woO 2007/045561 A1 |10 0 00 OO 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 April 2007 (26.04.2007)

fﬂﬁ A0 0O IO

(10) International Publication Number

WO 2007/045561 Al

(51) International Patent Classification:
HO4L 12/56 (2006.01)

(21) International Application Number:
PCT/EP2006/067094

(22) International Filing Date: 5 October 2006 (05.10.2006)
English
English

(25) Filing Language:
(26) Publication Language:

(30) Priority Data:
11/256,259 21 October 2005 (21.10.2005) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, NY 10504
Us).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, Portsmouth, Hampshire
PO6 3AU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ELLIOTT, Steven
[US/US]; 11215 Research Blvd #1133, Austin, TX 78759
(US). LAZZARO, Christopher, Victor [US/US]; 12012
Cabana Lane, Austin, TX 78727 (US). TRAN, Thanh,
[US/US]; 702 Broken Feather Trail, Austin, TX 78758

(74) Agent: LITHERILAND, David, Peter; IBM United
Kingdom Limited, Intellectual Property lLaw, Hursley
Park, Winchester, Hampshire SO21 2JN (GB).

(81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,

AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,

GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,

KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,

LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,

NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,

SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,

TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every

kind of regional protection available): ARIPO (BW, GH,

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,

ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,

RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,

GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

(US).

— with international search report

[Continued on next page]

(54) Title: ADAPTIVE BANDWIDTH CONTROL

RECEIVE CUSTOMER REQUEST

_~1400

y
ANALYZE CLIENT
PARAMETERS FOR
SENDING DISTRIBUTION

!

IDENTIFY SETTINGS
FOR PARAMETERS

!

GENERATE CODE FOR
ADAPTIVE BANDWIDTH
CONTROL FOR EACH GATEWAY

!

SEND CODE TO CUSTOMER

| ~1402

1404

™-1406

~-1408

(57) Abstract: A computer implemented method, apparatus, and
computer usable program code to receive data from a source (302)
at a plurality of gateways (304, 306, 308) for distribution using a
selected priority. The data is transmitted from the plurality of gate-
ways to a plurality of receivers (310, 320, 330) using the selected
priority. Every gateway in the plurality of gateways has an adaptive
bandwidth control process and a respective set of parameters for con-
trolling the adaptive bandwidth control process for sending the data
at the selected priority. Transmission of the data from each gate-
way for the selected priority has a different impact on other traffic at
different gateways in the plurality gateways for the selected priority
when different values are set for the set of parameters for the differ-
ent gateways.

WO 2007/045561 A1 | NI DA0 000 0T 0000 0 00

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094

ADAPTIVE BANDWIDTH CONTROL

CROSS REFERENCE TO RELATED APPLICATIONS

The present invention is related to the following patent applications:
entitled Method and Apparatus for Adaptive Bandwidth Control with User
Settings, serial no. ; attorney docket no. AUS920050797US51; and
entitled Method and Apparatus for Adaptive Bandwidth Control with a
Bandwidth Guarantee, serial no. ; attorney docket no.
AUS920050798US1; filed even date hereof, assigned to the same assignee,

and incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates generally to an improved data processing
system and in particular, to a computer implemented method and apparatus
for transferring data. Still more particularly, the present invention
relates to a computer implemented method, apparatus, and computer usable

program code for adaptively controlling bandwidth used to transfer data.

Description of the Related Art

With the common use of networks and the Internet, communications in
commerce has been revolutionized. Networks are commonly used to transfer
data. Many distributed applications make use of large background
transfers to improve the service quality. With these types of background
transfers, users are not required to wait for these transfers to complete
before performing other actions. A broad range of applications and
services including, for example, data backup, prefetching, enterprise data
distribution, Internet content distribution, and peer-to-peer storage
employ background transfers. These and other types of applications
increase network bandwidth consumption. Some of these services have
potentially unlimited bandwidth demands in which the use of incrementally

more bandwidth provides incrementally better service.

One problem with these types of applications is that most networks have
only a limited amount of bandwidth available for transferring data. Some

applications perform critical functions while others are non-critical.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094

Typically, background transfers are non-critical and may use all available

bandwidth slowing down critical network traffic.

Adaptive bandwidth controls have been employed to automatically adapt to
network conditions to reduce the impact to the network. Currently,
different adaptive bandwidth control processes and algorithms are employed
to control the amount of bandwidth used by different applications to avoid
congestion. Currently available adaptive bandwidth control processes take
into account the network conditions at the local interface level, either
on the server or client computer and are unable to take into account other

conditions that may exist in the transfer of data.

Therefore, it would be advantageous to have an improved computer
implemented method, apparatus, and computer usable program code to

adaptively control bandwidth usage in transferring data.

SUMMARY OF THE INVENTION

The present invention provides a computer implemented method, apparatus,
and computer usable program code to receive data from a source at a
plurality of gateways for distribution using a selected priority. The
data is transmitted from the plurality of gateways to a plurality of
receivers using the selected priority. Every gateway in the plurality of
gateways has an adaptive bandwidth control process and a respective set of
parameters for controlling the adaptive bandwidth control process for
sending the data at the selected priority. Transmission of the data from
each gateway for the selected priority has a different impact on other
traffic at different gateways in the plurality gateways for the selected
priority when different values are set for the set of parameters for the

different gateways.

The set of parameters may comprise a threshold, beta, and a maximum wait
time. The set of parameters may be configured for a particular gateway in
the plurality of gateways, wherein the set of parameters for the
particular gateway may be different from the set of parameters for another
gateway in the plurality of gateways. The adaptive bandwidth control
process takes into account congestion along a path from a gateway in the
plurality of gateways to a receiver of the distribution. Also, the
respective set of parameters may be different for different gateways in
the plurality of gateways. 1In the illustrative examples, the data

comprises one of a data file, an application update, and a virus patch.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiment (s) of the invention will now be described, by way of example

only, and with reference to the accompanying drawings, wherein:

Figure 1 is a pictorial representation of a network of data processing

systems in which aspects of the present invention may be implemented;

Figure 2 is a block diagram of a data processing system in which aspects of

the present invention may be implemented;

Figure 3 is a diagram illustrating an example network data processing
system in which distributions may be made using different priorities in

accordance with an illustrative embodiment of the present invention;

Figure 4 is a diagram illustrating components used in adaptive bandwidth
control in accordance with an illustrative embodiment of the present

invention;

Figure 5 is a diagram of a transmission control protocol/Internet protocol
(TCP/IP) and similar protocols in accordance with an illustrative

embodiment of the present invention;

Figure 6 is a diagram illustrating software processes and components used
in providing adaptive bandwidth control in accordance with an illustrative

embodiment of the present invention;

Figure 7 is a diagram illustrating a network for sending a distribution
from an adaptive sender to receivers using priorities in accordance with

an illustrative embodiment of the present invention;

Figure 8 is a diagram illustrating bandwidth usage in a network in

accordance with an illustrative embodiment of the present invention;

Figure 9 is a flowchart of a process for configuring user settings for
parameters in accordance with an illustrative embodiment of the present

invention;

Figure 10 is a flowchart of a process for a send thread in accordance with

an illustrative embodiment of the present invention;

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094

Figure 11 is a flowchart of a process for a packet sniffing thread in
accordance with an illustrative embodiment of the present invention;
Figure 12 is a flowchart of a process for a congestion control thread in

accordance with an illustrative embodiment of the present invention;

Figure 13 is a flowchart of a process for performing adaptive bandwidth
control in accordance with an illustrative embodiment of the present

invention; and

Figure 14 is a flowchart of a process for customizing the sending of
distributions to receivers for a customer in accordance with an

illustrative embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Figures 1-2 are provided as exemplary diagrams of data processing
environments in which embodiments of the present invention may be
implemented. It should be appreciated that Figures 1-2 are only exemplary
and are not intended to assert or imply any limitation with regard to the
environments in which aspects or embodiments of the present invention may
be implemented. Many modifications to the depicted environments may be

made without departing from the spirit and scope of the present invention.

With reference now to the figures, Figure 1 depicts a pictorial
representation of a network of data processing systems in which aspects of
the present invention may be implemented. Network data processing system
100 is a network of computers in which embodiments of the present invention
may be implemented. Network data processing system 100 contains network
102, which is the medium used to provide communications links between
various devices and computers connected together within network data
processing system 100. Network 102 may include connections, such as wire,

wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 connect to network 102
along with storage unit 108. In addition, clients 110, 112, and 114
connect to network 102. These clients 110, 112, and 114 may be, for
example, personal computers or network computers. In the depicted example,
server 104 provides data, such as boot files, operating system images, and
applications to clients 110, 112, and 114. Clients 110, 112, and 114 are
clients to server 104 in this example. Network data processing system 100

may include additional servers, clients, and other devices not shown.

