US 20070266066A1

a2y Patent Application Publication o) Pub. No.: US 2007/0266066 A1

a9y United States

Kapoor et al.

43) Pub. Date: Nov. 15, 2007

(54) SNAPSHOTS OF FILE SYSTEMS IN DATA
STORAGE SYSTEMS
nventors: Vikram Kapoor, Sunnyvale, ;
(76) 1 Vikram Kapoor, Sunnyvale, CA (US
Kurt Alan Shoens, Los Altos, CA
(US); Mark Steven Schultz, Los Altos,
CA (US); Rex Rilen Hamilton, Ben
Lomond, CA (US)
Correspondence Address:
Robert Moll
1173 Saint Charles Court
Los Altos, CA 94024 (US)
(21) Appl. No.: 11/879,230
(22) Filed: Jul. 16, 2007
Related U.S. Application Data
(63) Continuation of application No. 11/147,739, filed on

Jun. 7, 2005, now Pat. No. 7,257,606, which is a
continuation of application No. 10/616,128, filed on
Jul. 8, 2003, now Pat. No. 6,959,313.

Publication Classification

(51) Int. CL
GOG6F 17/30 (2006.01)
(52) US.Cl oo 707/205; 707/E17

(57) ABSTRACT

The present invention relates to methods and systems of
snapshot management of a file system in a data storage
system. To represent the snapshots, the invention maintains
pointers to the root block pointer of each snapshot. When the
active file system is modified, this invention avoids over-
writing any blocks used by previous snapshots by allocating
new blocks for the modified blocks. When the invention
needs to put an established block in a new location, it must
update a parent block to point to the new location. The
update to the parent block may then require allocating a new
block for the new parent block and so forth. Parts of the file
system not modified since a snapshot remain in place. The
amount of space required to represent snapshots scales with
the fraction of the file system that users modify. To maintain
snapshot integrity, this invention keeps track of the first and
last snapshots that use each block in space map blocks
spread throughout the file system data space. When users
delete snapshots, this invention may use a background
process to find blocks no longer used by any snapshot and
makes them available for future use.

Block Management

Data Update Request

(In-Use Snapshot)
Allocate A
Free-To-Use Block

GDf

62 Add Data To
New Block

—_—

Update New
Space Map Block Entry
(0,0) —> (a,0)
{active flle system)

83/

¥

Update
Block Pointers
To New Data

64/

Is The

Receive
File System Data

fAZ

Active
File System
With (a,0)
In Space Map
Block?

46

45 e
Modify Overwrite
Existing Current
Block
Space
Avallable Add Data To

In Current Data Current

Block

yes

Index b
With The Latest
Snapshot
Version?

67 68

Allocate A
Free-To-Use
Block And Change
0,0) > {a,0)

e W N
Update Update
Old Space Map Old Space Map
Block Entry Block Entry
{b,0) > (b,b) {b,0) > (be)

{Index b Is The
Only Snapshot Verslon)

{Index e is The Latest
Snapshot Version)

L2

Add Data To
New Block

¥

YN

Update
Block Pointers
To New Data

56

58

> <
g Return E

US 2007/0266066 A1

I 3-WNOId

waysfsqng washsqng
N welsAsqng ebe10ls ereq [] ® ® abeio)g BlEQ PUOIDG abei0)g Qg IS4I4

9¢

NIOMJON J92UUOIIA|

Jaydepy

1 <4
.N._ sng aveusiu] _ oL

sauy
ayoe)

8¢

114

1s0H F\J

puosag

NISoH o o o
Jaydepy sng 19beuepy

ayosen

n\ﬂl A1003u1Q
ayoen
[44 \N\ 1

Patent Application Publication Nov. 15,2007 Sheet 1 of 16

vl
_ sng Kowa-Nndd

_..
I
I
|
I
I
|
|
|
|
I
I
I
I
_ | |
10553204 .Mn/ Ly 10858901
\“ : VAR
|

ISOH 1siid
ol

US 2007/0266066 A1

Patent Application Publication Nov. 15,2007 Sheet 2 of 16

N 1SOH

§¢

1%

¥S0H

¢ ANOId

u 320|9

1 -uxo01g

632019

832019

22019

93%0i19

5 %2019

¥ 2019

£)2019

22018

1 42019

020I8

oy

HIOMION }08ULI0IBI]

waysAsqng
abeiolg
ejeqg
pazijenuip

1S0H

puosag

2\.\

isdl4

US 2007/0266066 A1

Patent Application Publication Nov. 15,2007 Sheet 3 of 16

le\l

ewep ebew

S]

Jajuiod 3ao|g 100y

nN!\)

dweysawn

rml\:

aeg abew

m_./.\)

JaqUINN UOISIBA

€ NSOl

vs5Z Joysdeug \

€5z Joysdeus

Z5T oysdeug

wasis altd oAROY

€ joysdeug

z loysdeug

— — ——

| loysdeusg

w_‘l\:

wnsy2ayn

u S

waysAg 8|14 eAdY
10 x8pu)|

syo0ig
wasAg 914
80T

acedg a|qesn

yo0]g dey asedg

asedg sjqesn

ya0ig dey eoedg

asedg ajqesn

yo0|g deyy asedg

aoeds ajqesn

¥oo|g dep aseds

asedg ajqesn

yao|g dey asedg

Z eIqeL xapuyj

lemr

I elqey xapu

l\lmmr

f

S¢

US 2007/0266066 A1

Patent Application Publication Nov. 15,2007 Sheet 4 of 16

¥ 3¥NOId

xapu)
Buipuz

xapuj
Buluuibag

aoeds ajges()

| [[womdemosecs | |] |

™

>

asedg ajgesn

\
\
\

_4 _ _)o0)g dey asedg _ _ _ _

mm\\

syo0i1g

walshg
a4
8oz

syo0|g

waysig
ad
8902

S ANOId

US 2007/0266066 A1

(weysAg 814 9AlOY) £6659 UOISIOA Ag pasn Yo0ig

9sn-0]-9944

asn-0]-9a14

88¢01 Joysdeus ybnouy] ypeol Joysdeus Ag pasn yoolg

9sM-01-9ai4

asn-o01-9a44

o o| Yooigdepnoeoeds | o oo zizfo oo o e o

a L

0 oo o

(waysAg aj14 8AnoY)

