

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2004-522625
(P2004-522625A)

(43) 公表日 平成16年7月29日(2004.7.29)

(51) Int.Cl.⁷B 41 N 1/14
G 03 F 7/00
G 03 F 7/004

F 1

B 41 N 1/14
G 03 F 7/00 503
G 03 F 7/004 501
G 03 F 7/004 505

テーマコード(参考)

2 H 025
2 H 096
2 H 114

審査請求 有 予備審査請求 未請求 (全 47 頁)

(21) 出願番号	特願2002-565791 (P2002-565791)	(71) 出願人	59808778 クレオ インコーポレイテッド C R E O I N C. カナダ国, ブイ5ジー 4エム1, ブリテ イッシュ コロンビア, バーナビー, ギル モア ウエイ 3700
(86) (22) 出願日	平成14年2月18日 (2002.2.18)	(74) 代理人	100068755 弁理士 恩田 博宣
(85) 翻訳文提出日	平成15年8月7日 (2003.8.7)	(74) 代理人	100105957 弁理士 恩田 誠
(86) 國際出願番号	PCT/CA2002/000198	(72) 発明者	ユ、イゾン カナダ国 ブイ7イー 4ジー6 ブリテ イッシュ コロンビア バンクーバー ゴ ールドスマス アベニュー 6391
(87) 國際公開番号	W02002/066252		
(87) 國際公開日	平成14年8月29日 (2002.8.29)		
(31) 優先権主張番号	09/785,339		
(32) 優先日	平成13年2月20日 (2001.2.20)		
(33) 優先権主張国	米国(US)		

最終頁に続く

(54) 【発明の名称】有機塩基からなる熱変換可能なリトグラフ印刷用前駆体

(57) 【要約】

本発明に従って、リトグラフオフセット印刷のための画像要素が提供される。画像要素は、水性媒体中の疎水性ポリマー粒子と、光を熱に変換するための物質と有機塩基とからなる。画像要素は、品質の悪い用紙においても、セットオフ用パウダーの存在下においても、長時間の運転長さにて印刷するために使用可能である。画像要素はオンプレスにて画像化され、かつ現像され得るとともに、完全にオンプレスにて処理可能とする印刷表面を作製するために親水性表面上に噴霧され得る。親水性表面は、刷版基質、印刷機の印刷シリンドラ、又は印刷機の印刷シリンドラを囲む継ぎ目のないスリーブであり得る。このシリンドラは、従来のものであるか、又は継ぎ目のないものである。

【特許請求の範囲】**【請求項 1】**

水性媒体を用いて現像可能な熱変換可能なリトグラフ印刷前駆体であって、前記前駆体は、

- a) 親水性リトグラフベースと、
- b) 前記親水性リトグラフベースの表面上に照射感受性を有するコーティング層と、を備え、前記コーティング層は、
 - i) 疎水性熱可塑性ポリマーの非凝集粒子と、
 - ii) 有機塩基と、
 - iii) 照射を熱に変換可能な変換物質と、を有する熱変換可能なリトグラフ印刷前駆体

。

【請求項 2】

前記照射は光である請求項 1 に記載の前駆体。

【請求項 3】

前記光は赤外線である請求項 2 に記載の前駆体。

【請求項 4】

前記疎水性熱可塑性ポリマーは、ポリスチレン、置換されたポリスチレンポリマー、ポリエチレン、ポリ(メタ)アクリレート、ポリ塩化ビニル、ポリウレタン、ポリエステル、ポリアクリロニトリルからなるポリマー及びそれらに関連したコポリマーからなる群のうちの一つ以上から選択される請求項 3 に記載の前駆体。

20

【請求項 5】

前記変換物質は、カーボンブラック、顔料、及び染料のうちの一つ以上である請求項 1 に記載の前駆体。

【請求項 6】

前記染料は赤外線吸収染料からなる請求項 5 に記載の前駆体。

【請求項 7】

前記有機塩基は水に可溶性の有機塩基又は水と混合可能な有機塩基である請求項 1 に記載の前駆体。

【請求項 8】

前記有機塩基は、室温にて固体である四級アミンである請求項 1 乃至 7 のいずれか一項に記載の前駆体。

【請求項 9】

前記親水性リトグラフベースは、金属被覆されたプラスチックシート、処理されたアルミニウムプレート、スリーブを備えていない印刷シリンド、印刷シリンド用スリーブ、及び架橋された親水層を上面に有する可撓性支持体のうちのいずれか一つである請求項 1 乃至 8 のいずれか一項に記載の前駆体。

【請求項 10】

前記スリーブを備えていない印刷シリンド及び前記印刷シリンド用スリーブは継ぎ目がないものである請求項 9 に記載の前駆体。

【請求項 11】

前記リトグラフベースの表面は陽極化アルミニウムである請求項 9 に記載の前駆体。

【請求項 12】

前記コーティング層は二つ以上の層からなり、かつ前記変換物質は前記疎水性熱可塑性ポリマーの非凝集粒子と同じ層に存在する請求項 9 に記載の前駆体。

【請求項 13】

前記有機塩基は、ピペラジン、2-メチルピペラジン及び4-ジメチルアミノロエンズアルデヒドのうちの一つからなる請求項 9 に記載の前駆体。

【請求項 14】

前記コーティング層中の前記塩基の濃度は、前記ポリマー粒子の重量に対して 50 乃至 500 重量 % の範囲にある請求項 9 に記載の前駆体。

40

50

【請求項 15】

前記コーティング層中の前記塩基の濃度は、前記ポリマー粒子の重量に対して80乃至200重量%の範囲にある請求項9に記載の前駆体。

【請求項 16】

前記親水層は架橋剤で硬化された親水性ポリマーからなる請求項9に記載の前駆体。

【請求項 17】

前記親水層はコロイダルシリカ、アルミナ、二酸化チタン及び重金属酸化物のうちの一つ以上を更に含む請求項9に記載の前駆体。

【請求項 18】

前記疎水性熱可塑性ポリマー粒子は35 10 以上の凝集温度を有する請求項9に記載の前駆体。

【請求項 19】

前記疎水性熱可塑性ポリマー粒子は0.01 μm 乃至30 μm の範囲の粒子径を有する請求項9に記載の前駆体。

【請求項 20】

請求項1乃至19のいずれか一項にて定義された熱変換可能なリトグラフ印刷前駆体を画像形成又は情報形成のために露光した後に水性媒体を用いて現像することにより形成されるリトグラフ印刷用マスター。

【請求項 21】

リトグラフ印刷前駆体上のコーティング層としての適用に適した組成物であって、 20

a) 疎水性熱可塑性ポリマー粒子と、

b) 有機塩基と、

c) 照射を熱に変換可能な変換物質とからなる組成物。

【発明の詳細な説明】**【技術分野】****【0001】****(関連出願に対する相互参照)**

本特許は、同時に係属する発明の名称が「有機塩基を用いてリトグラフ印刷表面を得るための方法」である米国特許出願第09/785338号、発明の名称が「熱変換可能なリトグラフ印刷用前駆体」である米国特許出願第09/745548号、及び発明の名称が「リトグラフ印刷表面を得るための方法」である米国特許出願第09/745520号に関連する。 30

(発明の分野)

本発明はリトグラフィーの分野に関し、より詳細には、デジタルオンプレス技術のためのイメージング材料に関する。

【背景技術】**【0002】**

現在のところ、商業的に印刷されたコピーの全ては、3つの基本的な印刷方法を使用して現実的には形成される。一つの方法は凸版であり、隆起した表面から印刷するものである。別のある方法は、陥没した表面から印刷するグラビア印刷である。第3の方法、即ち、リトグラフ印刷は平板印刷であり、油と水の非混溶性に基づくものであり、油性材料又はインクは印刷版の画像領域に優先的に保持されるとともに水又は湿し水(fountain solution)は非画像領域に保持される。広く使用されているタイプのリトグラフ印刷版は、親水性の基質支持体上に適用された感光性コーティング部を備えており、該感光性コーティング部は、典型的には陽極化されたアルミニウムから形成されている。コーティング部は、露光されると可溶性となる部分を備えることにより光に反応し、それにより、該部分は引き続く現像工程にて除去され得る。そのような版は、ポジ型作用(positive working)と称されている。一方、露光された領域が現像後に残り、かつ代わりに、露光されていない領域が除去される場合、そのような版は、ネガ型作用版(negative working plate)と称されている。 40

【0003】

この性質を備えた標準的な市販のリトグラフ印刷版のバルクの生産において、親水性の支持体はネガ型作用感光性組成物の薄層でコーティングされている。この目的のための典型的なコーティング部は、ジアゾ化合物、重クロム酸感光親水性コロイド及び種々の合成感光性高分子を含む感光性ポリマー層を含んでいる。特に、ジアゾ感光システムは広く用いられている。

【0004】

そのような画像形成可能な感光層の画像形成のための (image wise) 露光は、露光された画像を不溶性にする一方で、露光されていない領域は、現像液中に可溶化される。次いで、版は適切な現像液で現像され、露光されていない領域中の画像形成可能な層は除去される。