10

15

20

25

30

35

WO 2007/045561 PCT/EP2006/067094

In the depicted example, network data processing system 100 is the Internet
with network 102 representing a worldwide collection of networks and
gateways that use the Transmission Control Protocol/Internet Protocol
(TCP/IP) suite of protocols to communicate with one another. At the heart
of the Internet is a backbone of high-speed data communication lines
between major nodes or host computers, consisting of thousands of
commercial, government, educational and other computer systems that route
data and messages. O0Of course, network data processing system 100 also may
be implemented as a number of different types of networks, such as for
example, an intranet, a local area network (LAN), or a wide area network
(WAN) . Figure 1 is intended as an example, and not as an architectural

limitation for different embodiments of the present invention.

With reference now to Figure 2, a block diagram of a data processing system
is shown in which aspects of the present invention may be implemented. Data
processing system 200 is an example of a computer, such as server 104 or
client 110 in Figure 1, in which computer usable code or instructions
implementing the processes for embodiments of the present invention may be

located.

In the depicted example, data processing system 200 employs a hub
architecture including north bridge and memory controller hub (MCH) 202 and
south bridge and input/output (I/0) controller hub (ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are connected to north
bridge and memory controller hub 202. Graphics processor 210 may be
connected to north bridge and memory controller hub 202 through an

accelerated graphics port (AGP).

In the depicted example, local area network (LAN) adapter 212 connects to
south bridge and I/0 controller hub 204. Audio adapter 216, keyboard and
mouse adapter 220, modem 222, read only memory (ROM) 224, hard disk drive
(HDD) 226, CD-ROM drive 230, universal serial bus (USB) ports and other
communications ports 232, and PCI/PCIe devices 234 connect to south bridge
and I/0 controller hub 204 through bus 238 and bus 240. PCI/PCIe devices
may include, for example, Ethernet adapters, add-in cards and PC cards for
notebook computers. PCI uses a card bus controller, while PCIe does not.

ROM 224 may be, for example, a flash binary input/output system (BIOS).

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094

Hard disk drive 226 and CD-ROM drive 230 connect to south bridge and I/O
controller hub 204 through bus 240. Hard disk drive 226 and CD-ROM drive
230 may use, for example, an integrated drive electronics (IDE) or serial
advanced technology attachment (SATA) interface. Super I/0 (SIO) device 236
may be connected to south bridge and I/0 controller hub 204.

An operating system runs on processing unit 206 and coordinates and provides
control of various components within data processing system 200 in Figure 2.
As a client, the operating system may be a commercially available operating
system such as Microsoft® Windows® XP (Microsoft and Windows are trademarks
of Microsoft Corporation in the United States, other countries, or both).

An object-oriented programming system, such as the Java™ programming system,
may run in conjunction with the operating system and provides calls to the
operating system from Java programs or applications executing on data
processing system 200 (Java is a trademark of Sun Microsystems, Inc. in the

United States, other countries, or both).

As a server, data processing system 200 may be, for example, an IBM
eServer™ pSeries® computer system, running the Advanced Interactive
Executive (AIX®) operating system or LINUX operating system (eServer,
pSeries and AIX are trademarks of International Business Machines
Corporation in the United States, other countries, or both while Linux is
a trademark of Linus Torvalds in the United States, other countries, or
both). Data processing system 200 may be a symmetric multiprocessor (SMP)
system including a plurality of processors in processing unit 206.

Alternatively, a single processor system may be employed.

Instructions for the operating system, the object-oriented programming
system, and applications or programs are located on storage devices, such as
hard disk drive 226, and may be loaded into main memory 208 for execution by
processing unit 206. The processes for embodiments of the present
invention are performed by processing unit 206 using computer usable
program code, which may be located in a memory such as, for example, main
memory 208, read only memory 224, or in one or more peripheral devices 226

and 230.

Those of ordinary skill in the art will appreciate that the hardware in
Figures 1-2 may vary depending on the implementation. Other internal
hardware or peripheral devices, such as flash memory, equivalent
non-volatile memory, or optical disk drives and the like, may be used in

addition to or in place of the hardware depicted in Figures 1-2. Also,

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094

the processes of the present invention may be applied to a multiprocessor

data processing system.

In some illustrative examples, data processing system 200 may be a
personal digital assistant (PDA), which is configured with flash memory to
provide non-volatile memory for storing operating system files and/or
user-generated data.

A bus system may be comprised of one or more buses, such as bus 238 or bus
240 as shown in Figure 2. O0Of course the bus system may be implemented
using any type of communications fabric or architecture that provides for
a transfer of data between different components or devices attached to the
fabric or architecture. A communications unit may include one or more
devices used to transmit and receive data, such as modem 222 or network
adapter 212 of Figure 2. A memory may be, for example, main memory 208,
read only memory 224, or a cache such as found in north bridge and memory
controller hub 202 in Figure 2. The depicted examples in Figures 1-2 and
above-described examples are not meant to imply architectural limitations.
For example, data processing system 200 also may be a tablet computer,
laptop computer, or telephone device in addition to taking the form of a

PDA.

The present invention provides a computer implemented method, apparatus,
and computer usable program code for adaptively controlling bandwidth used
in transferring data. The aspects of the present invention recognize that
currently used adaptive bandwidth control processes are unable to take
into account network conditions beyond those at the client. The aspects
of the present invention recognize that different networks have different
characteristics, which may affect the transfer of data. The aspects of
the present invention provide different mechanisms for taking these types
of factors into account. The aspects of the present invention provide an
ability to set parameters to control how individual data packets are sent

on a network for use in adaptive bandwidth control.

The aspects of the present invention recognize that currently available
data transfer systems tend to run too slowly in background modes and may
take a very long time to complete. The aspects of the present invention
also recognize that many cases exist in which customers desire adaptive
functionality and do not want distributions to take a long time in certain
cases. For example, a distribution of virus patches or updates is
considered very important with respect to an update to an application.

Thus, the aspects of the present invention provide an ability to set a

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094

priority on a per-distribution basis. In these illustrative examples,
three different priorities are set: high, medium, and low. The priority
in these examples is an adaptive priority in which a selected priority,
such as high, changes the way an adaptive bandwidth control process
behaves. TFor example, a software update may be sent as a low priority
followed by a virus patch at a high priority. As a result, different
distributions may be given different priorities based on the importance of
those distributions. The distributions with the different priorities
provide a different set of parameters to the adaptive bandwidth control
process to alter the behavior of this process depending on the particular

priority selected.

Additionally, the configuration of the different priorities also may be
set on a per-gateway basis. In these examples, a gateway 1s a device or
data processing system that serves as a conduit to a set of devices. Tor
example, a gateway may serve as a portal or entrance to a local area
network or a wide area network. Additionally, a gateway also may serve as
a connection to a wireless network. The gateway also is referred to as

managing a set of clients.

Although these illustrative examples are directed towards adaptive
bandwidth control, the aspects of the present invention may be applied to
any type of transfer of bulk data to one or more target data processing

systems.

Turning now to Figure 3, a diagram illustrating an example network data
processing system in which distributions may be made using different
priorities is depicted in accordance with an illustrative embodiment of
the present invention. In this example, network data processing system
300 contains source 302, which is connected to gateways 304, 306, and 308.
Gateway 304 provides a connection to clients 310, 312, 314, and 316
through router 318. Gateway 306 provides a connection to clients 320,
322, 324, and 326 through satellite router 328. Gateway 308 provides a
connection to clients 330, 332, 334, and 336. In these examples, these
clients are traveling laptop computers that connect to gateway 308 through
various means, such as a wireless connection, a dial-up connection, a

cable modem, or some other similar connection system.

Network 300 is an example of a network contained within network data

processing system 100 in Figure 1. 1In particular, the different clients

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094

and gateways may be implemented using a data processing system similar to

data processing system 200 in Figure 2.

In this example, gateway 304 manages highly secure local area network
servers. In other words, clients 310, 312, 314, and 316 are server data
processing systems. Gateway 306 manages point-of-sale systems located in
different branch offices. Gateway 308 is used to manage clients in the

form of traveling laptops.

Administrator 338 may send a distribution using different settings. In
these examples, a distribution is the sending of any sort of data to one
or more endpoints or receivers. For example, distribution may be an
update to an application, a dynamic link library update, a virus patch or
definition update, or a data file. 1In this illustrative example, a
distribution may be sent using one of three priority levels, high, medium,
or low. Of course, other numbers of priority levels may be implemented
depending on the particular implementation. Three different priority
levels are employed for purposes of illustrating one embodiment of the

present invention.

