The solution was concentrated to get 2′-O-(aminooxyethyl) thymidine, which was then dissolved in MeOH (67.5 mL). To this formaldehyde (20% aqueous solution, w/w, 1.1 eq) was added and the resulting mixture was stirred for 1 h. Solvent was removed under vacuum; residue chromatographed to get 5′-O-tert-butyldiphenylisilyl-2′-O-[(2-formadoximinoxyethyl)-5-methyluridine as white foam (1.95 g, 78%).

5′-O-tert-Butyldiphenylisilyl-2′-O-[(N,N-diethylaminooxyethyl)-5-methyluridine

[0160] 5′-O-tert-Butyldiphenylisilyl-2′-O-[(2-formadoximinoxyethyl)-5-methyluridine (1.77 g, 3.12 mmol) was dissolved in a solution of 1M pyridinium p-toluenesulfonate (PPTS) in dry MeOH (30.6 mL). Sodium cyanoborohydride (0.39 g, 6.13 mmol) was added to this solution at 10°C under inert atmosphere. The reaction mixture was stirred for 10 minutes at 10°C. After that the reaction vessel was removed from the ice bath and stirred at room temperature for 2 h, the reaction monitored by TLC (5% MeOH in CH2Cl2). Aqueous NaHCO3 solution (5%, 10 mL) was added and extracted with ethyl acetate. Evaporated to dryness. The residue was dissolved in a solution of 1M PPTS in MeOH (30.6 mL). Formaldehyde (20% w/w, 30 mL, 3.37 mmol) was added and the reaction mixture was stirred at room temperature for 10 minutes. Reaction mixture cooled to 10°C in an ice bath, sodium cyanoborohydride (0.39 g, 6.13 mmol) was added and reaction mixture stirred at 10°C for 10 minutes. After 10 minutes, the reaction mixture was removed from the ice bath and stirred at room temperature for 2 h. To the reaction mixture 5% NaHCO3 (25 mL) solution was added and extracted with ethyl acetate. The ethyl acetate layer was dried over anhydrous Na2SO4 and evaporated to dryness. The residue obtained was purified by flash column chromatography and eluted with 5% MeOH in CH2Cl2 to get 5′-O-tert-butyldiphenylisilyl-2′-O-[(2-formadoximinoxyethyl)-5-methyluridine.
nylsilyl-2'-O—[N,N-dimethylaminoxyethyl]-5-methyluridine as a white foam (14.6 g, 80%).

2'-O-(dimethylaminoxyethyl)-5-methyluridine

[0161] Triethylamine trihydrochloride (3.91 mL, 24.0 mmol) was dissolved in dry THF and triethylamine (1.67 mL, 12 mmol, dry, kept over KOH). This mixture of triethylamine

2HCl was then added to 5'-O-tert-butylidiphenylsilyl-2'-O—[N,N-dimethylaminoxyethyl]-5-methyluridine (1.40 g, 2.4 mmol) and stirred at room temperature for 24 hrs. Reaction

was monitored by TLC (5% MeOH in CH₂Cl₂). Solvent was removed under vacuum and the residue placed on a flash column and eluted with 10% MeOH in CH₂Cl₂ to get 2'-O-(dimethylaminoxyethyl)-5-methyluridine (766 mg, 92.5%).

5'-O-DMT-2'-O-(dimethylaminoxyethyl)-5-methyluridine

[0162] 2'-O-(dimethylaminoxyethyl)-5-methyluridine (750 mg, 2.17 mmol) was dried over P₂O₅ under high vacuum overnight at 40°C. It was then co-evaporated with anhydrous pyridine (20 mL). The residue obtained was dissolved in pyridine (11 mL) under argon atmosphere. 4-dimethylamino-

pyridine (26.5 mg, 0.26 mmol), 4,4'-dimethoxyethyl chloride (890 mg, 2.60 mmol) was added to the mixture and the reaction mixture was stirred at room temperature until all of the starting material disappeared. Pyridine was removed under vacuum and the residue chromatographed and eluted with 10% MeOH in CH₂Cl₂ (containing a few drops of pyridine) to get 5'-O-DMT-2'-O-(dimethylaminoxyethyl)-5-

methyluridine (1.13 g, 80%).

5'-O-DMT-2'-O-(2-N,N-dimethylaminoxyethyl)-5-

methyluridine-3'-[(2-cyanoethyl)-N,N-diisopropyl-

phosphoramidite]

[0163] 5'-O-DMT-2'-O-(dimethylaminoxyethyl)-5-methyluridine (1.08 g, 1.67 mmol) was co-evaporated with toluene (20 mL). To the residue N,N-diisopropylamine tert-

zonic (0.29 g, 1.67 mmol) was added and dried over P₂O₅, under high vacuum overnight at 40°C. Then the reaction mixture was dissolved in anhydrous acetone (8.4 mL) and 2-cyanoethyl-N,N,N',N'-tetraisopropylphosphoramidite (2.12 mL, 6.08 mmol) was added. The reaction mixture was stirred at ambient temperature for 4 hrs under inert atmosphere. The progress of the reaction was monitored by TLC (hexane:ethyl acetate 1:1). The solvent was evaporated, then the residue was dissolved in ethyl acetate (70 mL) and washed with 5% aqueous NaHCO₃ (40 mL). Ethyl acetate layer was dried over anhydrous Na₂SO₄ and concentrated. Residue obtained was chromatographed (ethyl acetate as eluent) to get 5'-O-DMT-2'-O-(2-N,N-dimethylaminoxyethyl)-5-methyl-

uridine-3'-[(2-cyanoethyl)-N,N-diisopropylphosphoramidite] as a foam (1.04 g, 74.9%).

2'-O-(Aminoxyethoxy) nucleoside amides

[0164] 2'-O-(Aminoxyethoxy) nucleoside amides [also known in the art as 2'-O-(aminooxyethoxy) nucleoside amides] are prepared as described in the following paragraphs. Adenosine, cytidine and thymidine nucleoside amides are prepared similarly.

N₂-isobutyl-6-O-diphenylcarbamoyl-2'-O-(ethy-

lacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-[(2-

cyanoethyl)-N,N-diisopropylphosphoramidite]

[0165] The 2'-O-aminoxyethoxy guanosine analog may be obtained by selective 2'-O-alkylation of diaminopurine ribo-

side. Multigram quantities of diaminopurine riboside may be purchased from Schering AG (Berlin) to provide 2'-O-(2-ethy lacetyl) diaminopurine riboside along with a minor amount of the 3'-O-isomer. 2'-O-(2-ethy lacetyl) diaminopurine riboside may be resolved and converted to 2'-O-(2-ethy lacetyl)guanosine by treatment with adenosine deaminase. (McGee et al., International Patent Publication No. WO 94/02510). Standard protection procedures should afford 2'-O-(2-ethy lacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine and 2'-N-isobutyryl-6-O-diphenylcarbamoyl-2'-O-(2-ethy-

lacetyl)-5'-O-(4,4'-dimethoxytrityl)guanosine which may be reduced to provide 2-N-isobutyryl-6-O-diphenylcarbamoyl-

2'-O-(2-hydroxyethyl)-5'-O-(4,4'-dimethoxytrityl)gua-

nosine. As before the hydroxyl group may be displaced by N-hydroxyshephalaminide via a Mitsunobu reaction, and the protected nucleoside may phosphorylated as usual to yield 2'-N-isobutyryl-6-O-diphenylcarbamoyl-2'-O-[2-pyhalmidoxyl ethyl]-5'-O-(4,4'-dimethoxytrityl)guanosine-3'-[(2-

cyanoethyl)-N,N-diisopropylphosphoramidite].

2'-dimethy laminoethoxyethoxy (2'-DMAEOE) nucleoside amides

[0166] 2'-dimethy laminoethoxyethoxy nucleoside amides (also known in the art as 2'-O-dimethylaminoethoxy-

ethyl, i.e., 2'-O—CH₂—O—CH₂—N(CH₃)₂, or 2'-DMAEOE nucleoside amides) are prepared as follows. Other nucleoside amides are prepared similarly.

2'-O-[2-(N,N-dimethylaminoethoxy)ethyl]-5-methyl-

uridine

[0167] 2'-O-(Dimethyl amino)ethoxy ethanomaly (Aldrich, 6.66 g, 50 mmol) is slowly added to a solution of borane in tetrahydrofuran (1 M, 10 mL, 10 mmol) with stirring in a 100 mL bomb. Hydrogen gas evolves as the solid dissolves. 0.25-

2'-anhydro-5-methyluridine (1.2 g, 5 mmol), and sodium bicarbonate (2.5 mg) are added and the bomb is sealed, placed in an oil bath and heated to 155°C for 26 hours. The bomb is cooled to room temperature and opened. The crude solution is concentrated and the residue partitioned between water (200 mL) and hexanes (200 mL). The excess phenol is extracted into the hexane layer. The aqueous layer is extracted with ethyl acetate (3x200 mL) and the combined organic layers are washed once with water, dried over anhydrous sodium sulfate and concentrated. The residue is columned on silica gel using methanol/methylene chloride 1:20 (which has 2% triethyl-

lanine) as the eluent. As the column fractions are concentrated a colorless solid forms which is collected to give the title compound as a white solid.

5'-O-dimethoxytrityl-2'-O—[2-(N,N-dimethylami-

noethoxyethoxy)ethyl]-5-methyl uridine

[0168] To 0.5 g (1.3 mmol) of 2'-O-[2-(N,N-dimethylami-

noethoxyethoxy)ethyl]-5-methyl uridine in anhydrous pyridine (8 mL), triethylamine (0.36 mL) and dimethoxytrityl chloride (DMT-Cl, 0.87 g, 2 eq.) are added and stirred for 1 hour. The reaction mixture is poured into water (200 mL) and extracted with CH₂Cl₂ (2x200 mL). The combined CH₂Cl₂ layers are washed with saturated NaHCO₃ solution, followed by saturated NaCl solution and dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica gel chromatog-
raphy using MeOH:CH₂Cl₂:Et₃N (20:1, v/v, with 1% triethylamine) gives the title compound.

5′-O-Dimethoxytrityl-2′-O-{2(N,N-dimethylamino-ethoxy)ethyl}]-5-methyl uridine-3′-O-(cyanoethyl-N,N-diisopropyl)phosphoramidite

[0169] Disopropylaminotetrazolide (0.6 g) and 2-cyanoethoxy-N,N-diisopropyl phosphoramidite (1.1 mL, 2 eq.) are added to a solution of 5′-O-dimethoxytrityl-2′-O-{2(N,N-dimethylamino-ethoxy)ethyl}]-5-methyluridine (2.17 g, 3 mmol) dissolved in CH₂Cl₂ (20 mL) under an atmosphere of argon. The reaction mixture is stirred overnight and the solvent evaporated. The resulting residue is purified by silica gel flash column chromatography with ethyl acetate as the eluent to give the title compound.

Example 2
Oligonucleotide Synthesis

[0170] Unsubstituted and substituted phosphoester (P=O) oligonucleotides are synthesized on an automated DNA synthesizer (Applied Biosystems model 380B) using standard phosphoramidite chemistry with oxidation by iodine.

[0171] Phosphorothioates (P=S) are synthesized as for the phosphodiester oligonucleotides except the standard oxidation bottle was replaced by 2.0 M solution of 3H-1,2-benzodithiole-3-one, 1,1-dioxide in acetonitrile for the stepwise thiation of the phosphite linkages. The thiation wait step was increased to 68 sec and was followed by the capping step.

After cleavage from the CPG column and deblocking in concentrated ammonium hydroxide at 55° C. (18 h), the oligonucleotides were purified by precipitating twice with 2.5 volumes of ethanol from a 0.5 M NaCl solution. Phosphonate oligonucleotides are prepared as described in U.S. Pat. No. 5,508,270, herein incorporated by reference.

[0172] Alkyl phosphonate oligonucleotides are prepared as described in U.S. Pat. No. 4,469,863, herein incorporated by reference.

[0173] 3′-Deoxy-3′-methylene phosphonate oligonucleotides are prepared as described in U.S. Pat. No. 5,610,289 or 5,625,050, herein incorporated by reference.

[0174] Phosphoramidite oligonucleotides are prepared as described in U.S. Pat. No. 5,256,775 or U.S. Pat. No. 5,366,878, herein incorporated by reference.

[0176] 3′-Deoxy-3′-amino phosphoramidate oligonucleotides are prepared as described in U.S. Pat. No. 5,476,925, herein incorporated by reference.

[0177] Phosphorothioester oligonucleotides are prepared as described in U.S. Pat. No. 5,023,243, herein incorporated by reference.

[0178] Boron phosphate oligonucleotides are prepared as described in U.S. Pat. Nos. 5,130,302 and 5,177,198, both herein incorporated by reference.

Example 3
Oligonucleotide Synthesis

[0179] Methyleneamino linked oligonucleosides, also identified as MMI linked oligonucleosides, methylene-

(phosphorylated) linked oligonucleosides are prepared as described in U.S. Pat. Nos. 5,264,562 and 5,264,564, herein incorporated by reference.

[0180] Formacetal and thioformacetal linked oligonucleosides are prepared as described in U.S. Pat. No. 5,223,618, herein incorporated by reference.

Example 4
PNA Synthesis

[0182] Peptide nucleic acids (PNAs) are prepared in accordance with any of the various procedures referred to in Peptide Nucleic Acids (PNA): Synthesis, Properties and Potential Applications, Bioorganic & Medicinal Chemistry, 1996, 4, 5-23. They may also be prepared in accordance with U.S. Pat. Nos. 5,539,082, 5,700,922, and 5,719,262, herein incorporated by reference.

Example 5
Synthesis of Chimeric Oligonucleotides

[0183] Chimeric oligonucleotides, oligonucleosides or mixed oligonucleotides/oligonucleosides of the invention can be of several different types. These include a first type wherein the “gap” segment of linked nucleosides is positioned between 5′ and 3′ “wing” segments of linked nucleosides and a second “open end” type wherein the “gap” segment is located at either the 3′ or the 5′ terminus of the oligomer compound. Oligonucleotides of the first type are also known in the art as “gapmers” or gapped oligonucleotides. Oligonucleotides of the second type are also known in the art as “hemimers” or “wingmers”.

[2′-O-Me]-[2′-deoxy]-[2′-O-Me]
Chimeric Phosphorothioate Oligonucleotides

[0184] Chimeric oligonucleotides having 2′-O-alkyl phosphorothioate and 2′-deoxy phosphorothioate oligonucleotide segments are synthesized using an Applied Biosystems automated DNA synthesizer Model 380B, as above. Oligonucleotides are synthesized using the automated synthesizer and 2′-deoxy-5′-dimethoxytrityl-3′-O-phosphoramidite for the DNA portion and 5′-dimethoxytrityl-2′-O-methyl-3′-O-phosphoramidite for 5′ and 3′ wings. The standard synthesis cycle is modified by increasing the wait step after the delivery of tetrazole and base to 600 s repeated four times for RNA and twice for 2′-O-methyl. The fully protected oligonucleotide is cleaved from the support and the phosphate group is deprotected in 3:1 ammonia/ethanol at room temperature overnight then lyophilized to dryness. Treatment in methanolic ammonia for 24 hrs at room temperature is then done to deprotect all bases and sample was again lyophilized to dryness. The pellet is resuspended in 1M THF in THF for 24 hrs at room temperature to deprotect the 2′ positions. The reaction is then...
quenched with 1M TEAA and the sample is then reduced to \(\frac{1}{2} \) volume by rotovac before being desalted on a G25 size exclusion column. The oligo recovered is then analyzed spectrophotometrically for yield and for purity by capillary electrophoresis and by mass spectrometry.

\[
[2'-O-(2'-Methoxyethyl)]-[2'-deoxy]-[2'-O-(Methoxyethyl)] \text{ Chimeric Phosphorothioate Oligonucleotides}
\]

[0185] [2'-O-(2'-methoxyethyl)]-[2'-deoxy]-[2'-O-(methoxyethyl)] chimeric phosphorothioate oligonucleotides were prepared as per the procedure above for the 2'-O-methyl chimeric oligonucleotide, with the substitution of 2'-O-(methoxyethyl) amides for the 2'-O-methyl amides.

\[
[2'-O-(2'-Methoxyethyl)]\text{Phosphodiester]-[2'-deoxy Phosphorothioate-[2'-O-(2'-Methoxyethyl) Phosphodiester]} \text{ Chimeric Oligonucleotides}
\]

[0186] [2'-O-(2'-methoxyethyl phosphodiester]-[2'-deoxy phosphorothioate]-[2'-O-(methoxyethyl) phosphodiester] chimeric oligonucleotides are prepared as per the above procedure for the 2'-O-methyl chimeric oligonucleotide with the substitution of 2'-O-(methoxyethyl) amides for the 2'-O-methyl amides, oxidation with iodine to generate the phosphodiester internucleotide linkages within the wing portions of the chimeric structures and sulfuration utilizing 3,11,12 benzodithiole-3-one 1,1-dioxide (Beaucage Reagent) to generate the phosphorothioate internucleotide linkages for the center gap.

[0187] Other chimeric oligonucleotides, chimeric oligonucleosides and mixed chimeric oligonucleotides/oligonucleosides are synthesized according to U.S. Pat. No. 5,623,065, herein incorporated by reference.

Example 6
Oligonucleotide Isolation

[0188] After cleavage from the controlled pore glass column (Applied Biosystems) and deblocking in concentrated ammonium hydroxide at 55 °C for 18 hours, the oligonucleotides or oligonucleosides are purified by precipitation twice out of 0.5 M NaCl with 2.5 volumes ethanol. Synthesized oligonucleotides were analyzed by polyacrylamide gel electrophoresis on denaturing gels and judged to be at least 85% full-length material. The relative amounts of phosphorothioate and phosphodiester linkages obtained in synthesis were periodically checked by \(^{31} \text{P} \) nuclear magnetic resonance spectroscopy, and for some studies oligonucleotides were purified by HPLC, as described by Chiang et al., \textit{J. Biol. Chem.} 1991, 266, 18162-18171. Results obtained with HPLC-purified material were similar to those obtained with non-HPLC purified material.

Example 7
Oligonucleotide Synthesis—96 Well Plate Format

[0189] Oligonucleotides were synthesized via solid phase P(III) phosphoramidite chemistry on an automated synthesizer capable of assembling 96 sequences simultaneously in a standard 96 well format. Phosphodiester internucleotide linkages are afforded by oxidation with aqueous iodine. Phosphorothioate internucleotide linkages were generated by sulfurization utilizing 3,11,12 benzodithiole-3-one 1,1-dioxide (Beaucage Reagent) in anhydrous acetonitrile. Standard base-protected beta-cyanoethylidiosopropyl phosphoramidites were purchased from commercial vendors (e.g. PE-Applied Biosystems, Foster City, Calif., or Pharmacia, Piscataway, N.J.). Non-standard nucleosides are synthesized as per known literature or patented methods. They are utilized as base protected beta-cyanoethylidiosopropyl phosphoramidites.

[0190] Oligonucleotides were cleaved from support and deprotected with concentrated NH4OH at elevated temperature (55-60 °C) for 12-16 hours and the released product then dried in vacuo. The dried product was then re-suspended in sterile water to afford a master plate from which all analytical and test plate samples are then diluted utilizing robotic pipetors.

Example 8
Oligonucleotide Analysis—96 Well Plate Format

[0191] The concentration of oligonucleotide in each well was assessed by dilution of samples and UV absorption spectroscopy. The full-length integrity of the individual products was evaluated by capillary electrophoresis (CE) in either the 96 well format (Beckman P/ACE™ MDQ) or, for individually prepared samples, on a commercial CE apparatus (e.g., Beckman P/ACE™ 5000, ABI 270). Base and backbone composition was confirmed by mass analysis of the compounds utilizing electrospray-mass spectroscopy. All assay test plates were diluted from the master plate using single and multi-channel robotic pipetors. Plates were judged to be acceptable if at least 85% of the compounds on the plate were at least 85% full length.

Example 9
Cell Culture and Oligonucleotide Treatment

[0192] The effect of antisense compounds on target nucleic acid expression can be tested in any of a variety of cell types provided that the target nucleic acid is present at measurable levels. This can be routinely determined using, for example, PCR or Northern blot analysis. The following seven cell types are provided for illustrative purposes, but other cell types can be routinely used, provided that the target is expressed in the cell type chosen. This can be readily determined by methods routine in the art, for example Northern blot analysis, Ribonuclease protection assays, or RT-PCR.

T-24 Cells:

[0193] The human transitional cell bladder carcinoma cell line T-24 was obtained from the American Type Culture Collection (ATCC) (Manassas, Va.). T-24 cells were routinely cultured in complete McCoy’s 5A basal media (Gibco/Life Technologies, Gaithersburg, Md.) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, Md.), penicillin 100 units per mL, and streptomycin 100 µg/mL. (Gibco/Life Technologies, Gaithersburg, Md.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

[0194] For Northern blotting or other analysis, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

A549 Cells:

[0195] The human lung carcinoma cell line A549 was obtained from the American Type Culture Collection (ATCC)
A549 cells were routinely cultured in DMEM basal media (Gibco/Life Technologies, Gaithersburg, Md.) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, Md.), penicillin 100 units per ml., and streptomycin 100 μg/ml (Gibco/Life Technologies, Gaithersburg, Md.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence.

NHDF Cells:

Human neonatal dermal fibroblast (NHDF) were obtained from the Clonetix Corporation (Walkersville Md.). NHDF's were routinely maintained in Fibroblast Growth Medium (Clonetix Corporation, Walkersville Md.) supplemented as recommended by the supplier. Cells were maintained for up to 10 passages as recommended by the supplier.

HEK Cells:

Human embryonic keratinocytes (HEK) were obtained from the Clonetix Corporation (Walkersville Md.). HEKs were routinely maintained in Keratinocyte Growth Medium (Clonetix Corporation, Walkersville Md.) formulated as recommended by the supplier. Cells were routinely maintained for up to 10 passages as recommended by the supplier.

HepG2 Cells:

The human hepatoblastoma cell line HepG2 was obtained from the American Type Culture Collection (Manassas, Va.). HepG2 cells were routinely cultured in Eagle's MEM supplemented with 10% fetal calf serum, non-essential amino acids, and 1 mM sodium pyruvate (Gibco/Life Technologies, Gaithersburg, Md.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

AML12 cells:

AML12 (alpha mouse liver 12) cell line was established from hepatocytes from a mouse (CD1 strain, line MT142) transgenic for human TGF alpha. Cells are cultured in a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F12 medium with 0.005 mg/ml insulin, 0.005 mg/ml transferrin, 5ug/ml selenium, and 40 ng/ml dexamethasone, and 90%; 10% fetal bovine serum. For subculturing, spent medium is removed; and fresh media of 0.05% trypsin, 0.03% EDTA solution is added. Fresh trypsin solution (1 to 2 ml) is added and the culture is left to sit at room temperature until the cells detach.

Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 7000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analyses, cells may be seeded onto 100 mm or other standard tissue culture plates and treated similarly, using appropriate volumes of medium and oligonucleotide.

b.END Cells:

The mouse brain endothelial cell line b.END was obtained from Dr. Werner Risau at the Max Plank Institute (Bad Nauheim, Germany). b.END cells were routinely cultured in DMEM, high glucose (Gibco/Life Technologies, Gaithersburg, Md.) supplemented with 10% fetal calf serum (Gibco/Life Technologies, Gaithersburg, Md.). Cells were routinely passaged by trypsinization and dilution when they reached 90% confluence. Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 3000 cells/well for use in RT-PCR analysis.

Primary Mouse Hepatocytes:

Primary mouse hepatocytes were prepared from CD-1 mice purchased from Charles River Labs (Wilmington, Mass.) and were routinely cultured in Hepatocyte Attachment Media (Gibco) supplemented with 10% Fetal Bovine Serum (Gibco/Life Technologies, Gaithersburg, Md.), 250 nM dexamethasone (Sigma), and 10 nM bovine insulin (Sigma). Cells were seeded into 96-well plates (Falcon-Primaria #3872) at a density of 10000 cells/well for use in RT-PCR analysis.

For Northern blotting or other analyses, cells are plated onto 100 mm or other standard tissue culture plates coated with rat tail collagen (200 μg/mL) (Becton Dickinson) and treated similarly using appropriate volumes of medium and oligonucleotide.

Treatment with Antisense Compounds:

When cells reached 80% confluency, they were treated with oligonucleotide. For cells grown in 96-well plates, wells were washed once with 200 μL OPTI-MEM™-1 reduced-serum medium (Gibco BRL) and then treated with 130 μL of OPTI-MEM™-1 medium containing 3.75 μg/mL LIPOFECTIN™ reagent (Gibco BRL) and the desired concentration of oligonucleotide. After 4-7 hours of treatment, the medium was replaced with fresh medium. Cells were harvested 16-24 hours after oligonucleotide treatment.

The concentration of oligonucleotide used varies from cell line to cell line. To determine the optimal oligonucleotide concentration for a particular cell line, the cells are treated with a positive control oligonucleotide at a range of concentrations. For human cells the positive control oligonucleotide is ISIS 13920, TCCGTATCGCTCTCACGGG, SEQ ID NO: 1, a 2′-O-methoxymethyl gapmer (2′-O-methoxymethyl shown in bold) with a phosphorothioate backbone which is targeted to human H-ras. For mouse or rat cells the positive control oligonucleotide is ISIS 15770, ATGCATCTGCCCCAAGGA, SEQ ID NO: 2, a 2′-O-methoxymethyl gapmer (2′-O-methoxymethyl shown in bold) with a phosphorothioate backbone which is targeted to both mouse and rat c-ras.

The concentration of positive control oligonucleotide that results in 80% inhibition of c-Ha-ras (for ISIS 13920) or c-ras (for ISIS 15770) mRNA is then utilized as the screening concentration for new oligonucleotides in subsequent experiments for that cell line. If 80% inhibition is not achieved, the lowest concentration of positive control oligonucleotide that results in 60% inhibition of H-ras or c-ras mRNA is then utilized as the oligonucleotide screening concentration in subsequent experiments for that cell line. If 60% inhibition is not achieved, that particular cell line is deemed as unsuitable for oligonucleotide transfection experiments.

Example 10
Analysis of Oligonucleotide Inhibition of Stearoyl-CoA Desaturase Expression

Antisense modulation of stearoyl-CoA desaturase expression can be assayed in a variety of ways known in the
art. For example, stearoyl-CoA desaturase mRNA levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or real-time PCR (RT-PCR). Real-time quantitative PCR is presently preferred. RNA analysis can be performed on total cellular RNA or poly(A)+ mRNA. Methods of RNA isolation are taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.1.1-4.2.9 and 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Northern blot analysis is routine in the art and is taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.2.1-4.2.9, John Wiley & Sons, Inc., 1996. Real-time quantitative PCR can be conveniently accomplished using the commercially available ABI PRISM™ 7700 Sequence Detection System, available from PE- Applied Biosystems, Foster City, Calif., and used according to manufacturer’s instructions.

[0209] Protein levels of stearoyl-CoA desaturase can be quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), ELISA or fluorescence-activated cell sorting (FACS). Antibodies directed to stearoyl-CoA desaturase can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional antibody generation methods. Methods for preparation of polyclonal antisera are taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.12.1-11.12.9, John Wiley & Sons, Inc., 1997. Preparation of monoclonal antibodies is taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.4.1-11.11.5, John Wiley & Sons, Inc., 1997.

[0210] Immunoprecipitation methods are standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.16.1-10.16.11, John Wiley & Sons, Inc., 1998. Western blot (immunoblot) analysis is standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 10.8.1-10.8.21, John Wiley & Sons, Inc., 1997. Enzyme-linked immunosorbent assays (ELISA) are standard in the art and can be found at, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 2, pp. 11.2.1-11.2.22, John Wiley & Sons, Inc., 1991.

Example 11

Poly(A)+ mRNA Isolation

[0211] Poly(A)+ mRNA was isolated according to Miura et al., Clin. Chem., 1996, 42, 1758-1764. Other methods for poly(A)+ mRNA isolation are taught in, for example, Ausubel, F. M. et al., Current Protocols in Molecular Biology, Volume 1, pp. 4.5.1-4.5.3, John Wiley & Sons, Inc., 1993. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 µL cold PBS, 60 µL lysis buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.5 M NaCl, 0.5% NP-40, 20 mM vanadyl-ribonucleoside complex) was added to each well, the plate was gently agitated and then incubated at room temperature for five minutes. 55 µL of lysate was transferred to Oligo d(T) coated 96-well plates (ACGT Inc., Irvine Calif.). Plates were incubated for 60 minutes at room temperature, washed 3 times with 200 µL of wash buffer (10 mM Tris-HCl pH 7.6, 1 mM EDTA, 0.5 M NaCl). After the final wash, the plate was blotted on paper towels to remove excess wash buffer and then air-dried for 5 minutes. 60 µL of elution buffer (5 mM Tris-HCl pH 7.6, preheated to 70°C) was added to each well, the plate was incubated on a 90°C hot plate for 5 minutes, and the eluate was then transferred to a fresh 96-well plate.