【0005】

印刷版を形成するための上記感光画像要素の重大な欠点は、それらが可視光にて作用し、従って、通常の室内照明から遮光する必要性があるという点にある。更に、保存時に不安定であるということも問題である。

【0006】

近年広く追跡されている一つの試みとして、疎水性又は親水性コーティング層ヘレーザアブレーション法を施して、相対する特性を備えた表面を露呈させる試みが挙げられる。一例は、ルイス (Lewis) 他の米国特許第5,339,737号により提供されている。この工程は単純ではあるものの、アブレーション時に破片及び塵を生ずるという欠点がある。これらの塵及び破片は、システムの感光性成分上に堆積され、性能に影響を及ぼす。また、印刷表面においても同様に見られ、印刷されるコピー上に不要な産物を生成する。

【0007】

直接的な感光性よりむしろ、熱推進 (heat-driven) 工程を利用した画像要素の使用を含む印刷版を形成する方法が 1960 年代より公知であった。この方法は、写真用の暗室を必要としないで処理することが可能であり、オンプレス処理の概念を可能にする。この利点を考慮して、そして、上述の直接的に感光する版の限界から、これらの熱に基づく印刷版前駆体に向かう流れが期待されるべきであり、実際に、市場において反響を示している。

【0008】

1964 年、ブランケン (Vranccken) は、米国特許第3,476,937号において基本的な熱モード印刷版又は熱的印刷前駆体を記載しており、該前駆体では、親水性結合剤中の熱可塑性ポリマー粒子が熱、又は熱及び圧力の影響下にて凝集し、かつ該前駆体は画像形成用に適用されている。露光された領域における材料の流体透過性は顕著に低減した。この試みは、種々の水性媒体を用いて現像される熱に基づくリトグラフ版の基礎を形成した。後の米国特許第3,793,025号において、ブランケンは、可視光を熱に変換するために顔料又は染料を加えることを記載しており、その後の工程は、基本的には先の特許における開示と同様である。米国特許第3,670,410号において、同様の原理に基づく層相互構造が示されている。米国特許第4,004,924号において、ブランケンは可視光から熱に変換する材料とともに親水性結合剤中において疎水性熱可塑性ポリマー粒子を使用することを開示している。この組み合わせは、特に、フラッシュ露光により印刷マスターを生成するために使用される。

【0009】

このブランケンの初期の研究は、市販のリトグラフ製品の基礎を形成した。しかしながら、この研究は、市販の印刷の実用的な条件において光の可視波長に感受性の高いリトグラフ版の使用に関連した生来の問題点を解決してはいなかった。この初期の研究は、デジタルオンプレス技術が未だ開発されていない時期に行われた。従って、これらの特許は、データが点光源、又はレーザアレイのような該光源の組み合わせによって画像表面に逐一比較して直接的に書き込み、かつ画像表面がオンプレスにて現像されるこの新しい技術に典

10

20

30

40

50

型的な考慮すべき多くの事項は予測していなかった。

【0010】

写真用媒体と熱的媒体との比較の上で注目すべき基本原理が存在する。写真用媒体の場合、画像は光化学効果により生成され、画像化工程は感光性材料の感光により直接推進される。熱的媒体の場合、疎水性ポリマー粒子の凝集又は合体は、熱により推進される工程である。従って、この時点にて利用可能であった典型的な処方物中において、これらの媒体はまた電磁放射を熱に変換する要素を含んでいる。この変換材料の選択は、媒体が応答する電磁波長の範囲を決定する。

【0011】

最近では、YAGレーザ、又は、ごく最近では、高出力グループIII-Vレーザダイオード及びダイオードアレイからの800-900nmの照射により生成される赤外波長の光の使用が急速に増加してきた。これら赤外波長の光を使用することによって、未現像の原版を暗室にて扱う必要性は既に述べたように回避される。しかしながら、赤外波長の光の選択は、この光がまたポリマー粒子の凝集を引き起こす熱的工程を推進するために熱に変換する必要があるという事実により混乱されるべきではない。従って、「熱版(thermal plates)」又は「熱モードの版(heat mode plates)」なる用語は、版の表面の疎水性を変化させることによる変換機構を指すものであり、使用される光の波長を指すものではない。この原理に基づいて機能する製品は、今日では市販されている。一例として、ベルギーのモルトセル(Mortsel)に所在するアグファ(Agfa)社の製品であるThermoliteが挙げられる。

10

20

30

40

【0012】

基本的なオフセット印刷工程が、インクを注入する前に印刷表面を湿らせるために湿し水が必要であるという理由から、同じ湿し水、又は少なくとも水溶液を使用してオンプレス媒体を現像することを確実にするために多くの努力が払われてきた。しかしながら、画像形成された印刷表面の耐久性とその現像容易性との間には同時に満たすことのできない問題点が存在する。仮に表面が容易に現像される場合、それは、しばしば耐久性のないものとなる。この耐久性の限界は、プランケットシリンドと原版マスターシリンドとの間の物理的相互作用と関連したオフセットインク中に使用される顔料の浸食作用によるものであり、そしてそれが印刷版の親油性画像領域の比較的迅速な消耗を生ずるためであると考えられる。

【0013】

ベルメルシュ(Vermeersch)による米国特許第6,001,536号において指摘されているように、これらのより新しい技術の問題は、1992年1月の研究開示第33303号によりある程度強調されていた。この文献は、熱感受性の画像要素を開示しており、該画像要素は、支持体上にある熱可塑性ポリマー粒子とカーボンブラックのような赤外吸収顔料とを含む架橋親水層からなる。赤外レーザへの画像形成のための露光により、熱可塑性ポリマー粒子は画像を形成するために凝集され、それにより更なる現像を行うことなく、これらの領域にて画像要素の表面がインクを受け入れる。この方法の欠点はそのようにして得られる印刷版にある種の圧力がかけられた場合、非印刷領域がインクを受け入れるために容易に損傷しやすい点にある。さらに、臨界条件下において、そのような印刷版のリトグラフ性能は悪く、従って、印刷版はリトグラフ印刷の寛容度をほとんど備えていない。

【0014】

上記記載に沿った技術の更なる発展は、種々の単層構造及び多層構造を主として示唆する技術の考慮される本体を形成し、該構造は光を熱に変換する材料を、同一層又は別の層のいずれかにおいて結合した親水性結合剤中における疎水性ポリマー粒子に基づいている。個々のポリマー、光から熱への変換剤及び親水性結合剤が数多く提唱されてきた。これらの媒体の一例及びそれらのオンプレスでの画像化及び処理の幾つかの態様は、ベルメルシュの一連の米国特許である米国特許第6,001,536号、米国特許第6,030,750号、米国特許第6,096,481号及び米国特許第6,110,644号において

50

提案されている。ベルメルシュは米国特許第5,816,162号において、オンプレスにて画像化及び処理され得る多層構造の一例を提供している。基本的に、これらの研究は全て、ブランケンによる米国特許第3,476,937号及び第4,004,924号に記載された基礎的な試みにおける改良であった。

【0015】

これらの研究は全て、ひとつの共通する要素を備えている。これらの材料により生成される印刷表面は、良質の紙面上に調製された印刷表面に対し20,000乃至30,000のオーダーの刷りの運転長さ(run-length)（原版当たりの印刷の刷り回数）を提供する。これは、印刷技術分野において使用される他の種類の媒体によって達成される運転長さより短いものである。この原因は、既に述べたような現像容易性と耐久性との同時に満たすことの出来ない問題点に直接起因する。市販の熱的媒体はまた、品質の低いコーティングされていない用紙を用いた場合、又は、セットオフ用パウダーのような共通して使用される印刷室の化学物質の存在下においてうまく機能せず、そのような場合しばしば、理想的な条件下で達成される運転長さに比べて、3分の1以下にまで運転長さが低下する。これらの材料及び低品質の用紙が市販の印刷技術の生来の現実性であるということは不幸なことである。

【0016】

これに代わる種々の試みがなされたことを文献は示している。そのような例として、コア・シェル粒子、軟化可能な粒子又は種々の機能的な層とからなるコーティング剤がある。これらの代替的な試みはまた、印刷時の耐久性の問題及び／又はインクの取り込みの低下が問題となる。特に、フロムソン(Fromson)による米国特許第4,731,317号には、代替の研究に基づいて、1000オングストロームのオーダーの粒子径を備えたスチレンベースのポリマーであるLYTRON614のようなフィルムを形成しないポリマー乳剤を単独、又はカーボンブラックのようなエネルギー吸収材料とともに使用して、その特殊な発明に従って画像を形成することが開示されていた。該発明の実施例において、ポリマー乳剤のコーティングは感光性を備えてはいないものの、使用された基質はポリマー粒子を画像領域にて融合するためにレーザ照射を変換する。言い換えれば、ポリマーのガラス転移温度(T_g)は画像領域にて超えるために、画像が基質上のその場所にて融合する。背景は適切な現像液を用いて除去可能であり、コーティング層のレーザ照射されていない部分が除去される。融合ポリマーはインクを好むので、レーザで画像形成された版は、ジアゾのような感光性コーティングを使用することなく得られる。しかしながら、そのような処方において、背景領域はコーティングの薄層を保持する傾向にある。これは、印刷時において背景領域の調色を生ずる。