(Z1Z xapul) £6659
uoisiap Ag pasn yoo|g

(g1 xapuy) ggeol
niyj (91 xapuj) #v£ol
sjoysdeug Ag pasn y20|9g

Patent Application Publication Nov. 15,2007 Sheet 5 of 16

US 2007/0266066 A1

Patent Application Publication Nov. 15,2007 Sheet 6 of 16

T ——————— S5z Joysdeug
° 5z toysdeug
0
a1y —_— ==
||||||| - - €52z 1oysdeug
80Z /) o | _ mm———— ——
— - —
UIBA PR ZsZ joysdeug
a0k _ - - _
£002'6 AEW "WV 00:€ - - waisg)14 2AROY
818|0SqQ - - — -
h -
0, 855 P _ - - _ P - 0sZ joysdeug
-
—_— - - -
_ - P 6¥Z joysdeug
- -~
— - - - adl
- - -1 snjny \ []
ep|iH P 8001 \ °
-
9004 _ - £00Z ‘T 14dV ‘Wd 00°Z N\ °
€00Z'v1 Aely ‘Wd 00:9 - patajaq
wajsAg alld aARdY P 90z 809Z1 S j0ysdeug
502) £6659 - -~
¥ joysdeug
|||||||||||||| € joysdeug
fKayowsg ——
+a0L - -— Z wysdeus
€002 ‘6 AeW ‘WV 00:01 _— —
— a— —
as-ul - — - } 10ysdeug
— ——
¥0Z) 88€01 - — _
paiq - wnsyaaysn
-~
Z00L
£00Z ‘8 AN ‘WV 0D:¥ P ziz
osn-u| - l\
P 10z
£02 /) ¥PEOL -~ N

Patent Application Publication Nov. 15,2007 Sheet 7 of 16 US 2007/0266066 A1

Create A File System

Set All Space Map Block
Entries To (0,0)

v
Select an Index a
corresponding to an Entry | 106
From the Index Table

v

Assign A Starting Version ~/1\08
Number To Index a

12

Load Index a to Active File Ve
System Index in Index Table 110

v

Select First Block on
First Space Map Block N/\"z

to Use as Initial Root
Block

v

Enter Index Pair = (a,0) v
Into First Entry In 14
Space Map Block

v

Set Version Number \/\116
Attribute to Starting
Version Number

v

Set Image State Attribute ‘/:1 8
To Active File

v

Set Timestamp Attribute To \/:2 0
Current Time And Date

Y

Set Starting ~/1\22
Root Block Pointer Attribute
To Block Number

v

Calculate Checksum And | _/
Load Into Index Table 124

. 2

Write
Index Table To ‘/;\zs

Nonvolatile Storage

L 2
Continue System

Initialization 1~ 135

Activity

FIGURE 7

007/0266066 A1

Patent Application Publication Nov. 15,2007 Sheet 8 of 16 US2
Block Management
Receive 42
Data Update Request File System Data f
{In-Use Snapshot) . 44
Allocate A F.IA;tlv:e
Free-To-Use Block & BySiem
60 va With (a,0)
In Space Map
L7 Block?
Add Data To
62/ NewBlock 46
7 a5 L\
Update New Modify Qverwrite
Space Map Block Entry Existing Current
B/ 00->@0 Data? Block
(active file system)
L 2 50
48
Update ~y
64_s~| BlockPointers Space
To New Data Available Add Data To
In Current Data Current
Block To Add Block
Data?
Is The
Beginning
Index b Associated Allacate A
With The Latest Free-To-Use J\sz
Snapshot Block And Change
Version? {0,0) 2 (a,0)
L 2
67 68
Add Data To
L'\ v L‘\ New Block "
Update Update ;
Qld Space Map Old Space Map
Block Entry Block Entry Update
(b,0) —> (b,b) (b,0) > (b,e) Block Pointers ‘/\56
(Index b is The {index e Is The Latest To New Data
Only Snapshot Version) Snapshot Version)
58
X
» <
| Return)~
PN J %

FIGURE 8

Patent Application Publication Nov. 15,2007 Sheet 9 of 16

Receive Request For
A New Snapshot

Hold Off Updates to

2

Create A File System Snapshot

—P»| Active File System ‘/?40

Search Index Table For
Snapshot With
Image State = Free

J?42

Free
Snapshot
Found?

US 2007/0266066 A1

Report
No Free
Snapshots

146

Change Image State Of
Active File System
To In-Use Snapshot

148

2

Set Date And Time Into
Timestamp Attribute
Of In-Use Snapshot

150

L 2

Record An Image Name
For In-Use Snapshot

>

151

Y

Change Image State Of
The Free Snapshot
To Active File System

162

L 2

Assign Next Version Number | _/

To Active File System

154

2
Set Current
Root Block Pointer \/?55
Into Active File System
v
Record An Image Name
In Active File System Ve
158
Write Index Table To
Nonvolatile Storage J\162
H
Y

Resume File

System Activity \/\154

56

FIGURE 9

Patent Application Publication Nov. 15,2007 Sheet 10 of 16

US 2007/0266066 A1

Revert To An Earlier Snapshot Version

Receive Request To
Revert To A Previous Snapshot

4]

——

Hold Off Updates to
Active File System

Yy

L 210

Set Image States of
In-Use Snapshots With Versions
> Snapshot p To Obsolete
And Set Image State of The
Active File System To Obsolete