As a result, administrator 338 may send one distribution to gateways 304,
306, and 308 for distribution to the clients with one priority, such as
high. Administrator 338 may then send a subsequent distribution to
gateways 304, 306, and 308 with a different priority, such as medium. In
this manner, different distributions may be given different priorities for
transfer to the receivers based on the importance associated with a
particular distribution. As a result, more important distributions may
reach clients more quickly, although this type of distribution uses more
bandwidth. With a lower priority distribution, less bandwidth is used

with that type of distribution taking more time to distribute.

Further, the aspects of the present invention provide an ability for a
selected priority to use different amounts of bandwidth at different
gateways for the selected priority level. 1In other words, for a selected
priority level, two gateways may use different amounts of bandwidth to
transfer data given the same network conditions. The different effects of
a selected priority level are adjusted on a per—-gateway basis in these
illustrative examples by adjusting parameters in the adaptive bandwidth
control process executing on those gateways to send the distribution to

the different clients.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
10

For example, gateway 304 may use seventy percent of the bandwidth when
sending a high priority distribution to clients 310, 312, 314, and 316.
Gateway 306 may use fifty percent of the bandwidth in transferring the
same distribution with a high priority to clients 320, 322, 324, and 326.
At gateway 308, the same distribution being sent at a high priority may
only use up thirty percent of the bandwidth in sending the same

distribution to clients 330, 332, 334, and 336.

The actual impact on bandwidth usage within a particular network accessed
by a gateway is adjusted by adjusting parameters in the adaptive bandwidth
control process executing on those gateways. Each of these gateways may
be preconfigured when the gateways are initially set up. Additionally,
these parameters may be changed based on changes in the network or other
changes as identified by administrator 338. These changes may be

administered through user-defined settings as discussed below.

Turning now to Figure 4, a diagram illustrating components used in
adaptive bandwidth control is depicted in accordance with an illustrative
embodiment of the present invention. In this example, adaptive sender 400
sends data to receivers 402, 404, and 406. In this illustrative example,
adaptive sender 400 may be a gateway, such as gateway 304 in Figure 3. In
particular, adaptive sender 400 may be implemented as server 106 in Figure
1 using hardware such as that found in data processing system 200 in
Figure 2. Receivers 402, 404, and 406 may be clients, such as clients
310, 312, and 314 in Figure 3. These receivers also may be implemented
using a data processing system, such as data processing system 200 in
Figure 2. The data is sent by sending packets 408 to a routing mechanism,
such as router 410. Router 410 is a device that serves to route or send
packets 408 to the appropriate receivers based on routing data found in
packets 408. When router 410 is forced to process too many packets, it is
referred to as a backlogged router. In other words, the backlog router is
the router that has the most load or largest number of packets in its
queue. There can be zero or more routers between a sender and a receiver.
The sender is the source of packets and the receivers are the source of
acknowledgements. As these receivers receive packets 408, they return
acknowledgements 412 to adaptive sender 400. In this example, the

acknowledgements are part of regular TCP/IP communication.

In these illustrative examples, adaptive sender 400 may be implemented as

a process in a data processing system, such as server 104 in Figure 1.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
11

Receivers 402, 404, and 406 are processes that may execute on a receiving
device, such as clients 108, 110 and 112 in Figure 1. 1In particular,
these different processes may be implemented on a data processing system,

such as data processing system 200 in Figure 2.

Adaptive sender 400 tracks packets 408 sent to each receiver. The receipt
of acknowledgements 412 also is tracked and is used to identify
parameters, such as round trip time. Round trip time is the time from
which a packet is sent until the acknowledgement is received. In this
example, the round trip time is based on the perspective of adaptive
sender 400.

Additionally, this information is used to identify blocks. A block begins
when an arbitrary packet is sent; statistical data is kept for all of the
packets in the block until the initial packet which began the block is
acknowledged by the receiver. When the acknowledgement for the arbitrary
packet is returned, adaptive sender 400 calculates the statistics for that
block of packets. In other words, one or more packets may be present in a
block depending on how many packets are sent before the acknowledgement
for the arbitrary packet in the beginning of the block has been returned.
Additionally, adaptive sender 400 also identifies a window. A window is
the number of packets in the network that had been sent without receiving

an acknowledgement.

Further, adaptive sender 400 also estimates the number of packets that are
located in router 410. This information is determined using the current
round trip time to calculate the expected number of unacknowledged packets
versus the real number of unacknowledged packets. For example, 1if five
packets should exist on a network because of current round trip times and
eight unacknowledged packets are identified by adaptive sender 400,
adaptive sender 400 can estimate that three packets are located on router

410.

Adaptive sender 400 controls the speed by increasing or decreasing the
expected window size while attempting to keep a selected number of packets
on router 410. A large window i1s more aggressive because router 410
spends more time in processing adaptive packets versus other network
traffic. 1In this manner, adaptive sender 400 may tune an alpha and beta
parameter for router 410. Alpha is an integer indicating the minimum
number of packets in router 410 per connection before the window is

increased by one packet. Beta is an integer that indicates the maximum

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
12

number of packets in the backlog router per connection before the window
is decreased by one packet. These parameters allow for small increases or
decreases in speed by adjusting the window based on alpha and beta.
Another parameter, threshold, allows a quick decrease in speed when 50% of
the packets in a block meet the conditions of this threshold. In this
example, threshold is a configurable percentage of the time from base

round trip time to max round trip time.

Turning to Figure 5, a diagram of a transmission control protocol/Internet
protocol (TCP/IP) and similar protocols are depicted in accordance with an
illustrative embodiment of the present invention. TCP/IP and similar
protocols are utilized by communications architecture 500. In this
example, communications architecture 500 is a 4-layer system. This
architecture includes application layer 502, transport layer 504, network
layer 506, and link layer 508. Each layer is responsible for handling
various communications tasks. Link layer 508 also is referred to as the
data-link layer or the network interface layer and normally includes the
device driver in the operating system and the corresponding network
interface card in the computer. This layer handles all the hardware
details of physically interfacing with the network media being used, such

as optical cables or Ethernet cables.

Network layer 506 also is referred to as the Internet layer and handles
the movement of packets of data around the network. For example, network
layer 506 handles the routing of various packets of data that are
transferred over the network. Network layer 506 in the TCP/IP suite is
comprised of several protocols, including Internet protocol (IP), Internet
control message protocol (ICMP), and Internet group management protocol

(IGMP) .

Next, transport layer 504 provides an interface between network layer 506
and application layer 502 that facilitates the transfer of data between
two host computers. Transport layer 504 is concerned with things such as,
for example, dividing the data passed to it from the application into
appropriately sized chunks for the network layer below, acknowledging
received packets, and setting timeouts to make certain the other end
acknowledges packets that are sent. In the TCP/IP protocol suite, two
distinctly different transport protocols are present, TCP and User
datagram protocol (UDP). TCP provides reliability services to ensure that
data is properly transmitted between two hosts, including dropout

detection and retransmission services.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
13

Conversely, UDP provides a much simpler service to the application layer
by merely sending packets of data called datagrams from one host to the
other without providing any mechanism for guaranteeing that the data is
properly transferred. When using UDP, the application layer must perform

the reliability functionality.

Application layer 502 handles the details of the particular application.
Many common TCP/IP applications are present for almost every
implementation, including a Telnet for remote login; a file transfer
protocol (FTP); a simple mail transfer protocol (SMTP) for electronic

mail; and a simple network management protocol (SNMP).

The aspects of the present invention are implemented in application layer
502 to adaptively control the transfer of data in a manner that allows for
user settings to be input by a user. In this manner, the user may change
different settings to control how packets are sent on the network for use
in adaptive bandwidth control. By allowing user settings to be input from
the application level, a user may make changes for different types of
networks and different network conditions that are not typically taken
into account by adaptive bandwidth control processes. In this manner,
conditions other than those on the clients may be taken into account. For
example, the aspects of the present invention allow a user to change
settings based on an identification of factors, such as the number of hops
in a path to the receiver and links in the path to the receiver that have

a large amount of traffic or congestion.

Although the illustrative examples of the present invention are
implemented on an application level, the different processes also may be
implemented on other layers. For example, the aspects of the present
invention may be implemented within transport layer 504 or network layer

506 depending on the particular implementation.

Turning now to Figure 6, a diagram illustrating software processes and
components used in providing adaptive bandwidth control is depicted in
accordance with an illustrative embodiment of the present invention. In
this example, adaptive sender 600 is a more detailed illustration of
processes within adaptive sender 400 in Figure 4. Adaptive sender 600
contains three threads in this illustrative example. Send thread 602,
congestion control thread 604, and packet sniffing thread 606 are the

components used to adaptively send data to one or more receivers. Send

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
14

thread 602 is used to send data through making calls to a socket. A
socket i1s a software object that connects an application to a network

protocol, such as a TCP/IP protocol in a TCP/IP stack.