【0017】

オフプレスイメージング及び印刷版の手動装着を含む操作は、比較的遅延かつ煩雑である。これに対し、高スピード情報処理技術は、印刷されるべき画像を直接生成するために必要とされるデータの全てを電子的に扱うプレプレス構成システムの形態が今日では定着している。大規模な印刷操作のほとんど全ては、デジタルデータから生成されたビデオディスプレイ及び視認可能なハードコピー、コンピュータのメモリに記憶されたテキスト及びデジタル色分解信号を用いて、ダイレクト・デジタル色校正を行うための機能を提供する電子的プレプレス構成システムを現在では用いている。これらのプレプレス構成システムは、ラスタライズされ、デジタル化された信号に置き換えて印刷されるべきページ毎に構成された画像を表現するためにも使用され得る。従って、印刷画像を印刷版上にてオフプレスで形成し、次いでそれを印刷シリンダに装着する必要のある従来技術のイメージングシステムには、印刷操作において不十分かつ高価な技術の進歩を停滞させる原因が存在する。

【0018】

オンプレスイメージングは印刷版又は印刷シリンダに直接必要とされる画像を生成するためのより新しい方法である。既存のオンプレスイメージングシステムは2つのタイプに分けられる。

10

20

30

40

50

【0019】

第1のタイプでは、何も書かれていない版をプレスに装着し、一旦、画像化させる。これは、画像毎に新たな版が必要となる。この技術の例としては、ドイツに所在のハイデルベルグ社 (Heidelberg Druckmaschinen AG) により製造されたハイデルベルグ・モデルGTO-DIが公知である。この技術は、ルイスによる米国特許第5,339,737号に詳細に記載されている。オフプレスにおける刷版の形成と比較した主な利点は、カラー画像を印刷する際に印刷ユニット間の位置合わせ精度がはるかに優れている点にある。

【0020】

刷版を使用するプレスイメージングシステムでは、オフプレスで画像化されてもオンプレスで画像化されても、装着シリンダは分割しているので、版の端部のクランプが、シリンダの間隙を通過するクランプ手段及び版の並列した端部間のスリットにより影響を受けやすくなる。装着シリンダの間隙により、シリンダは変形や振動を受けやすくなる。振動はノイズを引き起こし、ベアリングを磨耗する。版の端部における間隙はまた、ある状況下において用紙を浪費する。

【0021】

これら磨耗及び用紙の浪費に関する問題を解決するために、第2のタイプのオンプレスイメージングシステムの開発に多くの関心が寄せられ、該システムは印刷シリンダそのもの、又は該シリンダを囲むスリーブを、上記原理にて作用する適切な熱的媒体にてコーティングしたものである。この試みの例は、ゲルバルト (Gelbart) による米国特許第5,713,287号に記載されており、該特許は、印刷表面をプレスに装着しながら該印刷表面へ媒体を噴霧することを記載している。

【0022】

この両者のオンプレスイメージングシステムにおいて、全体の工程は同一の要素を有している。印刷表面は、それが、版、シリンダ、又はスリーブのいずれであっても洗浄される。次いで、熱的媒体がコーティングされる。次いで、コーティング部が硬化又は乾燥され、親水性の層、又は浸し水又は他の水溶液にて除去され得る層が形成される。次いで、この層は、直接書き込まれたデータを用いて、典型的にはレーザ又はレーザアレイを介して画像化される。これにより、画像化された領域のポリマー粒子が凝集し、該画像化された領域を疎水性又は除去が困難な状態とする。次いで、印刷表面は適切な現像液を用いて現像される。これは浸し水を使用する可能性も含む。それにより、露光されていない領域のコーティングが除去され、画像化された疎水性の領域が残る。次いで、印刷表面にインクが注入され、該インクは疎水性の画像化されかつ凝集された表面のみに付着し、浸し水からの水分が存在する親水性の基質の露光された領域には付着せず、それにより通常は油性であるインクが付着することが回避される。そして印刷が実施される。サイクルの最後にて、画像化された層は溶媒により除去され、同様の工程を再び開始する。

【発明の開示】

【発明が解決しようとする課題】

【0023】

本特許の出願時において、産業上の必要性は、熱的リトグラフ媒体の分野において適切に満足のいくものではなかったことは明らかである。より長い運転長さを生ずるとともに印刷室の化学物質の存在下において効果的に機能する熱的リトグラフ媒体の真の必要性が存在している。またそれは、品質の劣る用紙においても効果的に機能するとともに最近のスプレー・オン技術も含むオンプレス技術の急激な発達にも適合するべきである。

本特許は、この必要性を解決することを目的としている。

【課題を解決するための手段】

【0024】

本発明に従って、リトグラフオフセット印刷のための印刷マスターが提供される。印刷マスターは、水性媒体中の疎水性ポリマー粒子と、光を熱に変換するための物質と、有機塩基とからなる。印刷マスターは、品質の低い用紙上にて、印刷室の化学物質の存在下にて

10

20

30

40

50

長時間の運転長さにて印刷するために使用され得る。イメージング要素は、オンプレスにて画像化されるとともに現像され、全体がオンプレスにて処理され得る印刷表面を作製するために親水性表面上に噴霧される。該要素はまた、更に従来的な完全にオフプレスの様式においても処理可能である。親水性表面は印刷版基質、印刷機の印刷シリンド、又は該印刷機の印刷シリンドを囲むスリーブであり得る。このシリンドは、従来からあるものであるか、又は継ぎ目のないものである。

【発明を実施するための最良の形態】

【0025】

本発明は、熱変換可能なリトグラフ印刷前駆体において具現化され、該前駆体はリトグラフベースからなり、該リトグラフベースは、印刷に使用されるべき該ベース表面上に画像化可能なコーティング層を備えている。該画像化可能なコーティング層の画像化可能な媒体は、一つ又は複数の疎水性かつ熱可塑性ポリマーの非凝集粒子と、照射を熱に変換可能な一つ又は複数の変換物質と、一つ又は複数の有機塩基とからなる。個々の成分は、単一のコーティングとして、又は別々の層における異なる組み合わせにおいて、リトグラフに適用可能である。

【0026】

4つの実施例において示されるように、上記成分の組み合わせが媒体を生成し、該媒体は、リトグラフベース上にコーティングされるとともに組み入れられる変換物質に対して適切な波長を備えた光に画像形成のために露光された場合、浸し水を含む水性媒体中にて現像可能であり、リトグラフ印刷表面が作製される。

【0027】

以下に示すように、媒体は、主要成分のうちの一つ、特に有機塩基を欠いた状態にて調製されると現像不可能となり、コーティング全体が、水性媒体中にて洗浄できなくなる。従って、有機塩基は現像促進剤として重要な役割を担う。

【0028】

本出願において、「リトグラフ印刷前駆体 (lithographic precursor)」なる用語は、選択的にインクが注入され、かつリトグラフ印刷にて使用され得る表面を作製するために、画像形成用に変換又は除去可能である画像化可能な物質のコーティングを行うことが可能な任意の印刷版、印刷シリンド、印刷シリンドスリーブ、又はその他任意の表面を記載するために使用され得る。「リトグラフ印刷表面」なる用語は、本出願において、そのように作製された選択的にインク注入可能な表面を記載するために使用される。

【0029】

特殊な用語である「リトグラフベース」は、ここでは画像化可能な材料がコーティングされるべきベースを記載するために使用される。本発明に従って使用されるリトグラフベースは、好ましくは、アルミニウム、亜鉛、鉄鋼、又は銅から形成される。これらは、銅又はクロム層を備えたアルミニウムプレート、クロム層を備えた銅プレート、及び銅又はクロム層を備えた鉄鋼プレートのような公知の二金属プレート、及び三金属プレートを含む。その他の好ましい物質は、たとえばポリ(エチレンテレフタレート)のような金属被覆されたプラスチック製シートを含む。

【0030】

特に好ましいプレートは、粒状化、又は粒状化と陽極化の両方が施されたアルミニウムプレートであり、該プレートは表面が機械的若しくは化学的(例えば電子化学的)、又は粗面化処理の組み合わせにより粗面化(粒状化)されている。陽極化処理は例えば硫酸、又は硫酸とリン酸のような酸の組み合わせなど水性酸電解質溶液中にて実施され得る。

【0031】

本発明に従って、リトグラフベースの陽極化アルミニウム表面は該表面の親水性特性を改善するために処理され得る。たとえば、無機フッ化物をも含むリン酸塩溶液は陽極化された層の表面に適用される。酸化アルミニウム層はまた、例えば90°のような昇温下にて珪酸ナトリウム溶液にて処理され得る。これに代えて、酸化アルミニウム表面は、室温又

10

20

30

40

50

は約30乃至50のわずかな昇温下にてクエン酸、又はクエン酸塩にて洗浄され得る。更なる処理は炭酸水素塩溶液にて酸化アルミニウム表面を洗浄することによっても行われる。