L/ 212

v

Create A Copy Of
Snapshot p=
Snapshot ¢

v
Set Image State Of
Snapshot ¢ To
In-Use

L 2

Assign Next Version
Number To Snapshot ¢

Y

Set Root Block Pointer
Of Snapshotc =
Root Block Pointer
Of Snapshot p

v
Create A Copy Of
Snapshot p=a

2

/2

To Active File System

v

Assign Next Version
Number To Copy a

v

a = Root Block Pointer
Of Snapshot p

v

14

| /216

| /218

| /220

| 222

Set Image State Of Copy a J;z 4

S 226

Set Root Block Pointer Of
L/.EZB

Record Index Of
Active File System

| /230

Into Snapshot Table

2

Write
Snapshot Table To
Nonvolatile Storage

v
e

Resume File
System Activity

FIGURE 10

S 232

US 2007/0266066 A1

Patent Application Publication Nov. 15,2007 Sheet 11 of 16

dil 3dNOId

Zo|qel
1 34NOId e xapu| uy sjoysdeug
saf pajajeq Auy

18

eiqer
€1 N2Id e xopu| ui sjoysdeus

sak aj910sq0 Auy
61

sjoysdeug
ues|n ol
Jsanbay
YNCRTY

sjoysdeug papasuuf uea|) puy 32938Qq

ELlL 3dNOId

pajajag o] Joysdeug

uasoyn ‘/\w L

10 9eys abew Jog

A

a|ge] xapuj

yosess M_sz

|

joysdeug vy
ajeleg ol
ysanbay
aA1329Y

joysdeus vy 939j9Q

US 2007/0266066 A1

Patent Application Publication Nov. 15,2007 Sheet 12 of 16

Au3 ejgey xapu
omvl\l Jxou aujwexy

qZ1 3¥NOId

¢fnu3 aqqe)
X9pu| 3se

1]14

A

>
>

(734 (\l

80UaI3J0Y SWEN Jed|)

0 03 J3JUi0d %90|g J00Y 198
0 0} dwejsewi] Jog

aal4 0} a)eys abewy jag

:Aijug Jea|n

¢pajajag
fAuz

amv{\. xepu| uy Aud

A
»
-

ajgeL

18Il YIm pEg

vL NOIS

a|qe] xapu| woi} sjoysdeug pajajag aAowsy

Anuz ejqe; xapuj
ovvl\) 1XoU aujwexy

ezl 3ANOId

¢Au3 ajqe)
X3apuj 3se

ocy

A

[
»

chl\.

99UBJSJOY SWEN Jed[)
0 03 483uj0d %90|g 100y I3
0 o) dwejsawy] 38§

9344 0} 9je)S abew) 39g

:Anug ges)n

£919]08q0
A3

oo.v{\: xapuj up Ajua

ajqel

IS4 im U

€1 ANOI

a|qe] xapu| woiy sjoysdeug pajs|osqQ aAOWSY

Patent Application Publication Nov. 15,2007 Sheet 13 of 16

@ FIGURE 11b —»

310

314

Ciean Obsolete Snapshots

300'\

Read Current

US 2007/0266066 A1

Space Map Block
Entry

The Beginning Index b
Reference p or An Earlier
Snapshot Than Snapshot p And
Does The Ending Index Reference An
Obsolete Snapshot Later Than
Snapshot p And Earlier
Than Snapshot
c?

Does
The Beginning Index
Reference A Later Snapshot Than
Snapshot p And Earlier Obsolete
Snapshot Than Snapshot
c?

3121

Change
Space Map
Block Entry

=(b, 0)

316 2

yes

Change
Space Map
Block Entry

=(0,0)

318 1

A 4

Leave
Space Map
Block Entry
Unchanged

FIGURE 13

!

Go To
Next
Space
Map
Block
Entry

306

Last
Space Map
Block
Entry?

yes
FIGURE 12a

Patent Application Publication Nov. 15,2007 Sheet 14 of 16 US 2007/0266066 A1

Clean Deleted Snapshots

Figure 11b

Start with first Space
Map Block Entry fSOO

610 640

Beginning Index
References Deleted
Snapshot?

Ending Index
References Deleted
Snapshot?

620,
650,

Is there an in-use or active Index
Table entry with Version > Beginning
Index Version?

No

Is there an in-use Index Table entry with
Version < Ending Index Version and
Version >= Beginning Index Version?

Set Beginning Index to
Index of oldest in-use or Set index pair to
| /630 e

active Index Table Entry (0,0) to indicate
with Version > Beginning block free-to-use
Index Version

Set Ending Index to
Index of newest in-use
Index Table Entry with f 660
Version < Ending Index
Version

670 A 4

Yes Is there another
Space Block Entry?

FIGURE 12b

FIGURE 14

US 2007/0266066 A1

Patent Application Publication Nov. 15,2007 Sheet 15 of 16

joysdeus Adog pajajaq JO paues|)
uoneiadQ waysAg a4 |leWION

(ssa201d punoibyaeg uj 19)e] ues|n)
§$S99%01d Joysdeug ajajag
sjoysdeusg 933]0sqQ JO paues|n
uonesadp waysig aji4 jeUlION

(ssas01d punoibxoeg uj Jaje] uea|d)
§53901d Joysdeus 93910840
«d,; Joysdeug o] uarsy
PIOH uQ uopeladQ waysAs a4

sjoysdeug asn-uj YUMm
uonesadQ wWasAs 2|14 |ewION

PSL JHNOI4
ze | | |
1
d o u
_ 961 FHNOId
[
ze 2 _ _ _
| B
d o u
_ qs1 34N9Id
_
ze 2 ..u_\ R—\ m—\ _ _ _
sqo sqo sqo _ _ _
e d b d o u
BGlL 3HNOId
_ I
_ [7
e b d o 1]

(xapui) Joysdeug

(xapui) Jjoysdeus

(xapui) Jjoysdeusg

(xopu1) Joysdeusg

US 2007/0266066 A1

Patent Application Publication Nov. 15,2007 Sheet 16 of 16

91 34NOId

$83%01d Bujueajn punoibyoeg bupajdwon oy Jolid
«S» Joysdeus o} puy .d, joysdeus o)
SuoIsIonay waysAg a4 aidniny

€e

_
ke
e o e
sqo sqo sqo sqo _
e A n }

(xapui) yoysdeug

US 2007/0266066 Al

SNAPSHOTS OF FILE SYSTEMS IN DATA
STORAGE SYSTEMS

BACKGROUND

[0001] The present invention relates to snapshots of file
systems in data storage systems.