Send thread 602 sends request 608 to congestion control thread 604 to ask
how much data may be sent by send thread 602. Congestion control thread
604 returns reply 610, telling how much data may be sent. Send thread 602
uses reply 610 to send packets 612 for transmission. These packets are
stored in backlog router queue 614 until a backlog router routes the
packets to their destination. Backlog router queue 614 is located on a
backlog router, such as router 410 in Figure 4. Acknowledgements 616 are

returned to adaptive sender 600 when the packets are received.

Congestion control thread 604 identifies the amount of data to be sent by
performing an adaptive bandwidth control process. Congestion control
thread 604 in these examples uses the adaptive bandwidth control process
to adaptively identify transmission rates for transmitting data packets
over a network in response to changes in network conditions. These
network conditions include, for example, the amount of congestion on the
network due to various other transmissions of data in addition to those
being processed by the adaptive sender. 1In other words, the rate of speed
at which data may be sent changes according to the network conditions.
Congestion control thread 604 identifies different rates that speed up or
slow down to maintain a minimal network impact based on the different

parameters that are set by the user.

An example of network conditions is illustrated using Figure 7 below.
Prior to FTP server 752 sending data to FTP client 754, the condition of
router 746 is idle. This situation allows adaptive sender 700 to send to
receivers or endpoints at a very high rate of speed, even when priority is
low. However, as soon as FTP server 752 begins sending data to FTP client
754, router 746 becomes flooded. Then, the adaptive bandwidth control
process will react according to its priority. At a low priority, the
adaptive bandwidth control process will slow down to where it hardly sends
anything at all, and will have minimal impact on the FTP distribution. At
high priority, this process will send very quickly and cause the FTP

distribution to slow down.

The following is another example of how adaptive distributions will react

to network conditions. A bank contains a single router that manages the

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
15

network connection for 10 systems inside the bank. Through this router
the bank is connected to a central site (which manages 300 banks
nationwide). At 6 am (prior to the bank opening) no one is in the bank,
and the network (specifically the bank’s single router) is idle. At this
time, a very large adaptive distribution is sent at low priority from the
central site. Because the distribution is the only traffic on the bank’s
router, the distribution speeds up to use 100 percent of the router’s
bandwidth. This continues until 8 am, when customers begin using the
bank’s ATM and loan processing systems that also must share the network
with the single router. The adaptive distribution will immediately
recognize that there is additional traffic across the slow link (the
bank’s router in this scenario). Because adaptive distribution is at low
priority, it will slow down to use a very small percentage of the router
causing minimal impact on the ATM and loan processing traffic. At 5 pm
the adaptive distribution is still in progress. The loan-processing
traffic decreases as the bank closes. The adaptive distribution will
sense the reduced load of the network and continue to speed up as more

bandwidth becomes available.

Referring back to Figure 6, this process uses information located in queue
618. In particular, packet sniffing thread 606 grabs packets and
acknowledgements from the network and places packet information 620 and
acknowledgement information 622 into queue 618. Packet sniffing thread
606 filters the packets and acknowledgements to place appropriate data
needed by congestion control thread 604 into queue 618. Alternatively,
all of the packets and acknowledgements may be placed into gqueue 618 for
processing by congestion control thread 604. The information in queue 618
is used by congestion control thread 604 to identify parameters, such as a
round trip time from when a packet was sent until the acknowledgement for
the packet was received. Other parameters that may be identified and
maintained by congestion control thread 604 from information in queue 618

include a block, a window, and the packets in the backlog router.

Further, the aspects of the present invention include user interface 624
which may be used to set user defined parameters 626. User interface 624
is provided by parameter thread 628. Typically, the parameters are set up
when the adaptive process is first set up on a system. These parameters
may be altered through user interface 624 and parameter thread 628. User
defined parameters 626 are stored in a non-volatile memory, such as a
disk. These parameters can be later read when the adaptive bandwidth

process initiates. In this illustrative example, these parameters include

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
16

a set of parameters in which different values are present for different
priorities. In the illustrative examples, the set of parameters that
change based on the priority level of a distribution are threshold, data,
and maximum wait time. Although a user may input the different values for
the different priority levels, these parameters may be set directly for
use by adaptive sender 600. User interface 624 allows the user to select
or input various parameters for use by congestion control thread 604 in

performing adaptive bandwidth control processes.

In these illustrative examples, the aspects of the present invention allow
a user to enter or select values for five parameters. These five
parameters comprise a threshold, a round trip time maximum change, beta,
round trip time smoothing, and a maximum wait time. The round trip time
maximum change is a parameter used to restrict the amount of change in the
currently measured round trip time relative to the previous measured round
trip time. The process tracks the current round trip time, the maximum

round trip time and the base round trip time.

The congestion control thread tracks the round trip times on a per-socket
basis and sequence. If one packet has a round trip time of ten and a
second packet has a round trip time of twenty, then the second packet
round trip time is limited by a round trip time maximum change value of
one point five (1.5). Even though the real round trip time is twenty, the
round trip time value is recorded as ten times one point five equals
fifteen (10 x 1.5 = 15). Then, the subsequent packet may have a round
trip time at the most of one point five times fifteen (1.5 x 15), the

round trip time recorded for the second packet.

Networks typically have some amount of randomness. This parameter allows
an adaptive bandwidth control process to ignore an overly large or overly
small round trip time, but still allow for large round trip times if they
occur often enough. This parameter allows the user to configure how much

change 1is tolerated.

The round trip time smoothing parameter in these examples is an integer
used to indicate how much the round trip time measurements should be
smoothed by exponential decay. The exponential decay is performed by
averaging the previous measurement. This parameter may help in cases in
which the adaptive bandwidth control process behaves erratically by

overcompensating for fluctuations in round trip time. The smoothing

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
17

typically occurs before the maximum change parameter is taken into

account.

The maximum wait time is a parameter that indicates what multiple of
maximum round trip time a connection will wait to send before giving up
and resetting. Sometimes acknowledgements may be lost on a network
causing the sender to wait for a long period of time before sending
additional data. This is a reset value to reset the process of adaptive
bandwidth control if too much time has passed before data has been sent.
With respect to the threshold parameter, when round trip times of packets
are sent on a socket, the times tend to fall within a selected range.

This situation 1is especially true when the network is idle.

The threshold is a percentage of the way from the minimum round trip time
to the maximum round trip time. For example, a threshold of twenty

percent means that the threshold is twenty percent of the way from the

base round trip time to the maximum round trip time. Depending on the
type of network, round trip times will have more or less variation. The
different variations typically require different threshold values. For

example, a well behaved local area network will have very little round
trip time variation, allowing for a low threshold value. A wide area
network will have higher round trip time variations. With this type of
network, a higher threshold is required. This particular parameter 1is
user configurable to take into account different types of networks that
may be encountered in sending data. With respect to the threshold
parameter, when round trip times of packets are sent on a socket, the
times tend to fall within a selected range. This situation is especially

true when the network is idle.

If the round trip time of a packet is slower than the threshold wvalue,
this packet is considered slow. If fifty percent of the packets in a
block are considered to be slow, then the window may be cut in half,
greatly reducing the speed of distribution. As a result, allowing for
user configuration of this wvalue allows for taking into account different

network types and conditions.

The aspects of the present invention changes priorities by modifying three
parameters in the illustrative examples. The parameters modified for the
different priorities in these examples are the threshold, beta, and the

maximum wait time.

10

15

20

25

30

35

WO 2007/045561 PCT/EP2006/067094
18

Turning to Figure 7, a diagram illustrating a network for sending a
distribution from an adaptive sender to receivers using priorities 1is
depicted in accordance with an illustrative embodiment of the present
invention. In this example, adaptive sender 700 sends a distribution
across network 702 to clients 704, 706, 708, 710, 712, 714, 716, 718, 720,
722, 724, 726, 728, 730, 732, 734, 736, 738, 740, and 742. 750, 748, 746,
and 744 are routers 746 is the backlog router. These clients are
connected to router 744, which is in turn connected to router 746. Router
746 connects to router 748. Adaptive sender 700 connects to network 702
through server 750. 1In this example, network 702 contains twenty hops.

In addition to a distribution, file transfer protocol (FTP) server 752
also may send data to FTP client 754. 1In this example, FTP server 752
sends data to FTP client 754 while the distribution from adaptive sender
700 is sent to the clients. The illustrative example results in the FTP
server generating a high demand of traffic causing a flood in the link at
router 746. By setting priorities, adaptive sender 700 may use different

amounts of bandwidth in sending the distribution to these clients.