【0032】

酸化アルミニウム表面の別の有用な処理法は、ポリビニル・ホスホン酸、ホリビニル・メチルホスホン酸、ポリビニルアルコールのリン酸エステル、ポリビニル・スルホン酸、ポリビニル・ベンゼンスルホン酸、ポリビニルアルコールの硫酸エステル、スルホン化された脂肪族アルデヒドとの反応により形成されたホリビニルアルコールのアセタールでの処理がある。これらの後処理は、単独にて実施されるか、又は数種類の処理の組み合わせとして実施されることは明からである。

10

【0033】

本発明に関連した別の実施形態に従って、親水性表面を備えたリトグラフベースは、架橋化された親水層とともに提供された、例えば紙又はプラスチックフィルムのような可撓性の支持体からなる。適切な架橋化親水層は例えば、加水分解されたテトラ・アルキルオルト珪酸塩、ホルムアルデヒド、グリオキサール、又はポリイソシアネートのような架橋剤にて硬化された親水ポリマー（又は親水コポリマー）から得られる。加水分解されたテトラ・アルキルオルト珪酸塩が特に好ましい。

【0034】

使用され得る親水性ポリマー（又は親水性コポリマー）は、例えば、ビニルアルコール、ヒドロキシエチルアクリレート、ヒドロキシエチルメタアクリレート、アクリル酸、メタクリル酸、アクリルアミド、メチロールアクリルアミド、又はメチロールメタアクリルアミドのホモポリマー及びコポリマーからなる。使用されるポリマー（又はコポリマー）又はポリマー混合物（又はコポリマー混合物）の親水性は、少なくとも60重量%の程度で、より好ましくは80重量%の程度にて加水分解される酢酸ポリビニルよりも高いことが好ましい。

20

【0035】

架橋剤、特にテトラアルキルオルト珪酸塩の量は、親水性ポリマー（又は、親水性コポリマー）の重量に対して、少なくとも0.2部の重量、より好ましくは、1.0乃至3部の重量であることが好ましい。

30

【0036】

リトグラフベースの架橋化された親水層はまた、該層の空隙率及び機械的強度の少なくとも一方を増大させる材料を含むことが好ましい。この目的にて使用されるコロイダルシリカは、40nmまでの平均粒子径を有する市販のコロイダルシリカの水分散剤の形状であり得る。加えて、コロイダルシリカより大きい不活性粒子、例えば、アルミナ若しくは二酸化チタン粒子、又は平均粒子径が少なくとも100nmであるが1μmより小さい他の重金属酸化物粒子である粒子が使用できる。これらの粒子を加えることにより、背景領域において水を保存するための場所として機能する粗面が得られる。

【0037】

本実施形態に従うリトグラフベースの架橋化された親水層の厚みは、0.5乃至20μm、好ましくは1乃至10μmの間に変化する。本発明に従って使用される適切な架橋化親水層の特殊な例が、欧州特許第601240号、英国特許第1419512号、仏国特許第2300354号、米国特許第3,971,660号及び米国特許第4,284,705号に開示されている。

40

【0038】

使用されるべく特に好ましい基質はポリエスチルフィルムであり、該フィルム上には、接着促進層が加えられている。本発明に従って使用されるべき適切な接着促進層は、欧州特許第619524号及び欧州特許第619525号に開示されているように、親水性ポリマー（又は、親水性コポリマー）及びコロイダルシリカからなる。接着促進層中のシリカの量は、1平方メートル当たり0.2乃至0.7ミリグラムであることが好ましい。更に、親水性結合剤に対するシリカの割合は、1より大きいことが好ましく、コロイダルシリ

50

力の表面積は、1グラム当たり少なくとも300平方メートルであることが好ましい。

【0039】

本出願において、「非凝集」なる用語は、本質的に互いに融合していないポリマー粒子の集合した状態を記載するために使用されている。この用語は、複数の粒子が本質的に互いに融合して連続した一つの塊を形成している凝集ポリマー粒子と相対する用語である。

【0040】

本発明に従って使用される疎水性熱可塑性ポリマー粒子は、35以上、より好ましくは50以上の凝集温度を有していることが好ましい。ポリマー粒子の凝集は熱の影響により熱可塑性ポリマー粒子が軟化又は溶融することによる。熱可塑性疎水性ポリマーの凝集温度の特殊な上限は熱可塑性ポリマーの分解温度以下であるべきである。凝集温度は、ポリマー粒子の分解温度よりも少なくとも10低いことが好ましい。ポリマー粒子がそれら凝集温度以上の温度にさらされた場合、該粒子は非晶質の疎水性凝集体となり、それにより該疎水性粒子は、水又は水溶液により除去不能となる。

【0041】

本発明に関連して使用される40以上のTgを備えた疎水性熱可塑性ポリマー粒子の特殊な例としては、ポリ塩化ビニル、ポリエチレン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリ(メタ)アクリレート等のコポリマー又はそれらの混合物であることが好ましい。ポリメチルメタアクリレート、又はそのコポリマーがより好ましく使用される。ポリスチレン自体、又は置換されたスチレンのポリマーが特に好ましく、最も好ましいのは、ポリスチレンコポリマー又はポリアクリレートである。分散液中において疎水性熱可塑性ポリマーの平均分子量は5,000乃至1,000,000g/molの範囲であり得る。

【0042】

分散液中の疎水性熱可塑性ポリマーは、0.01μm乃至30μmの粒子径を有しており、より好ましくは0.01μm乃至3μm、最も好ましくは0.02μm乃至0.25μmの粒子径を有している。疎水性熱可塑性ポリマー粒子は、画像化可能なコーティング液中に存在する。

【0043】

熱可塑性ポリマーの水性分散液を調製するための適切な方法は、以下の工程からなる：

(a) 沸点が100より小さい水不溶性の有機溶媒中に疎水性熱可塑性ポリマーを溶解する工程、
(b) 該溶液を水又は水性媒体に分散する工程、及び
(c) 有機溶媒を蒸発させて除去する工程。

【0044】

これに代えて、米国特許第3,476,937号に開示された方法にて調製することもできる。画像形成層に含まれる疎水性熱可塑性ポリマー分散液の量は、好ましくは20乃至95重量%であり、より好ましくは40乃至90重量%であり、最も好ましくは50乃至85重量%である。

【0045】

好ましい実施形態において、画像化可能なコーティングはリトグラフベースに適用され、一方該ベースは印刷機上に存在する。リトグラフベースは印刷機と一体化した部分であり得、又は印刷機上に除去可能に装着され得る。この実施形態において、画像化可能なコーティング剤は、ゲルバートによる米国特許第5,713,287号に記載されているように印刷機と一体的な硬化ユニットにより硬化され得る。

【0046】

これに代えて、画像化可能なコーティング剤は、完全な熱変換可能なリトグラフ印刷前駆体が印刷機の印刷シリンドラに装着される前にリトグラフベースに適用され、かつ硬化され得る。この状態は、リトグラフ印刷版が印刷機とは別に形成されているか、又はプレスシリンドラが印刷機に装着されることなくリトグラフ印刷表面を提供する場合に関連する。

【0047】

10

20

30

40

50

「硬化する」なる用語は、本明細書中では、加えられたポリマーの架橋を伴うか、又は伴うことなく画像化可能な媒体を硬化することを含み、特に該媒体を乾燥することを含むものと理解され得る。

【0048】

画像化可能なコーティング剤をリトグラフベースに適用する前に、該リトグラフベースは、該画像化可能なコーティング剤の現像性又は接着性を高めるために処理され得る。本発明の好ましい実施形態において、画像化可能なコーティング材料は、凝集した疎水性ポリマー粒子の領域を形成するために、コーティング内にて空間的に対応する画像形成用の熱の発生により、画像形成のために変換される。

【0049】

画像化工程そのものは、ゲルバルトによる米国特許第5,713,287号に記載されているように走査されたレーザ照射により行われる。レーザ光の波長及び変換物質の吸収範囲は、互いに適合するように選択される。この工程は、プレート設定型装置におけるようなオフプレスにて、あるいは、デジタルオンプレス技術におけるようなオンプレスにて実施され得る。

【0050】

ポリマー粒子の凝集の工程を推進するための熱は、照射を熱に変換する特性を備えた物質として本明細書中に定義されている「変換物質」により生成される。この広い定義の範囲内において、「熱変換可能なりトグラフ印刷前駆体」なる特殊な用語は画像化可能なコーティング材料が凝集された疎水性ポリマー粒子の領域を形成するために、空間的に対応する画像形成用の熱の発生により、画像形成のために変換される特殊なりトグラフ印刷前駆体の集合体(subset)を記載するために使用される。従って、凝集された疎水性ポリマー粒子のこの領域は、リトグラフ印刷用のインクが引き続いて印刷を行うために接着されるべき領域である。