[0212] Cells grown on 100 mm or other standard plates may be treated similarly, using appropriate volumes of all solutions.

Example 12

Total RNA Isolation

[0213] Total RNA was isolated using an RNEASY™ kit and buffers purchased from Qiagen Inc. (Valencia Calif.) following the manufacturer’s recommended procedures. Briefly, for cells grown on 96-well plates, growth medium was removed from the cells and each well was washed with 200 µL cold PBS. 100 µL Buffer RLT was added to each well and the plate vigorously agitated for 20 seconds. 100 µL of 70% ethanol was then added to each well and the contents mixed by pipetting three times up and down. The samples were then transferred to the RNEASY 96™ well plate attached to a QIAVAC™ manifold fitted with a waste collection tray and attached to a vacuum source. Vacuum was applied for 15 seconds, 1 mL of Buffer RW1 was added to each well of the RNEASY 96™ plate and the vacuum again applied for 15 seconds. 1 mL of Buffer RPE was then added to each well of the RNEASY 96™ plate and the vacuum applied for a period of 15 seconds. The Buffer RPE wash was then repeated and the vacuum was applied for an additional 10 minutes. The plate was then removed from the QIAVAC™ manifold and blotted dry on paper towels. The plate was then re-attached to the QIAVAC™ manifold fitted with a collection tube rack containing 1.2 mL collection tubes. RNA was then eluted by pipetting 60 µL water into each well, incubating 1 minute, and then applying the vacuum for 30 seconds. The elution step was repeated with an additional 60 µL water.

[0214] The repetitive pipetting and elution steps may be automated using a QIAGEN Bio-Robot 9004 (Qiagen, Inc., Valencia Calif.). Essentially, after lysing of the cells on the culture plate, the plate is transferred to the robot deck where the pipetting, DNase treatment and elution steps are carried out.

Example 13

Real-time Quantitative PCR Analysis of stearoyl-CoA desaturase mRNA Levels

[0215] Quantitation of stearoyl-CoA desaturase mRNA levels was determined by real-time quantitative PCR using the ABI PRISM™ 7700 Sequence Detection System (PE- Applied Biosystems, Foster City, Calif.) according to manufacturer’s instructions. This is a closed-tube, non-gel-based, fluorescence detection system which allows high-throughput quantitation of polymerase chain reaction (PCR) products in real-time. As opposed to standard PCR, in which amplification products are quantitated after the PCR is completed, products in real-time quantitative PCR are quantitated as they accumulate. This is accomplished by including in the PCR reaction an oligonucleotide probe that anneals specifically between the forward and reverse PCR primers, and contains two fluorescent dyes. A reporter dye (e.g., JOE, FAM, or VIC, obtained from either Operon Technologies Inc., Alameda, Calif. or PE- Applied Biosystems, Foster City, Calif.) is
attached to the 5' end of the probe and a quencher dye (e.g., TAMRA, obtained from either Operon Technologies Inc., Alameda, Calif. or PE-Applied Biosystems, Foster City, Calif.) is attached to the 3' end of the probe. When the probe and dyes are intact, reporter dye emission is quenched by the proximity of the 3' quencher dye. During amplification, annealing of the probe to the target sequence creates a substrate that can be cleaved by the 5'-exonuclease activity of Taq polymerase. During the extension phase of the PCR amplification cycle, cleavage of the probe by Taq polymerase releases the reporter dye from the remainder of the probe (and hence from the quencher moiety) and a sequence-specific fluorescent signal is generated. With each cycle, additional reporter dye molecules are cleaved from their respective probes, and the fluorescence intensity is monitored at regular intervals by laser optics built into the ABI PRISM™ 7700 Sequence Detection System. In each assay, a series of parallel reactions containing serial dilutions of mRNA from untreated control samples generates a standard curve that is used to quantitate the percent inhibition after antisense oligonucleotide treatment of test samples.

[0216] Prior to quantitative PCR analysis, primer-probe sets specific to the target gene being measured are evaluated for their ability to be “multiplexed” with a GAPDH amplification reaction. In multiplexing, both the target gene and the internal standard gene GAPDH are amplified concurrently in a single sample. In this analysis, mRNA isolated from untreated cells is serially diluted. Each dilution is amplified in the presence of primer-probe sets specific for GAPDH only, target gene only (“single-plexing”), or both (multiplexing). Following PCR amplification, standard curves of GAPDH and target mRNA signal as a function of dilution are generated from both the single-plexed and multiplexed samples. If both the slope and correlation coefficient of the GAPDH and target signals generated from the multiplexed samples fall within 10% of their corresponding values generated from the single-plexed samples, the primer-probe set specific for that target is deemed multiplexable. Other methods of PCR are also known in the art.

[0217] PCR reagents were obtained from PE-Applied Biosystems, Foster City, Calif. RT-PCR reactions were carried out by adding 25 μL PCR cocktail (1xTAQMAN™ buffer A, 5.5 mM MgCl₂, 300 μM each of dATP, dCTP and dGTP, 600 μM of dUTP, 100 mM each of forward primer, reverse primer, and probe, 20 Units RNase inhibitor, 1.25 Units AMPLIFIKON GOLD™ reagent, and 12.5 Units MuLV reverse transcriptase) to 96 well plates containing 25 μL total RNA solution. The RT reaction was carried out in incubation for 30 minutes at 48°C. Following a 10 minute incubation at 95°C to activate the AMPLIFIKON GOLD™ reagent, 40 cycles of a two-step PCR protocol were carried out: 95°C for 15 seconds (denaturation) followed by 60°C for 1.5 minutes (annealing/extension).

[0218] Gene target quantities obtained by real time RT-PCR are normalized using either the expression level of GAPDH, a gene whose expression is constant, or by quantifying total RNA using RiboGreen™ reagent (Molecular Probes, Inc. Eugene, Oreg.). GAPDH expression is quantified by real time RT-PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RiboGreen™ RNA quantification reagent from Molecular Probes. Methods of RNA quantification by RiboGreen™ reagent are taught in Jones, I., et al, Analytical Biochemistry, 1998, 265, 368-374.

[0219] In this assay, 175 μL of RiboGreen™ working reagent (RiboGreen™ reagent diluted 1:2865 in 10 mM Tris-HCl, 1 mM EDTA, pH 7.5) is pipetted into a 96-well plate containing 25 μL purified, cellular RNA. The plate is read in a CytoFluor 4000 (PE Applied Biosystems) with excitation at 480 nm and emission at 520 nm.

[0220] Probes and primers to human stearoyl-CoA desaturase were designed to hybridize to a human stearoyl-CoA desaturase sequence, using published sequence information (GenBank accession number AF097514, incorporated herein as SEQ ID NO: 3). For human stearoyl-CoA desaturase the PCR primers were:

forward primer: GATCCCGGCCATCCGAGA (SEQ ID NO: 4)
reverse primer: GGTTAAGAGCTAGATCTCGTCTCTG (SEQ ID NO: 5) and the PCR probe was: FAM-CCAAGATGCGCCCACCTTG-CAM (SEQ ID NO: 6) where FAM (PE-Applied Biosystems, Foster City, Calif.) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, Calif.) is the quencher dye. For human GAPDH the PCR primers were:

forward primer: GAAGGTGAGGTCCGAGGCT (SEQ ID NO: 7)
reverse primer: GAAGATGGTCACTGGATCT (SEQ ID NO: 8) and the PCR probe was: 5'SOE-CAAAGTCCTCCGTC-TCCAGGCC-TAMRA 3' (SEQ ID NO: 9) where JOE (PE-Applied Biosystems, Foster City, Calif.) is the fluorescent reporter dye) and TAMRA (PE-Applied Biosystems, Foster City, Calif.) is the quencher dye.

Example 14

Northern Blot Analysis of Stearoyl-CoA Desaturase mRNA Levels

[0221] Eighteen hours after antisense treatment, cell monolayers were washed twice with cold PBS and lysed in 1 mL RNAZOL™ reagent (TEL-TEST "B" Inc., Friendswood, Tex.). Total RNA was prepared following manufacturer’s recommended protocols. Twenty micrograms of total RNA was fractionated by electrophoresis through 1.2% agarose gels containing 1.1% formaldehyde using a MOPS buffer system (AMRESCO, Inc. Solon, Ohio). RNA was transferred from the gel to HYBOND™-N+nylon membranes (Amersham Pharmacia Biotech, Piscataway, N.J.) by overnight capillary transfer using a Northern/Southern Transfer buffer system (TEL-TEST "B" Inc., Friendswood, Tex.). RNA transfer was confirmed by UV visualization. Membranes were fixed by UV cross-linking using a STRATALINKER™ UV Crosslinker 2400 apparatus (Stratagene, Inc, La Jolla, Calif.) and then probed using QUICKHYBTM hybridization solution (Stratagene, La Jolla, Calif.) using manufacturer’s recommendations for stringent conditions.

[0222] To detect human stearoyl-CoA desaturase, a human stearoyl-CoA desaturase specific probe was prepared by PCR using the forward primer GATCCCGGCCATCCGAGA (SEQ ID NO: 4) and the reverse primer GGTTAAGAGCTAGATCTCGTCTCTG (SEQ ID NO: 5). To normalize for variations in loading and transfer efficiency membranes were stripped and probed for human glyceroldehyde-3-phosphate dehydrogenase (GAPDH) RNA (Clontech, Palo Alto, Calif.).

[0223] Hybridized membranes were visualized and quantified using a PHOSPHORIMAGER™ apparatus and
Example 15

Antisense Inhibition of Human Stearyl-CoA Desaturase Expression by Chimeric Phosphorothioate Oligonucleotides Having 2'-MOE Wings and a Deoxy Gap

In accordance with the present invention, a series of oligonucleotides was designed to target different regions of the human stearyl-CoA desaturase RNA, using published sequence (GenBank accession number AF097514, incorporated herein as SEQ ID NO: 3). The oligonucleotides are shown in Table 1. “Target site” indicates the first (5’-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 1 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2’-deoxynucleotides, which is flanked on both sides (5’ and 3’ directions) by five-nucleotide “wings”. The wings are composed of 2'-methoxyethyl (2'-MOE) nucleotides. The internucleotide (backbone) linkages are phosphorothioate (P—S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. The compounds were analyzed for their effect on human stearyl-CoA desaturase mRNA levels in HepG2 cells by quantitative real-time PCR as described in other examples herein. Data are averages from two experiments. If present, “N.D.” indicates “no data”.

Table 1

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>REGION</th>
<th>TARGET SEQ ID NO</th>
<th>TARGET SITE</th>
<th>SEQUENCE</th>
<th>% INHIB</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>147999</td>
<td>5’-UTR</td>
<td>3</td>
<td>9</td>
<td>GTCGGGTAATTTCCTCAGCCC</td>
<td>N.D.</td>
<td>10</td>
</tr>
<tr>
<td>147900</td>
<td>5’-UTR</td>
<td>3</td>
<td>72</td>
<td>CCGCGGTAGGTGGAGTGCCC</td>
<td>N.D.</td>
<td>11</td>
</tr>
<tr>
<td>147901</td>
<td>5’-UTR</td>
<td>3</td>
<td>121</td>
<td>TACGCGCTAGGCAGGCCC</td>
<td>N.D.</td>
<td>12</td>
</tr>
<tr>
<td>147902</td>
<td>5’-UTR</td>
<td>3</td>
<td>141</td>
<td>GCCTTTTTCAAGGCGGGAGG</td>
<td>N.D.</td>
<td>13</td>
</tr>
<tr>
<td>147903</td>
<td>Coding</td>
<td>3</td>
<td>311</td>
<td>CCTCAATTCTGCGAAGGCTCT</td>
<td>N.D.</td>
<td>14</td>
</tr>
<tr>
<td>147904</td>
<td>Coding</td>
<td>3</td>
<td>471</td>
<td>TCCCAAGTGTATACGAGACA</td>
<td>N.D.</td>
<td>15</td>
</tr>
<tr>
<td>147905</td>
<td>Coding</td>
<td>3</td>
<td>571</td>
<td>CTCTCTGTTATATGCCAGG</td>
<td>N.D.</td>
<td>16</td>
</tr>
<tr>
<td>147906</td>
<td>Coding</td>
<td>3</td>
<td>691</td>
<td>CACGCGTGTCCAGCGCCCAT</td>
<td>N.D.</td>
<td>17</td>
</tr>
<tr>
<td>147907</td>
<td>Coding</td>
<td>3</td>
<td>771</td>
<td>CGGCAACCCCACTTGAGGAGA</td>
<td>22</td>
<td>18</td>
</tr>
<tr>
<td>147908</td>
<td>Coding</td>
<td>3</td>
<td>824</td>
<td>GCAAGCTTACGCTCTCCC</td>
<td>49</td>
<td>19</td>
</tr>
<tr>
<td>147909</td>
<td>Coding</td>
<td>3</td>
<td>1011</td>
<td>GTTCACCGGCCAGGCGCAT</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>147910</td>
<td>Coding</td>
<td>3</td>
<td>1111</td>
<td>TTTGGAAGCCCTACCCGACA</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>147911</td>
<td>Coding</td>
<td>3</td>
<td>1171</td>
<td>AGTTGTATGCGCCAGGTAC</td>
<td>6</td>
<td>22</td>
</tr>
<tr>
<td>147912</td>
<td>Stop Codon</td>
<td>3</td>
<td>1307</td>
<td>GAGCCCAAGAACACCCAGCAG</td>
<td>25</td>
<td>23</td>
</tr>
<tr>
<td>147913</td>
<td>3’-UTR</td>
<td>3</td>
<td>1581</td>
<td>TGCTCTGAGGCGCAATAAGG</td>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>147914</td>
<td>3’-UTR</td>
<td>3</td>
<td>1861</td>
<td>ATACATGCTACTCTCCCTCCC</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>147915</td>
<td>3’-UTR</td>
<td>3</td>
<td>1941</td>
<td>AAGGCTCTCATGAGTAGAGCA</td>
<td>37</td>
<td>26</td>
</tr>
<tr>
<td>147916</td>
<td>3’-UTR</td>
<td>3</td>
<td>2241</td>
<td>TATAATGAGGACAGTGAGGA</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>147917</td>
<td>3’-UTR</td>
<td>3</td>
<td>2616</td>
<td>TCAATACCTTCTCAAGCCC</td>
<td>0</td>
<td>28</td>
</tr>
<tr>
<td>147918</td>
<td>3’-UTR</td>
<td>3</td>
<td>2980</td>
<td>GAGGCTTCGTGAGCAGCCAG</td>
<td>16</td>
<td>29</td>
</tr>
<tr>
<td>147919</td>
<td>3’-UTR</td>
<td>3</td>
<td>3011</td>
<td>TCGGTGACCTGAGCTTCTCT</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>147920</td>
<td>3’-UTR</td>
<td>3</td>
<td>3231</td>
<td>TGCGGTGAGGACATGCCA</td>
<td>11</td>
<td>31</td>
</tr>
<tr>
<td>147921</td>
<td>3’-UTR</td>
<td>3</td>
<td>3291</td>
<td>GCATTCCCTCTGATTCTGAC</td>
<td>7</td>
<td>32</td>
</tr>
<tr>
<td>147922</td>
<td>3’-UTR</td>
<td>3</td>
<td>3471</td>
<td>GCTTTGATGCTCACTCCTGA</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>147923</td>
<td>3’-UTR</td>
<td>3</td>
<td>3502</td>
<td>GTGGATATCTGAACTCCAGG</td>
<td>0</td>
<td>34</td>
</tr>
</tbody>
</table>
TABLE 1 - continued

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>REGION</th>
<th>TARGET SEQ ID NO</th>
<th>TARGET SITE</th>
<th>TARGET SEQUENCE</th>
<th>% INHIB</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>147924</td>
<td>3' UTR</td>
<td>3</td>
<td>3791</td>
<td>TAGCCAGGTCAAACCTGG</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>147925</td>
<td>3' UTR</td>
<td>3</td>
<td>3851</td>
<td>GTGATCTCCCTAGGCTCT</td>
<td>0</td>
<td>36</td>
</tr>
<tr>
<td>147926</td>
<td>3' UTR</td>
<td>3</td>
<td>4101</td>
<td>CTACAGAGAAGAATATAC</td>
<td>0</td>
<td>37</td>
</tr>
<tr>
<td>147927</td>
<td>3' UTR</td>
<td>3</td>
<td>4226</td>
<td>GCTAGTTCTCCAGAAACCC</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>147928</td>
<td>3' UTR</td>
<td>3</td>
<td>4406</td>
<td>AAGTGGCCGAAATAGGCCC</td>
<td>25</td>
<td>39</td>
</tr>
<tr>
<td>147929</td>
<td>3' UTR</td>
<td>3</td>
<td>4571</td>
<td>AGAGATACCCCAACCAATAC</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>147930</td>
<td>3' UTR</td>
<td>3</td>
<td>4708</td>
<td>TAGTTAAGGATCTGCCAG</td>
<td>0</td>
<td>41</td>
</tr>
<tr>
<td>147931</td>
<td>3' UTR</td>
<td>3</td>
<td>4771</td>
<td>GCTTCTTGAGGTACTGACT</td>
<td>4</td>
<td>42</td>
</tr>
<tr>
<td>147932</td>
<td>3' UTR</td>
<td>3</td>
<td>4921</td>
<td>CCATATAGCTACTGACGC</td>
<td>10</td>
<td>43</td>
</tr>
<tr>
<td>147933</td>
<td>3' UTR</td>
<td>3</td>
<td>5021</td>
<td>CTTGCGATTTCTCGGGATG</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>168231</td>
<td>5' UTR</td>
<td>3</td>
<td>101</td>
<td>TTTTCCAGTACGCTGTTGT</td>
<td>N.D.</td>
<td>45</td>
</tr>
<tr>
<td>168232</td>
<td>Coding</td>
<td>3</td>
<td>331</td>
<td>GCATCCTCTCCAATATCT</td>
<td>N.D.</td>
<td>46</td>
</tr>
<tr>
<td>168233</td>
<td>Coding</td>
<td>3</td>
<td>451</td>
<td>TAAAGATGATGTTTCTCCAG</td>
<td>N.D.</td>
<td>47</td>
</tr>
<tr>
<td>168234</td>
<td>Coding</td>
<td>3</td>
<td>526</td>
<td>CCCAAAGCCGAGTGAAGAC</td>
<td>N.D.</td>
<td>48</td>
</tr>
<tr>
<td>168235</td>
<td>Coding</td>
<td>3</td>
<td>601</td>
<td>TOTAAAGCGGTGCTCCAG</td>
<td>N.D.</td>
<td>49</td>
</tr>
<tr>
<td>168236</td>
<td>Coding</td>
<td>3</td>
<td>661</td>
<td>CATTCTGGAGTGGCTCAG</td>
<td>N.D.</td>
<td>50</td>
</tr>
<tr>
<td>168237</td>
<td>Coding</td>
<td>3</td>
<td>731</td>
<td>TTAGAGGATACGATGTTGT</td>
<td>N.D.</td>
<td>51</td>
</tr>
<tr>
<td>168238</td>
<td>Coding</td>
<td>3</td>
<td>861</td>
<td>CTTCTGGAAATCCTCACAGT</td>
<td>N.D.</td>
<td>52</td>
</tr>
<tr>
<td>168239</td>
<td>Coding</td>
<td>3</td>
<td>901</td>
<td>GGAATGACGCACTCGAGAC</td>
<td>N.D.</td>
<td>53</td>
</tr>
<tr>
<td>168240</td>
<td>Coding</td>
<td>3</td>
<td>936</td>
<td>TTCACTCCAAAAATACAGA</td>
<td>N.D.</td>
<td>54</td>
</tr>
<tr>
<td>168241</td>
<td>Coding</td>
<td>3</td>
<td>1082</td>
<td>GAACCCAGATATTCTCCCG</td>
<td>N.D.</td>
<td>55</td>
</tr>
<tr>
<td>168242</td>
<td>Coding</td>
<td>3</td>
<td>1151</td>
<td>TCCTGCGAGGATGCTCATA</td>
<td>N.D.</td>
<td>56</td>
</tr>
<tr>
<td>168243</td>
<td>Coding</td>
<td>3</td>
<td>1261</td>
<td>TATATCTGGCCAAAGAGGCTG</td>
<td>N.D.</td>
<td>57</td>
</tr>
<tr>
<td>168244</td>
<td>3' UTR</td>
<td>3</td>
<td>1401</td>
<td>TCAGCACTTGTAGCATCAGT</td>
<td>N.D.</td>
<td>58</td>
</tr>
<tr>
<td>168245</td>
<td>3' UTR</td>
<td>3</td>
<td>1601</td>
<td>GCAAGAGCTGACGGCTGCT</td>
<td>N.D.</td>
<td>59</td>
</tr>
<tr>
<td>168246</td>
<td>3' UTR</td>
<td>3</td>
<td>1748</td>
<td>GACTTCCCCAGAAGTTCTCGT</td>
<td>N.D.</td>
<td>60</td>
</tr>
<tr>
<td>168247</td>
<td>3' UTR</td>
<td>3</td>
<td>1881</td>
<td>CTCTCCATATCTCTACATC</td>
<td>N.D.</td>
<td>61</td>
</tr>
<tr>
<td>168248</td>
<td>3' UTR</td>
<td>3</td>
<td>1965</td>
<td>CCCGAGCCGAGAGAAGG</td>
<td>N.D.</td>
<td>62</td>
</tr>
<tr>
<td>168249</td>
<td>3' UTR</td>
<td>3</td>
<td>2102</td>
<td>CTTCCCCAGAGAAGCACGTC</td>
<td>N.D.</td>
<td>63</td>
</tr>
<tr>
<td>168250</td>
<td>3' UTR</td>
<td>3</td>
<td>2281</td>
<td>CCAATATCCGAGATGGCGA</td>
<td>N.D.</td>
<td>64</td>
</tr>
<tr>
<td>168251</td>
<td>3' UTR</td>
<td>3</td>
<td>2461</td>
<td>CCAACTAATCCTCCCTCC</td>
<td>N.D.</td>
<td>65</td>
</tr>
<tr>
<td>168252</td>
<td>3' UTR</td>
<td>3</td>
<td>2541</td>
<td>TATGATCTGCTGTCTGAGACG</td>
<td>N.D.</td>
<td>66</td>
</tr>
<tr>
<td>168253</td>
<td>3' UTR</td>
<td>3</td>
<td>2631</td>
<td>CTTCCAAATACCTCCTCAGT</td>
<td>N.D.</td>
<td>67</td>
</tr>
<tr>
<td>168254</td>
<td>3' UTR</td>
<td>3</td>
<td>2826</td>
<td>AAGAGATTTCTAACCCTGCCC</td>
<td>N.D.</td>
<td>68</td>
</tr>
<tr>
<td>168255</td>
<td>3' UTR</td>
<td>3</td>
<td>2941</td>
<td>CACACAAAGGGGCTGCTTG</td>
<td>N.D.</td>
<td>69</td>
</tr>
<tr>
<td>ISIS #</td>
<td>REGION</td>
<td>SEQ ID NO</td>
<td>TARGET SITE</td>
<td>SEQUENCE</td>
<td>% INHIB</td>
<td>SEQ ID NO</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>168256</td>
<td>3'UTR</td>
<td>3</td>
<td>3051</td>
<td>AAGTGCAGCTAGTCTCTACT</td>
<td>N.D.</td>
<td>70</td>
</tr>
<tr>
<td>168257</td>
<td>3'UTR</td>
<td>3</td>
<td>3321</td>
<td>CACCCCGACAAATAGAACAGC</td>
<td>N.D.</td>
<td>71</td>
</tr>
<tr>
<td>168258</td>
<td>3'UTR</td>
<td>3</td>
<td>3401</td>
<td>TGCTCTTCCCCGATGAGACAC</td>
<td>N.D.</td>
<td>72</td>
</tr>
<tr>
<td>168259</td>
<td>3'UTR</td>
<td>3</td>
<td>3941</td>
<td>ATCAAGCCAGCCTCTGATGCA</td>
<td>N.D.</td>
<td>73</td>
</tr>
<tr>
<td>168260</td>
<td>3'UTR</td>
<td>4</td>
<td>4052</td>
<td>CCCTCGCTGAGTTGCCCAT</td>
<td>N.D.</td>
<td>74</td>
</tr>
<tr>
<td>168261</td>
<td>3'UTR</td>
<td>3</td>
<td>4357</td>
<td>ATAATCTCCTCCTCGGCCCC</td>
<td>N.D.</td>
<td>75</td>
</tr>
<tr>
<td>168262</td>
<td>3'UTR</td>
<td>3</td>
<td>4431</td>
<td>CACCTTAGAAGAACGGCCCT</td>
<td>N.D.</td>
<td>76</td>
</tr>
<tr>
<td>168263</td>
<td>3'UTR</td>
<td>3</td>
<td>4661</td>
<td>CACCAAGGTCTGAGAGCACTG</td>
<td>N.D.</td>
<td>77</td>
</tr>
<tr>
<td>168264</td>
<td>3'UTR</td>
<td>3</td>
<td>4971</td>
<td>GGTCTTAGCTACCTCCGCTTC</td>
<td>N.D.</td>
<td>78</td>
</tr>
<tr>
<td>168265</td>
<td>3'UTR</td>
<td>3</td>
<td>5044</td>
<td>CCCCTACAGAAGGCGCAT</td>
<td>N.D.</td>
<td>79</td>
</tr>
<tr>
<td>168266</td>
<td>3'UTR</td>
<td>3</td>
<td>5061</td>
<td>AACTCTCATATCCCCGCAATAA</td>
<td>N.D.</td>
<td>80</td>
</tr>
</tbody>
</table>

As shown in Table 1, SEQ ID NOs 18, 19, 20, 23, 25, 26, 29, 30, 31, 33, 39, 43 and 44 demonstrated at least 10% inhibition of human stearoyl-CoA desaturase expression in this assay. The target sites to which these preferred sequences are complementary are herein referred to as "active sites" and are therefore preferred sites for targeting by compounds of the present invention.

Example 16
Western Blot Analysis of Stearoyl-CoA Desaturase Protein Levels

Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 h after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 µg/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to stearyl-CoA desaturase is used, with a radiolabelled or fluorescently labeled secondary antibody directed against the primary antibody species. Bands are visualized using a PHOSPHORIMAGER™ apparatus (Molecular Dynamics, Sunnyvale Calif.).

Example 17
Antisense Inhibition of Human Stearoyl-CoA Desaturase Expression by Chimeric Phosphorothioate Oligonucleotides Having 2' MOE Wings and a Deoxy Gap

In accordance with the present invention, a series of oligonucleotides was designed to target different regions of the human stearoyl-CoA desaturase RNA, using published sequence (GenBank accession number AF097514, incorporated herein as SEQ ID NO: 3 and nucleotides 7371062 to 7389569 of the nucleotide sequence with the GenBank accession number NT_0300597, incorporated herein as SEQ ID NO: 81). The oligonucleotides are shown in Table 2. "Target site" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 2 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-methoxethyl (2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5'-methylcytidines. The compounds were analyzed for their effect on human stearoyl-CoA desaturase mRNA levels in HepG2 cells by quantitative real-time PCR as described in other examples herein. The positive control oligonucleotide is ISIS 18078 (GTGCAGCTGAGCCCGAATC, SEQ ID NO: 82), a 2'-O-methoxethyl gapmer (2'-O-methoxethyls shown in bold) with a phosphorothioate backbone, which is targeted to human Jun-N-terminal kinase-2 (JNK2). Data are averages from two experiments and are shown in Table 2. If present, "N.D." indicates "no data".

[0225] As shown in Table 1, SEQ ID NOs 18, 19, 20, 23, 25, 26, 29, 30, 31, 33, 39, 43 and 44 demonstrated at least 10% inhibition of human stearoyl-CoA desaturase expression in this assay. The target sites to which these preferred sequences are complementary are herein referred to as "active sites" and are therefore preferred sites for targeting by compounds of the present invention.