Turning now to Figure 8, a diagram illustrating bandwidth usage in a
network is depicted in accordance with an illustrative embodiment of the
present invention. The graph in Figure 8 illustrates the percent of
network bandwidth used in transferring data for a network, such as the one
illustrated in Figure 7. 1In this example, line 802 shows the amount of
bandwidth used for different types of distribution. In section 804, only
an FTP transfer from FTP server 752 to FTP client 754 from Figure 7 is
shown. One hundred percent of the bandwidth is used in this distribution.
With a low-priority setting for the distribution from adaptive sender 700
in Figure 7 to the clients, router 744 in Figure 7 allocates around eighty
percent of the bandwidth for the FTP transfer as illustrated in section
806. With a medium party, around fifty percent of the bandwidth is used
as shown in section 808 for the FTP transfer. As can be seen, as the
priority increases, less bandwidth is allocated to the FTP transfer with
more bandwidth being allocated to the distribution by the adaptive sender.
In section 810, a high priority is given to the distribution to the
clients. As can be seen, the FTP transfer drops to a level ranging around
thirty percent of the bandwidth. In section 812, adaptive bandwidth
control process are not used. As a result, none of the congestion control

described is used in this particular section.

10

15

20

25

30

35

WO 2007/045561 PCT/EP2006/067094
19

Turning now to Figure 9, a flowchart of a process for configuring user
settings for parameters is depicted in accordance with an illustrative
embodiment of the present invention. The process illustrated in Figure 9
may be implemented in parameter thread 628 in Figure 6. This process is
used to allow a user to define or change parameters used in adaptive
bandwidth control. 1In these examples, the parameters are threshold, round
trip time maximum change, round trip time smoothing, maximum wait time,
and beta. In particular, the process illustrated in Figure 9 may be used
to set parameters for the different gateways for use in different priority
levels, such as high, medium, and low. In these examples, a high priority
may set beta equal to seven, threshold equal to ninety nine and the
maximum wait time equal to twenty. A medium priority may set beta equal
to five, threshold equal to forty, and a maximum wait time equal to
thirty. With a low priority, beta is set equal to three, threshold equal
to twenty five, and a maximum wait time equal to forty. These particular
settings are ones used for the different priority levels. These settings

may be set through the user interface as provided.

Further, the aspects of the present invention also take into account the
effects from any router or server from the gateway to the endpoint in
these illustrative examples. This ability is provided through the use of

round trip times in the adaptive bandwidth control processes.

The process begins by presenting user settings (step 900). These settings
may be presented in a user interface, such as user interface 624 in Figure
6. The process then receives user input (step 902). A determination is
made as to whether the user input changes settings in the parameters (step
904). If the user input changes the settings, the old settings are
replaced with the new settings (step 906). Thereafter, the process

returns to step 900 to present these settings to the user.

With reference again to step 904, if the user input does not change
settings, a determination is made as to whether the user input is to end
the process of changing user settings (step 908). If the user input is
not to end the process, the process returns to step 900. Otherwise, the
user settings are saved (step 910) with the process terminating
thereafter. These settings are saved as user defined parameters 626 in

Figure 6 in these examples.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
20

Turning next to Figure 10, a flowchart of a process for a send thread is
depicted in accordance with an illustrative embodiment of the present
invention. The process illustrated in Figure 10 may be implemented in a

send thread, such as send thread 602 in Figure 6.

The process begins by sending a request for how much data can be sent to
the congestion control thread (step 1000). The process then receives a
reply (step 1002). This reply contains the amount of data that may be
sent as a result of the adaptive bandwidth control process executed by the
congestion control thread. 1In response to receiving the reply, the
process sends a call to the socket to send only the acceptable amount of
data (step 1004). Thereafter, a determination is made as to whether more
data is present to be sent (step 1006). If more data is present, the

process returns to step 1000. Otherwise, the process terminates.

Turning next to Figure 11, a flowchart of a process for a packet sniffing
thread is depicted in accordance with an illustrative embodiment of the
present invention. The process illustrated in Figure 11 may be

implemented in packet sniffing thread 606 in Figure 6.

The process begins by determining whether a packet has been detected (step

1100). If a packet has been detected, the process extracts the packet
identifier and the timestamp from the packet (step 1102). The process
then stores the data in a queue (step 1104). This queue is accessible by

a congestion control thread so that the data may be used in determining

round trip times and performing adaptive bandwidth control processes.

With reference again to step 1100, if a packet is not detected, a
determination is made as to whether an acknowledgement has been detected
(step 1106). If an acknowledgement has not been detected, the process
returns to step 1100. If an acknowledgement has been detected in step
1106, the packet identifier and the timestamp for the acknowledgement are
extracted (step 1108). The process then proceeds to step 1104 as

described above.

Turning now to Figure 12, a flowchart of a process for a congestion
control thread is depicted in accordance with an illustrative embodiment
of the present invention. In this example, the process illustrated in

Figure 12 may be implemented in congestion control thread 604 in Figure 6.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
21

The process begins by receiving a request from a send thread (step 1200).
In these examples, the adaptive control process used by the congestion
control thread is located in a gateway. Each gateway has its own values
for the different parameters used for the priorities. When a send thread
begins sending a distribution, the send thread passes these values along
with the current distribution priority to the congestion control thread.
The congestion control thread will use the wvalues that correspond to the
current distribution priority. This information may be received in step
1200 the first time the request is made for sending a distribution. This
request requests an identification of how much data may be sent.
Thereafter, data is pulled from the queue (step 1202). This data includes
arrival times and packet identifiers. Thereafter, round trip times are
identified from the data in the queue (step 1204). Parameters are then
obtained based on a priority for the distribution (step 1206). These
parameters come from user defined parameters 626 in Figure 6. In
particular, the user defined parameters are for a particular set of
parameters associated with the selected priority. In these illustrative
examples, the parameters having different settings for different
priorities are beta, threshold, and maximum wait time. Thereafter, the
process executes an adaptive bandwidth control process (step 1208). This
process may be, for example, steps contained within the congestion control
thread. Alternatively, the thread may call a function or external process
in step 1208. The process then obtains a result (step 1210), and a reply
is returned with the amount of data that may be sent (step 1212) with the

process terminating thereafter.

Turning next to Figure 13, a flowchart of a process for performing
adaptive bandwidth control is depicted in accordance with an illustrative
embodiment of the present invention. The process depicted in Figure 13 is

a more detailed description of step 1208 in Figure 12.

The process begins by identifying the smallest round trip time and the

largest round trip time (step 1300). Thereafter, the window is identified
(step 1302). The process then identifies the number of packets above and
below the threshold per acknowledgement (step 1304). Next, the process

determines whether fifty percent of the packets in a block are above the

threshold (step 1306). If fifty percent of the packets in a block are not
above the threshold, the expected throughput is calculated step (step
1308). In step 1308, the expected throughput is calculated as follows:

E «— W

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
22

minRTT
E is the expected throughput, W is the window, and minRTT is the smallest
round trip time seen from the round trip times obtained from the queue.
Thereafter, the process identifies the actual throughput (step 1310).
This actual throughput is identified using the following:

A <~ W

observedRTT
A is the actual throughput, W is the window, and observedRTT is the value
that is measured using the difference in the time from when the packet 1is
sent and when the acknowledgement is received. As a result, the expected
throughput is based on the minimum round trip time because an expectation
is present that on an idle network the minimum round trip time is always
the result of sending a packet. The actual throughput is based on the

current network conditions in which the current round trip time is larger

than the minimum round trip time. In these examples, minimum round trip
time is the same as the base round trip time. The process then calculates
the number of packets on the backlog router (step 1312). The actual

number of packets is estimated using the following:
Diff «— (E — A) e minRTT
Diff is the number of packets on the backlog router, E is the expected

throughput, A is the actual throughput, and minRTT is the smallest round

trip time seen.

Next, a determination is made as to whether the number of packets on the
backlog router is less than alpha (step 1314). As described above, alpha
is an integer that indicates the numeral number of packets that should be
present in a backlog router per connection before the window 1is increased
by one packet. If the number of packets on the backlog router is less
than alpha, the process increments the window by one (step 1322).
Thereafter, the process indicates that it is okay to send data up to the

window size (step 1318) with the process terminating thereafter.

With reference again to step 1314, if the number of packets on the backlog
router is not less than alpha, a determination is made as to whether the
number of packets is greater than beta (step 1316). If the number of
packets i1s greater than beta, the window size is decreased by one (step
1324) . The process then proceeds to step 1318 as described above.
Otherwise, the process proceeds to step 1318 without changing the window

size.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
23

With reference back to step 1306, if fifty percent of the packets in a
block are above the threshold, the window is reduced by one half (step
1320). The process then proceeds to step 1318 as described above.