【0051】

画像形成のための露光がレーザにより実施されるべき場所において、組成物中に存在する変換物質はレーザの波長にて高い吸光度を備えていることが好ましい。そのような物質は、「JOEM Handbook 2 Absorption Spectra of Dyes for Diode Lasers」(マツオカ、ケン著、ブンシン出版、1990年)及び「Development and Market Trend of Functional Colouring Materials in 1990's, 第2章2.3」(CMC出版部、CMC、1990年)に開示されており、例えば、ポリメチル系の着色剤、フタロシアニン系の着色剤、ジチオール金属錯体塩系の着色剤、アントラキノン系の着色剤、トリフェニルメタン系着色剤、アゾ系分散染色剤、及び分子間CT着色剤が開示されている。代表例には、N-[4-[5-(4-ジメチルアミノ-2-メチルフェニル)-2,4-ペンタジエニリデン]-3-メチル-2,5-シクロヘキサジエン-1-イリデン]-N,N-ジメチルアンモニウムアセテート、N-[4-[5-(4-ジメチルアミノフェニル)-3-フェニル-2-ペンテン-4-イン-1-イリデン]-2,5-シクロヘキサジエン-1-イリデン]-N,N-ジメチルアンモニウム過塩素酸塩、ビス(ジクロロベンゼン-1,2-ジチオール)ニッケル(2:1)テトラブチルアンモニウム及びポリビニルカルバゾル-2,3-ジシアノ-5-ニトロ1,4-ナフトキノン錯体が含まれる。

【0052】

カーボンブラック、他の黒色体吸収剤、及びその他の赤外吸収材料、染料又は顔料もまた熱変換剤として使用可能であり、特に800-1100nm、その中でもとりわけ800乃至850nmのより高レベルの赤外吸収/変換を備えたものが使用され得る。

【0053】

光を熱に変換する物質として使用され得る幾らか特殊な市販製品としては、Projet 830NP(英国ランカシャー、ブラックレイ(Blackley)所在のAvecia社から入手可能な改質された銅フタロシアニン)及びADS830A(カナダ国、ケベ

ック州、モントリオール所在の American Dye Source 社から入手可能な赤外吸収染料) が挙げられる。

【 0 0 5 4 】

本発明の実施形態は、画像要素において使用される有機塩基を提供する。該有機塩基は水、水溶液又は印刷用浸し水における溶解度に対して選択される。使用される有機塩基の濃度は、水又は浸し水に対してより浸透可能な露光されない分散剤を形成するのに十分であるとともに、浸し水により凝集された領域から抽出可能であり得る。操作時に、非凝集領域(画像化工程時に露光されていない領域)は有機塩基の存在により容易に現像される。しかしながら、印刷を続けていくと、浸し水中における溶解性により、有機塩基はコーティング剤の凝集領域から徐々に抽出される。その結果、凝集領域はより疎水性になる。有機塩基の浸出は、運転期間中にわたる版の長時間の耐久性を高める。

【 0 0 5 5 】

有機塩基はコーティングされるべき分散剤中にて実質的に可溶化されるべきものである。溶解特性に加えて、有機塩基はまた、浸し水による画像コーティングの露光されていない部分の除去を促進可能とするべきであり、それにより画像要素の照射されていない部分の現像性を高める。更に、有機塩基は、凝集された画像から抽出可能であることが必要であり、それにより印刷時における画像領域の耐久性が維持されるとともに、オフセット用パウダー又は印刷室でのその他の化学物質による磨耗に対する画像の抵抗性を増大する。

【 0 0 5 6 】

有機塩基を加えることの更なる利点は、これまでに使用可能であったポリマーと比較して、より低い凝集温度を有するポリマーを使用することが可能となる点にある。このことは、レーザ光に対するシステムの変換感受性を増大させる有用な効果をもたらす。

【 0 0 5 7 】

そのような有機塩基の好ましい濃度はポリマー粒子に対して 50 乃至 500 (w/w) % であり、より好ましくは、ポリマー粒子に対して 80 乃至 200 (w/w) % である。適切な有機塩基の例としては、ピペラジン、2-メチルピペラジン及び 4-ジメチルアミノベンズアルデヒデイン (4-dimethylaminobenzaldehyde) 等が挙げられるが、これらに限定されるものではない。

【 0 0 5 8 】

実際に、有機塩基は二つ以上の有機塩基の混合物であるか、又は塩基分子内に二つ以上のアミノ基を含んでおり、かつそのような混合物は任意の一つの有機塩基のみの使用を考慮される場合と比べ、より改良された様式にて相乗作用を呈する。同様に、混合物の一部を形成する有機塩基は単独で使用された場合所望の方法にて実施される必要はない。

【 0 0 5 9 】

方法に関する上記記載は、本発明の範囲を限定することを意図するものではないが、当業者の利益のためにメカニズムに対する見識を提供するものである。

【 0 0 6 0 】

熱変換可能なリトグラフ印刷前駆体は水性媒体を用いて露光した後に現像され得る。現像時において、凝集された疎水ポリマー粒子の領域は、水又は水性媒体が該領域を浸入しないか、又は該領域に付着しない一方で、コーティング層の露光されていない領域は浸し水のような水性媒体を用いて容易に洗い流される。また、ゲルバルトの米国特許第 5,713,287 号に記載されているように、この工程は、デジタルオンプレス技術における試みの一部として印刷機上にて実施可能である。

【 0 0 6 1 】

引き続く油性リトグラフ用インクのインク注入工程時に、画像化可能なコーティング層の露光された領域は、リトグラフ印刷用インクが付着されるべき領域となる。これは、印刷の目的にてインクが付着した表面を結果として使用することを可能にする。

【 0 0 6 2 】

本発明は、リトグラフ版の製造に非常に直接的に関係するものであるものの、オンプレス処理環境においても特別な重要性を備えている。完全なオンプレス工程の場合、画像化可

10

20

30

40

50

能な媒体が印刷シリンドラにおける版上に噴霧されるか、又は印刷シリンドラ自体に噴霧されるとき、考慮されるべき一連の基準が存在し、その基準の全ては、産業上の必要性に合致すべき任意の熱変換可能なリトグラフ印刷前駆体により適合されるべきである。本発明の熱変換可能なリトグラフ印刷前駆体は、これらの基準に合致する。

【0063】

まず第1に、本発明の熱変換可能なリトグラフ印刷前駆体の一部を形成する画像化可能な媒体は、噴霧可能であるような稠度を備えている。これは、該媒体をリトグラフベースにオンプレスにて適用する場合に必要である。

【0064】

第2に、本発明の範囲内に含まれる画像化可能な媒体はまた、架橋化することなく硬化可能であり、その結果、露光されていない画像化可能な媒体は水性媒体により除去され得る。

【0065】

本発明の熱変換可能なリトグラフ印刷前駆体はまた、当該光の波長に対して良好な感受性を示し、これは、画像化可能な媒体へ加えられる光から熱への変換材料によって決定される。そのような照射に画像形成のためにさらされる場合、画像に対応する疎水性ポリマーの領域を形成するために疎水性ポリマー粒子の良好な凝集性が存在する。照射され、かつ凝集された領域は、リトグラフベースよりもかなり疎水性となり、該ベースに良好に付着するとともに水性媒体にて洗い流されることはない。

【0066】

これに対し、熱変換可能なリトグラフ印刷前駆体上の同じ画像化可能な媒体の露光されていない領域は、水性媒体により容易に洗浄可能である。画像化可能な媒体の露光された領域と露光されていない領域との除去容易性の違いは、基本的なコントラストを決定し、かつ結果として、本発明の熱変換可能なリトグラフ印刷前駆体の効果を決定する。

【0067】

上記基準の全てを満たす一方で、本発明の熱変換可能なリトグラフ印刷前駆体は、更に、疎水性ポリマー粒子の凝集において、実際のリトグラフオフセット印刷の困難性に耐え得るような範囲の耐久性を示す。これは、既存の熱変換可能なリトグラフ媒体では達成することのできない主要な要素である。

【0068】

(実施例)

以下の実施例は、本発明に従って形成された熱変換可能なリトグラフ印刷前駆体を記載する。これらの実施例において以下の材料が供給される。

【0069】

有機塩基：

ピペラジン（アメリカ合衆国ウィスコンシン州ミルウォーキーに所在の A l d r i c h C h e m c a l s 社から入手）。

4-ジメチルアミノベンズアルデヒド（アメリカ合衆国ウィスコンシン州ミルウォーキーに所在の A l d r i c h C h e m c a l s 社から入手）。

2-メチルピペラジン（アメリカ合衆国ウィスコンシン州ミルウォーキーに所在の A l d r i c h C h e m c a l s 社から入手）。

【0070】

ポリマー：

R h o p l e x W L - 9 1 （アメリカ合衆国ペンシルバニア州フィラデルフィアに所在の R o h m & H a a s 社から入手）、

V a n c r y l 9 8 9 （アメリカ合衆国ペンシルバニア州アレンタウンに所在の A i r P r o d u c t s 社から入手）。

【0071】

光から熱への変換剤：

A D S 8 3 0 A , 赤外吸収染料（カナダ国ケベック州モントリオールに所在の A m e r i

10

20

30

40

50

can Dye Source社から入手)。

粒状の陽極化アルミニウムは、マサチューセッツ州サウスハドレーに所在のPrecision Lithoplate社から得られた。

【0072】

参照として提供されるとともに本発明の相対的な効果を評価するために、リトグラフ要素は、主要成分の一つを意図的に除去した状態にて調製した。6 g の R hoplex WL-91、12 g の ADS830A の 1 重量% エタノール溶液及び 44 g の脱イオン水を混合し、得られた乳剤を粒状の陽極化アルミニウム上にコーティングした。コーティング層を 60 のオーブンにて 1 分間乾燥した。コーティング層が乾燥した時、0.9 g / m² のコーティング層重量が得られた。プレートは、クレオ・プロダクツ社 (Creo Products Inc.) のトレンドセッター (Trendsetter) レーザプレート設定装置を用いて 830 nm の光にて画像化した。露光は、12 ワットにて 500 mJ / cm² の感度で実施した。露光に続いて、プレートは水道水にて洗浄され、露光されていないポリマーは非画像領域において洗い流すことはできなかった。明らかにこの試みからは、使用可能な熱変換可能なリトグラフ印刷前駆体が得られないという結果が導かれた。