[0226] Western blot analysis (immunoblot analysis) is carried out using standard methods. Cells are harvested 16-20 h after oligonucleotide treatment, washed once with PBS, suspended in Laemmli buffer (100 µg/well), boiled for 5 minutes and loaded on a 16% SDS-PAGE gel. Gels are run for 1.5 hours at 150 V, and transferred to membrane for western blotting. Appropriate primary antibody directed to stearyl-CoA desaturase is used, with a radiolabelled or fluorescently labeled secondary antibody directed against the primary antibody species. Bands are visualized using a PHOSPHORIMAGER™ apparatus (Molecular Dynamics, Sunnyvale Calif.).

[0227] In accordance with the present invention, a series of oligonucleotides was designed to target different regions of the human stearoyl-CoA desaturase RNA, using published sequence (GenBank accession number AF097514, incorporated herein as SEQ ID NO: 3 and nucleotides 7371062 to 7389569 of the nucleotide sequence with the GenBank accession number NT_0300597, incorporated herein as SEQ ID NO: 81). The oligonucleotides are shown in Table 2. "Target site" indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 2 are chimeric oligonucleotides ("gapmers") 20 nucleotides in length, composed of a central "gap" region consisting of ten 2'-deoxynucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-methoxethyl (2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5'-methylcytidines. The compounds were analyzed for their effect on human stearoyl-CoA desaturase mRNA levels in HepG2 cells by quantitative real-time PCR as described in other examples herein. The positive control oligonucleotide is ISIS 18078 (GTGCAGCTGAGCCCGAATC, SEQ ID NO: 82), a 2'-O-methoxethyl gapmer (2'-O-methoxethyls shown in bold) with a phosphorothioate backbone, which is targeted to human Jun-N-terminal kinase-2 (JNK2). Data are averages from two experiments and are shown in Table 2. If present, "N.D." indicates "no data".
<table>
<thead>
<tr>
<th>ISIS #</th>
<th>Region</th>
<th>Target ID</th>
<th>Target Site</th>
<th>SEQ</th>
<th>SEQUENCE</th>
<th>% Inhib</th>
<th>Seq ID</th>
<th>Control Seq ID</th>
<th>Control Seq ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>300870</td>
<td>5'UTR</td>
<td>3</td>
<td>13</td>
<td>cggtagctcggctatttctca</td>
<td>53</td>
<td>93</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300871</td>
<td>5'UTR</td>
<td>3</td>
<td>25</td>
<td>ggcaacgggtgcagctgccc</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300872</td>
<td>5'UTR</td>
<td>3</td>
<td>42</td>
<td>attttaaggtgatagctgcc</td>
<td>60</td>
<td>85</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300873</td>
<td>5'UTR</td>
<td>3</td>
<td>52</td>
<td>cgagcgggaaatatctaaagc</td>
<td>40</td>
<td>96</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300874</td>
<td>5'UTR</td>
<td>3</td>
<td>178</td>
<td>gaggctccggagcggatgcttc</td>
<td>63</td>
<td>87</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300875</td>
<td>5'UTR</td>
<td>3</td>
<td>215</td>
<td>tggctctcggatgctgccaag</td>
<td>69</td>
<td>88</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300876</td>
<td>Start Codon</td>
<td>3</td>
<td>220</td>
<td>tgggccgacgcatcttgcttc</td>
<td>54</td>
<td>99</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300877</td>
<td>Coding</td>
<td>3</td>
<td>239</td>
<td>tctgcaacgtaagtgcccg</td>
<td>98</td>
<td>90</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300878</td>
<td>Coding</td>
<td>3</td>
<td>253</td>
<td>agcttagatctagctgctgc</td>
<td>82</td>
<td>91</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300879</td>
<td>Coding</td>
<td>3</td>
<td>492</td>
<td>ccatacagggtccacctagtg</td>
<td>42</td>
<td>92</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300880</td>
<td>Coding</td>
<td>3</td>
<td>513</td>
<td>tgaagattcggacttcgagaa</td>
<td>57</td>
<td>93</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300881</td>
<td>Coding</td>
<td>3</td>
<td>566</td>
<td>gcggttattgcccaggcacct</td>
<td>93</td>
<td>94</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300882</td>
<td>Coding</td>
<td>3</td>
<td>667</td>
<td>agacatcattcggataatgcc</td>
<td>76</td>
<td>95</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300883</td>
<td>Coding</td>
<td>3</td>
<td>709</td>
<td>ctgaaatctgttgggagca</td>
<td>42</td>
<td>96</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300884</td>
<td>Coding</td>
<td>3</td>
<td>715</td>
<td>gtgtttctgaaatatcttgag</td>
<td>60</td>
<td>97</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300885</td>
<td>Coding</td>
<td>3</td>
<td>821</td>
<td>aatctctagctatctocct</td>
<td>69</td>
<td>98</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300886</td>
<td>Coding</td>
<td>3</td>
<td>873</td>
<td>ttgttgaactccctcttgag</td>
<td>36</td>
<td>99</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300887</td>
<td>Coding</td>
<td>3</td>
<td>1045</td>
<td>ctaaggaagatataccgag</td>
<td>52</td>
<td>100</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300888</td>
<td>Stop Codon</td>
<td>3</td>
<td>1303</td>
<td>ccccaactctggcacccttgg</td>
<td>50</td>
<td>101</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300889</td>
<td>3'UTR</td>
<td>3</td>
<td>1347</td>
<td>aaacctctgctgggtggtt</td>
<td>97</td>
<td>102</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300890</td>
<td>3'UTR</td>
<td>3</td>
<td>1381</td>
<td>ttagcttattatcagatgtta</td>
<td>58</td>
<td>103</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300891</td>
<td>3'UTR</td>
<td>3</td>
<td>1419</td>
<td>tacgcgaattgtaacactt</td>
<td>42</td>
<td>104</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300892</td>
<td>3'UTR</td>
<td>3</td>
<td>1484</td>
<td>tcaagtttagcatcataaag</td>
<td>71</td>
<td>105</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300893</td>
<td>3'UTR</td>
<td>3</td>
<td>1597</td>
<td>agactgaccagctgtggtc</td>
<td>45</td>
<td>106</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300894</td>
<td>3'UTR</td>
<td>3</td>
<td>1613</td>
<td>gctggcaactgagcaaatgc</td>
<td>65</td>
<td>107</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300895</td>
<td>3'UTR</td>
<td>3</td>
<td>1620</td>
<td>tggggaagatggcaacactgag</td>
<td>51</td>
<td>108</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300896</td>
<td>3'UTR</td>
<td>3</td>
<td>1668</td>
<td>tctgaggccagagcactctgc</td>
<td>91</td>
<td>109</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300897</td>
<td>3'UTR</td>
<td>3</td>
<td>1704</td>
<td>cttcgaagdcattcacaacagct</td>
<td>69</td>
<td>110</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300898</td>
<td>3'UTR</td>
<td>3</td>
<td>1711</td>
<td>ccacagtacctaaagagctc</td>
<td>68</td>
<td>111</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300899</td>
<td>3'UTR</td>
<td>3</td>
<td>1716</td>
<td>tcaagccactactcttcaacag</td>
<td>45</td>
<td>112</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300900</td>
<td>3'UTR</td>
<td>3</td>
<td>1723</td>
<td>ctctagctactgagccacctc</td>
<td>57</td>
<td>113</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300901</td>
<td>3'UTR</td>
<td>3</td>
<td>1814</td>
<td>tgtgtaatctagctgttggct</td>
<td>66</td>
<td>114</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300902</td>
<td>3'UTR</td>
<td>3</td>
<td>1842</td>
<td>cccgacatttacacttgctttt</td>
<td>75</td>
<td>115</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300903</td>
<td>3'UTR</td>
<td>3</td>
<td>1869</td>
<td>ttcatctcatacagtcaaac</td>
<td>22</td>
<td>116</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300904</td>
<td>3'UTR</td>
<td>3</td>
<td>1915</td>
<td>tgtttgatcattgagaggg</td>
<td>90</td>
<td>117</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISIS #</td>
<td>Region</td>
<td>Target ID</td>
<td>Seq. Site</td>
<td>SEQUENCE</td>
<td>% Inhib</td>
<td>Seq ID</td>
<td>Control Seq ID</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300905</td>
<td>3'UTR</td>
<td>1969</td>
<td></td>
<td>aaggaagcatgctagttggtt</td>
<td>97</td>
<td>118</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300906</td>
<td>3'UTR</td>
<td>1976</td>
<td></td>
<td>ggagagaaggaagaagatcct</td>
<td>91</td>
<td>119</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300907</td>
<td>3'UTR</td>
<td>2040</td>
<td></td>
<td>aactatatgtgtcggctattg</td>
<td>59</td>
<td>120</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300908</td>
<td>3'UTR</td>
<td>2781</td>
<td></td>
<td>tagatgttaacagagaccc</td>
<td>15</td>
<td>121</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300909</td>
<td>3'UTR</td>
<td>2839</td>
<td></td>
<td>aatccggctagtggaagat</td>
<td>27</td>
<td>122</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300910</td>
<td>3'UTR</td>
<td>2850</td>
<td></td>
<td>ggtagagccaggaactaag</td>
<td>32</td>
<td>123</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300911</td>
<td>3'UTR</td>
<td>3020</td>
<td></td>
<td>agcagtggctagctggacccct</td>
<td>83</td>
<td>124</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300912</td>
<td>3'UTR</td>
<td>3035</td>
<td></td>
<td>taacttcacaaaggaagacag</td>
<td>27</td>
<td>125</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300913</td>
<td>3'UTR</td>
<td>3056</td>
<td></td>
<td>cttgaagctggccagctagct</td>
<td>81</td>
<td>126</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300914</td>
<td>3'UTR</td>
<td>3122</td>
<td></td>
<td>cctgtgcttgccagcattag</td>
<td>77</td>
<td>127</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300915</td>
<td>3'UTR</td>
<td>3132</td>
<td></td>
<td>ggttgccagctgcttgcctt</td>
<td>78</td>
<td>128</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300916</td>
<td>3'UTR</td>
<td>3222</td>
<td></td>
<td>caatggctcaactgagagc</td>
<td>71</td>
<td>129</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300917</td>
<td>3'UTR</td>
<td>3238</td>
<td></td>
<td>tgtctgtgctgctggcactc</td>
<td>93</td>
<td>130</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300918</td>
<td>3'UTR</td>
<td>3252</td>
<td></td>
<td>aataaacctctttttctctct</td>
<td>52</td>
<td>131</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300919</td>
<td>3'UTR</td>
<td>3259</td>
<td></td>
<td>gactgaatataasaccccttctt</td>
<td>54</td>
<td>132</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300920</td>
<td>3'UTR</td>
<td>3342</td>
<td></td>
<td>agagcactgactgacccggt</td>
<td>91</td>
<td>133</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300921</td>
<td>3'UTR</td>
<td>3357</td>
<td></td>
<td>ttgcaactgcagcgcttgagac</td>
<td>98</td>
<td>134</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300922</td>
<td>3'UTR</td>
<td>3371</td>
<td></td>
<td>taacctccacagcgccagc</td>
<td>83</td>
<td>135</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300923</td>
<td>3'UTR</td>
<td>3393</td>
<td></td>
<td>actgttttctctctcttcctcta</td>
<td>63</td>
<td>136</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300924</td>
<td>3'UTR</td>
<td>3409</td>
<td></td>
<td>ctgctgtgtctttctcttctt</td>
<td>70</td>
<td>137</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300925</td>
<td>3'UTR</td>
<td>3432</td>
<td></td>
<td>ttgaggtgagggcatctgg</td>
<td>60</td>
<td>138</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300926</td>
<td>3'UTR</td>
<td>3480</td>
<td></td>
<td>aagcgcaactgtttgcaagt</td>
<td>77</td>
<td>139</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300927</td>
<td>3'UTR</td>
<td>3565</td>
<td></td>
<td>ttgtgtttgtagctagctgagc</td>
<td>96</td>
<td>140</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300928</td>
<td>3'UTR</td>
<td>2052</td>
<td></td>
<td>atctctggctctcaactatata</td>
<td>58</td>
<td>141</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300929</td>
<td>3'UTR</td>
<td>2136</td>
<td></td>
<td>tctgtgtaattaagaagaaaaaa</td>
<td>35</td>
<td>142</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300930</td>
<td>3'UTR</td>
<td>2146</td>
<td></td>
<td>ctaagaaacctctctcttgata</td>
<td>28</td>
<td>143</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300931</td>
<td>3'UTR</td>
<td>2162</td>
<td></td>
<td>ctctctgtatataatgaactta</td>
<td>11</td>
<td>144</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300932</td>
<td>3'UTR</td>
<td>2171</td>
<td></td>
<td>acatcaagaactctctctgtat</td>
<td>45</td>
<td>145</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300933</td>
<td>3'UTR</td>
<td>2214</td>
<td></td>
<td>aatctccagctagctgcttt</td>
<td>27</td>
<td>146</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300934</td>
<td>3'UTR</td>
<td>2245</td>
<td></td>
<td>gacttgatagccaggtcctca</td>
<td>36</td>
<td>147</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300935</td>
<td>3'UTR</td>
<td>2272</td>
<td></td>
<td>tgaagatgcagcgacagaaaaaa</td>
<td>27</td>
<td>148</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300936</td>
<td>3'UTR</td>
<td>2321</td>
<td></td>
<td>tggaactgcagacagcactt</td>
<td>70</td>
<td>149</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300937</td>
<td>3'UTR</td>
<td>2361</td>
<td></td>
<td>cgtttcctctctcttaacct</td>
<td>56</td>
<td>150</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300938</td>
<td>3'UTR</td>
<td>2397</td>
<td></td>
<td>gcatgtatatatatatatata</td>
<td>31</td>
<td>151</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300939</td>
<td>3'UTR</td>
<td>2506</td>
<td></td>
<td>ccaggctgtggagagagaaatt</td>
<td>27</td>
<td>152</td>
<td>92</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2 - continued

Inhibition of human stearoyl-CoA desaturase mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a deoxy gap

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>Region</th>
<th>Target ID</th>
<th>Seq. Site</th>
<th>SEQUENCE</th>
<th>% Inhib</th>
<th>Seq ID</th>
<th>Control Seq ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>300940</td>
<td>3'UTR</td>
<td>3</td>
<td>2525</td>
<td>cagcctcccctcatcagtcc</td>
<td>61</td>
<td>153</td>
<td>92</td>
</tr>
<tr>
<td>300941</td>
<td>3'UTR</td>
<td>3</td>
<td>2570</td>
<td>ctatgtgaaagtctgcttta</td>
<td>66</td>
<td>154</td>
<td>92</td>
</tr>
<tr>
<td>300942</td>
<td>3'UTR</td>
<td>3</td>
<td>2589</td>
<td>cgtgtttctgatctcttcc</td>
<td>0</td>
<td>155</td>
<td>92</td>
</tr>
<tr>
<td>300943</td>
<td>3'UTR</td>
<td>3</td>
<td>2676</td>
<td>aacttataatgatggacc</td>
<td>36</td>
<td>156</td>
<td>92</td>
</tr>
<tr>
<td>300944</td>
<td>3'UTR</td>
<td>3</td>
<td>2700</td>
<td>ttacctatttcaaggaaaa</td>
<td>54</td>
<td>157</td>
<td>92</td>
</tr>
<tr>
<td>300945</td>
<td>3'UTR</td>
<td>3</td>
<td>2715</td>
<td>gaagctcttagtttttact</td>
<td>55</td>
<td>158</td>
<td>92</td>
</tr>
<tr>
<td>300946</td>
<td>3'UTR</td>
<td>3</td>
<td>2726</td>
<td>cactgtgagagagaccttc</td>
<td>71</td>
<td>159</td>
<td>92</td>
</tr>
<tr>
<td>300947</td>
<td>3'UTR</td>
<td>3</td>
<td>2732</td>
<td>gcacacactgctgagagaa</td>
<td>58</td>
<td>160</td>
<td>92</td>
</tr>
<tr>
<td>300948</td>
<td>3'UTR</td>
<td>3</td>
<td>3679</td>
<td>aactttatagagcacaagcc</td>
<td>0</td>
<td>161</td>
<td>92</td>
</tr>
<tr>
<td>300949</td>
<td>3'UTR</td>
<td>3</td>
<td>3707</td>
<td>gaatggtgtttggtatgt</td>
<td>26</td>
<td>162</td>
<td>92</td>
</tr>
<tr>
<td>300950</td>
<td>3'UTR</td>
<td>3</td>
<td>3771</td>
<td>agocctcaagcaataaac</td>
<td>38</td>
<td>163</td>
<td>92</td>
</tr>
<tr>
<td>300951</td>
<td>3'UTR</td>
<td>3</td>
<td>3825</td>
<td>cctaggtgtatagctccaa</td>
<td>51</td>
<td>164</td>
<td>92</td>
</tr>
<tr>
<td>300952</td>
<td>3'UTR</td>
<td>3</td>
<td>3834</td>
<td>ccttttctactgaggttaa</td>
<td>65</td>
<td>165</td>
<td>92</td>
</tr>
<tr>
<td>300953</td>
<td>3'UTR</td>
<td>3</td>
<td>3911</td>
<td>tagaatcctacgcacatctt</td>
<td>37</td>
<td>166</td>
<td>92</td>
</tr>
<tr>
<td>300954</td>
<td>3'UTR</td>
<td>3</td>
<td>3993</td>
<td>gcacacagtacatgagaa</td>
<td>62</td>
<td>167</td>
<td>92</td>
</tr>
<tr>
<td>300955</td>
<td>3'UTR</td>
<td>3</td>
<td>3999</td>
<td>tcatgctacagcgtcttga</td>
<td>64</td>
<td>168</td>
<td>92</td>
</tr>
<tr>
<td>300956</td>
<td>3'UTR</td>
<td>3</td>
<td>4004</td>
<td>tcatgactcatgcacacagat</td>
<td>54</td>
<td>169</td>
<td>92</td>
</tr>
<tr>
<td>300957</td>
<td>3'UTR</td>
<td>3</td>
<td>4041</td>
<td>agggtgccatccagctttatg</td>
<td>12</td>
<td>170</td>
<td>92</td>
</tr>
<tr>
<td>300958</td>
<td>3'UTR</td>
<td>3</td>
<td>4053</td>
<td>gcccctagctctagttgcccc</td>
<td>21</td>
<td>171</td>
<td>92</td>
</tr>
<tr>
<td>300959</td>
<td>3'UTR</td>
<td>3</td>
<td>4132</td>
<td>agottttagaatctgtaaat</td>
<td>25</td>
<td>172</td>
<td>92</td>
</tr>
<tr>
<td>300960</td>
<td>3'UTR</td>
<td>3</td>
<td>4150</td>
<td>aatgtgtcatctgtaattgaa</td>
<td>26</td>
<td>173</td>
<td>92</td>
</tr>
<tr>
<td>300961</td>
<td>3'UTR</td>
<td>3</td>
<td>4193</td>
<td>ctgttgataacactggtcctt</td>
<td>33</td>
<td>174</td>
<td>92</td>
</tr>
<tr>
<td>300962</td>
<td>3'UTR</td>
<td>3</td>
<td>4205</td>
<td>ccaacacgggacattgtaga</td>
<td>41</td>
<td>175</td>
<td>92</td>
</tr>
<tr>
<td>300963</td>
<td>3'UTR</td>
<td>3</td>
<td>4261</td>
<td>caacactgtgattgaaagaa</td>
<td>20</td>
<td>176</td>
<td>92</td>
</tr>
<tr>
<td>300964</td>
<td>3'UTR</td>
<td>3</td>
<td>4321</td>
<td>ctctctgtagctgtttcttagt</td>
<td>43</td>
<td>177</td>
<td>92</td>
</tr>
<tr>
<td>300965</td>
<td>3'UTR</td>
<td>3</td>
<td>4331</td>
<td>ctacagccacactctgtagtgg</td>
<td>37</td>
<td>178</td>
<td>92</td>
</tr>
<tr>
<td>300966</td>
<td>3'UTR</td>
<td>3</td>
<td>4347</td>
<td>ctctagccctctctctctctctct</td>
<td>34</td>
<td>179</td>
<td>92</td>
</tr>
<tr>
<td>300967</td>
<td>3'UTR</td>
<td>3</td>
<td>4364</td>
<td>gactgtgaatactctctccact</td>
<td>16</td>
<td>180</td>
<td>92</td>
</tr>
<tr>
<td>300968</td>
<td>3'UTR</td>
<td>3</td>
<td>4379</td>
<td>aactctgaaatctgataa</td>
<td>34</td>
<td>181</td>
<td>92</td>
</tr>
<tr>
<td>300969</td>
<td>3'UTR</td>
<td>3</td>
<td>4420</td>
<td>agcagccttaacaaaaagttt</td>
<td>34</td>
<td>182</td>
<td>92</td>
</tr>
<tr>
<td>300970</td>
<td>3'UTR</td>
<td>3</td>
<td>4535</td>
<td>aatctttcccttttaaatgc</td>
<td>23</td>
<td>183</td>
<td>92</td>
</tr>
<tr>
<td>300971</td>
<td>3'UTR</td>
<td>3</td>
<td>4578</td>
<td>caattacagagaataacccc</td>
<td>38</td>
<td>184</td>
<td>92</td>
</tr>
<tr>
<td>300972</td>
<td>3'UTR</td>
<td>3</td>
<td>4584</td>
<td>gacgttacatcctcagagaa</td>
<td>26</td>
<td>185</td>
<td>92</td>
</tr>
<tr>
<td>300973</td>
<td>3'UTR</td>
<td>3</td>
<td>4628</td>
<td>aacatggtcctctgottttt</td>
<td>16</td>
<td>186</td>
<td>92</td>
</tr>
<tr>
<td>300974</td>
<td>3'UTR</td>
<td>3</td>
<td>4645</td>
<td>gcttacaaccccagcataa</td>
<td>40</td>
<td>187</td>
<td>92</td>
</tr>
</tbody>
</table>
As shown in Table 2, SEQ ID NOS 83, 84, 85, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 121, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 149, 150, 153, 154, 157, 158, 159, 160, 164, 165, 167, 168, 169, 188, 189, 197, 204, 207 and 210 demonstrated at least 50% inhibition of human stearoyl-CoA desaturase expression in this assay. Preferred antisense oligonucleotide sequences are SEQ ID NOS 94, 130, 140 and 134. The target sites to which these preferred sequences are complementary are herein referred to as “active sites” and are therefore preferred sites for targeting by compounds of the present invention.

Example 18
Antisense inhibition of mouse stearoyl-CoA desaturase expression by Chimeric Phosphorothioate Oligonucleotides Having 2'-MOE Wings and a Deoxy Gap

In accordance with the present invention, a series of oligonucleotides was designed to target different regions of
the mouse stearoyl-CoA desaturase RNA, using published sequence (GenBank Accession number M21280.1, incorporated herein as SEQ ID NO: 216; GenBank Accession number M21281.1, incorporated herein as SEQ ID NO: 217; GenBank Accession number M21282.1, incorporated herein as SEQ ID NO: 218; GenBank Accession number M21283.1, incorporated herein as SEQ ID NO: 219; GenBank Accession number M21284.1, incorporated herein as SEQ ID NO: 220; GenBank Accession number M21285.1, incorporated herein as SEQ ID NO: 221; the concatenation of SEQ ID NOs 216, 217, 218, 219, 220 and 221, incorporated herein as SEQ ID NO: 222). The oligonucleotides are shown in Table 3. “Target site” indicates the first (5’-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 3 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2’-deoxyribonucleotides, which is flanked on both sides (5’ and 3’ directions) by five-nucleotide “wings”. The wings are composed of 2’-methoxyethyl (2’-MOE) nucleotides. The internucleotide (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines.

<table>
<thead>
<tr>
<th>ISIS #</th>
<th>Region</th>
<th>SEQ ID NO</th>
<th>Target Site NO</th>
<th>Sequence</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>100540</td>
<td>5’ UTR</td>
<td>222</td>
<td>9</td>
<td>agtctcttgagacatgtga</td>
<td>223</td>
</tr>
<tr>
<td>100549</td>
<td>5’ UTR</td>
<td>222</td>
<td>71</td>
<td>ctctcctggtatctcccgg</td>
<td>224</td>
</tr>
<tr>
<td>100550</td>
<td>5’ UTR</td>
<td>222</td>
<td>126</td>
<td>ctctctctattcccaggagg</td>
<td>225</td>
</tr>
<tr>
<td>100551</td>
<td>5’ UTR</td>
<td>222</td>
<td>161</td>
<td>tcccctcctctctgataggg</td>
<td>226</td>
</tr>
<tr>
<td>100552</td>
<td>5’ UTR</td>
<td>222</td>
<td>191</td>
<td>ctgccagagtacctcagct</td>
<td>227</td>
</tr>
<tr>
<td>100553</td>
<td>5’ UTR</td>
<td>222</td>
<td>211</td>
<td>agggccatgagagattgcgtt</td>
<td>228</td>
</tr>
<tr>
<td>100554</td>
<td>5’ UTR</td>
<td>222</td>
<td>231</td>
<td>acgggcttccaaagtcgac</td>
<td>229</td>
</tr>
<tr>
<td>100555</td>
<td>5’ UTR</td>
<td>222</td>
<td>250</td>
<td>ggaaccagattgatccgta</td>
<td>230</td>
</tr>
<tr>
<td>100557</td>
<td>5’ UTR</td>
<td>222</td>
<td>291</td>
<td>aagtaggaatatccgagag</td>
<td>231</td>
</tr>
<tr>
<td>100558</td>
<td>5’ UTR</td>
<td>222</td>
<td>321</td>
<td>cgggtgtgtgatgccagagc</td>
<td>232</td>
</tr>
<tr>
<td>100559</td>
<td>5’ UTR</td>
<td>222</td>
<td>341</td>
<td>ctccacaggggatagcccc</td>
<td>233</td>
</tr>
<tr>
<td>100560</td>
<td>5’ UTR</td>
<td>222</td>
<td>361</td>
<td>cggcccgttgtatgctcttcg</td>
<td>234</td>
</tr>
<tr>
<td>100561</td>
<td>5’ UTR</td>
<td>222</td>
<td>391</td>
<td>gcaagatttgggaatgatcc</td>
<td>235</td>
</tr>
<tr>
<td>100562</td>
<td>5’ UTR</td>
<td>222</td>
<td>421</td>
<td>tacaccgtctttggagacgg</td>
<td>236</td>
</tr>
<tr>
<td>100563</td>
<td>5’ UTR</td>
<td>222</td>
<td>441</td>
<td>gtttgtctccgggcccagtctg</td>
<td>237</td>
</tr>
<tr>
<td>100564</td>
<td>5’ UTR</td>
<td>222</td>
<td>471</td>
<td>cgtgtgttctttgaaaccttcg</td>
<td>238</td>
</tr>
<tr>
<td>100565</td>
<td>5’ UTR</td>
<td>222</td>
<td>591</td>
<td>cggctcaggagtcagacatg</td>
<td>239</td>
</tr>
<tr>
<td>100566</td>
<td>5’ UTR</td>
<td>222</td>
<td>611</td>
<td>taggacactacacagtctct</td>
<td>240</td>
</tr>
<tr>
<td>100567</td>
<td>5’ UTR</td>
<td>222</td>
<td>648</td>
<td>agcacacatcagccagggccgg</td>
<td>241</td>
</tr>
<tr>
<td>100568</td>
<td>5’ UTR</td>
<td>222</td>
<td>651</td>
<td>tsaagacatacagagttctc</td>
<td>242</td>
</tr>
<tr>
<td>100569</td>
<td>5’ UTR</td>
<td>222</td>
<td>691</td>
<td>gacccagagtgatgcaacaa</td>
<td>243</td>
</tr>
<tr>
<td>100570</td>
<td>5’ UTR</td>
<td>222</td>
<td>741</td>
<td>gcacccacgatgtgcacaggg</td>
<td>244</td>
</tr>
<tr>
<td>100571</td>
<td>5’ UTR</td>
<td>222</td>
<td>761</td>
<td>cccagccaggtggcgtgag</td>
<td>245</td>
</tr>
<tr>
<td>100572</td>
<td>5’ UTR</td>
<td>222</td>
<td>781</td>
<td>tagagattggccgagctgtt</td>
<td>246</td>
</tr>
<tr>
<td>100573</td>
<td>5’ UTR</td>
<td>222</td>
<td>812</td>
<td>ttgaatgtcttcttgatgccgagg</td>
<td>247</td>
</tr>
<tr>
<td>100574</td>
<td>Start Codon</td>
<td>222</td>
<td>855</td>
<td>cttgccggactgcccaggaggg</td>
<td>248</td>
</tr>
<tr>
<td>100575</td>
<td>Coding</td>
<td>222</td>
<td>869</td>
<td>gtaggcttgagagccctcgc</td>
<td>249</td>
</tr>
</tbody>
</table>
In a further embodiment of the present invention, a series of oligonucleotides was designed to target different regions of the mouse stearoyl-CoA desaturase RNA, using published sequences (GenBank Accession number M21280.1, incorporated herein as SEQ ID NO: 216; GenBank Accession number M21281.1, incorporated herein as SEQ ID NO: 217; GenBank Accession number M21282.1, incorporated herein as SEQ ID NO: 218; GenBank Accession number M21283.1, incorporated herein as SEQ ID NO: 219; GenBank Accession number M21284.1, incorporated herein as SEQ ID NO: 220; GenBank Accession number M21285.1, incorporated herein as SEQ ID NO: 221; the concatenation of SEQ ID NO: 216, 217, 218, 219, 220 and 221, incorporated herein as SEQ ID NO: 222). The oligonucleotides are shown in Table 4. “Target site” indicates the first (5’-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 4 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2’-deoxyxynucleotides, which is flanked on both sides (5’ and 3’ directions) by five-nucleotide “wings”. The wings are composed of 2’-methoxyethyl (2’-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methycytidines.