[0002] This is a continuation of U.S. application Ser. No.
11/147,739, filed on Jun. 7, 2005, which is a continuation of
U.S. application Ser. No. 10/616,128, filed on Jul. 8, 2003,
now U.S. Pat. No. 6,959,313 B2, which are both incorpo-
rated by reference herein.

[0003] This application also incorporates by reference
herein as follows:

[0004] U.S. application Ser. No. 10/354,797, Methods and
Systems of Host Caching, filed on Jan. 29, 2003, now U.S.
Pat. No. 6,965,979 B2;

[0005] U.S. application Ser. No. 10/440,347, Methods and
Systems of Cache Memory Management and Snapshot
Operations, filed on May 16, 2003, now U.S. Pat. No.
7,124,243 B2; and

[0006] U.S. application Ser. No. 10/600,417, Systems and
Methods of Data Migration in Snapshot Operations, filed on
Jun. 19, 2003, now U.S. Pat. No. 7,136,974 B2.

[0007] Files exist to store information on storage devices
(e.g., magnetic disks) and allow the information to be
retrieved later. A file system is a collection of files and
directories plus operations on them. To keep track of files,
file systems have directories. A directory entry provides the
information needed to find the blocks associated with a
given file. Many file systems today are organized in a
general hierarchy (i.e., a tree of directories) because it gives
users the ability to organize their files by creating subdirec-
tories. Each file may be specified by giving the absolute path
name from the root directory to the file. Every file system
contains file attributes such as each file owner and creation
time and must be stored somewhere such as in a directory
entry.

[0008] A snapshot of a file system will capture the content
(i.e., files and directories) at an instant in time. A snapshot
results in two data images: (1) the active data that an
application can read and write as soon as the snapshot is
created and (2) the snapshot data. Snapshots can be taken
periodically, hourly, daily, or weekly or on user demand.
They are useful for a variety of applications including
recovery of earlier versions of a file following an unintended
deletion or modification, backup, data mining, or testing of
software.

[0009] The need for high data availability often requires
frequent snapshots that consume resources such as memory,
internal memory bandwidth, storage device capacity and the
storage device bandwidth. Some important issues for snap-
shots of file systems is how to manage the allocation of
space in the storage devices, how to keep track of the blocks
of a given file, and how to make snapshots of file systems
work efficiently and reliably.

SUMMARY OF THE INVENTION

[0010] The invention provides methods and systems for
management of snapshots of a file system.

Nov. 15, 2007

[0011] In a first aspect of the invention, a snapshot man-
agement system performs a method for managing multiple
snapshots and an active file system by (a) maintaining an
index table that contains an entry for each snapshot and the
active file system; and (b) maintaining space map block
entry (b, e) where b and e represent index table entries, b
indicates a first snapshot that uses the first block and e
indicates a last snapshot that uses the first block.

[0012] 1In a second aspect of the invention, a snapshot
management system includes a processor for maintaining
multiple snapshot versions and an active file system, com-
prising: (a) an index table that contains an entry for each
snapshot and the active file system; (b) a space map block
including space map block entry (b, e), wherein b and e
represent index table entries, b indicates a first snapshot that
uses the first block, and e indicates a last snapshot that uses
the first block; and (c) a usable space for storing the snapshot
versions and the active file system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 illustrates an embodiment of a data storage
system.

[0014] FIG. 2 illustrates the data storage as a virtualized
storage subsystem.

[0015] FIG. 3 illustrates details of the virtualized data
storage subsystem organized into file system blocks includ-
ing, snapshot tables, space map blocks, and usable file
system data space.

[0016] FIG. 4 illustrates details of the space map blocks
and a block tracking and index system.

[0017] FIG. 5 illustrates examples of a snapshot tracking
status in the space map blocks.

[0018] FIG. 6 illustrates details and examples of the snap-
shot table and snapshot table elements.

[0019] FIG. 7 illustrates a flow diagram for the creation of
a file system.

[0020] FIG. 8 illustrates a flow diagram for file system
block management.

[0021] FIG. 9 illustrates a flow diagram for the creation of
a file system snapshot.

[0022] FIG. 10 illustrates a flow diagram of a method to
obsolete a file system snapshot.

[0023] FIG. 11 illustrates a flow diagram of a method to
delete a snapshot and for a method to clean unneeded
snapshots from space map blocks.

[0024] FIG. 12 illustrates a flow diagram of a method to
remove obsolete snapshots from the index table and for a
method to remove deleted snapshots from the index table.

[0025] FIG. 13 illustrates a flow diagram of a method to
clean obsolete snapshot indexes from space map block
entries.

[0026] FIG. 14 illustrates a flow diagram of a method to
clean deleted snapshot indexes from space map block
entries.

[0027] FIG. 15a illustrates a diagram of an active file
system with a request to revert to an earlier snapshot.

US 2007/0266066 Al

[0028] FIG. 155 illustrates a diagram of an active file
system on hold to obsolete snapshots after the earlier snap-
shot.

[0029] FIG. 15¢ illustrates a diagram of the cleaning of the
obsolete snapshots.

[0030] FIG. 154 illustrates a diagram of the file system
after reversion to the earlier snapshot.

[0031] FIG. 16 illustrates a diagram of multiple reversions
to earlier snapshots.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0032] The following description includes the best mode
of carrying out the invention. The detailed description is
made for the purpose of illustrating the general principles of
the invention and should not be taken in a limiting sense.
The scope of the invention is determined by reference to the
claims. Each part is assigned its own part number throughout
the specification and drawings.