10

20

30

40

50

【0073】

この結果に対して、本発明の実施形態を記載するために以下の実施例を提供する。

【0074】

(実施例 1)

5 g の R hoplex WL-91、20 g の 10 重量% ピペラジン脱イオン水溶液、10 g の 1 重量% ADS830A エタノール溶液、20 g の脱イオン水を混合し、得られた乳剤を粒状の陽極化アルミニウムプレート上にコーティングした。コーティング層を 60 のオーブンにて 1 分間乾燥した。コーティング層が乾燥した時、0.9 g / m² のコーティング層重量が得られた。プレートは単色 SM74 プレス (ドイツ国、ハイデルベルグ社製) に装着され、かつクレオ・プロダクツ社のデジタルオンプレスレーザ露光装置を用いて、830 nm の光にて画像化された。露光は、15 ワットにて 500 mJ / cm² の感度で実施した。露光に続いて、プレートは浸し水を用いて 30 秒間洗浄された。プレートを乾燥し、画像を試験した。インク形成ローラーが適用される前に 2 回転プレートを浸した。コーティングされていない再生紙上に印刷した場合、2000 回の耐刷力が得られた。

【0075】

(実施例 2)

5 g の R hoplex WL-91、20 g の 10 重量% の 2 - メチルピペラジン脱イオン水溶液、10 g の 1 重量% ADS830A エタノール溶液、20 g の脱イオン水を混合し、得られた乳剤を粒状の陽極化アルミニウム上にコーティングした。コーティング層を 60 のオーブンにて 1 分間乾燥した。コーティング層が乾燥した時、0.9 g / m² のコーティング層重量が得られた。プレートは単色 SM74 プレス (ドイツ国、ハイデルベルグ社製) に装着され、かつクレオ・プロダクツ社のデジタルオンプレスレーザ露光装置を用いて、830 nm の光にて画像化された。露光は、15 ワットにて 500 mJ / cm² の感度で実施した。露光に続いて、プレートは浸し水を用いて 30 秒間洗浄された。プレートを乾燥し、画像を試験した。インク形成ローラーが適用される前に 2 回転プレートを浸した。コーティングされていない再生紙上に印刷した場合、2000 回の耐刷力が得られた。

【0076】

(実施例 3)

5 g の R hoplex WL-91、20 g の 4 - ジメチルアミノベンズアルデヒド脱イオン飽和水溶液、10 g の 1 重量% ADS830A エタノール溶液、20 g の脱イオン水を混合し、得られた乳剤を粒状の陽極化アルミニウム上にコーティングした。コーティング層を 60 のオーブンにて 1 分間乾燥した。コーティング層が乾燥した時、0.9 g /

m^2 のコーティング層重量が得られた。プレートは単色 S M 7 4 プレス（ドイツ国、ハイデルベルグ社製）に装着され、かつクレオ・プロダクツ社のデジタルオンプレスレーザ露光装置を用いて、830 nm の光にて画像化された。露光は、15ワットにて 500 mJ / cm^2 の感度で実施した。露光に続いて、プレートは浸し水を用いて 30 秒間洗浄された。プレートを乾燥し、画像を試験した。インク形成ローラーが適用される前に 2 回転プレートを浸した。コーティングされていない再生紙上に印刷した場合、2000 回の耐刷力が得られた。

【 0 0 7 7 】

（実施例 4 ）

4 g の V a n c r y 1 9 8 9 、 8 g の 1 重量 % A D S 8 3 0 A エタノール溶液、28 g の脱イオン水、4 g の 10 重量 % ピペラジン脱イオン水溶液を混合し、得られた乳剤を粒状の陽極化アルミニウム上にコーティングした。コーティング層を 60 μ のオーブンにて 1 分間乾燥した。コーティング層が乾燥した時、0.9 g / m^2 のコーティング層重量が得られた。プレートは、クレオ・プロダクツ社のトレンドセッターレーザプレート設定装置を用いて、830 nm の光にて画像化された。露光は、12ワットにて 500 mJ / cm^2 の感度で実施した。露光に続いて、プレートは水道水で洗浄し、空气中で乾燥した。画像化されたサンプルは印刷機に装着され（リヨービ単色印刷機）、インクがプレートに適用される前に 20 回転浸し水で浸した。コーティングされた用紙に印刷した場合、200 回の良質な耐刷力が得られた。

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
29 August 2002 (29.08.2002)

PCT

(10) International Publication Number
WO 02/066252 A1

(51) International Patent Classification: B41C 1/10 PH, PL, PT, RO, RU, SD, SE, SG, SI, SK (utility model), SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(21) International Application Number: PCT/CA02/00198

(22) International Filing Date: 18 February 2002 (18.02.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
09/785,339 20 February 2001 (20.02.2001) US

(71) Applicant (for all designated States except US): CREO PRODUCTS INC. [CA/CA]; 3700 Gilmore Way, Burnaby, British Columbia V5G 4M1 (CA).

(72) Inventors: and

(75) Inventors/Applicants (for US only): YU, Yisong [CA/CA]; 6391 Goldsmith Avenue, Vancouver, British Columbia V7H 4G6 (CA). GOODIN, Jonathan, W. [GB/CA]; 5253 11A Avenue, Tsawwassen, British Columbia V4M 1Z9 (CA). EMANS, John [GB/GB]; 113 Dryden Road, Low Fell, Gateshead, Tyne and Wear (GB). CHRISTALL, Keith [CA/CA]; 410 - 494 Marsett Pl., Victoria, British Columbia V8Z 7J1 (CA).

(74) Agent: MCGRUDER, David, J.; 480 - The Station, 601 West Cordova Street, Vancouver, British Columbia V6B 1G1 (CA).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i)) for all designations

as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(ii)) for the following designations: AT, AG, AT, AM, AT, AU, AT, BA, BR, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MX, MZ, NO, NZ, OM, PH, PI, PT, RO, RU, SD, SE, SG, SI, SK, SI, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW, ARPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(iii)) for all designations of inventorship (Rule 4.17(iv)) for US only

Published:

— with international search report

— with amended claims

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/066252 A1

(54) Title: THERMALLY CONVERTIBLE LITHOGRAPHIC PRINTING PRECURSOR COMPRISING AN ORGANIC BASE

(57) Abstract: In accordance with the present invention there is provided an imaging element for lithographic offset printing. The imaging element comprises hydrophobic polymer particles in an aqueous medium, a substance for converting light into heat, and an organic base. The imaging element may be used for printing long run lengths on lower quality paper and in the presence of set-off powder. The imaging element may be imaged and developed on-press and may be sprayed onto a hydrophilic surface to create a printing surface that may be processed wholly on-press. The hydrophilic surface may be a printing plate substrate or the printing cylinder of a printing press or a seamless sleeve around the printing cylinder of a printing press. This cylinder may be conventional or seamless.

WO 02/066252

PCT/CA02/00198

5 **TITLE: Thermally convertible lithographic printing precursor comprising an organic base**

10 **Cross-references to related applications**

This patent is related to the co-pending U.S. patent applications entitled "Method for obtaining a lithographic printing surface using an organic base", application number 09/785338, "Thermally convertible lithographic printing precursor", application number 09/745548, and "Method for obtaining a lithographic printing surface", application number 09/745520.

15 **Field of the invention**

The invention pertains to the field of lithography and in particular to imaging materials
20 for digital-on-press technology.

25 **Background of the invention**

At present, virtually all commercially printed copy is produced through the use of three
25 basic types of printing. One type is a relief plate that prints from a raised surface.
Another type is gravure that prints from a depressed surface. The third, namely
lithographic printing is planographic and is based on the immiscibility of oil and water
wherein the oily material or ink is preferentially retained in the image area of a printing
plate and the water or fountain solution retained by the non-image area. A widely used
30 type of lithographic printing plate has a light sensitive coating applied to a hydrophilic

WO 02/066252

PCT/CA02/00198

base support, typically made from anodized aluminum. The coating may respond to the light by having the portion that is exposed becoming soluble so that it may be removed by a subsequent development process. Such a plate is said to be positive working. Conversely, when the area that is exposed remains after development and 5 the unexposed areas are removed instead, the plate is referred to as a negative working plate.