Probes and primers to mouse stearoyl-CoA desaturase were designed to hybridize to a mouse stearoyl-CoA desaturase sequence, using published sequence information (SEQ ID NO: 222). For mouse stearoyl-CoA desaturase the PCR primers were:

<table>
<thead>
<tr>
<th>Target</th>
<th>% Inh</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>156</td>
<td>82</td>
<td>82</td>
</tr>
</tbody>
</table>

In Table 4. Inhibition of mouse stearoyl-CoA desaturase mRNA levels by chimeric phosphorothioate oligonucleotides having 2’-MOE wings and a deoxy gap.
<table>
<thead>
<tr>
<th>Isos</th>
<th>Target Seq NO</th>
<th>Target Site Sequence</th>
<th></th>
<th>% SEQ ID</th>
<th>Control Seq NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>185158 exon:intron</td>
<td>220</td>
<td>228 tgactaccacgggtcacccca</td>
<td>41</td>
<td>267</td>
<td>82</td>
</tr>
<tr>
<td>185159 intron:exon</td>
<td>221</td>
<td>1 gttgaagcctctgctgcaaa</td>
<td>83</td>
<td>268</td>
<td>82</td>
</tr>
<tr>
<td>185160 5'UTR</td>
<td>222</td>
<td>68 ctggctacgcccactcaca</td>
<td>0</td>
<td>269</td>
<td>82</td>
</tr>
<tr>
<td>185161 5'UTR</td>
<td>222</td>
<td>142 aggcctgggactttgtcttg</td>
<td>51</td>
<td>270</td>
<td>82</td>
</tr>
<tr>
<td>185162 5'UTR</td>
<td>222</td>
<td>148 gttgccatggtcaggctt</td>
<td>0</td>
<td>271</td>
<td>82</td>
</tr>
<tr>
<td>185163 5'UTR</td>
<td>222</td>
<td>156 taggaattgtgtgtaagcct</td>
<td>0</td>
<td>272</td>
<td>82</td>
</tr>
<tr>
<td>185164 5'UTR</td>
<td>222</td>
<td>275 atotgtggttcctctggct</td>
<td>0</td>
<td>273</td>
<td>82</td>
</tr>
<tr>
<td>185165 5'UTR</td>
<td>222</td>
<td>445 ctccagagtagacctctggagg</td>
<td>15</td>
<td>274</td>
<td>82</td>
</tr>
<tr>
<td>185166 5'UTR</td>
<td>222</td>
<td>571 ctagccagagggcagttgggg</td>
<td>12</td>
<td>275</td>
<td>82</td>
</tr>
<tr>
<td>185167 5'UTR</td>
<td>222</td>
<td>581 gcagagtagctgagcaaggg</td>
<td>2</td>
<td>276</td>
<td>82</td>
</tr>
<tr>
<td>185168 5'UTR</td>
<td>222</td>
<td>612 tttsatctgtgtgcagacaaa</td>
<td>41</td>
<td>277</td>
<td>82</td>
</tr>
<tr>
<td>185169 5'UTR</td>
<td>222</td>
<td>644 ggtgaccgggtgctcagtatt</td>
<td>41</td>
<td>278</td>
<td>82</td>
</tr>
<tr>
<td>185170 5'UTR</td>
<td>222</td>
<td>697 ggggtgtgcagatctcct</td>
<td>82</td>
<td>279</td>
<td>82</td>
</tr>
<tr>
<td>185171 5'UTR</td>
<td>222</td>
<td>708 tcaagccgggtctggctgtgc</td>
<td>56</td>
<td>280</td>
<td>82</td>
</tr>
<tr>
<td>185172 5'UTR</td>
<td>222</td>
<td>748 gagccggaggtgggcagact</td>
<td>43</td>
<td>282</td>
<td>82</td>
</tr>
<tr>
<td>185173 5'UTR</td>
<td>222</td>
<td>768 tgtgcgggggtgggctgaact</td>
<td>43</td>
<td>282</td>
<td>82</td>
</tr>
<tr>
<td>185174 5'UTR</td>
<td>222</td>
<td>795 gttgacttctcggttcgggaacc</td>
<td>31</td>
<td>283</td>
<td>82</td>
</tr>
<tr>
<td>185175 5'UTR</td>
<td>222</td>
<td>830 tgtgcgtcctcactcttccca</td>
<td>79</td>
<td>284</td>
<td>82</td>
</tr>
<tr>
<td>185176 5'UTR</td>
<td>222</td>
<td>854 gttgcgggtgcatgtgatag</td>
<td>67</td>
<td>285</td>
<td>82</td>
</tr>
<tr>
<td>185177 5'UTR</td>
<td>222</td>
<td>877 gaaactggagatctttgag</td>
<td>51</td>
<td>286</td>
<td>82</td>
</tr>
<tr>
<td>185178 Coding</td>
<td>222</td>
<td>1150 tagaaatcctcccagaggg</td>
<td>0</td>
<td>287</td>
<td>82</td>
</tr>
<tr>
<td>185179 Coding</td>
<td>222</td>
<td>1160 ggtcagtgtagaaaccttc</td>
<td>10</td>
<td>288</td>
<td>82</td>
</tr>
<tr>
<td>185180 Coding</td>
<td>222</td>
<td>1165 ggtcgtgtcctagtagttagaa</td>
<td>40</td>
<td>289</td>
<td>82</td>
</tr>
<tr>
<td>185181 Coding</td>
<td>222</td>
<td>1676 ggttgatgtgctctgtggtg</td>
<td>81</td>
<td>290</td>
<td>82</td>
</tr>
<tr>
<td>185182 Coding</td>
<td>222</td>
<td>1681 ttccgccgggtggatttct</td>
<td>46</td>
<td>291</td>
<td>82</td>
</tr>
<tr>
<td>185183 Coding</td>
<td>222</td>
<td>1688 gatattctccggccgtggtga</td>
<td>39</td>
<td>292</td>
<td>82</td>
</tr>
<tr>
<td>185184 Coding</td>
<td>222</td>
<td>1858 gtagcctttagaaactttct</td>
<td>52</td>
<td>293</td>
<td>82</td>
</tr>
<tr>
<td>185185 Stop Codon</td>
<td>222</td>
<td>1918 cccaaagctcgactcactcct</td>
<td>65</td>
<td>294</td>
<td>82</td>
</tr>
<tr>
<td>185186 3'UTR</td>
<td>222</td>
<td>1934 aacaggaacgtccagcagc</td>
<td>90</td>
<td>295</td>
<td>82</td>
</tr>
<tr>
<td>185187 3'UTR</td>
<td>222</td>
<td>1967 tagaataattatttctgctc</td>
<td>48</td>
<td>296</td>
<td>82</td>
</tr>
<tr>
<td>185188 3'UTR</td>
<td>222</td>
<td>1984 gttgatggtaaattgccag</td>
<td>0</td>
<td>297</td>
<td>82</td>
</tr>
<tr>
<td>185189 3'UTR</td>
<td>222</td>
<td>2159 atttgtatgctacttctct</td>
<td>62</td>
<td>298</td>
<td>82</td>
</tr>
<tr>
<td>185190 3'UTR</td>
<td>222</td>
<td>2208 ctggataaagttgcaaaatc</td>
<td>2</td>
<td>299</td>
<td>82</td>
</tr>
<tr>
<td>185191 3'UTR</td>
<td>222</td>
<td>2236 acagcatgttcccctggttc</td>
<td>51</td>
<td>300</td>
<td>82</td>
</tr>
</tbody>
</table>
| Isio
<table>
<thead>
<tr>
<th>#</th>
<th>Region</th>
<th>Target SEQ #</th>
<th>Target ID</th>
<th>Site Sequence</th>
<th>% SEQ ID Inhib</th>
<th>Control SEQ ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>185192</td>
<td>3′ UTR</td>
<td>222</td>
<td>2246</td>
<td>tagcatcaacacagagctgt</td>
<td>46</td>
<td>301</td>
</tr>
<tr>
<td>185193</td>
<td>3′ UTR</td>
<td>222</td>
<td>2259</td>
<td>accatgctcaacctgacatc</td>
<td>45</td>
<td>302</td>
</tr>
<tr>
<td>185194</td>
<td>3′ UTR</td>
<td>222</td>
<td>2408</td>
<td>aagatcagtattcagaaa</td>
<td>39</td>
<td>303</td>
</tr>
<tr>
<td>185195</td>
<td>3′ UTR</td>
<td>222</td>
<td>2552</td>
<td>tctctcagagaaatctactt</td>
<td>67</td>
<td>304</td>
</tr>
<tr>
<td>185196</td>
<td>3′ UTR</td>
<td>222</td>
<td>2821</td>
<td>cttcagttcacaacagcagaa</td>
<td>37</td>
<td>305</td>
</tr>
<tr>
<td>185197</td>
<td>3′ UTR</td>
<td>222</td>
<td>2897</td>
<td>aaatgtcagctgttattga</td>
<td>0</td>
<td>306</td>
</tr>
<tr>
<td>185198</td>
<td>3′ UTR</td>
<td>222</td>
<td>3002</td>
<td>ggaaccgccggcaacaccc</td>
<td>39</td>
<td>307</td>
</tr>
<tr>
<td>185199</td>
<td>3′ UTR</td>
<td>222</td>
<td>3017</td>
<td>gcaagaaagaaactgacca</td>
<td>23</td>
<td>308</td>
</tr>
<tr>
<td>185200</td>
<td>3′ UTR</td>
<td>222</td>
<td>3102</td>
<td>gcttcgccagagggcttc</td>
<td>86</td>
<td>309</td>
</tr>
<tr>
<td>185201</td>
<td>3′ UTR</td>
<td>222</td>
<td>3112</td>
<td>tctcggctagtgccc</td>
<td>76</td>
<td>310</td>
</tr>
<tr>
<td>185202</td>
<td>3′ UTR</td>
<td>222</td>
<td>3427</td>
<td>ctgtgcttgctttcggga</td>
<td>48</td>
<td>311</td>
</tr>
<tr>
<td>185203</td>
<td>3′ UTR</td>
<td>222</td>
<td>3569</td>
<td>ggtgacgtgtaactcaca</td>
<td>71</td>
<td>312</td>
</tr>
<tr>
<td>185204</td>
<td>3′ UTR</td>
<td>222</td>
<td>3640</td>
<td>cccacccggcagacagcagc</td>
<td>79</td>
<td>313</td>
</tr>
<tr>
<td>185205</td>
<td>3′ UTR</td>
<td>222</td>
<td>3828</td>
<td>cagaaacgagacccttctccc</td>
<td>42</td>
<td>314</td>
</tr>
<tr>
<td>185206</td>
<td>3′ UTR</td>
<td>222</td>
<td>3958</td>
<td>aataactgatgtggagtcttc</td>
<td>65</td>
<td>315</td>
</tr>
<tr>
<td>185207</td>
<td>3′ UTR</td>
<td>222</td>
<td>3968</td>
<td>aatgttctaaatatagtctg</td>
<td>36</td>
<td>316</td>
</tr>
<tr>
<td>185208</td>
<td>3′ UTR</td>
<td>222</td>
<td>4046</td>
<td>acgtgatggtttggaacctta</td>
<td>79</td>
<td>317</td>
</tr>
<tr>
<td>185209</td>
<td>3′ UTR</td>
<td>222</td>
<td>4066</td>
<td>ggtctgtttctacaagttg</td>
<td>61</td>
<td>318</td>
</tr>
<tr>
<td>185210</td>
<td>3′ UTR</td>
<td>222</td>
<td>4116</td>
<td>tcaacaaacacagtcagga</td>
<td>83</td>
<td>319</td>
</tr>
<tr>
<td>185211</td>
<td>3′ UTR</td>
<td>222</td>
<td>4127</td>
<td>gattttacttcacaaaaa</td>
<td>56</td>
<td>320</td>
</tr>
<tr>
<td>185212</td>
<td>3′ UTR</td>
<td>222</td>
<td>4333</td>
<td>aatcaacaggcaagacccc</td>
<td>56</td>
<td>321</td>
</tr>
<tr>
<td>185213</td>
<td>3′ UTR</td>
<td>222</td>
<td>4387</td>
<td>catctggaaccttgatttateda</td>
<td>45</td>
<td>322</td>
</tr>
<tr>
<td>185214</td>
<td>3′ UTR</td>
<td>222</td>
<td>4466</td>
<td>ctcaaggggaaggtgagact</td>
<td>42</td>
<td>323</td>
</tr>
<tr>
<td>185215</td>
<td>3′ UTR</td>
<td>222</td>
<td>4608</td>
<td>ttaactccccacaaaaattgta</td>
<td>59</td>
<td>324</td>
</tr>
<tr>
<td>185216</td>
<td>3′ UTR</td>
<td>222</td>
<td>4652</td>
<td>tgaacttataacagaggacg</td>
<td>81</td>
<td>325</td>
</tr>
<tr>
<td>185217</td>
<td>3′ UTR</td>
<td>222</td>
<td>4760</td>
<td>cagatggtggctttgctac</td>
<td>0</td>
<td>326</td>
</tr>
<tr>
<td>185218</td>
<td>3′ UTR</td>
<td>222</td>
<td>4825</td>
<td>ttgctgacagagaaaagata</td>
<td>68</td>
<td>327</td>
</tr>
<tr>
<td>185219</td>
<td>3′ UTR</td>
<td>222</td>
<td>4894</td>
<td>tcaataactcagccagag</td>
<td>74</td>
<td>328</td>
</tr>
<tr>
<td>185220</td>
<td>3′ UTR</td>
<td>222</td>
<td>4902</td>
<td>tgtgtgatgtggagactgtc</td>
<td>50</td>
<td>329</td>
</tr>
<tr>
<td>185221</td>
<td>3′ UTR</td>
<td>222</td>
<td>5010</td>
<td>cacctcagaaactggccttg</td>
<td>73</td>
<td>330</td>
</tr>
<tr>
<td>185222</td>
<td>3′ UTR</td>
<td>222</td>
<td>5018</td>
<td>gctcttacttcacctgagaa</td>
<td>84</td>
<td>331</td>
</tr>
<tr>
<td>185223</td>
<td>3′ UTR</td>
<td>222</td>
<td>5074</td>
<td>gagnctttgatatcc</td>
<td>64</td>
<td>332</td>
</tr>
<tr>
<td>185224</td>
<td>3′ UTR</td>
<td>222</td>
<td>5132</td>
<td>tctctggaagagacaagtta</td>
<td>58</td>
<td>333</td>
</tr>
<tr>
<td>185225</td>
<td>3′ UTR</td>
<td>222</td>
<td>5170</td>
<td>gtagtagctttgaccttg</td>
<td>36</td>
<td>334</td>
</tr>
<tr>
<td>185226</td>
<td>3′ UTR</td>
<td>222</td>
<td>5211</td>
<td>aggaagggaaaggtctcttg</td>
<td>38</td>
<td>335</td>
</tr>
</tbody>
</table>
Inhibition of mouse stearoyl-CoA desaturase mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a decoy gap

<table>
<thead>
<tr>
<th>Isis #</th>
<th>Region</th>
<th>SEQ NO</th>
<th>Target Site Sequence</th>
<th>% Inhib</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>185227</td>
<td>3' UTR</td>
<td>222</td>
<td>5260 tacactgggtcacaataaa</td>
<td>49</td>
<td>336</td>
</tr>
<tr>
<td>185228</td>
<td>3' UTR</td>
<td>222</td>
<td>5280 aactctccacatatcacttg</td>
<td>50</td>
<td>337</td>
</tr>
<tr>
<td>185229</td>
<td>3' UTR</td>
<td>222</td>
<td>5303 cttcaagagttgatattaat</td>
<td>60</td>
<td>338</td>
</tr>
<tr>
<td>185230</td>
<td>3' UTR</td>
<td>222</td>
<td>5329 atacaatctcaacagtaa</td>
<td>76</td>
<td>339</td>
</tr>
<tr>
<td>185231</td>
<td>3' UTR</td>
<td>222</td>
<td>5347 caacttttataggactaaat</td>
<td>0</td>
<td>340</td>
</tr>
</tbody>
</table>

[0233] As shown in Table 4, SEQ ID NOs 263, 267, 268, 270, 271, 278, 279, 280, 281, 284, 285, 286, 289, 290, 291, 293, 294, 295, 296, 298, 300, 301, 302, 304, 309, 310, 311, 312, 313, 314, 315, 317, 318, 319, 320, 321, 322, 323, 324, 325, 327, 328, 329, 330, 331, 332, 333, 336, 337, 338, 339 demonstrated at least 40% inhibition of stearoyl-CoA desaturase in this experiment and are therefore preferred. More preferred are SEQ ID NOs 295, 331 and 268. The target regions to which these preferred sequences are complementary are herein referred to as “preferred target segments” and are therefore preferred for targeting by compounds of the present invention.

[0234] In a further embodiment of the present invention, a series of oligonucleotides was designed to target different regions of the mouse stearoyl-CoA desaturase RNA, using published sequences (GenBank Accession number M21280.1, incorporated herein as SEQ ID NO: 216; GenBank Accession number M21281.1, incorporated herein as SEQ ID NO: 217; GenBank Accession number M21282.1, incorporated herein as SEQ ID NO: 218; GenBank Accession number M21283.1, incorporated herein as SEQ ID NO: 219; GenBank Accession number M21284.1, incorporated herein as SEQ ID NO: 220; GenBank Accession number M21285.1, incorporated herein as SEQ ID NO: 221; the concatenation of SEQ ID NOs 216, 217, 218, 219, 220 and 221, incorporated herein as SEQ ID NO: 222). The oligonucleotides are shown in Table 5. “Target site” indicates the first (5'-most) nucleotide number on the particular target sequence to which the oligonucleotide binds. All compounds in Table 5 are chimeric oligonucleotides (“gapmers”) 20 nucleotides in length, composed of a central “gap” region consisting of ten 2'-deoxy nucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide “wings”. The wings are composed of 2'-methoxynethyl (2'-MOE) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methylcytidines. [0235] Probes and primers to mouse stearoyl-CoA desaturase were designed to hybridize to a mouse stearoyl-CoA desaturase sequence, using published sequence information (SEQ ID NO: 222). For mouse stearoyl-CoA desaturase the PCR primers were: forward primer: TTCCGCCACCTCGCCTACA (SEQ ID NO: 341) reverse primer: CTTCCCGACTGAGTGGGAGTA (SEQ ID NO: 342) and the PCR probe was: FAM-CAACGGGTCTC-GGAACCCGAA-TAMRA (SEQ ID NO: 343) where FAM (PE-Applied Biosystems, Foster City, Calif.) is the fluorescent reporter dye and TAMRA (PE-Applied Biosystems, Foster City, Calif.) is the quencher dye. For mouse GAPDH the PCR primers were: forward primer: GAAGGTGAAGTGCGATGTC (SEQ ID NO:261) reverse primer: GAAAGTGGTATGAGGTTTC (SEQ ID NO:262) and the PCR probe was: 5' JOE-CACAGCTTC-CGGTTCTCGACCC-TAMRA 3' (SEQ ID NO: 263) where JOE is the fluorescent reporter dye and TAMRA is the quencher dye. [0236] The compounds were analyzed for their effect on mouse stearoyl-CoA desaturase mRNA levels in primary mouse hepatocytes by quantitative real-time PCR as described in other examples herein. The positive control oligonucleotide is ISIS 18078 (GTGCGCGCGAGC-CGGAAATC, SEQ ID NO: 82), a 2'-O-methoxynethyl (2'-MOE) nucleotide shown in bold with a phosphorothioate backbone, which is targeted to human Jun-N-terminal kinase-2 (JNK2). Data are averages from two experiments and are shown in Table 5. If present, “N.D.” indicates “no data”.

Inhibition of mouse stearoyl-CoA desaturase mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a decoy gap

<table>
<thead>
<tr>
<th>Isis #</th>
<th>Region</th>
<th>SEQ ID NO</th>
<th>Target Site Sequence</th>
<th>% Inhib</th>
<th>SEQ ID NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>180566</td>
<td>5' UTR</td>
<td>222</td>
<td>ggtgcaggggaaacagt</td>
<td>40</td>
<td>344</td>
</tr>
<tr>
<td>244459</td>
<td>5' UTR</td>
<td>222</td>
<td>ctagaacctttggtcggcgc</td>
<td>6</td>
<td>345</td>
</tr>
</tbody>
</table>
TABLE 5 - continued

Inhibition of mouse stearoyl-CoA desaturase mRNA levels by chimeric phosphorothioate oligonucleotides having 2'-MOE wings and a deoxy gap

<table>
<thead>
<tr>
<th>Isio</th>
<th>Target</th>
<th>SEQ ID</th>
<th>Target NO</th>
<th>% Inhib</th>
<th>Control SEQ ID</th>
</tr>
</thead>
<tbody>
<tr>
<td># Region</td>
<td>Site</td>
<td>Sequence</td>
<td>5' UTR</td>
<td>5' UTR</td>
<td>5' UTR</td>
</tr>
<tr>
<td>244461</td>
<td>5' UTR 222</td>
<td>280</td>
<td>gcgtcagcaggttctccccc</td>
<td>0</td>
<td>346</td>
</tr>
<tr>
<td>244464</td>
<td>5' UTR 222</td>
<td>401</td>
<td>cgtgctgctgcctgg</td>
<td>0</td>
<td>347</td>
</tr>
<tr>
<td>244467</td>
<td>5' UTR 222</td>
<td>462</td>
<td>aagaagcaagatgattcc</td>
<td>0</td>
<td>348</td>
</tr>
<tr>
<td>244470</td>
<td>5' UTR 222</td>
<td>692</td>
<td>gtcacagatctctctggct</td>
<td>35</td>
<td>349</td>
</tr>
<tr>
<td>244472</td>
<td>5' UTR 222</td>
<td>736</td>
<td>gtcacagatctctctgg</td>
<td>54</td>
<td>350</td>
</tr>
<tr>
<td>244476</td>
<td>Coding 222</td>
<td>878</td>
<td>aagatgagatgtcttggg</td>
<td>71</td>
<td>351</td>
</tr>
<tr>
<td>244479</td>
<td>Coding 222</td>
<td>1020</td>
<td>cctcctacgctgagttg</td>
<td>16</td>
<td>352</td>
</tr>
<tr>
<td>244481</td>
<td>Coding 222</td>
<td>1045</td>
<td>acttacccagacggccgcc</td>
<td>50</td>
<td>353</td>
</tr>
<tr>
<td>244484</td>
<td>Coding 222</td>
<td>1057</td>
<td>acttacccagacggccgcc</td>
<td>33</td>
<td>354</td>
</tr>
<tr>
<td>244487</td>
<td>Coding 222</td>
<td>1062</td>
<td>gtcacagatctctctgg</td>
<td>43</td>
<td>355</td>
</tr>
<tr>
<td>244490</td>
<td>Coding 222</td>
<td>1068</td>
<td>cctgcagatgtcttccc</td>
<td>50</td>
<td>356</td>
</tr>
<tr>
<td>244493</td>
<td>Coding 222</td>
<td>1098</td>
<td>gcttggctgctgaggg</td>
<td>54</td>
<td>357</td>
</tr>
<tr>
<td>244495</td>
<td>Coding 222</td>
<td>1128</td>
<td>gcttggctgctgaggg</td>
<td>10</td>
<td>358</td>
</tr>
<tr>
<td>244498</td>
<td>Coding 222</td>
<td>1264</td>
<td>gtcacagatctctctgg</td>
<td>41</td>
<td>359</td>
</tr>
<tr>
<td>244501</td>
<td>Coding 222</td>
<td>1324</td>
<td>cctgcagatgtcttccc</td>
<td>18</td>
<td>360</td>
</tr>
<tr>
<td>244504</td>
<td>Coding 222</td>
<td>1329</td>
<td>gtcacagatctctctgg</td>
<td>50</td>
<td>361</td>
</tr>
<tr>
<td>244507</td>
<td>Coding 222</td>
<td>1334</td>
<td>gtcacagatctctctgg</td>
<td>63</td>
<td>362</td>
</tr>
<tr>
<td>244510</td>
<td>Coding 222</td>
<td>1347</td>
<td>gtcacagatctctctgg</td>
<td>11</td>
<td>363</td>
</tr>
<tr>
<td>244514</td>
<td>Coding 222</td>
<td>1357</td>
<td>gtcacagatctctctgg</td>
<td>47</td>
<td>364</td>
</tr>
<tr>
<td>244517</td>
<td>Coding 222</td>
<td>1363</td>
<td>gtcacagatctctctgg</td>
<td>16</td>
<td>365</td>
</tr>
<tr>
<td>244520</td>
<td>Coding 222</td>
<td>1397</td>
<td>gtcacagatctctctgg</td>
<td>51</td>
<td>366</td>
</tr>
<tr>
<td>244523</td>
<td>Coding 222</td>
<td>1395</td>
<td>gtcacagatctctctgg</td>
<td>67</td>
<td>367</td>
</tr>
<tr>
<td>244526</td>
<td>Coding 222</td>
<td>1400</td>
<td>gtcacagatctctctgg</td>
<td>52</td>
<td>368</td>
</tr>
<tr>
<td>244529</td>
<td>Coding 222</td>
<td>1408</td>
<td>gtcacagatctctctgg</td>
<td>63</td>
<td>369</td>
</tr>
<tr>
<td>244532</td>
<td>Coding 222</td>
<td>1413</td>
<td>gtcacagatctctctgg</td>
<td>3</td>
<td>370</td>
</tr>
<tr>
<td>244535</td>
<td>Coding 222</td>
<td>1418</td>
<td>gtcacagatctctctgg</td>
<td>50</td>
<td>371</td>
</tr>
<tr>
<td>244538</td>
<td>Coding 222</td>
<td>1423</td>
<td>gtcacagatctctctgg</td>
<td>64</td>
<td>372</td>
</tr>
<tr>
<td>244541</td>
<td>Coding 222</td>
<td>1435</td>
<td>gtcacagatctctctgg</td>
<td>55</td>
<td>373</td>
</tr>
<tr>
<td>244542</td>
<td>Coding 222</td>
<td>1440</td>
<td>gtcacagatctctctgg</td>
<td>55</td>
<td>374</td>
</tr>
<tr>
<td>244546</td>
<td>Coding 222</td>
<td>1445</td>
<td>gtcacagatctctctgg</td>
<td>48</td>
<td>375</td>
</tr>
<tr>
<td>244549</td>
<td>Coding 222</td>
<td>1450</td>
<td>gtcacagatctctctgg</td>
<td>49</td>
<td>376</td>
</tr>
<tr>
<td>244553</td>
<td>Coding 222</td>
<td>1455</td>
<td>gtcacagatctctctgg</td>
<td>50</td>
<td>377</td>
</tr>
<tr>
<td>244554</td>
<td>Coding 222</td>
<td>1460</td>
<td>gtcacagatctctctgg</td>
<td>37</td>
<td>378</td>
</tr>
<tr>
<td>244557</td>
<td>Coding 222</td>
<td>1465</td>
<td>gtcacagatctctctgg</td>
<td>20</td>
<td>379</td>
</tr>
<tr>
<td>Seq ID</td>
<td>Target Region</td>
<td>Target Site</td>
<td>% Inhib</td>
<td>Control Seq ID</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>244560 Coding</td>
<td>222</td>
<td>1470 ggacactcaccagctctcg</td>
<td>42</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>244565 Coding</td>
<td>222</td>
<td>1477 cctctctggacactacccag</td>
<td>17</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>244567 Coding</td>
<td>222</td>
<td>1486 ttgtgatcctctctgtgaa</td>
<td>0</td>
<td>382</td>
<td></td>
</tr>
<tr>
<td>244569 Coding</td>
<td>222</td>
<td>1516 aggatgaagcactacccag</td>
<td>29</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td>244572 Coding</td>
<td>222</td>
<td>1525 agctggccagtaggagca</td>
<td>45</td>
<td>384</td>
<td></td>
</tr>
<tr>
<td>244577 Coding</td>
<td>222</td>
<td>1538 gtcacctggccagtccag</td>
<td>37</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>244578 Coding</td>
<td>222</td>
<td>1543 cagactcaccaggccag</td>
<td>25</td>
<td>386</td>
<td></td>
</tr>
<tr>
<td>244581 Coding</td>
<td>222</td>
<td>1548 ccaccaggccagctacccag</td>
<td>13</td>
<td>397</td>
<td></td>
</tr>
<tr>
<td>244585 Coding</td>
<td>222</td>
<td>1593 gaaggtgtaacacgacccag</td>
<td>18</td>
<td>398</td>
<td></td>
</tr>
<tr>
<td>244589 Coding</td>
<td>222</td>
<td>1633 ccgccatatttccccggag</td>
<td>62</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>244591 Coding</td>
<td>222</td>
<td>1693 aggatgagcctacccag</td>
<td>54</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>244598 Coding</td>
<td>222</td>
<td>1732 ttggatggcttggacccctt</td>
<td>54</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>244599 Coding</td>
<td>222</td>
<td>1768 gctcaacctgctacccag</td>
<td>19</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td>244602 Coding</td>
<td>222</td>
<td>1773 caggtgtactcactgagag</td>
<td>31</td>
<td>394</td>
<td></td>
</tr>
<tr>
<td>244607 Coding</td>
<td>222</td>
<td>1779 ccgccatatttccccggag</td>
<td>62</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>244609 Coding</td>
<td>222</td>
<td>1783 ttggatggcttggacccctt</td>
<td>54</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>244613 Coding</td>
<td>222</td>
<td>1792 ccgccatatttccccggag</td>
<td>62</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>244615 Coding</td>
<td>222</td>
<td>1793 cctgttcctttttatcctgg</td>
<td>63</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>244619 Coding</td>
<td>222</td>
<td>1891 ccgccatatttccccggag</td>
<td>62</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>244620 Coding</td>
<td>222</td>
<td>1895 cctggtccttcctctctn</td>
<td>37</td>
<td>401</td>
<td></td>
</tr>
<tr>
<td>244623 Coding</td>
<td>222</td>
<td>2006 taacacocgcctagcataat</td>
<td>59</td>
<td>402</td>
<td></td>
</tr>
<tr>
<td>244630 3' UTR</td>
<td>222</td>
<td>2365 ccgccatatttccccggag</td>
<td>4</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td>244633 3' UTR</td>
<td>222</td>
<td>2445 ccgccatatttccccggag</td>
<td>68</td>
<td>404</td>
<td></td>
</tr>
<tr>
<td>244636 3' UTR</td>
<td>222</td>
<td>2647 ccgccatatttccccggag</td>
<td>82</td>
<td>405</td>
<td></td>
</tr>
<tr>
<td>244639 3' UTR</td>
<td>222</td>
<td>2920 ccgccatatttccccggag</td>
<td>47</td>
<td>406</td>
<td></td>
</tr>
<tr>
<td>244643 3' UTR</td>
<td>222</td>
<td>2970 ccgccatatttccccggag</td>
<td>5</td>
<td>407</td>
<td></td>
</tr>
<tr>
<td>244644 3' UTR</td>
<td>222</td>
<td>3243 ccgccatatttccccggag</td>
<td>33</td>
<td>408</td>
<td></td>
</tr>
<tr>
<td>244647 3' UTR</td>
<td>222</td>
<td>3373 ccgccatatttccccggag</td>
<td>28</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>244650 3' UTR</td>
<td>222</td>
<td>4168 ccgccatatttccccggag</td>
<td>28</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>244655 3' UTR</td>
<td>222</td>
<td>4169 ccgccatatttccccggag</td>
<td>28</td>
<td>410</td>
<td></td>
</tr>
<tr>
<td>244660 3' UTR</td>
<td>222</td>
<td>4737 ccgccatatttccccggag</td>
<td>62</td>
<td>412</td>
<td></td>
</tr>
<tr>
<td>244663 3' UTR</td>
<td>222</td>
<td>4997 ccgccatatttccccggag</td>
<td>35</td>
<td>414</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5—continued