[0033] FIG. 1 illustrates a data storage system 10, includ-
ing a plurality of hosts coupled to data storage subsystem(s).
Each host is a computer that can connect to client(s), to data
storage subsystem(s), and each other. Each host provides
software/hardware interfaces such as network interface
cards and software drivers to implement Ethernet, Fibre
Channel, ATM, and SCSI, and InfiniBand. Hennessy and
Patterson, Computer Architecture: A Quantitative Approach
(2003), and Patterson and Hennessy, Computer organization
and Design: The Hardware/Software Interface (1998)
describe computer hardware and software, storage systems,
caching, and networks and are incorporated by reference.

[0034] In an embodiment, the first host includes a moth-
erboard with a CPU-memory bus 14 that communicates with
dual processors 12 and 41. The processor used is not
essential to the invention and could be any suitable proces-
sor such as the Intel Pentium 4 processor. A processor could
be any suitable general purpose processor running software,
an ASIC dedicated to perform the operations described
herein or a field programmable gate array (FPGA). Also, one
could implement the invention using a single processor in
each host or more than two processors to meet more strin-
gent performance requirements. The arrangement of the
processors is not essential to the invention.

[0035] The first host cache memory 20 includes a cache
manager 13, a cache directory 15, and cache lines 16. The
cache memory 20 is nonvolatile memory or volatile memory
or a combination of both. Nonvolatile memory protects data
in the event of a power interruption or a host failure. Data
is defined as including user data, instructions, and metadata.
Nonvolatile memory may be implemented with a battery
that supplies power to the DRAM to make it nonvolatile
memory when a conventional external power interrupt cir-
cuit detects a power interruption or with inherently nonvola-
tile semiconductor memory.

[0036] Each host includes a bus adapter 22 between the
CPU-memory bus 14 and an interface bus 24. Each host runs
an operating system such as Linux, UNIX, a Windows OS,
or another suitable operating system. Tanenbaum, Modem
Operating Systems (2001) describes operating systems in

Nov. 15, 2007

detail and is hereby incorporated by reference. The first host
is representative of the other hosts, but this feature is not
essential to the invention.

[0037] The first host can communicate with the second
host through an interconnect 40, shown as connected to an
adapter 25 to the interface bus 24. The PCI bus is one
suitable interface bus and the interconnect 40 may be any
suitable known bus, SAN, LAN, or WAN technology. In an
embodiment, the interconnect 40 is a dedicated Fibre Chan-
nel (FC) point-to-point link that connects to FC-PCI bus
adapter 25 to provide fast point-to-point communication
between the hosts.

[0038] In an alternative embodiment, the interconnect
network 30 such as a FC fabric provides extra bandwidth for
host-to-host communications. In this embodiment, links 28,
38 connect to the interconnect network 30 and the hosts use
link 28 and link 38 when available. FC standard software
can set priority levels to ensure high priority peer-to-peer
requests, but there will still be some arbitration overhead and
latency in claiming ownership of the links. For example, if
links 28 and 38 are busy transferring data when a write
request arrives, that operation must complete before either
link is free for arbitration.

[0039] If the interconnect 40 ever fails, communication
between hosts can be handled using the interconnect net-
work 30. The interconnect network 30 can be implemented
by interconnects used in data storage systems such as Fibre
Channel, SCSI, InfiniBand, or Ethernet, and the type of
interconnect is not essential to the invention. In either
embodiment, redundant communication between hosts
ensures the data storage system has high availability. See
Clark, IP SANs: A Guide to iSCSI, IFCP. and FCIP Proto-
cols for Storage Area Networks (2002) and Clark, Designing
Storage Area Networks (1999) are incorporated herein by
reference.

[0040] In an embodiment, the data storage subsystems
shown in FIG. 1 can be those described in the co-pending
U.S. patent application Ser. No. 10/264,603, entitled, Sys-
tems and Methods of Multiple Access Paths to Single Ported
Storage Devices, filed on Oct. 3, 2002, and incorporated
herein by reference. It is understood, however, that other
storage device(s) or data storage subsystems could be used
instead of the data storage subsystem described in that U.S.
patent application.

[0041] As shown in FIG. 1, the first host connects, or
couples, to the first data storage subsystem through the bus
adapter 22, the interface bus 24, the adapter 26, the link 28,
the interconnection network 30, and the link 32. To connect
to the second data storage subsystem, the first host uses the
same I/O path except the data passes through link 34, while
the second host uses the same type of I/O path plus link 32
to communicate with the first data storage subsystem, or link
34 to communicate with the second data storage subsystem,
or link 36 to the data storage subsystem N.

[0042] FIG. 2 illustrates that each host of the data storage
system can store and retrieve files from a data storage
subsystem 35 using an interconnect 28, an interconnect 33,
and an interconnect network 30. In an embodiment, each
storage device in the data storage subsystem is assigned a
logical unit number (LUN) that is an identifier for the
storage device. A virtual logical unit number (VLUN) is as

US 2007/0266066 Al

an abstraction of the storage device(s) or the virtualization of
the data storage subsystems such as a linear array of blocks
as it appears to the data storage system users. In various
embodiments, the implementation of a VLUN may be
striped (i.e., spread) over multiple RAID groups for added
performance, spread over sections of a RAID group for
flexibility, or copied on multiple RAID groups for reliability.
As shown, the storage devices of the data storage subsystem
are virtualized as a file system employing contiguous fixed
sized blocks 0-n where the size of each block is some value
preferably 1-KB to 64-KB.

[0043] FIG. 3 illustrates a data storage subsystem for
maintaining (e.g., allocating, reading, writing, and deallo-
cating) some blocks for index tables, some for space maps,
and others for usable space for data storage. The block(s)
allocated to an index table depends on the size of each block
and the number of concurrent snapshots supported. For
example, three 8-KB blocks may be sufficient space to
support an index table of 254 snapshots. As shown, the file
system has a pair of index tables 195 and 196 and thus uses
six 8-KB blocks so the host can alternate writes to the index
tables to ensure recovery in case of a data storage system
failure. Thus, if the system fails during a write to one index
table, the host can retrieve the unmodified copy of the other
index table. While we describe this method of writing to
alternate index table copies, other methods, such as write
journaling, can be used to protect against system failure
during index table writes. The remainder of the storage is
allocated to space map blocks with usable space for data
storage.