In the production of the bulk of standard commercial lithographic printing plates of this nature, a hydrophilic support is coated with a thin layer of a negative-working 10 photosensitive composition. Typical coatings for this purpose include light-sensitive polymer layers containing diazo compounds, dichromate-sensitized hydrophilic colloids, and a large variety of synthetic photopolymers. Diazo-sensitized systems in particular are widely used.

15 Imagewise exposure of such imagable light-sensitive layers renders the exposed image insoluble while the unexposed areas remain soluble in a developer liquid. The plate is then developed with a suitable developer liquid to remove the imagable layer in the unexposed areas.

20 A particular disadvantage of photosensitive imaging elements such as those described above for making a printing plate, is that they work with visible light and have to be shielded from normal room lighting. Furthermore, they can have the problem of instability upon storage.

25 One approach that has been extensively followed in recent times is to laser ablate either a hydrophobic or hydrophilic coating layer to reveal a surface of the opposite character. An example is provided by Lewis et al in US patent 5,339,737. This process, while simple, has the drawback of generating ablative debris and dust. This

WO 02/066252

PCT/CA02/00198

dust and debris may accumulate on sensitive optical components of the system and affect performance. It may also find its way onto the printing surface and generate unwanted artifacts on the printed copies.

5 Methods have been known since the 1960's for making printing plates involving the use of imaging elements that utilize heat-driven processes rather than direct photosensitivity. This allows processing without the need for photographic darkrooms and makes possible the concept of on-press processing. In view of this benefit, as well as the limitations of direct photosensitive plates described above, the trend

10 towards these heat-based printing plate precursors is to be anticipated and is, in fact, reflected in the market.

In 1964 Vrancken in US 3,476,937 described a basic heat mode printing plate or thermal printing plate precursor in which particles of thermoplastic polymer in a hydrophilic binder coalesce under the influence of heat, or heat and pressure, that is image-wise applied. The fluid permeability of the material in the exposed areas is significantly reduced. This approach forms the basis of heat-based lithographic plates that are developed using various aqueous media. In the later US 3,793,025 Vrancken describes the addition of a pigment or dye for converting visible light to heat, after which essentially the same process is followed as in the earlier disclosure. In US 3,670,410 interlayer structures based on the same principles are presented. In US 4,004,924 Vrancken describes the use of hydrophobic thermoplastic polymer particles in a hydrophilic binder together with a material to convert visible light to heat. This combination is employed to generate printing masters specifically by flash exposure.

25

This early work of Vrancken has formed the basis of commercial lithographic products. However, this work did not address the inherent problems associated with the use of lithographic plates sensitive to visible wavelengths of light under the

WO 02/066252

PCT/CA02/00198

practical conditions of commercial printing. This early work was performed at a time when digital-on-press technology had not yet been developed. The patents therefore did not anticipate many of the considerations typical of this newer technology wherein data is written point for point directly to the imaging surface by a point light source or 5 combination of such sources such as laser arrays, and the imaging surface is developed on-press.

There is a fundamental principle to take note of in comparing photographic and thermal media. In the case of photographic media the image is produced by a 10 photochemical effect and the imaging process is driven directly by the light-sensitivity of the photosensitive material. In the case of thermal media, the coagulation or coalescence of the hydrophobic polymer particles is a process driven by heat. These media, in typical formulations available at this time, therefore also contain an element that converts electromagnetic radiation to heat. The choice of this converter material 15 determines the range of electromagnetic wavelengths to which the media will respond.

Recently the use of infra-red wavelengths of light generated either by YAG lasers or, more recently, 800-900nm radiation from high power Group III-V laser diodes and 20 diode arrays has increased radically. By employing these infrared wavelengths of light, the need for dark room handling of undeveloped plates is obviated as described earlier. The choice of infrared wavelengths of light, however, is not to be confused with the fact that this light also has to be converted to heat in order to drive the thermal process that leads to the coalescence of polymer particles. The terms 25 "thermal plates" or "heat mode plates" therefore refer to the conversion mechanism by which the hydrophilicity of the surface of the plate is changed, and does not refer to the wavelength of the light being employed. Products that function on the basis of this

WO 02/066252

PCT/CA02/00198

principle are today on the market. One example is the Thermolite product from the company Agfa of Mortsel in Belgium.

Since the basic offset printing process requires fountain solution to wet the printing surface before inking, much effort has been put into ensuring that on-press media may be developed using the same fountain solution or at least an aqueous liquid. There is, however, a trade-off between durability of the imaged printing surface and its developability. If the surface is easily developed, it is often not very durable. This durability limitation is thought to be due to the abrasive action of the pigments employed in offset inks coupled with the physical interaction between the blanket cylinder and the plate master cylinder that results in relatively rapid wear of the oleophilic image areas of the printing plate.

As pointed out by Vermeersch in US patent 6,001,536, these newer technological issues were addressed to some degree by Research Disclosure No. 33303 of January 1992. This document discloses a heat-sensitive imaging element comprising, on a support, a cross-linked hydrophilic layer containing thermoplastic polymer particles and an infrared absorbing pigment such as e.g. carbon black. By image-wise exposure to an infrared laser, the thermoplastic polymer particles are image-wise coagulated thereby rendering the surface of the imaging element at these areas ink accepting without any further development. A disadvantage of this method is that the printing plate so obtained is easily damaged since the non-printing areas may become ink-accepting when some pressure is applied thereto. Moreover, under critical conditions, the lithographic performance of such a printing plate may be poor and accordingly such printing plate has little lithographic printing latitude.

Subsequent development of the technology along the above lines has produced a considerable body of art largely teaching various single- and multi-layered structures

WO 02/066252

PCT/CA02/00198

based on hydrophobic polymer particles in a hydrophilic binder combined, either in the same layer or separate layers, with a material to convert light to heat. A variety of individual polymers, light-to-heat-converters and hydrophilic binders have been proposed. Examples of these media and some aspects of their on-press imaging and processing are provided by Vermeersch in the family of patents US 6,001,536, US 6,030,750, US 6,096,481 and US6,110,644. Vermeersch provides in US 5,816,162 an example of a multilayer structure that may be imaged and processed on-press. Fundamentally, these developments have all been improvements on the basic approach set out by Vrancken in US 3,476,937 and US 4,004,924.

10

These developments all have one factor in common. The printing surfaces produced by these materials provide run-lengths (number of printing impressions per plate) of the order of 20,000 to 30,000 impressions per prepared printing surface on good quality paper. This is rather shorter than the run-lengths achievable with some other kinds of media used in industry. This cause of this may be traced directly to the developability versus durability trade-off raised earlier. The commercially available thermal media also does not function well with lower quality uncoated paper or in the presence of some commonly used press-room chemicals such as set-off powder, reducing the run-length often to less than one third of that achieved under ideal conditions. This is unfortunate in that these materials and lower quality paper are both inherent realities of the commercial printing industry.

25 The literature reveals a variety of alternate approaches. Examples include coatings comprising core-shell particles, softenable particles or various functional layers. These alternative approaches also suffer from endurance problems during printing and/or from reduced ink uptake. In particular, it has been disclosed by Fromson in US 4,731,317, based on an alternative body of work, that non-film-forming polymer emulsions such as LYTRON 614, which is a styrene based polymer with a particle

WO 02/066252

PCT/CA02/00198

size on the order of 1000 Angstroms, can be used, alone or with an energy absorbing material such as carbon black, to form an image according to that particular invention. In the embodiment of that invention, the polymer emulsion coating is not light sensitive but the substrate used therein converts laser radiation so as to fuse the polymer

5 particles in the image area. In other words, the glass transition temperature (Tg) of the polymer is exceeded in the imaged areas thereby fusing the image in place onto the substrate. The background can be removed using a suitable developer to remove the non-laser illuminated portions of the coating. Since the fused polymer is ink loving, a laser imaged plate results without using a light sensitive coating such as diazo.

10 However, there is a propensity for the background area to retain a thin layer of coating in such formulations. This results in toning of the background areas during printing.

Operations involving off-press imaging and manual mounting of printing plates are relatively slow and cumbersome. On the other hand, high speed information

15 processing technologies are in place today in the form of pre-press composition systems that can electronically handle all the data required for directly generating the images to be printed. Almost all large scale printing operations currently utilize electronic pre-press composition systems that provide the capability for direct digital proofing, using video displays and visible hard copies produced from digital data, text

20 and digital color separation signals stored in computer memory. These pre-press composition systems can also be used to express page-composed images to be printed in terms of rasterized, digitized signals. Consequently, conventional imaging systems in which the printing images are generated off-press on a printing plate that must subsequently be mounted on a printing cylinder present inefficient and

25 expensive bottle-necks in printing operations.

On-press imaging is a newer method of generating the required image directly on the

WO 02/066252

PCT/CA02/00198

plate or printing cylinder. Existing on-press imaging systems can be divided into two types.

In the first type a blank plate is mounted on the press and imaged once, thus requiring

5 a new plate for each image. An example of this technology is the well-known Heidelberg Model GTO-DI, manufactured by the Heidelberg Druckmaschinen AG (Germany). This technology is described in detail by Lewis in U.S. Pat. No. 5,339,737. The major advantage compared to off-press plate making is much better registration between printing units when printing color images.