<table>
<thead>
<tr>
<th>Isos</th>
<th>Target</th>
<th>SEQ ID</th>
<th>Target</th>
<th>% Inhib</th>
<th>Control</th>
<th>SEQ ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>244667 3'HUTR 222</td>
<td>5220 atctcatacaggagggaa</td>
<td>0</td>
<td>415</td>
<td>02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>244668 3'UTR 222</td>
<td>5272 aaatcacttgggtcacc</td>
<td>57</td>
<td>416</td>
<td>02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>244673 3'UTR 222</td>
<td>5326 cacttcactcagtcacct</td>
<td>37</td>
<td>417</td>
<td>02</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0237] As shown in Table 5, SEQ ID NOs 344, 350, 351, 352, 353, 354, 355, 356, 357, 358, 362, 363, 364, 366, 367, 368, 369, 371, 372, 373, 374, 375, 376, 377, 380, 381, 392, 391, 392, 397, 399, 400, 402, 404, 406, 412, 413, 416 exhibited at least 40% inhibition of stearoyl-CoA desaturase in this experiment. A more preferred sequence is SEQ ID NO: 373. The target regions to which these preferred sequences are complementary are herein referred to as “preferred target segments” and are therefore preferred for targeting by compounds of the present invention.

Example 19
Effects of Antisense Inhibition of Mouse Stearoyl-CoA Desaturase Expression in Mice: mRNA Levels in Liver and Fat Tissue

[0238] Ob/ob mice harbor a mutation in the leptin gene. The leptin mutation on a C57Bl/6 background yields a db/db phenotype, characterized by, hyperglycemia, obesity, hyperlipidemia, and insulin resistance. However, a mutation in the leptin gene on a different mouse background can produce obesity without diabetes, and these mice are referred to as ob/ob mice. Leptin is a hormone that regulates appetite. Leptin deficiency results in obesity in animals and humans.

[0239] In accordance with the present invention, ISIS 18522 (SEQ ID NO: 332) was further investigated for its ability to reduce target levels in liver and fat tissue in ob/ob mice maintained on a high-fat (11% kcal from fat) or low-fat (2% from fat) diet.

[0240] ISIS 141923 (CCTTCCCTGAAGGTTCCTCC, SEQ ID NO: 418) is a scrambled control oligonucleotide. ISIS 141923 is a chimeric oligonucleotide ("gapmer") containing 20 nucleotides in length, composed of a central "gap" region consisting of 9 2'-desoxy nucleotides, which is flanked on both sides (5' and 3' directions) by five-nucleotide "wings". The wings are composed of 2'-O-methyl (2'-OME) nucleotides. The internucleoside (backbone) linkages are phosphorothioate (P=S) throughout the oligonucleotide. All cytidine residues are 5-methyl cytidynes.

[0241] Eight-week old male ob/ob mice were dosed twice weekly by intraperitoneal injection with saline or 25 mg/kg of ISIS 18522 or ISIS 141923. Mice were maintained on a low-fat or high-fat diet. At the end of the ten-week investigation period, mice were sacrificed and evaluated for stearyl-CoA desaturase and stearoyl-CoA desaturase-2 mRNA levels in liver and fat tissue. Inhibition of mRNA expression was determined by quantitative real-time PCR as described in other examples herein. The data are the averages of mRNA levels from nine mice per group and are presented in Table 6.

TABLE 6

<table>
<thead>
<tr>
<th>mRNA</th>
<th>Diet</th>
<th>Liver</th>
<th>Fat</th>
<th>Liver</th>
<th>Fat</th>
</tr>
</thead>
<tbody>
<tr>
<td>stearoyl-CoA</td>
<td>High-fat</td>
<td>0</td>
<td>93</td>
<td>96</td>
<td>29</td>
</tr>
<tr>
<td>desaturase</td>
<td>Low-fat</td>
<td>0</td>
<td>94</td>
<td>98</td>
<td>0</td>
</tr>
<tr>
<td>stearoyl-CoA</td>
<td>High-fat</td>
<td>0</td>
<td>37</td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>desaturase-2</td>
<td>Low-fat</td>
<td>0</td>
<td>37</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

[0242] The data demonstrate that the oligonucleotide of the present invention can inhibit the expression of stearoyl-CoA desaturase in vivo, in both liver and fat tissues. The data also suggest that antisense inhibition of stearoyl-CoA desaturase can reduce expression of stearoyl-CoA desaturase-2.

Example 20
Effects of Antisense Inhibition of Stearoyl-CoA Desaturase in a Mouse Model of Obesity: Organ Weights and Levels of Serum Cholesterol, Triglyceride and Liver Enzymes

[0243] In accordance with the present invention, further investigation of the effects of antisense inhibition of stearoyl-CoA desaturase was conducted in ob/ob mice. The saline-treated and antisense oligonucleotide-treated ob/ob mice described in Example 19 were also evaluated for body weight, levels of serum cholesterol and triglyceride and levels of liver enzymes ALT and AST at the end of the ten-week investigation period. Increased levels of ALT and AST are indicative of impaired liver function. Blood samples were collected and evaluated for cholesterol, triglyceride, ALT and AST levels. White adipose tissue (WAT), spleen and liver were individually weighed. Data are expressed as percent change relative to the saline control for the respective diet. The data represent the average of nine mice per treatment group and are presented in Table 7.
TABLE 7 Effects of antisense inhibition of stearoyl-CoA desaturase on cholesterol, triglyceride, ALT, AST and organ weight

<table>
<thead>
<tr>
<th>Percent Change</th>
<th>Liver Enzymes</th>
<th>Organ Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ALT</td>
<td>AST</td>
</tr>
<tr>
<td>ISIS High-fat</td>
<td>-76</td>
<td>-72</td>
</tr>
<tr>
<td>185222 Low-fat</td>
<td>-60</td>
<td>-55</td>
</tr>
</tbody>
</table>

Sep. 1, 2011

The data suggest that body weight and food consumption are lowered by treatment of ob/ob mice with the oligonucleotide of the present invention. Comparison of blood glucose, insulin and oxygen consumption in mice fed the same diet does not reveal any significant changes between saline-treated and antisense oligonucleotide-treated mice.

Example 22 RNA Synthesis

In general, RNA synthesis chemistry is based on the selective incorporation of various protecting groups at strategic intermediary reactions. Although one of ordinary skill in the art will understand the use of protecting groups in organic synthesis, a useful class of protecting groups includes silyl ethers. In particular bulky silyl ethers are used to protect the 5′-hydroxyl in combination with an acid-labile orthoester protecting group on the 2′-hydroxyl. This set of protecting groups is then used with standard solid-phase synthesis technology. It is important to lastly remove the acid labile orthoester protecting group after all other synthetic steps. Moreover, the early use of the silyl protecting groups during synthesis ensures facile removal when desired, without undesired deprotection of 2′ hydroxyl.

Following this procedure for the sequential protection of the 5′-hydroxyl in combination with protection of the 2′-hydroxyl by protecting groups that are differentially removed and are differentially chemically labile, RNA oligonucleotides were synthesized.

RNA oligonucleotides are synthesized in a stepwise fashion. Each nucleotide is added sequentially (3′- to 5′-di-
rection) to a solid support-bound oligonucleotide. The first nucleoside at the 3'-end of the chain is covalently attached to a solid support. The nucleotide precursor, a ribonucleoside phosphoramide, and activator are added, coupling the second base onto the 5'-end of the first nucleoside. The support is washed and any unreacted 5'-hydroxyl groups are capped with acetic anhydride to yield 3'-acetyl monomers. The linkage is then oxidized to the more stable and ultimately desired (P'V) linkage. At the end of the nucleotide addition cycle, the 5'-silyl group is cleaved with fluoride. The polymer is then recovered for each subsequent nucleotide.

[0250] Following synthesis, the methyl protecting groups on the phosphates are cleaved in 30 minutes utilizing 1 M disodium-2-carbamoyl-2-cyanoethylene-1,1-dithiolate trihydrate (S$_{2}$Na$_{2}$) in DMF. The deprotection solution is washed from the solid support-bound oligonucleotide using water. The support is then treated with 40% methanol in water for 10 minutes at 55°C. This releases the RNA oligonucleotides into solution, deprotects the exocyclic amines, and modifies the 2'-groups. The oligonucleotides can be analyzed by anion exchange HPLC at this stage.

[0251] The 2'-orthoester groups are the last protecting groups to be removed. The ethylene glycol monoacetate orthoester protecting group developed by Dharmacon Research, Inc. (Lafayette, Colo.), is one example of an orthoester protecting group, with which has the following important properties. It is stable to the conditions of nucleoside phosphoramide synthesis and oligonucleotide synthesis. However, after oligonucleotide synthesis the oligonucleotide is treated with methanol, which not only cleaves the oligonucleotide from the solid support but also removes the acetyl groups from the orthoesters. The resulting 2-ethylhydroxyl substituents on the orthoester are less electron withdrawing than the acetylated precursor. As a result, the modified orthoester becomes more labile to acid-catalyzed hydrolysis. Specifically, the rate of cleavage is approximately 10 times faster after the acetyl groups are removed. Therefore, orthoester possesses sufficient stability in order to be compatible with oligonucleotide synthesis and yet, when subsequently modified, permits deprotection to be carried out under relatively mild aqueous conditions compatible with the final RNA oligonucleotide product.

[0253] RNA antisense compounds (RNA oligonucleotides) of the present invention can be synthesized by the methods herein or purchased from Dharmacon Research, Inc (Lafayette, Colo.). Once synthesized, complementary RNA antisense compounds can then be annealed by methods known in the art to form double stranded (duplexed) antisense compounds. For example, duplexes can be formed by combining 30 µl of each of the complementary strands of RNA oligonucleotides (50 µM RNA oligonucleotide solution) and 15 µl of 5x annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH pH 7.4, 2 mM magnesium acetate) followed by heating for 1 minute at 90°C, then 1 hour at 37°C. The resulting duplexed antisense compounds can be used in kits, assays, screens, or other methods to investigate the role of a target nucleic acid.

Example 23

Design and Screening of Duplexed Antisense Compounds Targeting Stearoyl-CoA Desaturase

[0254] In accordance with the present invention, a series of nucleic acid duplexes comprising the antisense compounds of the present invention and their complements can be designed to target stearoyl-CoA desaturase. The nucleobase sequence of the antisense strand of the duplex comprises at least a portion of an oligonucleotide in Table 1. The ends of the strands may be modified by the addition of one or more natural or modified nucleobases to form an overhang. The sense strand of the dsRNA is then designed and synthesized as a complement of the antisense strand and may also contain modifications or additions to either terminus. For example, in one embodiment, both strands of the dsRNA duplex would be complementary over the central nucleobases, each having overhangs at one or both termini.

[0255] For example, a duplex comprising an antisense strand having the sequence CGAGAGCGGAGCGGA (SEQ ID NO: 419) and having a two-nucleobase overhang of deoxythymidine(dT) would have the following structure:

```
cgagagcgga
TTgcucucoc
```

[0256] RNA strands of the duplex can be synthesized by methods disclosed herein or purchased from Dharmacon Research Inc., (Lafayette, Colo.). Once synthesized, the complementary strands are annealed. The single strands are aliquoted and diluted to a concentration of 50 µM. Once diluted, 30 µl of each strand is combined with 15 µl of a 5x solution of annealing buffer. The final concentration of the buffer is 100 mM potassium acetate, 30 mM HEPES-KOH pH 7.4, and 2 mM magnesium acetate. The final volume is 75 µL. This solution is incubated for 1 minute at 90°C and then centrifuged for 15 seconds. The tube is allowed to sit for 1 hour at 37°C, then the dsRNA duplexes are used in experimentation. The final concentration of the dsRNA duplex is 20 µM. This solution can be stored frozen (-20°C) and freeze-thawed up to 5 times.

[0257] Once prepared, the duplexed antisense compounds are evaluated for their ability to modulate stearoyl-CoA desaturase expression.

[0258] When cells reached 80% confluency, they are treated with duplexed antisense compounds of the invention. For cells grown in 96-well plates, wells are washed once with 200 µl OPTI-MEM-1 reduced-serum medium (Gibco BRL.)
and then treated with 130 μL of OPTI-MEM-1 medium containing 12 μg/mL LIPOFECTIN reagent (Gibco BRL) and the desired duplex antisense compound at a final concentration of 200 nM. After 5 hours of treatment, the medium is replaced with fresh medium. Cells are harvested 16 hours after treatment, at which time RNA is isolated and target reduction measured by RT-PCR.

Example 24
Design of Phenotypic Assays and In Vivo Studies for the Use of Stearyl-CoA Desaturase Inhibitors

Phenotypic Assays

[0259] Once stearyl-CoA desaturase inhibitors have been identified by the methods disclosed herein, the compounds are further investigated in one or more phenotypic assays, each having measurable endpoints predictive of efficacy in the treatment of a particular disease state or condition.

[0260] Phenotypic assays, kits and reagents for their use are well known to those skilled in the art and are herein used to investigate the role and/or association of stearyl-CoA desaturase in health and disease. Representative phenotypic assays, which can be purchased from any one of several commercial vendors, include those for determining cell viability, cytotoxicity, proliferation or cell survival (Molecular Probes, Eugene, Ore.; PerkinElmer, Boston, Mass.), protein-based assays including enzymatic assays (Panvera, LLC, Madison, Wis.; BD Biosciences, Franklin Lakes, N.J.; Oncogene Research Products, San Diego, Calif.), cell regulation, signal transduction, inflammation, oxidative processes and apoptosis (Assay Designs Inc., Ann Arbor, Mich.), triglyceride accumulation (Sigma-Aldrich, St. Louis, Mo.), angiogenesis assays, tube formation assays, cytokine and hormone assays and metabolic assays (Chemicon International Inc., Temecula, Calif.; Amersham Biosciences, Piscataway, N.J.).

[0261] In one non-limiting example, cells determined to be appropriate for a particular phenotypic assay (i.e., MCF-7 cells selected for breast cancer studies; adipocytes for obesity studies) are treated with stearyl-CoA desaturase inhibitors identified from the in vitro studies as well as control compounds at optimal concentrations which are determined by the methods described above. At the end of the treatment period, treated and untreated cells are analyzed by one or more methods specific for the assay to determine phenotypic outcomes and endpoints.

[0262] Phenotypic endpoints include changes in cell morphology over time or treatment dose as well as changes in levels of cellular components such as proteins, lipids, nucleic acids, hormones, saccharides or metals. Measurements of cellular status, which include pH, stage of the cell cycle, intake or excretion of biological indicators by the cell, are also endpoints of interest.

[0263] Analysis of the genotype of the cell (measurement of the expression of one or more of the genes of the cell) after treatment is also used as an indicator of the efficacy or potency of the stearyl-CoA desaturase inhibitors. Hallmark genes, or those genes suspected to be associated with a specific disease state, condition, or phenotype, are measured in both treated and untreated cells.

In vivo Studies

[0264] The individual subjects of the in vivo studies described herein are warm-blooded vertebrate animals, which includes humans.

[0265] The clinical trial is subjected to rigorous controls to ensure that individuals are not unnecessarily put at risk and that they are fully informed about their role in the study. To account for the psychological effects of receiving treatments, volunteers are randomly given placebo or stearyl-CoA desaturase inhibitor. Furthermore, to prevent the doctors from being biased in treatments, they are not informed as to whether the medication they are administering is a stearyl-CoA desaturase inhibitor or a placebo. Using this randomization approach, each volunteer has the same chance of being given either the new treatment or the placebo.

[0266] Volunteers receive either the stearyl-CoA desaturase inhibitor or placebo for eight week period with biological parameters associated with the indicated disease state or condition being measured at the beginning (baseline measurements before any treatment), end (after the final treatment), and at regular intervals during the study period. Such measurements include the levels of nucleic acid molecules encoding stearyl-CoA desaturase or stearyl-CoA desaturase protein levels in body fluids, tissues or organs compared to pretreatment levels. Other measurements include, but are not limited to, indices of the disease state or condition being treated, body weight, blood pressure, serum levels of pharmacologic indicators of disease or toxicity as well as ADME (absorption, distribution, metabolism and excretion) measurements.

[0267] Information recorded for each patient includes age (years), gender, height (cm), family history of disease state or condition (yes/no), motivation rating (some/moderate/great) and number and type of previous treatment regimens for the indicated disease or condition.

[0268] Volunteers taking part in this study are healthy adults (age 18 to 65 years) and roughly an equal number of males and females participate in the study. Volunteers with certain characteristics are equally distributed for placebo and stearyl-CoA desaturase inhibitor treatment. In general, the volunteers treated with placebo have little or no response to treatment, whereas the volunteers treated with the stearyl-CoA desaturase inhibitor show positive trends in their disease state or condition index at the conclusion of the study.
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 1

tcgcctatc tctctcaggg

SEQ ID NO 2
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
NAME/KEY: CDS
LOCATION: (236) . . . (1315)

SEQUENCE: 2

atgcatcttg ccocccaaagga

SEQ ID NO 3
LENGTH: 5211
TYPE: DNA
ORGANISM: Homo sapiens
FEATURE:
NAME/KEY: CDS
LOCATION: (236) . . . (1315)

SEQUENCE: 3

ataaaaaggg gctgagaaaa tacgagac acgcacccggt tgccagctct agccttaaa

ttcgcggttc gggaacctcc acaaccccgag gcagccggccg aggatgccgt ctgcaggtggc
gcgcggcg ggagccgtcct ccggcgtgct tggagagcgtccc agagcccgaa
tcgcctccag gcctctggaag tggatccgag gcagcccgaa

ccggccaccc ttggctagc gac gat atc tct acg tcc tat acc acc acc
Pro Ala His Leu Leu Gln Asp Asp Ser Ser Ser Tyr Thr Thr Thr
5
10
15

acc acc att aca ggc cct ccc tcc aag gtc ctc cag aat gga gga gat
Thr Thr Ile Thr Ala Pro Pro Ser Arg Val Leu Gln Asn Gly Gly Asp
20
25
30

aag ttg gag acg atg ccc ttc tac ttt gaa gag gac att cgc cct gat
Lys Leu Glu Thr Met Pro Leu Tyr Leu Glu Asp Ile Arg Pro Asp
35
40
45

ata aab gat gat ata tat gac ccc acc tac aag gat gaa gaa ggc cca
1le Lys Asp Asp Ile Tyr Asp Pro Thr Tyr Lys Asp Lys Gly Pro
50
55
60
65

agc ccc aag gtt gaa tat gtc tgg aga aac atc atc ctt atg tct ctc
gag Ser Pro Lys Val Tyr Val Thr Arg Ile Ile Leu Met Ser Leu
70
75
80

cta cac ttg gga gcc ctc gat ggg atc act gtt act ccc aat
gag Leu His Leu Glu Ala Leu Tyr Gly Ile Thr Leu Ile Pro Thr Cys Lys
85
90
95

ttc tac acc tgg ctc gga gta ttc tac ttt ttt gtc agt gcc ctc
Phe Tyr Thr Trp Leu Leu Gln Val Phe Tyr Tyr Phe Val Ser Ala Leu
100
105
110
115

ggc ata aca gca gga gct cat cgg tgg agc cac cgc tct tac aaa
gly Ile Thr Ala G1u His Arg Leu Trp Ser His Arg Ser Tyr Lys
120
125
130
135

get cgg ctc ccc cta cgg ctc ttt gta att gcc aac aca atg gca
A1a Arg Leu Pro Leu Arg Leu Phe Leu Ile Ala Aen Thr Met Ala
140
145
150
-continued

ttc cag aat gat gtc tat gaa tgg gct cgt gag cac cct gcc cac cac
Phe Glu Asn Asp Val Tyr Glu Trp Ala Arg Asp His Arg Ala His His
 150 155 160

aag ttt tca gaa aca cat gct gat cct cat aat tcc cga cgt ggc ttt
Lys Phe Ser Glu Thr His Ala Amp Pro His Asn Ser Arg Arg Gly Phe
 165 170 175

ttc ttc tct cac gtg ggt tgg ctt ggr ggc aac cac cca gct gtc
Phe Phe Ser His Val Gly Trp Leu Leu Val Arg Lys His Pro Ala Val
 180 185 190

aaa gag aag ggg aat acg cta gac ttg tct gac cta gaa gct gag aaa
Lys Glu Gly Ser Thr Leu Asp Leu Ser Asp Leu Glu Ala Glu Lys
 195 200 205

ctg gtt gtg ttc cag agg tac tac aac ccc ggc ttg ctt cag tgg
Leu Val Met Phe Glu Arg Tyr Tyr Lys Pro Gly Leu Leu Met
 210 215 220 225

tgc ttc atc ctc ccc aag ctt ggt tgg ccc tgg tat ttc ggt gaa act
Cys Phe Ile Leu Pro Thr Leu Val Pro Trp Tyr Phe Trp Gly Glu Thr
 230 235 240

att caa aac aat gtt ctc gtt gcc act ttc ttg cga tat gct gtt gtr
Phe Glu Asn Ala Thr Val Phe Val Ala Thr Phe Leu Arg Tyr Ala Val
 245 250 255

cct aat gcc gcc acc tgg ctt gtt aag aat gct gcc cac ctc ttc gaa tat
Leu Asn Ala Thr Val Leu Val Asn Ala Ala His Leu Phe Gly Tyr
 260 265 270

cgt ccc tct gat gaa aag aac atg ccc cgg gac aat gtt att gcc
Arg Pro Tyr Asp Lys Pro Ser Arg Glu Asn Ile Leu Leu Val Ser
 275 280 285

ctt ggt gtt ggt ggg ggc ttc cac aac tat cac ccc ctc ttc ccc
Leu Gly Ala Val Gly Gly Phe His Tyr His His Ser Phe Pro
 290 295 300 305

tat gac ctc tcc aag gag tgc tgg cac aac ttc acc aca
Tyr Asp Asp Ser Glu Ala Ala Leu Gly Leu Ala Tyr Arg Gly
 310 315 320

ttc ttc att gat tgt atg gcc gcc ctc ggt cct gcc tat gac cgg aag
Phe Phe Ile Asp Cys Met Ala Ala Leu Gly Leu Ala Tyr Amp Arg Lys
 325 330 335

aaa gtc tcc aag gcc gcc atc tgt gcc aag att aas gac acc gga gat
Lys Val Ser Asp Ala Ile Ala Ile Arg Asp Arg Thr Gly Asp
 340 345 350

gga aac tac aag aat ggc tga gttgggttgt cttcagtttt ctttttttca
Gly Asn Tyr Lys Ser Gly *
 355

aaaccagcc gcgcaaggtt ttaatgctcg tttattaact actgaataat gctaccagga
 1405

tgtaaaagtt gatgatgta acccatcaca gtcagttat ctttttttaattc aaaatgtt
 1465
tggaaaagg ccaacttgc cttaatcgtc ctaaagctaa tttctctatt
 1525
tctctctctttc agggcactt gctctctcttt caatcttttg gttactccttc cttttctttt
 1585
atgtctccctg aggccagcgcct cacgtgc agttgtgtttg aggctttc ttcgaaagcctgct
 1645
acaaccctttc gtgctgcta accgaatgtt ctgctgctcat caaactcttc tctctctctt
 1705
tgctgtgctg cttaatgagtt gttgcttggta gtagagata aaacatgacct ctttggtgcctg
 1765
tctttttttttttt aaccagctt ggtctctctt aaccagctt gcagttcttc tctctctctct
 1825
tgctaaccaaaaacctctaaag caggttaatt gcagggggag agagttgct cttctctctct
 1885
tagcatgag cgaagcggg caagggaggcc cttcagcttc gatcagacat cagctgccct
 1945
-continued

acctaagcag actccaagc ccacaccacat agcatcttct cttctcttcc cttctcttcc tggctcggg 2005

taaaaggtgg tctgcaggttt tggcaatgc aatctacagt gaccaacct agtgaacct 2065

gaggtataag aaaaaaacttt ttaagttgtg agtaaaagttgt gtcctgctgt gggagaaggtt 2125

tt
-continued

ggggtgctg acacattgac tcaggtgcct tacatcttttt ctaatcaccag tggctgcatat 4285
gagcctgccc tcactccttc tcgagaatcc cttggacact gagaacctac tgaagttgtct 4345

<210> SEQ ID NO 4
<211> LENGTH: 17
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: PCR Primer

<400> SEQUENCE: 4

gatccggca tcogaga 17

<210> SEQ ID NO 5
<211> LENGTH: 27
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: PCR Primer