The process illustrated in Figure 13 above is based on modifications to
currently available bandwidth control algorithms, such as the Nice
algorithm described in Venkataramani et al., “ICP Nice: A Mechanism for
Background Transfers”, ACM SIGOPS Operating Systems Review, Vol. 36,
Issue SI Winter 2002, pp. 1-15., which is incorporated herein by

reference.

The aspects of the present invention have identified a number of
parameters that effect the implementation of the adaptive bandwidth
control process described in Figure 13. These parameters and there

descriptions are listed as follows:

NICE ALPHA - An integer that indicates the minimum number of packets in
the backlog router per connection before the window is increased. Default
is 1. NICE BASE DISCARD - An integer that indicates the number of initial
base RTT measurements to discard per connection. The reasoning is that
when the distribution is first started and the network is not yet
saturated unreasonably low base RTT measurements may be made initially.

Default is 3.

NICE BASE SCALE - A floating point number that species a scaling factor
that is applied to the global minimum RTT (v _baseRTT) maintained by nice.
Setting this to a small positive number, such as 1.1, may help if the

network occasionally allows atypically short RTTs. Default is 0.0.

NICE BELOW ONE - An integer that provides a lower bound for
v _cwnd below one, which is the maximum number of RTTs that a connection

may be idle do to a low window. Default is 48.

NICE BETA - An integer that indicates the maximum number of packets in the
backlog router per connection before the window is decreased. This is a

default value of beta. Default is based on priority.

NICE CLAMP - When set clamping the size of the window (snd cwnd) is
limited to be no more than four packets greater than the number of packets

that are currently in the network. Default is set.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
24

NICE COND - When set the sending thread waits on a condition that is
signaled by the ack thread instead of waiting an arbitrary amount of time.

Default is not set.

NICE CONG RTX Q - When set the cong extension thread will add or update an
estimate of each outgoing packet to the rtx g; which is used to calculate
RTTs. The cong thread has the advantage that its estimate of the outgoing

time is accurate, but it may drop packets. Default is set.

NICE DYNAMIC MSS - When set, adaptive bandwidth control process will start
with a low value for MSS and increase it each time an outgoing packet is
sniffed that has a larger MSS. This way the MSS should rapidly approach

the MSS used for the connection. Default is set.

NICE FAST - A integer that specifies the number of milliseconds each
adaptive bandwidth control process socket is to be in the fast start
phase. The longer the fast start phase the more accurate the estimate of
maxRTT. However, setting this to a large value causes adaptive bandwidth
control process to be effectively disabled for that amount of time.

Default is 5000 = 5 sec.

NICE FAST RETURN - When set the fast start phase is exited upon the first
failed send() with an errno of EWOULDBLOCK. This should minimize the
amount of time spent in fast start mode, which does not yield to the
gateway, since filling the outgoing queue of the socket should be very

fast. Default is set.

NICE INTERFACE - The interface (network card identifier) that is to be
used by nice. At this time, adaptive bandwidth control process is not
able to dynamically determine the correct interface. So, the interface
needs to be set manually if it is not the first active interface.

Typically this would be set to things like "ethl". Default is unset.

NICE MAX MULT - A floating point number that specifies a minimum value for
maxRTT as a multiple of baseRTT. When set it should help prevent
unreasonably low values for maxRTT as well as the low throughput that

tends to go along with that. Default is 0.0.

NICE MIN MSS - An integer that indicates the minimum MSS to be used. In
the interest of efficiency lower values provided by the operating system

are ignored in favor of NICE DEFAULT MSS. Default is 1000.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
25

NICE MIN PACKET - An integer that specifies the minimum amount of data
that should be sent at a single time. This is different than
NICE MIN SEND in that if ok to send is less than the value specified it 1is
set to 0. This is to avoid a situation where the congestion control
thread keeps telling the send thread to send very small values like 1
byte. By setting this wvalue to 10, the congestion control thread would
walt until at least 10 bytes may be sent (returning 0 until calculations

specify 10). Default is 0.

NICE MIN SEND - An integer that specifies the minimum value of ok to send,
which means that the congestion control thread will always tell the send
thread to send at least this amount of data. By setting this to 10 then
even 1f adaptive calculations specify 3 congestion control thread will

return 10. Default is 0.

NICE NANO FIXED - An integer that specifies the number of micro seconds
that the internal callback function, select delay(), 1is to sleep when

used.

NICE NANO FIXED has no effect when the callback is set to something other
than select delay(). When not set, the delay is dynamically calculated
based on how long it should take for there to be enough room to send a
packet as indicated by the throughput of the last block (determined by the
RTT of the fastest packet in the last block and the size of the block).
When set to 1234 nanosleep() is not called: not set - Delay 1is calculated
dynamically O - nanosleep() is called with a value of 0, which may be a
delay as long as 10 ms on some systems 1234 - Do not call nanosleep()
other - Call nanosleep() with the number of microseconds specified default

is 0.

NICE PCAP TIMEOUT - An integer that indicates how long the operating
system should wait before returning with a list of packets captured. This
variable has no effect on Linux systems since Linux systems only wait
until one packet is available regardless of how long it takes. On systems
where this variable has an effect, such as Solaris, there is a trade-off
between getting accurate RTTs when the time-out is set low and wasting CPU
time when the network is idle. Default is 10 ms (the lowest supported

value on Solaris).

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
26

NICE QUEUE LIMIT - The integer that specifies the maximum length of the
queue of packets written to by the sniff thread that is read from by the
cong thread. The longer the queue the less responsive nice is as the cong
thread is acting on information that is delayed by however long it takes

for packets to work their way through the queue. Default is 10.

NICE RTT MAX CHANGE - An integer that indicates the maximum amount that
the base and max RTTs are allowed to change relative to the previous
value. When set, adaptive bandwidth control process should be more

tolerant of spurious extreme RTT values. Default is 1.5.

NICE RTT MIN STDS - An integer that indicates the minimum number of
standard deviations above the base RTT RTTs will have to be considered

above the base RTT. Default in 0.

NICE RTT SMOOTHING - An integer that indicates how much the RTT (Round
Trip Time) measurements should be smoothed by exponential decay, which is
done by averaging with the previous measurement. Setting this may help in
cases where nice behaves erratically by over compensating for each

fluctuation in RTT. Default is 50.

NICE RTT STD SMOQOTH - An integer that is similar to NICE RTT SMOOTHING,
but for standard deviations. The standard deviation is based on a

weighted average of recent RTT measurements. Default is 0.

NICE SEND RTX Q - When set the sending thread will add or update an
estimate of each outgoing packet to the rtx g which is used to calculate
RTTs. The sending thread has the advantage that it does not drop packets,

but its estimate of the outgoing time may be inaccurate. Default is set.

NICE THROUGHPUT AVG - An integer that indicates how many of the most
recent packets are to be included in the throughput calculation. Larger
values should result in more accurate throughput calculations, but at the

cost of being less responsive. Default is 20.

NICE THROUGHPUT START - An integer that indicates the minimum number of

packets that must be sent before the throughput calculations are begun.

This is to account for the slow link queue initially being empty, so the
throughput during the early portion of the socket may not be typical of

the socket and should be ignored. Default is 100.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
27

NICE WAIT BASE - An integer that indicates what multiple of v baseRTT
(global minimum RTT) a connection will wait to send before giving up and
resetting snd nxt and snd una. The timeout calculated is added to that

for NICE WAIT MAX. Default is 0.

NICE WAIT MAX - An integer that indicates what multiple of v maxRTT
(global maximum RTT) a connection will wait to send before giving up and

resetting. Default is based on priority.

Turning now to Figure 14, a flowchart of a process for customizing the
sending of distributions to receivers for a customer is depicted in
accordance with an illustrative embodiment of the present invention. The
process illustrated in Figure 14 is a process used to provide solutions to

customers desiring customized distribution systems within their networks.

The process begins by receiving a customer request (step 1400). This
request includes information needed to generate the solution. For
example, an identification of gateways within the customer network is
contained in the request. Additionally, characteristics of the different
clients accessed through the gateways also may be included. Additionally,
the requirements of the client for sending different types of distribution
also are included in the illustrative example. In response to receiving
this request, the client parameters are analyzed for sending distributions

to the endpoints (step 1402).

In this analysis, settings are identified for the parameters used for the
different priorities (step 1404). In these illustrative examples, the
priorities are threshold, beta, and maximum wait time. The parameters
identified may be for various priority levels. For example, the
illustrative examples use three priority levels, high, medium, and low.
Depending on the customer request, a different number of priority levels
may be used such as two or four. The parameters generated for a
particular priority level may differ for different gateways depending on
the client’s request and the characteristics of the network in which the

gateways are located.