[0044] Each index table includes an index value of the
active file system 17 permitting fast location of the active file
system. The index table includes a known algorithm to
verify the data integrity such as a checksum 18, a cyclic
redundancy check, or a digital signature. The index table
provides an index to the snapshots and the active file system.
Each entry in the index table represents a snapshot or the
active file system. As illustrated, the index range is 1-255,
but this range is not essential to the invention. In various
embodiments, each snapshot and the active file system has
one or more associated attributes such as a version number
19, timestamp 23 to identify the snapshot or active file
system, an image state 21, a root block pointer 27, and an
image name 29 as described below.

[0045] When the data storage system takes a snapshot of
the file system it assigns the snapshot a unique version
number such as a 32-bit unsigned integer that increases
monotonically for each subsequent snapshot. The version
number is not reused even as snapshots are deleted or made
obsolete to the file system.

[0046] The image state can be one of the following states:
[0047] Active—representing the active file system

[0048] In-use snapshot—representing a snapshot that
users can access

[0049] Free—representing available for writing by a snap-
shot or active file system

[0050] Deleted snapshot—representing a user has deleted
the associated snapshot but a cleaner process or thread has
not yet removed the space map block entry for this
snapshot

Nov. 15, 2007

[0051] Obsolete snapshot—representing a user has
reverted to an earlier snapshot and the cleaner process or
thread has not yet removed the space map block entry for
this snapshot

[0052] In an embodiment, when the data storage system
takes a snapshot of the file system, the host provides a
timestamp (e.g., time and date) when the snapshot or active
data image was created. The root block pointer provides the
address of the root block in the hierarchical structure of the
snapshot and the image name is a character string used to
easily identify the snapshot to users.

[0053] Referring to FIG. 4, the remainder of the data
storage subsystem is allocated to space map blocks and
usable space for data. Each space map block keeps track of
the blocks in its usable space for data storage. For example,
a space map block can keep track of 2,047 blocks of usable
space. Each space map block entry contains a pair of indexes
(“a space map block entry”), for example, 8-bits in length
that represent any of 254 snapshots or the active file system.
Each space map block entry is an index into the index table
shown in FIG. 3. Each space map block entry has a begin-
ning value b that indicates the first snapshot (i.e., snapshot
b) and an ending value e that indicates the last snapshot (i.e.,
snapshot e) to use the associated block. Thus, each space
map block entry (b, e) in the space map block is used to track
the usage of an associated block in the usable space:

Beginning
Index, b Ending Index, ¢ Meaning
0 0 The block is free to use by a snapshot
or the active file system
8-bit Integer 0 The block is in use by one or more
snapshots and has not been changed
since the first snapshot was taken.
The block is also in use by the active
file system
a 0 The block is in use by the active file

system only and there are no
snapshots associated with the block
The block is in use by a snapshot and
is used by all subsequent snapshots
through a last snapshot. The data has
changed since the last snapshot was
created and is, therefore, no longer in
use by the active file system

Another 8-bit
Integer

8-bit Integer

[0054] In an alternative embodiment, each space map
block entry contains a pair of version numbers (e.g., 32-bit)
that represent snapshots or the active file system. Thus, each
version pair (b, e) in the space map block would be used to
track the usage of an associated block in the usable space.

[0055] FIG. 5 illustrates how a space map block entry is
used to track a block in the usable space. In an earlier stage
of operation, the space map may contain many entries with
beginning and ending values equal to zero indicating that
many blocks in the data storage subsystem are free-to-use
for snapshots or the active file system. At the same time,
other blocks will be in-use that is allocated to snapshots or
the active file system. FIG. 5 shows one such block used by
snapshots assigned version number 10344 through version
number 10388 inclusive. The space map block entry (16, 13)
indicates the snapshots that use this block. The host asso-
ciates the space map block entry with the version number of

US 2007/0266066 Al

the snapshot by reading the index table. The space map
block also contains space map block entry (212, 0) to show
that the active file system, for example, assigned version
number 65993 is using an associated block.

[0056] FIG. 6 illustrates the relationship between the
index table 200 and the snapshot attributes and the active file
system attributes. The table below illustrates the group of
attributes 203, 204, 205, 206, 207, and 208 that are shown
in FIG. 6:

Root
Index Table Version Image block Image
Entry Number State Timestamp Pointer Name
Snapshot 1 10344 In-use 4 AM, May 8, 1002 Fred
2003
Snapshot 3 10388 In-use 10 AM, May 9, 1004 Smokey
2003
Active File 65993 Active 6 PM, May 14, 1006 Hilda
System File 2003
System
Snapshot 5 12608 Deleted 2 PM, Apr. 2, 1008 Rufus
2003
Snapshot 253 55478 Obsolete 3 AM, May 9, 1010 Vern
2003
Snapshot 254 0 Free 0 0 0

[0057] FIG. 7 illustrates a flow diagram of a method for
creating a file system. This method can occur during the
process of initialization. In an embodiment, the initialization
process has proceeded to the point where the next steps
relate specifically to file system creation. Although the
method is described serially below, the steps can be per-
formed in parallel, for example, asynchronously or in a
pipelined manner. There is no requirement the method be
performed in the order shown except where indicated.
Further, the steps are implemented by computer such as one
or more host(s) described earlier. For brevity, we describe
the methods as executed by a host.