<400> SEQUENCE: 5

ggtatagagag ctgagataat ctgctctg 27

<210> SEQ ID NO 6
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE: PCR Probe

<400> SEQUENCE: 6
ccaaagatgccc ggcaccacctg 21

<210> SEQ ID NO 7
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer
<400> SEQUENCE: 7
 gaaggtgaag gtcggagtc
 19

<210> SEQ ID NO 8
 <211> LENGTH: 20
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: PCR Primer
<400> SEQUENCE: 8
 gaagagtgg gatggatttc
 20

<210> SEQ ID NO 9
 <211> LENGTH: 20
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <222> OTHER INFORMATION: PCR Probe
<400> SEQUENCE: 9
 caagcttccc gttctcagcc
 20

<210> SEQ ID NO 10
 <211> LENGTH: 20
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <222> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 10
 gtcgggtatt tcctcagcc
 20

<210> SEQ ID NO 11
 <211> LENGTH: 20
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <222> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 11
 cccgctgcc gcgggttccc
 20

<210> SEQ ID NO 12
 <211> LENGTH: 20
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <222> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 12
 taccgctga gcgcggcgc
 20

<210> SEQ ID NO 13
 <211> LENGTH: 20
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <222> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 13
-continued

gcgtttcga agccccccgg

<210> SEQ ID NO 14
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 14
cctccattct gcaggaccct

<210> SEQ ID NO 15
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 15
tccasaagtgt acacagacaga

<210> SEQ ID NO 16
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 16
cctctcgtgt tattgcccaagg

<210> SEQ ID NO 17
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 17
cagggtagtgc acagccoccat

<210> SEQ ID NO 18
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 18
cagccaacc acgtgagaga

<210> SEQ ID NO 19
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 19
gacaagtctag ccgtactccc

<210> SEQ ID NO 20
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 20

gttaccagc cagttggcat

<210> SEQ ID NO 21
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 21
tgtggaagcc ctccaccaca

<210> SEQ ID NO 22
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 22
agttgatgtg ccacgggtac

<210> SEQ ID NO 23
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 23
ggacccctaa ctcagcccc

<210> SEQ ID NO 24
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 24
tgctggtgc gcataaggg

<210> SEQ ID NO 25
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 25
atcatgtca acctctcctcc

<210> SEQ ID NO 26
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 26

aagtctccat tagtgaggca

<210> SEQ ID NO: 27
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 27
tgtatagc agctcatggga

<210> SEQ ID NO: 28
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 28
tcaataacct tcctcaagccc

<210> SEQ ID NO: 29
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 29
gagagtgcct ggacagcaag

<210> SEQ ID NO: 30
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 30
tcaagtacccc tgacagtctc

<210> SEQ ID NO: 31
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 31
tgcttgcccg acttgtccaa

<210> SEQ ID NO: 32
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 32
-continued

gcatgcctc tggtcttgac

<210> SEQ ID NO 33
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 33

gctttgcagtcaccctgac

<210> SEQ ID NO 34
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 34

gttgatatcctc aaacctccaggg

<210> SEQ ID NO 35
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 35

tagctccggc taaccctgt

<210> SEQ ID NO 36
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 36

gtatcttccc cttgatcttctc

<210> SEQ ID NO 37
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 37

ttcacagcac acaccccccagc

<210> SEQ ID NO 38
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 38

gctaagttgt cagcacaacc

<210> SEQ ID NO 39
aagtttccag astgaagccccc 20

agagaataca cccagatac 20
tagtaagtg acttgccca 20
gccttttgag taggtoaegt 20
ccatatagac taatgacagc 20
tgtatgttt ccttggaacct 20

cctttggaag tagattgctgt 20
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 45

tttgacgcgt agtgggttgt

SEQ ID NO: 46
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 46
gcatcgctc caacttatct

SEQ ID NO: 47
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 47
taxagatgat gtttctccag

SEQ ID NO: 48
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 48
ccccagccca ggtgtagaac

SEQ ID NO: 49
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 49
tgtgaagccg gtggctccac

SEQ ID NO: 50
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 50
cattggaag tgccattgtg

SEQ ID NO: 51
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 51
ttatgaggt csgcatgttgt

<210> SEQ ID NO: 52
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 52

cctctggac atcaccagtgt

<210> SEQ ID NO: 53
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 53

ggatgagca ctcacgcagc

<210> SEQ ID NO: 54
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 54

ttcacccac atatcaccagg

<210> SEQ ID NO: 55
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 55

gacacccagc attctcccg

<210> SEQ ID NO: 56
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 56

tcagtggcag agtagctcata

<210> SEQ ID NO: 57
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 57

taatctggc caagatggcg
-continued-

<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 58

tatatcatctt tagcatcttgtg 20

<220> SEQ ID NO 59
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 59

gcaagaactg accagctgtg 20

<220> SEQ ID NO 60
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 60

gacattacag aagattcttgtg 20

<220> SEQ ID NO 61
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 61

cctccctctc cttcacttte 20

<220> SEQ ID NO 62
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 62

cctccgagcag gagagaaagg 20

<220> SEQ ID NO 63
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 63

cctccccagc agagaccact 20

<220> SEQ ID NO 64
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 64

```
ccaatctct gaagatgga
```

FEATURE:

OTHER INFORMATION: Antisense Oligonucleotide

ORGANISM: Artificial Sequence

LENGTH: 20

TYPE: DNA

SEQ ID NO: 65

SEQUENCE: 65

```
cccaactact tctcctcctc
```

FEATURE:

OTHER INFORMATION: Antisense Oligonucleotide

ORGANISM: Artificial Sequence

LENGTH: 20

TYPE: DNA

SEQ ID NO: 66

SEQUENCE: 66

```
tatagatct gttcctcagc
```

FEATURE:

OTHER INFORMATION: Antisense Oligonucleotide

ORGANISM: Artificial Sequence

LENGTH: 20

TYPE: DNA

SEQ ID NO: 67

SEQUENCE: 67

```
tccccacta ctcactcagt
```

FEATURE:

OTHER INFORMATION: Antisense Oligonucleotide

ORGANISM: Artificial Sequence

LENGTH: 20

TYPE: DNA

SEQ ID NO: 68

SEQUENCE: 68

```
aagagattcc taacccctgcc
```

FEATURE:

OTHER INFORMATION: Antisense Oligonucleotide

ORGANISM: Artificial Sequence

LENGTH: 20

TYPE: DNA

SEQ ID NO: 69

SEQUENCE: 69

```
cacaacaaggg aggctgcccc
```

FEATURE:

OTHER INFORMATION: Antisense Oligonucleotide

ORGANISM: Artificial Sequence

LENGTH: 20

TYPE: DNA

SEQ ID NO: 70

SEQUENCE: 70
aagtggcagc tagctctact

<210> SEQ ID NO 71
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 71

cacccctacc aagtaagcag

<210> SEQ ID NO 72
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 72
tgccttctcc cagtgagac

<210> SEQ ID NO 73
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 73
atcaagcagg cacttgatga

<210> SEQ ID NO 74
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 74
ccctcagcct gaggctgcat

<210> SEQ ID NO 75
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 75
ataatcctcc actcagggcc

<210> SEQ ID NO 76
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 76
catattaaga aagcagccc

<210> SEQ ID NO 77
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 77

cagcaagtca tggcacaagt

<210> SEQ ID NO: 78
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 78

ggtgtagtat ccacgcttc

<210> SEQ ID NO: 79
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 79

ccaaatacaca gaaaaaggcat

<210> SEQ ID NO: 80
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 80

aactactata tccocateaa

<210> SEQ ID NO: 81
<211> LENGTH: 15008
<212> TYPE: DNA
<213> ORGANISM: H. sapiens
<400> SEQUENCE: 81

gagatgttag tggtaggccc cccccgaggg tttcaccactg tttcctgaga aactccccc 60
gtcgccaccc accgcgttctc cgggtgcccag aagggcggtc cttgggctagg ctcggcgc 120
cagcccaca aacaggtccc agcccttccc agagagagaag ctcggcgcag gggatggcggg 180
gcagagggcg agggcggaggt ggaagagaag cttgagaaag gaaacagagg ggagggggag 240
gcagagagttg ggcgcagaggt gaaacagaca tttgcgcagag ccaatgggca cggggcagg 300
gatgggccc accaatctct cggccaaatga cgggcccaggt tttacagagg cctctattgc 360
atcccgggc aggcccggaggc gggggcagag gcccggcgtt gttgtgtcgg cttccggcagc 420
atcccgggcg cctgttgtgcgt gtcgccggaga gcttggcgcct cctgtctctc cccctccgc 480
ccctcactcc aacggcggacg gcggcgccga gttcaactct cggcgctttgc ccctgcttgg 540
cagcggtcag ccaggggggtg aggaatcag gcaagcggtc acccggttgc agctotagc 600
tttaattc acgctgcccc aacctccacgc aagggcggtca ggcggcacaag ccaagcttagc 660
-continued

tgcaagggcg cggggtcag gcggtaacgg cggttcctga gccgcaaac ctcgggccac 720
cgcoaactc gcggctcagc ctcgcccccc cggaaaagta ctcgccact ccggagcaca 780
gattgcggcc cacatgtcgc aaggaagtgt gatgttcccc cgcggccccc gcggcggg 840
gtcgcagggg cggggtcagc ctcgagggga ccgggttctg gcgaagagaga ggggagagt 900
cgaggaga ctggctcact ttttctgaag tgggctgctc ctccagtac cggaatgtgg 960
attgtaaattt ggagacctga gctctcacact ttagttcttc aggctttataa gaaaaatccg 1020
gtgcctgctgg tgcctttttag aatattcgcc gttttctccttt ggctcggtgg gggagtgaat 1080
ggttatcctt cccttccact tgcgctccct cggatacgg tgcgcctcctgc gtcctccctg 1140
cctcgcggcc ctaacgttatcg tggcggaccc ctggaggttc ctctcttcgg ctcctctctg 1200
acccctacc ctcagcagac taagcgggct gccagggatc cgtatgctcc acctctccccc 1260
cagcgtgatt aagagagcga gttgcccccag ctcgctccac gttgcttctt cctgtctctg 1320
ccctcccttc cccctccctct atcttcagct cttatccacc ccaccaccacc atacagcgc 1380
tctctcccg ggtcctcccg aataggagag ataatgtggga gcagagcggc ctctctccgg 1440
aaagacatcg tgcgctcat atataagatcg atatatatc ccaaccctac aaggttaaggg 1500
aagcgcacag ccacaggttt gaataagttg ggagaaacat ccctctctag tggggtctgc 1560
acttgggagc cgctgtagga aatacagctg cttctccctct caagttttac acctggtctc 1620
gggtgtaagca gctctcctgt cctctgcacc gttgcctcag ctgcctgcact getctttttc 1680
taaggttctg cttcagcacc gccaccagcc ctccacgcac ccgggttcgg ggttttttct 1740
aggccatttt ttcattggtg ctcgacccga gttggctcgg cgaacgcttc cgggtctggc 1800
atcgcaggact gtcgctgcat gggtggatga gttggagaca cttggctgtag cgggttcggc 1860
agtctgctgt ggtgagagct cacgctcccc ggaaagcgct ttctgctgtt agctattttg 1920
tggtgtcgtc ctccaccccc gcggccccat ccacaaatca cccaccctct cgggtccggc 1980
atggaacatc gttccttttt cttgggttct gttgagcaat ctcattgcttt 2040
cgcacagggc aacttacccg gggagatttt atcgtgggaag ggagggagag actaatgtttg 2100
aaagagagag aagagaggttt cttacccaca ccaacttttt gcctgtcgcc cttggccgcc 2160
ccaggttttt ctgtctagca gcagagatga ggtcctgggc ccagaactgtt caacagagtct 2220
gttctttct gccacactc tttcaggggt gttgcacata ccagctacca gcattttctt 2280
agaataaatc ccgggttaga atctgttcca tggccatcct gctgcacagc gttgctcag 2340
cccccctact gcagccatga gttggacaga aattgctcgac ttcacacacc agtcttcacc 2400
atccctctgc gcaggggggcc tgggggcagc gcagggaaag aacggccgggt tcggagcgcg 2460
ctgtgaaag gggagacctg ccaggtctgtt ccagctccct ccagctagct caccottttta 2520
gggacctgtgt ggtgctgccg gttgccacag ccggagaaca cagggccggt ctggagcttg 2580
gcggctctctt cccccctttg cacatgagag cttcaggtggt gggagagagc gggagctttc 2640
gcagactccgg ccgctctcag ctgctactt ccaggggtcgg gtcgagccag acctgttgag 2700
tggagacact tggagactag gggtttttgg gcagagggcc cggaggtcag 2760
agttatatgc gtttccctca gcagctctta cggctgagta agatgttggag atctctttct 2820
tgtgacttct cttgccagaa atccctccag tggctactgt gcattcact gagaagaacgc 2880
cctcttcgcg gatcctcagtt tttctagcta ccacgtcgag ccaacgtac ttttttagga 2940
-continued

tgggggaggt agcattccttt gggtttacata tgtgtccacag ccgcagagar acacacgagcc 3000
aggtgcaagt gacagctctt ggcatacagg aagagctcttt gattggtgtg gggaggggag 3060
acatctgttg tctagccctct ctagggattc acgagaacatt cagtgtccagc tggaggtga 3120
ggagagaggg tagatccctcc cggagtctct gttgatgtct ctccacaccc ttttccccctt 3190
agaggatagtct tccacaagt agttttcatct cctgcgaagt cctgcaagcc tcagcacccc 3240
cctgtggtttt cctgacagcgc agagtttgac cccaggtctct ctggtgtggtt atctccagt 3300
gtcactgcaag gggagcagaat tccatcccaa agtgagggct gtgcctgtca catttttttg 3360
gttacgtgcc cagaggttgtg tgcgtgctcc tgggagcagat aaatgtggct cagagagact 3420
agagcttgtaataatctta gggccctttgg tggagatgtct tagctgaaga aagacaccatt 3480
tcgatgtgggg gtagccagaa cttcctctgt cttgaaacac agagnaggtga gggagagaga 3540
gtctagagctgc tcaacttgata catctctctct tccacaacct agaaacctag agctttcact 3600
tctctgtgtaattcctcatg gacaacctta aataggcaac ccgagctgaat cccagctttt 3660
cctatgagct agacatttgg gagaacgtta atctcttccca ttgagagctc tccaacagaa 3720
gcccttcatgaa gatagccctt ggcacacaagt aggccccagag ccaaaaaacct ccaagtctct 3780
tctactactag cagagcaggt tagattagtga taacactacaa tggagacatc ttcctctctt 3840
ggggggagaga gaaagacatat aatcctcact gatattaacgg cttcatattg ataggactag 3900
aggtgtctctc cggagaagcag cagagctgccc tgaagttcttt cccacaaccc cctgctataa 3960
tagcttctacat aagagagctg cttcctcatgg ttcctgcaca aataacaccc 4020
cctagactggc cctcctcatg tagagagacgg tccgctcatca ctgatgtgctt cccagctag 4080
acagctgagat tagatgtgctc tggggagatgg tcaagcacaag cttgtgctgtta gggcagatca 4140
cctggggttc cagcctcatg tgtggtgtagcg gggagaagtggc gctcttctttg 4200
gctctttggc tctctgtgag atcctatagg agaatagaaag gagaagagaag tggagtgggt 4260
tggggggaaa aggagttgtg ttagaacaaca gtagtaaagtgtcgcagagac aacagacagc 4320
aatttggctac aatggttgtc gttcctcact gcaactaagt tctgtgcgcca ctggagatgt 4380
atgtcttactg gctggtgctcc tggagatggaa aatgtagttta ggttttacac caagggcaca 4440
gctctctggc gttgagatgc tgtgaacaag gaaatagatgg gggcagccag ccacacactt 4500
ccccaggtag gattactatct gccacccctct gcaggtgcagag cctccacagga aggtggaggg 4560
agacaatggtt ggggtgttcgct acgtagacgg tgaagaatat ccacactaggt ttagagagcc 4620
gtggcctcggt gaagatagttg ggtgacacagg ggtagttgcag gggcagacag gaggaggtgt 4680
ctcttctttttt gggagagttgg tggagatggag ctgcctctggg aatagactaa 4740
gacacgtcag aatagactagtag tgcctacagg gtaaattttt cccctattgg gcagcacaagt 4800
ctttggtgctaat tcctatagctt gcgtgatgtcg tcaagctatgtc ggtcgcttttt 4860
cctagatcgc cccacacaagctt gaggctctcc acataggtctg tgtgctgtgc 4920
gttctggatat ttttagcttgc tttgtttgtgtc ctagttgataa atggctcagat tctgaatgcc 4980
cctagatcgc ccctacactc agggtgttcttat gctgacactga tgtgctgtgcag 5040
ttcgtgatgt gagaagcagag gcaggtgctg cctgagcagaca ttaataacttcttg 5100
tgagacag cttcctcattgt tctaccagcct gtttcctgtgctg aactaggggttatctg 5160
ccttccttcgccgctgaaatgagttgacctgatcgcgaccgcg 5220
ctctgctgtt attttataaa cacccccctct tattggctct cagctctgcg ggagggagtgg 5280
gtggccttta aaacctcaga gaaagctcag atagcgttga aagaggatga ctagcccttg 5340
ggagaatgcct ttaaaagatca aagaatgaatt gtaagcagcc cattcctctc cctgctcttc 5400
tgactcctta gtctcctgcc cttctctaca tctatcccc cttcctggtg aggagggctgg 5460
gggattgatttt tcctcaatgg ctaaattctaa gggatccgg cttcgttaca gttcatggta 5520
aagccagtct ccccaaaaaa cctgagcagc acatcctctct ctatccacag atgtctctttg 5580
gccctctttc ccagatcagc ttcctcaagtc ttggctgcc ccccaagtgct tctctctggc 5640
agggcatcttt tactatcttg tcggctccct ggccataaaa ggaggagctc atcgctcttg 5700
gagccacgcc tctacaaaggg ctcagctgct cctaggttca ttgctgatca ttgcaaccac 5760
aatgcctcct cggtaacgaa ggctgctctg ctccagcttt ctcaggctcgt cactataagt 5820
atcgaagggac agaaaaaggc agaagcagc accagctgcg agccattttc ccuaatgcttg 5880
ctctccttct tctcgactgc aacctcaagt cccgctccgt tctatctgcc ctaaaaagtct 5940
aagagagctc tggctctggg aaaaggggag cttggaagaat tggaaaattc ctctgtctgt 6000
gtaagaatatt ttctcacttc cagttttcctg ttgtaactca ccaactcggg ctttgctgtc 6060
ttcctctataa cgggtttggt gcacaagaag cagacgctgac tttgatgtgac gggcagac 6120
cctgcaataa aacctctatt ttaaggtttaaa tattttgctg agcagctgcg gggaggtc 6180
cctgacccca ggggttttgg gctgctagtg gcctagatct cccagcgtga ctccagctctg 6240
ggtgcagcaga ccccaacatt tttttatttt ttctctgatg aatggagagc ctaaatgctc 6300
acatggtgtg tgaaggttat gttcagcagac ctctgatctc ttatggctg ttatatgtaag 6360
caacacccctt cattggattc ttcacacgc agcctctact ttaacacaaatt gataaagaatg 6420
cctcctaaac ttcgctagaa atagagctca ttcctcctct ctatacaatggc agaacscaac 6480
gttcacagaga tttaatttgg acacggccca cttgltggct ccttctcctg gttcatgttg 6540
ggctaatgtaa aacattgcgg ctttgatttg cttcttttggt cttgcattgt 6600
gcctgtaactc ccagaccttt cggggcagca ggtgcttcgat tcctataagt tggagacatc 6660
gactctctgt gttacaaagcc tgtctctcttg cttctactac aataaaaccc aattcgccga 6720
gcgtctgggcc ggcaactcctt agtccttgag ccgtgggagc agatggagct 6780
gaacccggagc ggctggtgct gcagtcgtgc gacagctgcg ccctgcaccc gcacttgtggg 6840
aagaaaaaacctt ccagacctca aaaaaaatttt tattacagca aagagaaaag 6900
gggaaaaatgg cagagagaaa ccattttgtc cattagctgag ctaaattctg 6960
catcgtggcg tgtcgctgag ttggacgcag agaaagaaag gaaacacctg tgcctggcctg 7020
aatccgctcc aaatgccacca cattttctgc atttcatctg cctattagcc catccttttg 7080
aaggtttcaca aagttctctt gtggacagaaa agagagaaaag agatatttgg ctaacaccctt 7140
taagggattg aaaaaattctg aagagagccc agaggttgttt tcatttactg cttgatgattc 7200
cgagttgttac gcctggccgt tgtgtaacct ctttttgcaag gcacccaaatg 7260
ggtggcactct gcagctgctgc attttctctac gatgtagac aagggagttc 7320
cctctgcttc ccccacggtt ggctttcaag acacccattg gatcttttttt cccctttcttt 7380
gettaaagag tgtgcgactt tctcactctct cattttctct ggcagctgtga ttagtttac 7440
ccttccccag acctataaaa cttccacgac acaagaccttt tagtgctatg gtcctgggctg 7500
-continued

tgacctgggt tgtggtctgt castgtaggg acctacaaacct gttgcctgtct gtagatgtgtg 9840
taatctgcgc acaagctgtgg cctcggttct tggggtggtga aacttttaaa aacaggtgtg 9900
tgcttcgacc ttctctggca tagctgctgg tgtcttaagac cactctgctgct gtgaacaagt 9960
tgctccaacct tgtggaatat ctgctcttagc aacaagacact gacggccccc gagaatatcc 10020
tgacctctgt ggtagcttgtg ggtatgctcag tctgcccagc aagactaact ccctggtctt 10080
gcgttagag cggagcccca aaaaactagat aaactcggta tttttagctca 10140
ttctgtatct cagtttttccc actataaat tagggggcag tatacttgga aacgtcttttg 10200
aggtcgagg aacatgttttt atgtaaaaat gaaaggtata gaacaccaaac acaaaaaacc 10260
actgatggttt gatcctgagtt cttaaaacat ttccaatattg catgtatgtct cgggpgccggg 10320
cagacctgtgc tgggtcagcc aacactgctgg gggctggagg cgcccaggtgc accggaggtc 10380
agggattgga gacacgtotgc gccaacaggg tgaacccccttg tttctattaa aagccaaac 10440
cctaaacaa aansaaaccc caaatgaccat acatgtgacg cccctgtagag ttttccttttc 10500
tttctcacaac tctggtcggc acgtcagctgt tctgtggagcg aaggaatgca taataaagac 10560
aattggactaa tctggtcgcc cgcattagcccc gttgttttta gaaactcaag tatgacacca 10620
aagttatattt tatctcttccctctctctag atatgccttgct ttaagaagtgt gctgctgc 10680
tctgattggttt ggtagctgtc ctataagggc acaaaaataa ctgggtgttg gcccctttacta 10740
ccacgatacc tttgctctctgt tttctcttcct tttttcaatttcttctttattgctgg 10800
tctagttcatt ccttttccccc aacacgcctct caggtacactt ccataaamgc agttgtgac 10860
cagcgttctcg ccataattttt taatgttggat ttatactttt cttctctttt ctcttctttcatt 10920
tttcttttttt ctctttttt tctctttttt ttttatgaga caggtgccctca ccctggtgac 10980
caggtctgtgc ttgacccctgc ggttggaagt gtcctccctgc tctacgctcc caaagagctct 11040
acattttttt ctttgctctcc ttctctccaaatt gataagacg ccctcaagaag gctgcgtagtg 11100
aattttttttt aatggtcttg gggcaacctct tttttctcag tttttggtgt gttgtctttttct 11160
cataataactc tagsacacaac ccatactcaac ccaatttggg cgagcctcttg cctaaacactct 11220
attttttttt cttctttttat cattttcttt ccattaactca ctttttaatttttttttttttttatt 11280
ccttttttaatt gttgctgaca cagttctctccct cttgtgcccag gttttcattgt ctagtggtg 11340
atccagctct acagccgtctg tgaaccctctty ggctctagctag atccctgctgg ttctagcctcc 11400
caagtaagct ggattacagc tgcataaccaac ctggctgtgg taattttttctattttttttt 11460
agagacacgg tgttcgccatct ttgacccaggt tggctctcagaa atccctgctctt caaaggtctct 11520
tctgctcctgt gctctccacaa tttgtctaat taataaagct gcgcgtgcacag cggcgctctgg 11580
tctactgttt attaaaaagtttttttc gatactcag cactctggaag gcggagcttggc 11640
acagcttcagt gaggagacgtagctaatgg attctggagctt acaagtggtgac accgctctctct 11700
tactaaatcc aaaaaaatttg cagccagccttgctgtggg ggtccctgtgct gcacactac 11760
tggaagctaggcc aagggagagc atgagggaaacc ccgggagccg gaggcctgcca gtaggctgccg 11820
attccgccac tgcagcgccg agtcggctgct gggcagagcaag ccagagttcct gccttcaaaa 11880
aaaaaaacaagaggtttaa cttgtgctggct gcacactgta atccccacca 11940
ctgggaaagc aaaggtggtgg ggtctctcctt acagtaaatag ggaacttttaa aagctgtgctc 12000
tctggtgac ccctgtttctct actaattaaat aaaaaaaaaaaaaaaggaataa aaaaacttagc 12060
caggcatgg ggcacggtcc tgtagctccca gctacctcag aggtgagggc agaagatccg 12120
cgggtcgac ggagcgcag ggtgcattga geccacagg tggcactgca atccagtcgtg 12180
ggtgcacag aacctcccct caaaaatatat ataaaaataa aaaaaattt ttttttcctt 12240
ttttaaattt cacaaatcct tttttaatac atttcaattc ttttttatctt 12300
aacccagttg taataaatat catataacct gtataaatct gagattataca tagaagagga 12360
gttttgcca tggagatttt cctgtatcgc aaatgagcttt ataatgacct tccccccttc 12420
cagctctcgg gtggtgtcagt gttccaaagt gctgacctgt tcttggttac 12480
attacatcct cttttgcctg ttgtctcttc cttttcacc caacccctgt tttttcttcc 12540
gttctgttct tcggccacct aatctttttg tttttgtaat taccctcccc actgctcacat 12600
gcctctttc tctgccaaat taaccctcttc ctgtgagcct ttgtgcttctg 12660
gcccagttg caaagctcctg tttcttcttt accggtgtae cctttctttt ttttttttct 12720
cctgctgctt gttgctgact gattccatt taacgttctg aaacccagac ccggtctагтg 12780
cttaacacca gcccagttgc aaaaaattttattg gacccattta taaaacctca tttccttttt 12840
tctgctgacct ctcccctct ccoccagatt tccacactgca gacccactcag tgcctagcag 12900
agagggacata cttsgaatag cctagatatg ttgtcatttt ccgtggagcc tttctgct 12960
tgggtctgt taaagtttgct atcgctctcg tgtaggagct tgggtctgatc tggtagctac 13020
atattagct ttcagagtaa ttctttttct atcgtgattt gagggtgatag ttttttttttt 13080
cgctgtgctca gggagagag tccggzaatc cttgtccagct cttggtggaca 13140
ccaagctttc gacgcttagg aaaaaagttt gatcccgaaa tttgtttttt tttctctcct 13200
cagcaaaatgtaatgttcat ccacaagggt tccaaattct cagaggttac aaggtatttt 13260
tctctctcag aggtgctgg ttttatctcc ccocctcccc ccaggggcct ccagagacaa 13320
aaagttgagg cagcccccttg gaactgctag gggtgaggcc accagccgct cttgggtgctc 13380
ctttctctcg aatgtcttct gaccggccaa cttttttttgga aacocctcacc cttagaggct 13440
gtccagctcg gttggtggaaa gttgctgttc ttatcttatt ttttttaagg ttcagccccg 13500
agtgtctct cctgcagagga ctggtcaacct cccagctcaac cagagcttgcag gggtgtgggg 13560
ccaagagctaa cttggttattttcc taacacgctg ctaatatcc ccagagagtt ggttctttttc 13620
tgagcatttt aacacgtaag aaaaactcag ttctctctcc ccagagctcct cagagccagca 13680
cgggtcagc gagtttttca tatacctttt aagttggcctt gatttggtgg gggagtctac 13740
tcatagctgt aatccccaca cttttggagg tccacgtggg aggggtctgg ccacatgtgg 13800
aagacccctgt ctctacaaaa aaaaatataaat aaaaagtttct aagagcctgct ggtgggtggtc 13860
tttggtgctc atattaaaggt gaaagccatt cttccattca acaatagaaga gtttcttccc 13920
gggtgaggt aaccgctgctg ctaactgtgtg tggaaacaact aaaaaacttt ccaaggccagc 13980
tccagttcata cttctctcct gttggtggct ggtgggggctt cccccatatct cccacatctc 14040
ttcocctagc cttctctcct cagttgaccc cctggccact caacctcacc acacctttcca 14100
tgtatgtcat ggctccccctc ggtgctgtct gacggcaagaa aaagtcttcc ccggcgccca 14160
tctgtggccag gtaaaaaaga accggggctg gaaaccaacag ggtgctgatc gttggtggggc 14220
cctaggtcct tttttttttt aacoacagcag gcaaggtgttaatgtccttt ttattttaca 14280
tgaaatatcg actccccagtt gctaatagat atgtgtgatttt cccatccctc tagaatttc 14340
cactgtgag cccagctgtc ggaaggagg aaggcctttc ttcctgtga atgctgtga 16680
ggctacagg ggtagcttg agttaaagca tctctgtcct tggagctatt caacocatga 16740
gaaagagac taagagcata tcactgtagt ttaagctgtt gcacctgtgac acctacccct 16800
tgaaatabtc tgcagcttgc tctaaattcag ggtccctaca gatgctgtct gtaataata 16860
taacaacatat aaacaacctt cacttcttac tattgaatac gtgccctatg gatctgtatct 16920
gtaccaagc cacataaaag gttggagggc acctagagggggcctc atgtgtactg 16980
ggtctggtgt gttgggtcgg gcaggtgtctgc tgaagaagag gagaggtttt ccagattcttca 17040
aagtcctacct ctaagagcata atatagactg aacgcctgctc tgcctaaag tctggaggcc 17100
ataaagcttct tgtttgtgggg ggtgtagcgtca caactagctt caggtgcttctt acctctttt 17160
tataaagatc gtgtgcatat agctctgcctt cactccctct gcgaatatctt tttgcaacctg 17220
agacccatct gaaggttggtg gtgagaaaaag gggcctgtag ggagatatt cgtagtacag 17280
atgctgcagaca tttcctcctgc ggcctttttc ggaaacttctt tttgagggctt 17340
atgcgggacata ttggatcgg ccagttgaaata attgattttat atttattttta 17400
atattttattta attggaatat ccaccatgaa gttgggtgttc cgctggttctc cagatgtgtg 17520
cacagcatac ttcacccgtc ccaagaaactg atgtaaagactg tggccgaatc gggtgtaa 17580
tggactgatct gttctgacag ccttggggtaca ggccttttatt tttgctggatcgg 17640
ccttctgaataa atgtttcctcata cctacctaca gcagagctttc tgcggcatga 17700
cataatttctt tattgctaatg caatccacgat ccttattctc cagatgtgtg 17760
catttttata ataccagactgccacacgtctggagcgctgcctt cagatgtgtg 17820
cattaagcatac ttcacctgtg ccaagaaactg atgtaaagactg tggccgaatc gggtgtaa 17880
tagccagaca aaatttgagata atacataaaaagca acgtctgaga cgcggaacata tacagagat 17940
geccctctctgtgatgtggtgg atgtttttttt ccctttttagtg atggatatag tagctactgtg 18000
tgagacagat catttttagag ttctttgtctct ctttttaga atggatatag tagctactgtg 18060
atcttactgtgcttctc cattaaaagc gaagattacact gccatcacttggt ggtctggggg 18120
atcctgtcttt cttgctgatgg aattcctgcgt ggctgccgtatat cagctgtgtatg 18180
atcttttagag taatgtatttgc aatgagttg actgctgacat cctagctgctg 18240
ctctctgtctc taataagtgata atatagactt gcacggctaaa cccgggtaaacatgactggctg 18300
cctgctaaata ctggctacag tggctaaacag attagctcctc cccgggtaaacatgactggctg 18360
gtttctggg gttgctgctt gctgcagtgca tggctagtaa atggctagctgctt ggtctggggg 18420
atccttttagag taatgtatttgc aatgagttg actgctgacat cctagctgctg 18480
atcttttagag taatgtatttgc aatgagttg actgctgacat cctagctgctg 18508
<210> SEQ ID NO 82
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 82
gtgcgcgcgcg gcgcgcgaaatc