Thereafter, code is generated for adaptive bandwidth control for each
gateway (step 1406). This code is packaged such that the code may be
installed at a particular gateway. This code includes the adaptive
bandwidth control process and the parameters for the particular gateway.

This code also may include the executable files necessary to install and

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
28

set up the adaptive bandwidth control process on a gateway. Thereafter,
the code is sent to the customer (step 1408) for distribution. 1In this
manner, a customer may receive customized distribution systems from a

business or other provider in response to a request.

Thus, the aspects of the present invention provide a computer implemented
method, apparatus, and computer usable program code for adjusting the rate
of data transfers. The aspects of the present invention receive user
input to select values for parameters on an application level. These user
defined parameters are utilized in an adaptive bandwidth control process
to identify the number of packets that may be sent to a destination over a
network. The aspects of the present invention allow a user to define
parameters based on different network conditions and characteristics. 1In
this manner, the aspects of the present invention allow for adaptive

sending of data based on varying types of networks and conditions.

The invention can take the form of an entirely hardware embodiment, an
entirely software embodiment or an embodiment containing both hardware and
software elements. In a preferred embodiment, the invention is implemented
in software, which includes but is not limited to firmware, resident

software, microcode, etc.

Furthermore, the invention can take the form of a computer program product
accessible from a computer-usable or computer-readable medium providing
program code for use by or in connection with a computer or any
instruction execution system. For the purposes of this description, a
computer-usable or computer readable medium can be any tangible apparatus
that can contain, store, communicate, propagate, or transport the program
for use by or in connection with the instruction execution system,

apparatus, or device.

The medium can be an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system (or apparatus or device) or a
propagation medium. Examples of a computer-readable medium include a
semiconductor or solid state memory, magnetic tape, a removable computer
diskette, a random access memory (RAM), a read-only memory (ROM), a rigid
magnetic disk and an optical disk. Current examples of optical disks
include compact disk - read only memory (CD-ROM), compact disk -

read/write (CD-R/W) and DVD.

10

15

20

25

WO 2007/045561 PCT/EP2006/067094
29

A data processing system suitable for storing and/or executing program
code will include at least one processor coupled directly or indirectly to
memory elements through a system bus. The memory elements can include
local memory employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary storage of at least
some program code in order to reduce the number of times code must be

retrieved from bulk storage during execution.

Input/output or I/0 devices (including but not limited to keyboards,
displays, pointing devices, etc.) can be coupled to the system either

directly or through intervening I/0 controllers.

Network adapters may also be coupled to the system to enable the data
processing system to become coupled to other data processing systems or
remote printers or storage devices through intervening private or public
networks. Modems, cable modem and Ethernet cards are just a few of the

currently available types of network adapters.

The description of the present invention has been presented for purposes
of illustration and description and is not intended to be exhaustive or
limited to the invention in the form disclosed. Many modifications and
variations will be apparent to those of ordinary skill in the art. The
embodiment was chosen and described in order to best explain the
principles of the invention, the practical application, and to enable
others of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are suited to the

particular use contemplated.

10

15

20

25

30

35

40

WO 2007/045561 PCT/EP2006/067094
30

CLAIMS

1. A computer implemented method for adaptively controlling
transmission of data, the computer implemented method comprising:

receiving data from a source at a plurality of gateways for
distribution using a selected priority; and

transmitting the data from the plurality of gateways to a plurality
of receivers using the selected priority, wherein every gateway in the
plurality of gateways has an adaptive bandwidth control process and a
respective set of parameters for controlling the adaptive bandwidth
control process for sending the data at the selected priority and wherein
transmission of the data from each gateway for the selected priority has a
different impact on other traffic at different gateways in the plurality
gateways for the selected priority when different values are set for the

set of parameters for the different gateways.

2. The computer implemented method of claim 1, wherein the set of

parameters comprise a threshold, beta, and a maximum wait time.

3. The computer implemented method of claim 1 further comprising:
configuring a set of parameters for a particular gateway in the

plurality of gateways, wherein the set of parameters for the particular

gateway are different from the set of parameters for another gateway in

the plurality of gateways.

4. The computer implemented method of claim 1, wherein the adaptive
bandwidth control process takes into account congestion along a path from

a gateway in the plurality of gateways to a receiver of the distribution.

5. The computer implemented method of claim 1, wherein the respective
set of parameters is different for different gateways in the plurality of

gateways.

6. The computer implemented method of claim 1, wherein the data

comprises one of a data file, an application update, and a virus patch.

7. A computer program product comprising a computer usable medium
having computer usable program code for carrying out the steps of any of

claims 1 to 6.

8. A data processing system comprising:

a bus;

10

15

20

25

30

WO 2007/045561 PCT/EP2006/067094
31

a communications unit connected to the bus;

a memory connected to the bus, wherein the storage device includes a
set of computer usable program code; and

a processor unit connected to the bus, wherein the processor unit
executes the set of computer usable program code to carry out the steps of

any of claims 1 to 6.

9. A method for providing customized data transfer to a client, the
method comprising:

receiving a request for customized data transfer form the client,
wherein the request includes network characteristics and gateway
identifications;

generating custom sets of parameters, wherein each set of parameters
is assigned to a gateway based on the gateway identifications and the
network characteristics;

sending to the client the custom sets of parameters for use with
computer usable program code for receiving data from a source at a
plurality of gateways for distribution using a selected priority and
transmitting the data from the plurality of gateways to a plurality of
receivers using the selected priority, wherein every gateway in the
plurality of gateways has an adaptive bandwidth control process and a
respective set of parameters for controlling the adaptive bandwidth
control process for sending the data at the selected priority and wherein
transmission of the data from each gateway for the selected priority has a
different impact on other traffic at different gateways in the plurality
gateways for the selected priority when different values are set for the

of parameters for in the different gateways.

10. The method of claim 9, wherein the sending step further comprises
sending the computer usable program code with the custom sets of

parameters.

WO 2007/045561

PCT/EP2006/067094

1/8
FIG. 1
104 = s
N
’/ 110
L : 102 l:‘l>> >>.>‘> >>
SERVER CLIENT
NETWORK | l 12
e ':'>>
= CLIENT
106"
= STORAGE o] 114
- =R
SERVER CLIENT
108
FIG. 2
206~| PROCESSING
UNIT '500
210 202 if 208 216 236
\ \ / / /
GRAPHICS MAIN AUDIO
PROCESSOR [NBMCH K= \iEmoRy ADAPTER | | SO
204 @
240 N 238
BUS BUS
<71 A u SB/ICH u l[L iL | u lL_>
KEYBOARD
USB AND
NETWORK PCI/PCle AND
DISK'| {CD-ROMI " AnAPTER %EES pevices | | mouse || MODEM | | ROM
ADAPTER
/ / / / N N \ \
226 230 212 232 234 220 222 224

WO 2007/045561

338

e

2/8

PCT/EP2006/067094

300

FIG. 3
SOURCE
302~ =
Y Y Y
304~ = 306~ = B 308

324

402
~404
™\-406

PCT/EP2006/067094
812

.~ 500

<= RECEIVER
<e=—> RECEIVER
<+—> RECEIVER

810

410

ROUTER

>

|
IGMP
DEVICE DRIVER AND INTERFACE CARD
808

3/8

, UDP

ICMP,

PACKETS
P,

408
412
806

I"_\'—__ﬂ

| ACKNOWLEDGMENTS |
I__.___;______J

LINK
FIG. 5

804

400

502~J APPLICATION | TELNET, FTP, E-MAIL, ETC.