[0058] Referring to step 105 of FIG. 7, the host sets all of
the space map block entries equal to (0, 0). This indicates
that the blocks corresponding to the entries are free-to-use.
At step 106, the host selects an 8-bit index “a” that repre-
sents the active file system. At step 108, the host assigns a
starting version number to index a. At step 110, the host
loads index “a” into the index of the active file system 201
in the directory 200 (FIG. 6). At step 112, the host selects the
first available space map block and at step 114 loads the
beginning index 8-bit index “a” and an 8-bit ending index 0
into the first entry in the selected space map block. At step
116, the host sets the starting version number in the asso-
ciated attributes for the active file system in index table entry
“a”. The host further sets the image state to active at step
118, the timestamp to the current date and time at step 120,
and a starting root block pointer at step 122, calls an
algorithm to verify the data integrity (e.g., checksum) of the
snapshot attributes, and stores the results in index table entry
“a” at step 124. At step 126, the host may write the index
table to nonvolatile storage. In one embodiment, at step 128,
the host continues with any other activities such as initial-
ization. In another embodiment, the other activities can
precede the creation of the file system.

[0059] FIG. 8 illustrates a flow diagram of a method of
block management. At step 42, the host receives a request to

Nov. 15, 2007

update the file system data. At step 44, the host reads the
space map block entry of the associated received data to
determine if that block is used by the active file system only.
If yes, as indicated by the space map block entry=(a, 0), the
host determines at step 45 whether or not the data is a
modification of existing data or an addition to existing data.
If the received data is a modification of existing data, the
host overwrites the block at step 46 and returns to normal
operation at step 58. If the received data is an addition to the
existing data, the host determines at step 48 if the space
available in the current block is enough to hold all of the
received data. If yes, the host adds the received data to the
current block at step 50 and returns to normal operation at
step 58. If not, the host allocates a free-to-use block at step
52 to hold the additional data and changes the associated
space map block entry from (0, 0)—(a, 0). At step 54, the
host adds the received data to the newly allocated block. At
step 56, the host updates the file system block pointers to
point to the new data. At step 58, the block management
routine returns to normal system operation.

[0060] At step 44, if the space map block entry of the
block associated with the received data indicates an in-use
snapshot uses the block, that is, the space map block entry
(b, 0), the host allocates a free-to-use block for the received
data at step 60. At step 62, the host adds the received data
to the new allocated block. At step 63, the host changes the
space map block entry of the new allocated block from (0,
0)—(a, 0) indicating the new block is used by the active file
system only. At step 64, the host updates the file system
block pointers to point to the new data. At step 66, the host
determines if there are other in-use snapshots pointing to the
same old block. If the index b is associated with the latest
snapshot version number, there is no other in-use snapshots
pointing to the same old block. Therefore, at step 67, the host
updates the old space map block entry from (b, 0)—(b, b)
indicating snapshot b is the only snapshot pointing to the
associated old block and that the old data has been modified
since snapshot b was created. If the index b is not associated
with the latest snapshot version number, there is another
in-use snapshot pointing to the same old block.

[0061] Therefore, at step 68, the host updates the old space
map block entry from (b, 0)—(b, e) to indicate that snapshot
b is the beginning snapshot and snapshot e is the ending
snapshot (i.e., current in-use snapshot with the latest snap-
shot version number) pointing to the associated old block. In
this case, there may be other snapshots with version numbers
less than snapshot e and greater than snapshot b pointing to
the same old block. In either case, the block management
routine returns to normal system operation at step 58.

[0062] FIG. 9 illustrates a flow diagram of a method of
creating a snapshot. After receiving a request for a new
snapshot of the file system, the host holds off from updating
the active file system at step 140. At step 142, the host
searches through the index table for the first snapshot with
an image state equal to free. At step 144, if the host searches
the entire index table and does not find a free image state, the
routine reports no free snapshots and the host resumes
normal file system operation at step 164 and if appropriate,
the operator can delete some snapshots. If, at step 144, a free
image state is found, the host changes the active file sys-
tem’s image state to in-use at step 148. At step 150, the host
enters a timestamp of the new in-use snapshot. When this
snapshot is created, the version number and the root block

US 2007/0266066 Al

pointer remain as they were when the block was allocated to
the active file system. At step 151, the host assigns a
user-friendly image name for the in-use snapshot. This
completes creation of the new snapshot. Next, the host
establishes an active file system for normal use. At step 152,
the host changes snapshot attributes containing the image
state free to the active file system. At step 154, the host
assigns the next version number to the new active file
system. At step 156, the host enters the current root block
pointer (same as the new snapshot) in the attributes of the
active file system. At step 158, the host saves a user-friendly
image name of the active file system. The snapshot table is
written to nonvolatile storage at step 162. The host returns
to normal operation at step 164.

[0063] FIG. 10 illustrates a flow diagram for a method
used to revert to an earlier version of a snapshot. FIGS. 154
and 1556 illustrate diagrams of the method of reversion. At
times it is desirable or necessary to revert to an earlier
version of the file system. An earlier version of the file
system is any previous snapshot of the active file system.
Once a previous snapshot is selected, the host discards all
versions of the file system after the chosen version, includ-
ing the current active file system. After receiving a request
to revert to the previous snapshot, for example, snapshot p
shown in FIG. 15a, the host will hold off updates to the
current active file system at step 210. At step 212, the host
changes the image state of all snapshots after snapshot p
from in-use to obsolete and changes the image state of the
active file system from active to obsolete (See FIG. 155). At
step 214, the host makes a copy of snapshot p, for example,
called snapshot c. Snapshot ¢ is used to receive any updates
to space map block entry (p, 0) that were held off during the
process of reverting to the previous snapshot version. This
permits snapshot p to be preserved in its present state after
the system is brought back to an active image state, while at
the same time, not losing the pending updates. At step 216,
the host sets the image state of snapshot ¢ to in-use. At step
218, the host assigns the next unused version to snapshot c.
At step 220, the host sets the root block pointer of snapshot
¢ to the same root block pointer of snapshot p. At step 222,
the host creates another copy of snapshot p, for example,
called copy a. The copy a will become the active file system
of the desired image of snapshot p. At step 224, the host sets
the image state of copy a to the active file system. At step
226, the host assigns the next version number to copy a. At
step 228, the host sets the root block pointer of copy a to the
same root block pointer of snapshot p. At step 230 the host
records index a of the active file system into the index table
200 (FIG. 3). At step 232, the host writes the index table to
nonvolatile storage. At step 234, the host returns to normal
file system activity.