<210> SEQ ID NO 83
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anti sense Oligonucleotide

<400> SEQUENCE: 83

cggtgtccgg tatttctcga

<210> SEQ ID NO 84
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anti sense Oligonucleotide

<400> SEQUENCE: 84

ggcaacggyt gacggtgtcc

<210> SEQ ID NO 85
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anti sense Oligonucleotide

<400> SEQUENCE: 85

attaaaggc tagstgtggc

<210> SEQ ID NO 86
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anti sense Oligonucleotide

<400> SEQUENCE: 86

cgagccggsa attaaaggc

<210> SEQ ID NO 87
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anti sense Oligonucleotide

<400> SEQUENCE: 87

gaggttcggg agcgagttc
go

<210> SEQ ID NO 88
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anti sense Oligonucleotide

<400> SEQUENCE: 88
	ttggttcgcg gatsccggsga

<210> SEQ ID NO 89
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Anti sense Oligonucleotide

<400> SEQUENCE: 89

ttggttcgcg gatsccggsga

agacatcatt ctggatgcc

ctgaaacctt gtggctgcc

gtttctctga aaacctgtgg

aatctcagc tacctctcct

ctcttcagtc tctctctgga

cgacagccg atatcgg

cctcctcgtc tgctctcctt
<210> SEQ ID NO 102
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 102

aasctctgct ctgctgtggtt 20

<210> SEQ ID NO 103
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 103

gtagcattat tcaagtcat 20

<210> SEQ ID NO 104
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 104

tactggatag ggttaaacatc 20

<210> SEQ ID NO 105
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 105

tcagcttacg acataaagc 20

<210> SEQ ID NO 106
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 106

agactgacca gtgtgtgccc 20

<210> SEQ ID NO 107
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 107

gctggacact ggcaagac 20

<210> SEQ ID NO 108
<211> LENGTH: 20
<212> TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide
SEQUENCE: 108
tttggaagct ggacactgag

SEQ ID NO 109
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide
SEQUENCE: 109
tcggagcaaa gcaccatctc

SEQ ID NO 110
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide
SEQUENCE: 110
ttcgcaagt cacaacagct

SEQ ID NO 111
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide
SEQUENCE: 111
tccatgacct cagagctcagc

SEQ ID NO 112
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide
SEQUENCE: 112
tcaagccacc tctttcaaggt

SEQ ID NO 113
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide
SEQUENCE: 113
tcttagctca agccacctcagc

SEQ ID NO 114
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide
<210> SEQ ID NO 115
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 115

tggtcaaat gaattgtg
ttgtgtcag taattggt
tgttgtcaaat gaagttgctt

<210> SEQ ID NO 116
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 116

tttctgcat tacgtgac

<210> SEQ ID NO 117
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 117

tgttgtgtaa gtcgacaggg
tggtcgtgtaa gtcgacaggg
tgtgtgtaa gtcgacaggg
tggtcgtgtaa gtcgacaggg
tggtcgtgtaa gtcgacaggg

<210> SEQ ID NO 118
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 118

aatgtgctag atgtgctag

<210> SEQ ID NO 119
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 119

ggaagagaa ggaagagaa
ggaagagaa ggaagagaa
ggaagagaa ggaagagaa
ggaagagaa ggaagagaa
ggaagagaa ggaagagaa

<210> SEQ ID NO 120
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 120

aactatgt tgtcgccattg
<210> SEQ ID NO 121
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 121

tagatgttca cagagacccc 20

<210> SEQ ID NO 122
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 122

aactcagytga tgaagagat 20

<210> SEQ ID NO 123
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 123

gggtagagcc aggatcaag 20

<210> SEQ ID NO 124
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 124

agcagtggtt cagtgaccc 20

<210> SEQ ID NO 125
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 125

tacctcaaa aggaaagcag 20

<210> SEQ ID NO 126
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 126

cgtgagagt gcagctagct 20

<210> SEQ ID NO 127
<211> LENGTH: 20
<212> TYPE: DNA
-continued

<400> SEQUENCE: 133
agaagacctga ttcagggcggg

<210> SEQ ID NO 134
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 134
ttgcactgcc agctgagagc

<210> SEQ ID NO 135
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 135
tacttctaca agcattgacac

<210> SEQ ID NO 136
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 136
aectttctct cctactttctct

<210> SEQ ID NO 137
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 137
cttgccccct tgtctctcact

<210> SEQ ID NO 138
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 138
tttcgaggtg aggcaaccttg

<210> SEQ ID NO 139
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 139
tcgaccaagc tgtcgcaggtt
<210> SEQ ID NO 140
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 140

tttgccttg atgaatgacg

<210> SEQ ID NO 141
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 141

atccctggcc tcaacatstat

<210> SEQ ID NO 142
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 142

tcctgttat taaagaaaa

<210> SEQ ID NO 143
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 143

ctaaatatat ctcttggtat

<210> SEQ ID NO 144
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 144

cctcttgata tatgaactaa

<210> SEQ ID NO 145
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 145

acttcaagac tccttgstat

<210> SEQ ID NO 146
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 146

aaacctcagt agctgctgtt 20

<210> SEQ ID NO 147
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 147
gacgtataa ggcagctc

<210> SEQ ID NO 148
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 148
tgaagatg gcagcagaaa

<210> SEQ ID NO 149
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 149
tggsaatgcc acagccatct

<210> SEQ ID NO 150
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 150
cgactctacc ttcttaaatc

<210> SEQ ID NO 151
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 151
gcaagtata tatgatatata

<210> SEQ ID NO 152
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 152

ccagcgcttg agaggaatt 20

<210> SEQ ID NO 153
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 153
cagcctcttc atctcagttc 20

<210> SEQ ID NO 154
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 154
catgtgaag ttcgctotta 20

<210> SEQ ID NO 155
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 155
cgtgtotca gatccctotcc 20

<210> SEQ ID NO 156
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 156
aatcaattaa tgaatggacc 20

<210> SEQ ID NO 157
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 157
ttacctattt caaggagaaa 20

<210> SEQ ID NO 158
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 158
gaagcctctt agtttttact 20
<210> SEQ ID NO 159
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 159

cactgtggag agasgccctc 20

<210> SEQ ID NO 160
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 160

gcacaacact gttgagagaa 20

<210> SEQ ID NO 161
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 161

aatcttaata gagcaagccc 20

<210> SEQ ID NO 162
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 162

gactgagtgt ttgtagtgst 20

<210> SEQ ID NO 163
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 163

agccttctag caattaacac 20

<210> SEQ ID NO 164
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 164

tgaggtgag tagctcaaaa 20

<210> SEQ ID NO 165
<211> LENGTH: 20
<212> TYPE: DNA
-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 165

ccttttcttc tgaggtgaat

20

<210> SEQ ID NO 166
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 166
tgaaatac agcagacatt

20

<210> SEQ ID NO 167
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 167
gcacacgatt acaatgga

20

<210> SEQ ID NO 168
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 168
tctatgcac aagttaca

20

<210> SEQ ID NO 169
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 169
tcagatcttat gcacagcat

20

<210> SEQ ID NO 170
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 170
agsctgtcttc aagccttatg

20

<210> SEQ ID NO 171
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 171

ggcttcagcc tgaagtgcca

<210> SEQ ID NO 172
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 172

agccttagaa ttctgaaat

<210> SEQ ID NO 173
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 173

aatgtgtcac ttgaattgag

<210> SEQ ID NO 174
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 174

cgttagaa tcggacctct

<210> SEQ ID NO 175
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 175

ccaaagcagg gcgttagaga

<210> SEQ ID NO 176
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 176

cacactgtg attagaaaaag

<210> SEQ ID NO 177
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 177

cctcagtagg gcttcaggtg
<210> SEQ ID NO 178
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 178

cDACGACGCA CTTCAGTAGG

<210> SEQ ID NO 179
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 179

ACACGGCCCTTTTTCTAC

<210> SEQ ID NO 180
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 180

GATACTGATA ATCTCCACT

<210> SEQ ID NO 181
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 181

ACATCTGCAA ATCCTGATAC

<210> SEQ ID NO 182
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 182

ACGAGCCCTA ACAAAGTTT

<210> SEQ ID NO 183
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 183

AAATTCTCCA TTTAACTGC

<210> SEQ ID NO 184
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 184

cacctacaga gatacaacc
 20

<210> SEQ ID NO 185
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 185

gagctacact tacagagaat
 20

<210> SEQ ID NO 186
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 186

aacatggcca cctgcctttt
 20

<210> SEQ ID NO 187
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 187

gcottaacca ccagcataac
 20

<210> SEQ ID NO 188
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 188

aggccctggc ctaaaccacc
 20

<210> SEQ ID NO 189
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 189

tggagaggcc ctggccttaa
 20

<210> SEQ ID NO 190
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 190

tgatgcctca aactgcoct 20

<210> SEQ ID NO 191
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 191
taaattgtga tctctgcta

<210> SEQ ID NO 192
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 192
agaattctctg tgcgtgaagga 20

<210> SEQ ID NO 193
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 193
agttcgtgaga attctctgtgc 20

<210> SEQ ID NO 194
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 194
ctaacgttct tggagattcc 20

<210> SEQ ID NO 195
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 195
gacattcct atataaaaa 20

<210> SEQ ID NO 196
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 196
acacggacgt atcaagttca 20
<210> SEQ ID NO 197
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 197

ctctgtatg tttcgtggc

<210> SEQ ID NO 198
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 198

tgcgaggagt tgacgtggtgc

<210> SEQ ID NO 199
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 199

ggcsaagtgc gggagttga

<210> SEQ ID NO 200
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 200

ggaactctac atgctctgc

<210> SEQ ID NO 201
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 201

ggtgcttac cccaaagcca

<210> SEQ ID NO 202
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 202

cctctgtgcs tttactgtga

<210> SEQ ID NO 203
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 203

gtggaagag agagtctca
 20

<210> SEQ ID NO 204
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 204

gcctctctca agtttttaag
 20

<210> SEQ ID NO 205
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 205
tagataccctgtcaggag
 20

<210> SEQ ID NO 206
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 206
aacttttac ctgggaatgc
 20

<210> SEQ ID NO 207
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 207
cctgcgaagagctcattac
 20

<210> SEQ ID NO 208
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 208
cctccctcgc ctcctctgga
 20

<210> SEQ ID NO 209
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
tttgca tgtctctcccac 20

<210> SEQ ID NO 210
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 210
tca tgtgtt cttaca ttg 20

<210> SEQ ID NO 211
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 211
tttgtgtagc ttcaggtgac 20

<210> SEQ ID NO 212
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 212
gctgaattac ccacagcc 20

<210> SEQ ID NO 213
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 213
tactgccc taaattttata 20

<210> SEQ ID NO 214
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 214
ccttgccga tcagggtaa 20

<210> SEQ ID NO 215
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 215
aagccctcctac ctagaaa 20
-continued

tccccagttc cggggttc tttttgctgg tgtcttgaag tcgggggtaga tgtgaagtta 60
gacggatgt tcacatgcgg tagcagcgtgt cttctccact tttctcagag cagtttccc 120
gtttaaatc ctgctaccgg cccggaccag cttctcactgt gttcattccag tttctcactg 180
aatcagagg taactgtcttt aaaaagagag cacaccagcg cccgccacca agagagactt 240
gagaaaaaag cgggagaagg gacggaagag atgtggagac aggtgggctg 300
tggcagcag gcagcagctc acaggtgcag acacgtagc gcaccgctag caaggtttc 360
ggtctcagc agagcagcct acagtttatt cccagtccag ggggtggagc agcgctgct 420
gttgatctg tcgcatccgc gcgcgtcctca aggtctcactg ttgaggtctc ttgaggtctc 480
ttcaggttc cggcagcctc cttcttctcc cttctcttccag gggcaggtgttt ctacgcttctc 540
cgccccgctc cccgtccttc ctcagcctggt cttgtgctag ctacgcttctc 600
gtcttttagc tttttgctgg gcgcagacag cgggagcagc ggagaatgct aacaaggttc 660
tcctgtgccg tcgctaccgg tttttagtag cacccggcagc ggtcaggtgc cccggaggg 720
gggcagcag gcacacgtgcgg cggcaggttc cagcagcagt tcggcgctct cggcagcag 780
gtcctcagc aggggtgcag gcacacgctag cccgctttag cttctgtagc cggcagcttg 840
ggggcagctc gcacacgtgcgg cccgctttag cttctgcaag ctcacagcagc cggcagcttg 900
cgcggcgctc tc 912

ttttcagcagc cccgcttcctc cccgcttcctc cccgcttcctc cccgcttcctc cccgcttcctc 60
gacggatgt tcacatgcgg tagcagcgtgt cttctccact tttctcagag cagtttccc 120
gtttaaatc ctgctaccgg cccggaccag cttctcactgt gttcattccag tttctcactg 180
aatcagagg taactgtcttt aaaaagagag cacaccagcg cccgccacca agagagactt 240
gagaaaaaag cgggagaagg gacggaagag atgtggagac aggtgggctg 300
tggcagcag gcagcagctc acaggtgcag acacgtagc gcaccgctag caaggtttc 360
ggtctcagc agagcagcct acagtttatt cccagtccag ggggtggagc agcgctgct 420
gttgatctg tcgcatccgc gcgcgtcctca aggtctcactg ttgaggtctc ttgaggtctc 480
ttcaggttc cggcagcctc cttcttctcc cttctcttccag gggcaggtgttt ctacgcttctc 540
cgccccgctc cccgtccttc ctcagcctggt cttgtgctag ctacgcttctc 600
gtcttttagc tttttgctgg gcgcagacag cgggagcagc ggagaatgct aacaaggttc 660
tcctgtgccg tcgctaccgg tttttagtag cacccggcagc ggtcaggtgc cccggaggg 720
gggcagcag gcacacgtgcgg cggcaggttc cagcagcagt tcggcgctct cggcagcag 780
gtcctcagc aggggtgcag gcacacgctag cccgctttag cttctgtagc cggcagcttg 840
ggggcagctc gcacacgtgcgg cccgctttag cttctgcaag ctcacagcagc cggcagcttg 900
cgcggcgctc tc 912
<213> ORGANISM: M. musculus

<400> SEQUENCE: 219

```
ttcgagaaat gacgtgtaac acgagcggcc agatcagccg gcaccacca aagttctcaga 60
```
```
aaccaagccc gcocccctca attcccgcgg cgctgtcttc ttcctctcag tcggtgtgtc 120
```
```
gcttggcgc aacacccggg cttcggaaga gaaagggcgg gaagcttgga aatactgtgctg 180
```
```
gaaaggggg aagttggtgca ttcgctcaag aagttggtgg a 221
```

<210> SEQ ID NO 220
<211> LENGTH: 247
<212> TYPE: DNA
<213> ORGANISM: M. musculus

<400> SEQUENCE: 220

```
atgtggtac tacaagcgcgg gcctctgcttg gtatgtgtctt atctgctgca caagctggtgc 60
```
```
gctgctacgc ttggtgctga ctttttgaa cagctgctgct gttgctgctt cttctgctga 120
```
```
caactcgttg ctctagcgcgc cttgggtgctg gagatcagctgc gcgctctctct atggtatctg 180
```
```
ccctcagac aagacatcat atccgggggc gaaatcctctg gttccctctgg gtcgctgctg 240
```
```
taagtaa 247
```

<210> SEQ ID NO 221
<211> LENGTH: 3660
<212> TYPE: DNA
<213> ORGANISM: M. musculus

<400> SEQUENCE: 221

```
ttcgagggca ggcatctca aacaactca acaacccccc ttcggctac caagctgctg 60
```
```
agttacgctg gcccaccaac ttcagaggtc ttcatctgca ttggctgctg gcocctgggcc 120
```
```
tggctacga cgggaagaa gttttataag ctaagctgctt agcggactgtt aagggactgtt 180
```
```
gaaaagggcg acaagctgcag atcagctgctg gcctgtctgt ctctctcagtt taaaagcttt 240
```
```
ttcgtgggag atttatcttg cttgttcttt cttttctctctt aaaaagcttt ttcgtttgctg 300
```
```
taagatgcc taacaacatc ttcagctgctg ttcatttttta aaaaagctttt gtcgcttctg 360
```
```
cgtctttgcc aaattaactt tttttggttat cttggtac atcagctgac caagcttctgtg 420
```
```
atctgctg caacactgtca aagctgtactt catttttct acgccacagattt aataacttctctcagttc 480
```
```
ccgagagaga cggcatctgca ttcggctac gaagccgctc ttcagctgctg gcctgtctgtt 540
```
```
tttcttggcc ttcagctgctg aataagctgctc ttcgctgctg aagttggtgctg 600
```
```
tcagctgctg ttcagactgc cggccggtt ggtgtctgaag taccatgtgc ttcaggtggctg 660
```
```
tcagctgctg ttcagctgctg aataagctgctc ttcgctgctg aagttggtgctg 720
```
```
tttcttggcc ttcagctgctg aataagctgctc ttcgctgctg aagttggtgctg 780
```
```
tttcttggcc ttcagctgctg aataagctgctc ttcgctgctg aagttggtgctg 840
```
```
tcagctgctg ttcagctgctg aataagctgctc ttcgctgctg aagttggtgctg 900
```
```
tcagctgctg ttcagctgctg aataagctgctc ttcgctgctg aagttggtgctg 960
```
```
tcagctgctg ttcagctgctg aataagctgctc ttcgctgctg aagttggtgctg 1020
```
```
tcagctgctg ttcagctgctg aataagctgctc ttcgctgctg aagttggtgctg 1080
```
```
tcagctgctg ttcagctgctg aataagctgctc ttcgctgctg aagttggtgctg 1140
```
-continued

gtgccaagt tgcctgacac tgataactaa acagctgtaca ttgtgctgggg cacagatgtgg 1200
tgtaaacta tgaaaaaata agcaaatact tcacttgagaa catgaaaata ttttacttag 1260
aaaataactg aagggccgga ggtggctccc gggttgccag ttctttctgt gcggcgagggc 1320
gactgtgag gggtgctggc aggttgctgt aggtgtgtgc taaggggtgc aatcctcgat 1390
gagcccccgg cggagccaatg cggcaggggt tgcgcattgct cattggtcctta 1440
gttctcctct ttgtattggtg agaaccattg gtttcccttg gtttgaacct ttatctgcttt 1500
ctttgtcttg tggccacccca ggcctgcctag tgctgctcttag gaagcctttta ccacccctgt 1560
tctctctgcct atcttccttt tgtgcttttt tttctcttc cggacatccga gctatgtggcc 1620
tggtgtctac aagagaacccgg aagacttgctg gctctggccct cccagaatct 1680
cglygttggtg gaagaggtgtg ttgagccacac cgggtgccac ctttctgtgg 1740
tttacagccc ctctctactc ccacactctgt tgcctgtgct acagtgattt caggaagact 1800
tggtagaccc tctgccacaca ttctgcttca gacaagctct ttcgtgttgtga agttaaccagc 1860
tcgctagtgt gcgttgttcttg ctctgtgagtt taaaccagtga agcgcaggggt tgttgtggtga 1920
tctgtctcggt tgtggtctggag atagacagcct atacgacctt ctcctggttcgt gccttgtggcc 1980
gtaaagggcg ttgggtgtcag cccagcgaggg agttaggtggt acagctgtgc tgaancggag 2040
aatcctccca ttttatgtca taaacacacca gacgacgaggg caatgctgtaa ttggacacac 2100
tccagagaag gggttgcttttt ctcggaacccga gtgtgtgtgtt aaaaagcgact gagacgccgt 2160
atcctgagatg atcagctgata cacagcacccct ttgacccgc acagctgtat 2220
aggaaggtct atgagaacac ccctcaacagt ttatttggaa cccctcaacca ctctttgtcc 2280
cattacgcca atoccgacgg cttggttttta gaacctgctg ttagacggcg caaaccactca 2340
gttcctctgt atgaactcgct ctctctttccc cccctacgggt aattgcaccc gcctgctccag 2400
cgtttttgtt gaggtagaag atctatatcag aaaaatctctg tagatcatct gcacocatagc 2460
cocctggaaa tggcttttagt atgttttaac ttcttcttagt cagttgaagc tcggctataaa 2520
gatgccaaat aaaaatctctg ttctcttttc ctctctgtag tttatcctcagc agatcctgtt 2580
cagggatagt tctcagacac gccagcatagtg aagtcctggct gcttttaagt aagaacagcg 2640
tttcagatcct ttocacagca gatttttaaa ccctttcactc atgattaatc ctaatagttt 2700
gggtgcttta ttccttcctc aatgtgtgtg gtctgtgtagg tccctttccag cccctcctcct 2760
agocccggagc ccctcatagag cgagttggaa taggctcagag gtgtgtgctga gacgtcatcag 2820
tacattggtt tggccaaact ttttacccgc taccatattgt gatttttttt tttttattgtta 2880
gttgtaaatt gcgggtgggaa staaatactg tagatctagtt ctgctggatt 2940
cattgactaa cattgactaag aagcgcagttg gcagtgctggc gttatactctc tgggtggtagt 3000
cctctgaaact ttagctgcatg ttagaatctg tccctccattt 3060
tgctcagcct aaggtgttgc ttcgccagctt aatttctgatg ttatttccttt ttcgtaacc 3120
aaccccaaccc agagataaag ccttttacat acoccaacaa ccctcgggctt aagcatctgtg 3180
cagttccagca ttaataatctg tgcgtcatag tcccttacagc cccgaatcag 3240
tggggagttgc tgtacacaaaaa agggtagttta actacgctcct actaacccacag gggccggtct 3300
gagttgatct gacgtttttt taaacaccaaa gtattttgggg tgcctcagca gacgctattc 3360
tacagatcct caaagacta actttatcca tgggacctctc gttttgtctca catgctccttt 3420
-continued

cccagagact gacagatagt accagtcasa agtccagact acctacccac tcgccatgaa
3480
acattgcaag aacactcttc cctcttgaa tggagtttat tatctctctc ctatagttgg
3540
gtaatttttt gtagccaaag ttgaaattgg atgtatttcca ttatatatca cctttgaagc
3600
tctcttgacc tggagatggt tctattttt cctaataaaa gttgatcctg ttgatctgc
3660