504~ traNSPORT | TCP
506" NETWORK

SENDER |

ADAPTIVE
508"

—NOLLNGIH1SIa Yy IND3d
—NOLLNGIYLSIA YvINO3Y
—NOLLNGIHLSIa HyIND3Y
—NOILNAIH1SIA Yy IND3Y
~-NOLLNAIY1SIa "4y Ind3d
~NOILNGIYLSIA Hv1N93Y
— ALIHOIYd HIIH JAILAVAY
- ALIHOIHd HOIH JAILdVAY
— ALIHOIHd HOIH JAILdVAY
— ALIHOIHd HOIH JAILdVaY
— ALIHOIHd HIIH JAILdVAY

— ALIHOIHd MOT JAILdVAY
— ALIHOHd MOT JAILAVAY
— ALIHOIYd MOT JAILdVAY
— ALIHOIHd MOT JAILAVAY
—ALIH0Idd MO JAILdVAY
—AINO d14
—AINO d1d
—ATNO d14
- AINO d1d
—ATNO d1d

FIG. 8

FIG. 4

WO 2007/045561
120%
100%
80%
60%
40% -
20%

AINO d14
R
o

— ALIHOIYd WNIAIWN FAILVAY
— ALIHOIMd WNIGIW JAILDVAY
- ALIH0Idd WNIAIN FAILAVAY
— ALIHOIYd WNIG3IW JALLYaY
— ALId0Idd WNIAIN JAILAVYAY
- ALIHOIHd WNIJ3IW JALAVAY

WO 2007/045561 PCT/EP2006/067094

4/8

ADAPTIVE SENDER

628

N
PARAMETER _ | USER DEFINED |~ 626
THREAD PARAMETERS

624
N\

USER
INTERFACE

608 I
l__S'___I

SEND | REQUEST | CONGESTION | -604

: ——»| CONTROL
THREAD | REPLY | THREAD
~-

’ 610 1 622
602 Y,

A PACKET ACKNOWLEDGMENT
620 INFORMATION INFORMATION

QUEUE

1

PACKET SNIFFING THREAD

BACKLOG
ROUTER QUEUE ACKNOWLEDGMENTS

’ N
614 616

WO 2007/045561 PCT/EP2006/067094

5/8
ADAPTIVE FTP
SENDER SERVER
TR 750 I
700\ T“[' b /'752
|FvvotroveevED

748 FIG. 7
=iy 111 LR |
|'7>—
744
mfi !‘ !’ ! =
7 y "\-754
706 708 710 712
714 ,[‘_J! 1 J! ‘ ! I ! J FTP CLIENT
/ /
716 718 720 722
724~ ’__J! ‘__,J! ’_J! ‘ _ |! ’ ,I!l\732
/
726 728 730 |
734/4 | J ‘ Jl l }! \ ,_III\742
4 /
736 738 740

WO 2007/045561

PCT/EP2006/067094

6/8
FIG. 9 START
»
900~ PRESENT USER SETTINGS
\
902~J RECEIVE USER INPUT
906
/
REPLACE OLD SETTINGS |
WITH NEW SETTINGS |
910—| SAVE USER SETTINGS
END
FIG. 14
START BEGIN
FIc. 10 CA&D ’-
L
SEND REQUEST FOR HOW RECEIVE CUSTOMER REQUEST |~ 1400
1000~ MUCH DATA CAN BE SENTTO T
CONGESTION CONTROL THREAD ANALYIE CLENT 1400
! PARAMETERS FOR
1002~ RECEIVE REPLY SENDING DISTRIBUTION
T !
SEND CALL TO SOCKET TO IDENTIFY SETTINGS L
1004~ SEND ONLY THE ACCEPTABLE FOR PARAMETERS 1404
AMOUNT OF DATA !
GENERATE CODE FOR
ADAPTIVE BANDWIDTH K_+ 406
MORE VES CONTROL FOR EACH GATEWAY
DATA TO SEND T
?
1068 SEND CODE TO CUSTOMER |_1 408

WO 2007/045561 PCT/EP2006/067094

CetarT) 7"

1106

")

1100

FIG. 11
v

EXTRACT PACKET IDAND | ~1102
TIMESTAMP FROM PACKET

DETECT

PACKETS
?

YES

DETECT
ACKNOWLEDGMENT

11081

EXTRACT PACKET ID AND
TIMESTAMP FROM
ACKNOWLEDGMENT

Y

11047

STORE DATA IN QUEUE

FIG. 12

1200 RECEIVE REQUEST

T

1202 ~ OBTAIN DATA FROM QUEUE

3

1204~J DETERMINE ROUND TRIP TIMES

!

1206 ~J OBTAIN USER DEFINED PARAMETERS
BASED ON PRIORITY FOR DISTRIBUTION

¥

EXECUTE AN ADAPTIVE
1208 7| BANDWIDTH CONTROL PROCESS

Y

12101 OBTAIN RESULT

!

1212 7 RETURN REPLY WITH AMOUNT OF DATA

END

WO 2007/045561

8/8

IDENTIFY SMALLEST ROUND TRIP
TIME AND LARGEST ROUND TRiP TIME

1300~

1302~ IDENTIFY THE WINDOW

!

IDENTIFY NUMBER OF PACKETS
ABOVE AND BELOW THE THRESHOLD
PER ACKNOWLEDGMENT

1304~

PCT/EP2006/067094

Y

1320
PERCENT OF VES /
PACKETS IN A BLOCK ABOVE THE REDUCE WINDOW BY HALF
THRESHOLD?
1308~ CALCULATE EXPECTED THROUGHPUT
1310~
IDENTIFY ACTUAL THROUGHPUT
CALCULATE THE NUMBER OF
13121 PACKETS ON THE BACKLOG ROUTER
NUMBER OF
PACKETS ON THE BACKLOG ROUTER ~>YES,| INCREASE WINDOW BY 1
LESS THAN ALPHA <
?
: 1322
NUMBER OF vEs
PACKETS ON THE BACKLOG ROUTER DECREASE WINDOW BY 1
GREATER THAN BETA? <
1324

1316
NO

-

)
OKAY TO SEND DATA UP TO WINDOW SIZE

1318

END FIG. 13

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/067094

. CLASSIFICATION O 536UBJECT MATTER

N hgaL 12

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category” | Citation of document, with indication, where appropriate, of the relevant passages

X WO 02/052768 A2 (RADIANCE TECHNOLOGIES INC 1,3,5-10
[UST) 4 July 2002 (2002-07-04)

Y paragraphs [0009] - [0013]; figure 2 2,4
paragraphs [0021] - [0027]; figures
5,7A,7B
paragraph [0048]

Y BRAKMO L S ET AL: "TCP VEGAS: NEW 2,4

AVOIDANCE™

YORK, NY, US,
vol. 24, no. 4,

XP000477041
ISSN: 0146-4833
Chapter 3.2

TECHNIQUES FOR CONGESTION DETECTION AND
COMPUTER COMMUNICATION REVIEW, ACM, NEW

1 October 1994 (1994-10-01), pages 24-35,

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

"0O" document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"X" document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
megts, such combination being obvious 1o a person skilled
inthe art.

"&" document member of the same patent family

Date of the actual completion of the international search

20 December 2006

Date of mailing of the international search report

10/01/2007

Name and mailing address of the 1SA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340~2040, Tx. 31 651 epo'nl,
Fax: {(+31-70) 340-3016

Authorized officer

Kreppel, Jan

Form PCT/ISA/210 {second sheet) {April 2005)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2006/067094

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

VENKATARAMANI A, KOKKU R, DAHLIN M: "TCP
Nice: A Mechanism for Background
Transfers"

PROCEEDINGS OF THE 5TH SYMPOSIUM ON
OPERATING SYSTEMS DESIGN AND
IMPLEMENTATION, [OnTinel

December 2002 (2002-12), XP002412375
Retrieved from the Internet:
URL:http://delivery.acm.org/10.1145/850000
/844159/p329-venkataramani .pdf?keyl=844159
&4key2=5391066611&co11=&d1=ACM&CFID=1515151
5&CFTOKEN=6184618>

[retrieved on 2006-12-20]

cited in the application

Chapters 2.1, 2.2

EP 1 077 559 A (ERICSSON TELEFON AB L M
[SE1) 21 February 2001 (2001-02-21)
paragraphs [0001] - [0016]

WO 02/49254 A2 (MARNETICS LTD [ILI];
REINSCHMIDT MENACHEM [IL])

20 June 2002 (2002-06-20)

page 8, Tine 1 - page 12, line 18

2,4

2,4

2,4

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/EP2006/067094
Patent document Publication Patent family Publication
cited in search report date member(s) date
WO 02052768 A2 04-07-2002 AU 2002243376 Al 08-07-2002
EP 1077559 A 21-02-2001 AT 280461 T 15-11-2004
- AT 296511 T 15-06-2005
AT 298955 T 15-07-2005
AU 766823 B2 23-10-2003
AU 7271900 A 13-03-2001
CA 2381374 Al 22-02-2001
CN 1370361 A 18-09-2002
DE 60015142 D1 25-11-2004
DE 60015142 T2 09-03-2006
DE 60020413 D1 30-06-2005
DE 60020413 T2 02-02-2006
DE 60021126 D1 04-08-2005
DE 60021126 T2 04-05-2006
WO 0113587 A2 22-02-2001
ES 2228604 T3 16-04-2005 -
ES 2239292 T3 16-09-2005
ES 2243843 T3 01-12-2005
JP 2003507934 T 25-02-2003
MX PA02001534 A 02-07-2002
NO 20020753 A 09-04-2002
W 522690 B 01-03-2003
us 6901081 Bl 31-05-2005
WO 0249254 A2 20-06-2002 AU 2249202 A 24-06-2002
US 2002078164 Al 20-06-2002

Form PCT/ISA/210 (patent family annex) {April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - wo-search-report
	Page 43 - wo-search-report
	Page 44 - wo-search-report