[0064] FIG. 11a illustrates a flow chart for a method to
delete a snapshot. At step 75, after receiving a request to
delete a snapshot (see also FIG. 15¢) the host searches the
index table for the requested snapshot. At step 76, the host
sets the image state of the requested snapshot to deleted. At
step 77, the host returns to normal file system operation.

[0065] FIG. 115 illustrates a high level flow chart for
cleaning deleted and obsolete snapshots from the space map
blocks and index table of the file system. At step 79, the host
determines if any obsolete snapshots exist. If yes, the host
goes to reference A in FIG. 13 to clean obsolete snapshots
from the space map blocks. If not, the host goes to step 81

Nov. 15, 2007

and determines if any deleted snapshots exist. If not, then no
work needs to be done and the method is complete. At step
81, if a deleted snapshot is found, the host goes to reference
H in FIG. 14 to clean deleted snapshots from the space map
blocks and index table of the file system.

[0066] FIG. 13 illustrates the detailed flow chart for clean-
ing obsolete snapshots from space map block entries after a
reversion to snapshot p. Step 300 examines each space map
block entry one by one in the file system. Step 310 tests
whether the beginning index of the space map block entry
either matches the snapshot p to which we reverted or
precedes snapshot p while the ending index refers to an
obsolete snapshot later than p and earlier than c, the snapshot
copy created in step 220 on FIG. 10. If the space map block
entry matches these conditions, step 312 changes the space
map block entry to (b, 0) to indicate that the block is now in
use by the active file system.

[0067] Step 314 tests if the beginning index of the space
map block entry indicates a snapshot later than the reverted-
to snapshot p and the ending index indicates an obsolete
snapshot earlier than the copy snapshot c. If so, step 316 sets
the space map block entry to (0, 0) to indicate that the entry
is free-to-use since no snapshot any longer references it.

[0068] If neither of the conditions tested by steps 310 or
314 are true, then step 318 leaves the space map block entry
unchanged.

[0069] After executing step 312, 316, or 318, step 306
tests if we have processed the last space map block entry in
the file system. If we have processed the last entry, process-
ing continues at Reference J on FIG. 12a to remove the
index table entry for all the obsolete snapshots. Otherwise,
step 308 moves to the next space map block entry and
processing continues at step 300.

[0070] After completing the processing of all obsolete
snapshots in the space map blocks, processing continues at
Reference J on FIG. 12a to remove the index table entries
corresponding to obsolete snapshots. Processing begins at
the first index table entry in step 400. Step 410 tests if the
index table entry is obsolete. If so, step 420 clears the index
table entry by setting the image state to free-to-use, the
timestamp to 0, the root block pointer to 0, and by clearing
the name reference. Step 430 tests if we have processed the
last index table entry. If this is not the last index table entry,
step 440 moves to the next index table entry and processing
continues at step 410. After all index table entries have been
processed, all obsolete snapshots have been completely
removed from the file system.

[0071] Returning to FIG. 115, if step 81 detects any
deleted snapshots in the index table, processing continues at
Reference H on FIG. 14. On FIG. 14, step 600 begins with
the first space map block entry. Step 610 tests if the
beginning index of the space map block entry references a
deleted snapshot. If yes, then step 620 tests for any active file
system or in-use snapshot with a version later than the
beginning space map block entry index. If no snapshot or
active file system is found later than the space map block
entry beginning index, then step 680 sets the entry to (0, 0)
to indicate the corresponding block is free to use. If a later
snapshot or active file system is found, step 630 sets the
beginning index of the space map block entry to the index
of the found snapshot or active file system and continues
processing at Reference G on the same sheet.

US 2007/0266066 Al

[0072] Step 640 similarly tests the ending index of the
space map block entry to see if it references a deleted
snapshot. If so, step 650 tests if there is a snapshot with
version less than the current ending index and later than or
equal to the version of the beginning index. If not, step 680
sets the space map block entry to (0, 0) to indicate that the
block is free-to-use. Otherwise, step 660 sets the ending
index to the latest in-use snapshot before the current ending
index.

[0073] After completion of either step 660 or 680, step 670
tests for another space map block entry. If there are more
space map block entries to process, control returns to step
610. After all space map block entries have been processed,
control resumes at Reference K on FIG. 125 to remove index
table entries for deleted snapshots.

[0074] FIG. 16 illustrates a diagram of a case where a
second reversion to a prior snapshot s has occurred before
the background cleaning process for the first reversion to
snapshot p has completed. As the file system reverts to a
prior snapshot, a pending list is maintained to record the
indexes and associated version numbers of the affected
snapshots each time the reversion process is invoked. If the
file system reverts to more than one snapshot over a span of
time where the background cleaning process has not com-
pleted, the pending list organizes the cleaning activity by
individual reversion event to maintain data reliability of the
snapshots. Multiple reversions are likely to occur in large
and/or high activity test environments.

Nov. 15, 2007

What is claimed:

1. A method of snapshot management in a data storage
system that maintains multiple snapshot versions and an
active file system, comprising:

(a) maintaining an index table that contains an entry for
each snapshot and the active file system, wherein the
index table entry includes one or more attributes
selected from a group of attributes comprising a version
number, an image state, a time stamp, a root block
pointer, and an image name; and

(b) maintaining a space map block entry (b, e), wherein b
and e represent index table entries, b indicates a first
snapshot that uses the first block, and e indicates a last
snapshot that uses the first block.

(c) allocating a second block;
(d) writing the data in the second block;

(e) updating any other blocks that pointed to the first block
to point to the second block;

(D) repeating the steps (c) through (e) for updating other
blocks; and

(g) reading the associated space map block to determine
if the first block is only used for the active file system
and if so, updating the first block.

#* #* #* #* #*