<210> SEQ ID NO: 222
<211> LENGTH: 5383
<212> TYPE: DNA
<213> ORGANISM: Mus musculus
<220> FEATURE:
<221> NAME/KEY: CDS
<222> LOCATION: (866) ...(1929)
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 222

tccagctcc cgggttctc ttcttggctg tggctggaaag agggggtgat gttgaagtt
60
gaccgagttg tgggtgctcc tggcagctgt ttctctcact ttttctcgat gctattttccc
120
agttgaacct tctgtcagcg ccagacccaa agttcaggtct tggacaaact tocatctgg
180
aaccaggtt tctctctctc aaaaaagagg ccacccctag ccacccacag aaggtataag
240
gagagaaaaa gggggagaga gacgggaag agaagggccg cagggacaag agatgggcgc
300
tagggacag aacacatttt ccacattttt cttctcctag cgccacctcc gtgaatacg
360
gggtcagcc gaggacatc aagctatttt cccagccaggg ggtttggagc agggcgcct
420
gttgacgct tcggcattc cggcgctcctt cctctctctc tcagcagctc cctctctct
480
ttccggttct tttgctgccc cctcttctct cctctgttct cctctctctc
540
cctctctctt cctctctctt cctcctctct cctctctctt cctcctctct cctcctctct
600
gctctctctc cttctgctgc cggcagctaa cgggagttaa aaggggtgtga ccacggttctc
660
tctctctctc tctgctcttc cctcctctct cctctctctt cctctctctc cctctctctc
720
ggtggataga cccatgctgg gactgcgatt cggcggcttc ccagcggcct gctctctctc
780
gctacaccag aagctgtgctg gagcggctgca cccagctgtg cggcggctgca gctctctctc
840
gggcgcagcc tgcctctctt ccctg ccg ccc ctc atg ccc ccc ctc cta gag atc tcc
891

agt tct tac acc acc
Ser Ser Tyr Thr Thr Thr Thr Ile Thr Ala Pro Pro Ser Gly Aan
15 20 25

gaag gaa gag agq tgt aaq aca gtg ccc ctc cac ctc cag cca gag atc
Glu Arg Glu Lys Val Lys Thr Val Pro Leu His Leu Glu Aep Ile
30 35 40

gct cct gaa atg aac gaa gat att cac gac ccc acc tat cag gag
Arg Pro Glu Met Lys Glu Aep Ile His Aep Pro Thr Tyr Glu Aep Glu
45 50 55

gag gga ccc ccg CCC aag ctc gac ttc tgg aag acc atc att ttc
Glu Gly Pro Pro Lys Leu Glu Tyr Val Trp Arg Aen Ile Ile Leu
60 65 70

tag gtc ctg tct cac ttg gga ggc ctc tac ggg atc ata ctc gtt CCC
Met Val Leu Leu His Leu Gly Lys Leu Tyr Gly Ile Ile Leu Val Pro
75 80 85 90

tcc tgc cag ctc tac act gcc ctc ttc ggg att ttc tac atg acc
Ser Cys Lys Leu Thr Thr Ala Leu Phe Gly Ile Ile Phe Tyr Met Thr
95 100 105
-continued

```
agc gct ctg ggc atc aca gcc ggg gct cat cgc ttc tgg agc cac aga
Ser Ala Leu Gly Ile Thr Ala Gly Ala His Arg Leu Trp Ser His Arg
110 115 120
act tac aag gct cgg ctg ccc ctc ggg atc ttc ata att gcc aac
Thr Tyr Lys Ala Arg Leu Pro Leu Arg Ile Phe Leu Ile Ile Ala Asn
125 130 135
acc agg gcc ttc caa aat gcc tgt tac gac tgg gcc cga gat cac cgc
Thr Met Ala Phe Gln Asn Arg Val Tyr Arg Trp Ala Arg Asp His Arg
140 145 150
gcc cac ccg aag ttc tca gaa aca cac gcc gac cct cac aat tcc cgc
Ala His His Lys Phe Ser Glu Thr His Ala Asp Pro His Asn Ser Arg
155 160 165 170
ctg gtt ttc ttc tct cac ggt tgt cgg ctc cgg cgg cgg cgg cgg aac
Arg Gly Phe Phe Ser His Val Gly Thr Leu Val Arg Lys His
175 180 185
ccg gct gtc aag aag ggc gga aaa ctg gac arg tct gcc gac cgc
Pro Ala Val Lys Glu Gly Gly Lys Leu Asp Met Ser Asp Leu Lys
190 195 200
ccg gac aag ctg tgt tgt ttc cag agg tac taa aag ccc gcc ctc
Ala Glu Gly Leu Val Met Phe Gln Arg Tyr Tyr Lys Pro Gly Leu
205 210 215
tct cgg ctg atg tgc ttc atc ctg ccc aag cag cgg ctc cgg tgt tgc
cag Leu Leu Met Cys Phe Ile Leu Pro Thr Leu Val Pro Thr Cys Trp
220 225 230
ccg gag act ttt gta aac aag ctg tgt tgt acc ttc tgg cga tac
Gly Glu Thr Phe Ser His Leu Ser Leu Thr Phe Leu Arg Tyr
235 240 245 250
act ctt tgt ccc aac gcc acc tgg cct ggc aat gcc gcc ctc
Thr Leu Val Leu Asn Ala Thr Leu Val Asn Ser Ala His Leu
255 260 265
atat gaa tac ctc tac gac aag aac att caa tcc cgg gag aat atc
Tyr Gly Tyr Arg Pro Tyr Arg Pro Tyr Asn Ile Glu Ser Arg Glu Asn Ile
270 275 280
tct cgg ctg tgt ctc gcc gct cgg gac ggc ttc cac aac tac cac cac
Leu Val Ser Leu Gly Ala Val Gly Glu Gly Phe His Tyr His His
285 290 295
acc ttc ccc ttc gac tac tct gcc aat gag tac cgg ctc tgg cac aac
Thr Phe Pro Phe Tyr Ser Ala Glu Tyr Arg Trp His Ile Asn
300 305 310
ttc acc acg ttc ttc atc gcc tgc atg gct gcc ctc tgg ctc gct tac
Phe Thr Thr Phe Ile Asp Cys Met Ala Ala Leu Gly Leu Ala Tyr
315 320 325 330
gcc ggg aag aag tgt tgt aag gct act gcc ttc cgg cag att aag aag
Amp Arg Lys Lys Val Ser Lys Ala Thr Val Ala Arg Ile Lys Arg
335 340 345
act gga gac ggg aat cac aag aag aag cga gtc cc gaggtggc tctcgaagttcc
Thr Gly Asp Gly Ser His Lys Ser Ser Ser Ser Ser Ser Ser
350 355 355
```

-continued

ggtttgttcc ttcctgtcga tcaccaacctt cgccccacata gtggaccaccc cacttggtctg 2369
tgctctgca cccgcatca cccagggcgc acctcttggt tctgaataac tgacccctcc 2429
tctggaatac atccctccct gttctctagct tcaagacctg tgcctcaaat agggatatag 2489
cagctccccg tgtcagcttg tggatgatgg gtgagggagaa ttcctcttagatt gtgacaga 2549
gccagtaggt gtctctcaga gaaacagtag cattcctggtg atgatattgta agtaaatagag 2609
ggagagagag agagagagag agagagagag agagagagag agagagagag ggagatcattc 2669
aacagccctt ttaaccagaga cccccgctct ctctgcttgg catgctctct ttcctgtcct 2729
cctctgaaacc cccagagatt tgcagatgtag aaatatttaca tctatgccag agtgaagggg 2789
gtaatcggc ggtctcttggt acggagggttt tattgactt ggtctgtctgcatgatatca 2849
tggaaagagt cttccctgcc aatgtgctca gaactgtcaaa taacacgctc gacattttgcc 2909
ggggagacat agtgggtggaa actagaaaaa tataagcgaaa atcttcacott ggaacacgaa 2969
acattttcct tccaagaaata atcgaagggac ccagagttgg gtctggtggtg ccagtttttt 3029
tctggggctgg gcagagcacta gttgtggtgag gggccaggtgt ctgtagatag ctgtatagag 3089
gtgcacctcc agatgaagac ccctggggaa acctgcccagg gatccgcatg gttgtggtcct 3149
catcactgte tttctctctc tttctttgat gttagaaaac ttggtcttctc atggttttta 3209
acccctcagct cccctctctggt tttgcggcctt ccaccagctgc ctgtctgctgct ctgtaaggt 3269
cctccacca cccagacatc tttctctctcg tttttttttct ttttccggaa 3329
tgtagctgtag tgcctgtgctg tagaagacgc acgagaccgt ctgcctgctgct 3389
cctcccccagct cttcctcggtg tgtgaaagag cttgtagcct ctaggaagca gacccaggtg 3449
ccacttcttt tgtggtctcc aatcctgccct aactccaaact cattgctgcct tgtgacagtg 3509
attacccagat agttctggct acccctctcc acacccgtgg tgtgaccaagt ttcctctggtt 3569
ttgaagtttatt gagctgttctt tttttgtact ggttcttgtt ggttgattaa cagctgctat 3629
gggttggggt tgtgtctgtgc tgggtgtgttg tggagagttg caaatatctgc acctttctct 3689
tgtgctctgtt ccagttgtatt tgtgttggcttg tgtcctgtgctg ggcggatgct 3749
tgctgtgaaag gaaagagtctc cccttctgcc ttttttttttt ttttttttttt tt
ttttttttttt gtaagtgatc caaatggttg ggaggttaatt cgcattgcatt cgtcgtatt 4649

gtgcctctgt ttatcggttg caaagcttg agagaagtct gcgtgcaatt ggtcgtgtaa 4709
ttcctggttg tagtcctctg aacctgtagct ccagtgaggg ggtggtgaag gtagcaagg 4769

cocacatag tgcgtgtctg gcggcaggttg ctcttactgc actgtaattcg taatgttactc 4829
ttttcctctgt aaacaaacc caaccaagaatt tctcttttta atcaacccca gaaactctctg 4889
ggtaaagct tgcagctatt cacacccaac cgtgtgata ttagtgacca tgcatacaccgc 4949
tcaggaggac actctggagc agtgctgaca aaagaggtt attaaaactc gacctactact 5009
tcaagggctag ttcctggagt attaaggcct ttttttaaaa ccaagtattcc gggtctcctc 5069
agcagaggtta ttcatacaga ccctccaaaga actatatag ttcctgagac cactgttagag 5129
ttacttctgc tttcccccaga gactgacaga ttagcaggt tagaagttgca gactactac 5189
ccacgtgcatt gaaacacc cgcagcagacc cccccctccc tgaagagat ttttttttttcc 5249
cccccttttgt gggttattgaa tattggtacc cagttgatatt tggagtatt cctattattcat 5309
tcactctctgg tgccttttgg tgcctgctgt gatagtatt cttcctaat aaaaaggggtt 5369
cctggtgttttg tgcgctc 5383

<210> SEQ ID NO 223
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 223
agatccttttg gagcattgtg 20

<210> SEQ ID NO 224
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 224
ttttttctgt tcatattcagg 20

<210> SEQ ID NO 225
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 225
tctttttccc tttccaggacgg 20

<210> SEQ ID NO 226
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 226
tctctcttca tctgataggg 20
<210> SEQ ID NO 227
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 227

cctccagcc tactccagct

20

<210> SEQ ID NO 228
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 228

aggsccatga gaagtgaagtg

20

<210> SEQ ID NO 229
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 229

acagtgctcc caagtgcacg

20

<210> SEQ ID NO 230
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 230

ggacacagta tgatccgta

20

<210> SEQ ID NO 231
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 231

agtagaaat ccgagaaggg

20

<210> SEQ ID NO 232
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 232

cggtgtgat gcgccagacg

20

<210> SEQ ID NO 233
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 233

gacctaggg cagtgagccc

<210> SEQ ID NO 234
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 234
cgaggcttgt aagttctgtg

<210> SEQ ID NO 235
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 235

gcaatgatta ggaagatcog

<210> SEQ ID NO 236
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 236
tcaacgtcat tttggaagcc

<210> SEQ ID NO 237
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 237
ggtgatctcg ggccagtcog

<210> SEQ ID NO 238
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 238
cgtggttttc tgaagaacttg

<210> SEQ ID NO 239
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 239

cggctttcag ttcagacagc

<210> SEQ ID NO 240
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 240

cggacacatc accagcctct

<210> SEQ ID NO 241
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 241
	agcacaactc caggagcccg

<210> SEQ ID NO 242
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 242

tgaagacacat cagcagagg

<210> SEQ ID NO 243
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 243

gtgcgcccc cgcaagatcaaca

<210> SEQ ID NO 244
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 244

gcaccagagt gtacgccag

<210> SEQ ID NO 245
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 245

caccacgccag gtggcgttga
-continued

<210> SEQ ID NO 246
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 246
tagagatgctcggcacagtgtt 20

<210> SEQ ID NO 247
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 247
ttgcatgtcctgccgactg 20

<210> SEQ ID NO 248
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 248
cctggcagcgggacaggg 20

<210> SEQ ID NO 249
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 249
gtagatgtgctgaaccctgc 20

<210> SEQ ID NO 250
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 250
gaagggtagctgttgccttctgtt 20

<210> SEQ ID NO 251
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 251
ggctggtctacttagggtaagg 20

<210> SEQ ID NO 252
<211> LENGTH: 20
<212> TYPE: DNA
-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 252

ggtgaagtg atgtgccagc 20

<210> SEQ ID NO 253
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 253
tctggctaa gacagtgagcc 20

<210> SEQ ID NO 254
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 254
ccccgtctcca gttctcttaa 20

<210> SEQ ID NO 255
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 255
tttgtgaccc cgtctcagtc 20

<210> SEQ ID NO 256
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 256
tcatgacttc ttgtgactcc 20

<210> SEQ ID NO 257
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer

<400> SEQUENCE: 257
acaccagaga catgagcaag t 21

<210> SEQ ID NO 258
<211> LENGTH: 22
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer
-continued-

```<400> SEQUENCE: 258

catcacacac tggttcagg aa

<210> SEQ ID NO 259
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Probe

<400> SEQUENCE: 259

c tggaattgagtctcattag

<210> SEQ ID NO 260
<211> LENGTH: 19
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer

<400> SEQUENCE: 260

ggaaggtgag gtcgagttc

<210> SEQ ID NO 261
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Primer

<400> SEQUENCE: 261

gaagatggtg atggatttc

<210> SEQ ID NO 262
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: PCR Probe

<400> SEQUENCE: 262

caggtctccc gttctcagcc

<210> SEQ ID NO 263
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 263

ggaaggtcac ctcttgagac

<210> SEQ ID NO 264
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 264
tgcttcaccg aagagggcag
```
<210> SEQ ID NO 265
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 265

gtagtagaa atcctgtgca

<210> SEQ ID NO 266
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 266

tcccttaacct cctctggaac

<210> SEQ ID NO 267
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 267

tgaccttacc cgggacccca

<210> SEQ ID NO 268
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 268

gtggagccccc cgcctctgca

<210> SEQ ID NO 269
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 269

cctggctaccg ccaccttacca

<210> SEQ ID NO 270
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 270

aagccctaggctttggtctg

<210> SEQ ID NO 271
<211> LENGTH: 20
<212> TYPE: DNA
-continued

<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 271

gtgctgacg ctsgaccttt 20

<210> SEQ ID NO 272
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 272
tggaattgt gtgctgacct 20

<210> SEQ ID NO 273
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 273
atctgtgtt cctctgtgct 20

<210> SEQ ID NO 274
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 274
tccagatagacctggaggg 20

<210> SEQ ID NO 275
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 275
tcagccaag aagccagggc 20

<210> SEQ ID NO 276
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 276
gcagagatag ctagccaaggg 20

<210> SEQ ID NO 277
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 277

TTTATOGGC TGCCACGAAA 20

<210> SEQ ID NO 278
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 278

GGATGACGT GTTCAGATT 20

<210> SEQ ID NO 279
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 279

TGGCTGTGCA CAGATCTCCT 20

<210> SEQ ID NO 280
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 280

TCAGCCCGGT TGGGCTGTGC 20

<210> SEQ ID NO 281
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 281

GCGCTTGGAA ACTGCGCCTC 20

<210> SEQ ID NO 282
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 282

TGGTAGCGAG TGCGCGAACT 20

<210> SEQ ID NO 283
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 283

GTGAGCTTCG GGCGCGAGC 20
<210> SEQ ID NO 284
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 284

ttgctgctc cactttttcaca 20

<210> SEQ ID NO 285
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 285

gttggccggc atgatgtgag 20

<210> SEQ ID NO 286
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 286

gacctggaga tctcttgtgag 20

<210> SEQ ID NO 287
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 287
tagaaaaatcc gqagagggcc 20

<210> SEQ ID NO 288
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 288
ggtcatgtsg tagaaaaatcc 20

<210> SEQ ID NO 289
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 289
gcggtgtaca tgaatgaa 20

<210> SEQ ID NO 290
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 290

ggatgaag ttcctgctct 20

<210> SEQ ID NO 291
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 291

tccgggatt gataagttctt 20

<210> SEQ ID NO 292
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 292

gattttctcc cgggattgaa 20

<210> SEQ ID NO 293
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 293

gtagcttg agaaaattttctt 20

<210> SEQ ID NO 294
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 294

ccccagctc agtactttctt 20

<210> SEQ ID NO 295
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 295

aacaggaact cgsaagccca 20

<210> SEQ ID NO 296
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 296

cagatatta aacctctggcc 20

<210> SEQ ID NO 297
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 297

agttgtagt taatcaacag 20

<210> SEQ ID NO 298
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 298

aattgatat gcatttataca 20

<210> SEQ ID NO 299
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 299
cgtatagaa tgttaaatt 20

<210> SEQ ID NO 300
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 300
acagcatggt tcttggttt 20

<210> SEQ ID NO 301
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 301
tagcatcaaa acagcatggt 20

<210> SEQ ID NO 302
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 302
acagatgctca cccatgcatc 20
<210> SEQ ID NO 303
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 303
aaggatcagt atttcgaaa 20

<210> SEQ ID NO 304
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 304
tctctcgaga caatctcactt 20

<210> SEQ ID NO 305
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 305
tctcaggtac cgsagctca 20

<210> SEQ ID NO 306
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 306
saatgtcagc tgttttagtta 20

<210> SEQ ID NO 307
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 307
ggcascoccs gcaacacccc 20

<210> SEQ ID NO 308
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide

<400> SEQUENCE: 308
gcacaagaa saactggca 20

<210> SEQ ID NO 309
<211> LENGTH: 20
<212> TYPE: DNA
<210> SEQ ID NO 310
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 310

tccctggcgc atgttccca

<210> SEQ ID NO 311
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 311

tcggtcttcg ttcctgaagc

<210> SEQ ID NO 312
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 312

gctgagctgt taactcaca

<210> SEQ ID NO 313
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 313

cacacaccga gacagatcag

<210> SEQ ID NO 314
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 314

cagsaagcsg acctcttccc

<210> SEQ ID NO 315
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 315

atggcggcctg tcctctacct

SEQ ID NO 315
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 316

<400> SEQUENCE: 316

aatactgatg tggatgttttc
20

SEQ ID NO 317
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 317

atgttctaa aatactgatg
20

SEQ ID NO 318
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 318

ggtctggtt tgtgcacottta
20

SEQ ID NO 319
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 319
tcaacaaac agtocagagc
20

SEQ ID NO 320
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 320
gatatttcact tcaacaatattaccotttc
20

SEQ ID NO 321
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURE:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 321
tcaaagca ccagcgtctc
<210> SEQ ID NO 322
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide
<400> SEQUENCE: 322
cacttggaat cgatgtatat
 20

<210> SEQ ID NO 323
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide
<400> SEQUENCE: 323
c改造gaag gcgtgagact
 20

<210> SEQ ID NO 324
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide
<400> SEQUENCE: 324
tatcttcca ccasatttga
 20

<210> SEQ ID NO 325
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide
<400> SEQUENCE: 325
tgacaagag cagcaggacg
 20

<210> SEQ ID NO 326
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide
<400> SEQUENCE: 326
cagatggtgag ctttgcgtac
 20

<210> SEQ ID NO 327
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antiense Oligonucleotide
<400> SEQUENCE: 327	gatcagaa cagaaatgga
 20

<210> SEQ ID NO 328
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 328
tcagatactt agccagag

20

<210> SEQ ID NO 329
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 329
tgttgagatg tgaagtgtgc

20

<210> SEQ ID NO 330
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 330
caccctcaga ctgcctttga

20

<210> SEQ ID NO 331
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 331
gctctaatac cctcagaact

20

<210> SEQ ID NO 332
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 332
ggagtcgtga tgaatacctc

20

<210> SEQ ID NO 333
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 333
tcctcgggaa gcgaatgta

20

<210> SEQ ID NO 334
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
-continued

<400> SEQUENCE: 334

gtaggtagtcttgcacttttg

20

<210> SEQ ID NO 335
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 335

aggaaggaaaggtttcctg

20

<210> SEQ ID NO 336
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 336

tacacctgggtcacaataaa

20

<210> SEQ ID NO 337
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 337

aatcatccaatctgtaccttg

20

<210> SEQ ID NO 338
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 338

cctcaagagtgtgtatattaat

20

<210> SEQ ID NO 339
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 339

atacaatctcatacgtaca

20

<210> SEQ ID NO 340
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 340

cacttttataggaacaaat

20
<210> SEQ ID NO 341
<211> LENGTH: 18
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: PCR Primer
<400> SEQUENCE: 341

ttcgcacc ctgcctaca 18

<210> SEQ ID NO 342
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: PCR Primer
<400> SEQUENCE: 342
ctttccacgt gctgagatcg a 21

<210> SEQ ID NO 343
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: PCR Probe
<400> SEQUENCE: 343

cacgggctc cggsaccgasa 20

<210> SEQ ID NO 344
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Anti-sense Oligonucleotide
<400> SEQUENCE: 344

ggtgcaggsa ggsaccaagt 20

<210> SEQ ID NO 345
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Anti-sense Oligonucleotide
<400> SEQUENCE: 345
cgtggacttt ggtgctggcgc 20

<210> SEQ ID NO 346
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Anti-sense Oligonucleotide
<400> SEQUENCE: 346
ggcgactctg ctgctccctc 20

<210> SEQ ID NO 347
<211> LENGTH: 20
<212> TYPE: DNA
<210> SEQ ID NO 349
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 349

agtgcagag tctctggccgt

<210> SEQ ID NO 350
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 350

cctgcctctc gactcctcggg

<210> SEQ ID NO 351
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 351

agaactggag atctctggca

<210> SEQ ID NO 352
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 352

cctcctctcct cgtataggtg

<210> SEQ ID NO 353
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 353

aagtactca gottgggoggg 20

<210> SEQ ID NO 354
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 354

atgtcttcc agaagtactc 20

<210> SEQ ID NO 355
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 355

gaatgatgtt cctccagacg 20

<210> SEQ ID NO 356
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 356

ccatgagaat gatgtcttcc 20

<210> SEQ ID NO 357
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 357

toccgacag gcottcccaag 20

<210> SEQ ID NO 358
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 358

tgtgagctt gcaggagggg 20

<210> SEQ ID NO 359
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 359

gccatgggtgt ttgcgtaatgat 20
<210> SEQ ID NO 360
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 360
tctgagaact tgtggtgaggc 20

<210> SEQ ID NO 361
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 361
gtcttctctg gaccttgggg 20

<210> SEQ ID NO 362
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 362
ggctgtgtgt tctgagaact 20

<210> SEQ ID NO 363
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 363
dttgtgagg gtcggcgtgt 20

<210> SEQ ID NO 364
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 364
cacggcggg aacctggagg 20

<210> SEQ ID NO 365
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 365
agaaaacac ggcggaatt 20

<210> SEQ ID NO 366
<211> LENGTH: 20
<212> TYPE: DNA
<210> SEQ ID NO 367
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 367

gcgccagag cacagcgaag

<210> SEQ ID NO 369
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 369

tgtgttgcc acaagcagcc

<210> SEQ ID NO 370
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 370

cctcttcagc cgggtgtttg

<210> SEQ ID NO 371
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 371

cctctcttgg acaagcgggt
<400> SEQUENCE: 372

cgtgcgtgt cttggacagc 20

<210> SEQ ID NO 373
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 373

atgtoctgt ttcggcgctt 20

<210> SEQ ID NO 374
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 374

cagacagtc cagtttttccg 20

<210> SEQ ID NO 375
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 375

caggtcagac atgtcaggt 20

<210> SEQ ID NO 376
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 376

gctttcagtt cagacagtc 20

<210> SEQ ID NO 377
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 377

ttcgcgttt caggtcagac 20

<210> SEQ ID NO 378
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 378

cagttttcaggt cagttttcaggt 20
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> Sequence: 385

gtaccaggcc accacgtg cc

<210> Seq ID No: 386
<211> Length: 20
<212> Type: DNA
<213> Organism: Artificial Sequence
<220> Feature:
<223> Other Information: Antisense Oligonucleotide

<400> Sequence: 386

cagcagtacc aggccacccag

<210> Seq ID No: 387
<211> Length: 20
<212> Type: DNA
<213> Organism: Artificial Sequence
<220> Feature:
<223> Other Information: Antisense Oligonucleotide

<400> Sequence: 387

cgcgccagca gtaccaggcc

<210> Seq ID No: 388
<211> Length: 20
<212> Type: DNA
<213> Organism: Artificial Sequence
<220> Feature:
<223> Other Information: Antisense Oligonucleotide

<400> Sequence: 388

gagcgtgctag accacaggcc

<210> Seq ID No: 389
<211> Length: 20
<212> Type: DNA
<213> Organism: Artificial Sequence
<220> Feature:
<223> Other Information: Antisense Oligonucleotide

<400> Sequence: 389
cgtgtcacca gccaggtg cc

<210> Seq ID No: 390
<211> Length: 20
<212> Type: DNA
<213> Organism: Artificial Sequence
<220> Feature:
<223> Other Information: Antisense Oligonucleotide

<400> Sequence: 390
gcgacactgt tccagccca

<210> Seq ID No: 391
<211> Length: 20
<212> Type: DNA
<213> Organism: Artificial Sequence
<220> Feature:
<223> Other Information: Antisense Oligonucleotide
<400> SEQUENCE: 391
accaggatat ttcccggga 20

<210> SEQ ID NO 392
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 392
tgtagttgt ggaagccttc 20

<210> SEQ ID NO 393
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 393
tactcactgg cagagtagtc 20

<210> SEQ ID NO 394
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 394
agccgtaactc actggcagag 20

<210> SEQ ID NO 395
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 395
gtgcacgcgg tactcactgg 20

<210> SEQ ID NO 396
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 396
ttgatgtgcc agcggtaactc 20

<210> SEQ ID NO 397
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 397
gttgtagagt tgtgtgcca 20
<210> SEQ ID NO 398
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 398
aagaacgctg tgaasctgtgat

<210> SEQ ID NO 399
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 399
cagtagctt cagasaactttc

<210> SEQ ID NO 400
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 400
ccagtctct taaaactcctggc

<210> SEQ ID NO 401
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 401
cgtctctccg ttctcttaat

<210> SEQ ID NO 402
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 402
taasacccccg atagcctatgat

<210> SEQ ID NO 403
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 403
gaggggtgac agacacaggc

<210> SEQ ID NO 404
<211> LENGTH: 20
<212> TYPE: DNA
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 404
cttgaagctgaagacaagga 20

SEQ ID NO: 405
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 405
tatggtcacttctctctc 20

SEQ ID NO: 406
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 406
tttttcatgtttcacaccaat 20

SEQ ID NO: 407
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 407
tattttttgaagcaatagtg 20

SEQ ID NO: 408
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 408
tagggcagcacaggtggcagct 20

SEQ ID NO: 409
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Antisense Oligonucleotide

SEQUENCE: 409	agggaacaggcttgacagcagca 20

SEQ ID NO: 410
LENGTH: 20
TYPE: DNA
ORGANISM: Artificial Sequence
FEATURES:
OTHER INFORMATION: Antisense Oligonucleotide
<400> SEQUENCE: 410

gaggtcata ggtcagtaga

<210> SEQ ID NO 411
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 411
aagacacag gacctcaatg

<210> SEQ ID NO 412
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 412
ccaatgta cgtactcttc

<210> SEQ ID NO 413
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 413
tcacacacc tcactggagc

<210> SEQ ID NO 414
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 414
agtagtca gattaataac

<210> SEQ ID NO 415
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 415
atctcaa ggaagggaaa

<210> SEQ ID NO 416
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Antisense Oligonucleotide

<400> SEQUENCE: 416
aattaacct tgggtcaca
1. A compound 8 to 80 nucleobases in length targeted to a nucleic acid molecule encoding human stearoyl-CoA desaturase (SCD1), wherein the compound specifically hybridizes with a nucleic acid molecule encoding human stearoyl-CoA desaturase and inhibits the expression of human stearoyl-CoA desaturase by at least 50%.

2. The compound of claim 1, wherein the compound comprises at least 8 consecutive nucleobases of a nucleobase sequence selected from any of SEQ ID NOs: 83, 84, 85, 87, 88, 89, 90, 91, 93, 94, 95, 97, 98, 100, 101, 102, 103, 105, 107, 108, 109, 110, 111, 113, 114, 115, 117, 118, 119, 120, 124, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137,

3. The compound of claim 1, wherein the compound inhibits stearoyl-CoA desaturase by at least 60%, at least 70%, at least 80% or at least 90%.

4. The compound of claim 1, wherein the compound is at least 90%, at least 95% or 100% complementary to the sequence of SEQ ID NO: 2.

5. The compound of claim 1, wherein the compound comprises 8 to 50 nucleobases, 15 to 40 nucleobases, 15 to 35 nucleobases or 15 to 25 nucleobases in length.

6. The compound of claim 5, wherein the compound is 20 nucleobases in length.

7. The compound of claim 1, wherein the compound comprises an antisense oligonucleotide.

8. The compound according to claim 7, wherein the antisense oligonucleotide comprises at least one modified internucleoside linkage.

9. The compound according to claim 8, wherein the modified internucleoside linkage is a phosphorothioate linkage.

10. The compound according to claim 7, wherein the antisense oligonucleotide comprises at least one modified sugar moiety.

11. The compound according to claim 10, wherein the modified sugar moiety is a 2′-O-methoxyethyl sugar moiety.

12. The compound according to claim 7, wherein the antisense oligonucleotide comprises at least one modified nucleobase.

13. The compound according to claim 12, wherein the modified nucleobase is a 5-methylcytosine.

14. The compound of claim 7, wherein the antisense oligonucleotide is a chimeric oligonucleotide.

15. The compound according to claim 14, wherein the chimeric oligonucleotide is 20 nucleotides in length, comprising ten 2′-deoxynucleotides, flanked on each side by five 2′-methoxyethyl nucleotides, wherein the internucleoside linkages are phosphorothioate, and all cytosine residues are 5-methylcytosines.

* * * * *