10

With press imaging systems that use plates, whether imaged off-press or on-press, the mounting cylinder is split so that clamping of the ends of the plate can be effected by a clamping means that passes through a gap in the cylinder and a slit between the juxtaposed ends of the plate. The gap in the mounting cylinder causes the cylinder to 15 become susceptible to deformation and vibration. The vibration causes noise and wears out the bearings. The gap in the ends of the plate also leads to paper waste in some situations.

To address these issues of wear and paper waste, there has been much focus on 20 creating a second type of on-press imaging system that will allow the coating of the very printing cylinder itself, or a sleeve around it, with an appropriate thermal medium working by the principles outlined above. An example of this approach is given by Gelbart in US patent 5,713,287, which also describes the spraying of media onto the printing surface while the printing surface is mounted on the press.

25

In the case of both types of on-press imaging systems the overall process has the same elements. The printing surface, whether plate or cylinder or sleeve, is cleaned. It is then coated with the thermal medium. The coating is then cured or dried to form a

WO 02/066252

PCT/CA02/00198

hydrophilic layer or one that can be removed by fountain or other aqueous solutions. This layer is then imaged using data written directly, typically via a laser or laser array. This coalesces the polymeric particles in the imaged areas, making the imaged areas hydrophobic or resistant to removal. The printing surface is then developed using an appropriate developer liquid. This includes the possibility of using fountain solution. The coating in the unexposed areas is thereby removed, leaving the imaged hydrophobic areas. The printing surface is then inked and the ink adheres only to the hydrophobic imaged and coalesced areas, but not to the exposed areas of the hydrophilic substrate where there is water from the fountain solution, thereby keeping the ink, which is typically oil-based, from adhering. Printing is now performed. At the end of the cycle, the imaged layer is removed by a solvent and the process is restarted.

It is clear that, at the time of this application for letters patent, the needs of industry have not yet been adequately met in the field of thermal lithographic media. There remains a real need for a thermal lithographic medium that can produce extended run lengths and function effectively in the presence of press-room chemicals. It should also function effectively on lower quality paper and be compatible with the rapidly developing on-press technologies, including the more recent spray-on technologies.

20

It is the intention with this application for letters patent to address this need.

Brief Summary of the invention

25 In accordance with the present invention there is provided a printing master for lithographic offset printing. The printing master comprises hydrophobic polymer particles in an aqueous medium, a substance for converting light into heat, and an organic base. The printing master may be used for printing long run lengths on lower

WO 02/066252

PCT/CA02/00198

quality paper and in the presence of press-room chemicals. The imaging element can be imaged and developed on-press and it can also be sprayed onto a hydrophilic surface to create a printing surface that may be processed wholly on-press. It can also be processed in the more conventional fully off-press fashion. The hydrophilic surface 5 can be a printing plate substrate or the printing cylinder of a printing press or a sleeve around the printing cylinder of a printing press. This cylinder can be conventional or seamless.

Detailed Description of the preferred embodiment

10

The present invention is embodied in a thermally convertible lithographic printing precursor comprising a lithographic base with an imageable coating on those of its surfaces that are to be used for printing. The imageable medium of the imageable coating comprises uncoalesced particles of one or more hydrophobic thermoplastic 15 polymers, one or more converter substances capable of converting radiation into heat and one or more organic bases. The individual components may be applied to the lithographic as a single coating or in different combinations in separate layers.

As will be demonstrated at the hand of four examples, it has been discovered that the 20 combination of components described above produces a medium which, when coated onto the lithographic base and exposed imagewise to light of wavelength appropriate to the incorporated converter substance, is developable in aqueous media including fountain solution to create a lithographic printing surface.

25 As will be demonstrated, when the medium is prepared without one of the key components, namely the organic base, it exhibits no developability, the entire coating resisting washing off in aqueous media. The organic base therefore plays a key role as a development-enhancing agent.

WO 02/066252

PCT/CA02/00198

In this application for letters patent the term "lithographic printing precursor" is used to describe any printing plate, printing cylinder or printing cylinder sleeve, or any other surface bearing a coating of imageable material that may be either converted or 5 removed imagewise to create a surface that may be inked selectively and used for lithographic printing. The phrase "lithographic printing surface" is used in this application for letters patent to describe the selectively inkable surface so created.

The specific term "lithographic base" is used here to describe the base onto which the 10 imageable material is coated. The lithographic bases used in accordance with the present invention are preferably formed of aluminum, zinc, steel or copper. These include the known bi-metal and tri-metal plates such as aluminum plates having a copper or chromium layer; copper plates having a chromium layer and steel plates having copper or chromium layers. Other preferred substrates include metallized 15 plastic sheets such as poly(ethylene terephthalate).

Particularly preferred plates are grained, or grained and anodized, aluminum plates where the surface is roughened (grained) mechanically or chemically (e.g. 20 electrochemically) or by a combination of roughening treatments. The anodizing treatment can be performed in an aqueous acid electrolytic solution such as sulphuric acid or a combination of acids such as sulphuric and phosphoric acid.

According to the present invention, the anodized aluminum surface of the lithographic base may be treated to improve the hydrophilic properties of its surface. For example, 25 a phosphate solution that may also contain an inorganic fluoride is applied to the surface of the anodized layer. The aluminum oxide layer may be also treated with sodium silicate solution at an elevated temperature, e.g. 90° C. Alternatively, the aluminum oxide surface may be rinsed with a citric acid or citrate solution at room

WO 02/066252

PCT/CA02/00198

temperature or at slightly elevated temperatures of about 30 to 50° C. A further treatment can be made by rinsing the aluminum oxide surface with a bicarbonate solution.

5 Another useful treatment to the aluminum oxide surface is with polyvinylphosphonic acid, polyvinylmethylphosphonic acid, phosphoric acid esters of polyvinyl alcohol, polyvinylsulphonic acid, polyvinylbenzenesulphonic acid, sulphuric acid esters of polyvinyl alcohol, and acetals of polyvinyl alcohols formed by reaction with a sulphonated aliphatic aldehyde. It is evident that these post treatments may be carried

10 out singly or as a combination of several treatments.

According to another embodiment in connection with the present invention, the lithographic base having a hydrophilic surface comprises a flexible support, such as e.g. paper or plastic film, provided with a cross-linked hydrophilic layer. A suitable 15 cross-linked hydrophilic layer may be obtained from a hydrophilic (co)polymer cured with a cross-linking agent such as a hydrolysed tetra-alkylorthosilicate, formaldehyde, glyoxal or polyisocyanate. Particularly preferred is the hydrolysed tetra-alkylorthosilicate.

20 The hydrophilic (co-) polymers that may be used comprise for example, homopolymers and copolymers of vinyl alcohol, hydroxyethyl acrylate, hydroxyethyl methacrylate, acrylic acid, methacrylic acid, acrylamide, methylol acrylamide or methylol methacrylamide. The hydrophilicity of the (co)polymer or (co)polymer mixture used is preferably higher than that of polyvinyl acetate hydrolyzed to at least an extent 25 of 60 percent by weight, preferably 80 percent by weight.

The amount of crosslinking agent, in particular of tetraalkyl orthosilicate, is preferably

WO 02/066252

PCT/CA02/00198

at least 0.2 parts by weight per part by weight of hydrophilic (co-) polymer, more preferably between 1.0 parts by weight and 3 parts by weight.

A cross-linked hydrophilic layer of the lithographic base preferably also contains

5 materials that increase the porosity and/or the mechanical strength of this layer. Colloidal silica employed for this purpose may be in the form of any commercially available water-dispersion of colloidal silica having an average particle size up to 40 nm. Additionally inert particles of a size larger than colloidal silica may be used e.g. alumina or titanium dioxide particles or particles having an average diameter of at

10 least 100 nm but less than 1 μ m which are particles of other heavy metal oxides. The incorporation of these particles causes a roughness, which acts as storage places for water in background areas.

The thickness of a cross-linked hydrophilic layer of a lithographic base in accordance

15 with this embodiment can vary between 0.5 to 20 μ m and is preferably 1 to 10 μ m.

Particular examples of suitable cross-linked hydrophilic layers for use in accordance with the present invention are disclosed in EP 601240, GB-P-1419512, FR-P-2300354, U.S. Pat. No. 3,971,660, and U.S. Pat. No. 4,284,705.

20 A particularly preferred substrate to use is a polyester film on which an adhesion-promoting layer has been added. Suitable adhesion promoting layers for use in accordance with the present invention comprise a hydrophilic (co-) polymer and colloidal silica as disclosed in EP 619524, and EP 619525. Preferably, the amount of silica in the adhesion-promoting layer is between 0.2 and 0.7 mg per m^2 . Further, the

25 ratio of silica to hydrophilic binder is preferably more than 1 and the surface area of the colloidal silica is preferably at least 300 m^2 per gram.

WO 02/066252

PCT/CA02/00198

In this application for letters patent the term "uncoalesced" is used to describe a state of an assemblage of polymer particles that are not substantially fused together. This is to be contrasted with coalesced polymer particles where a plurality of particles has essentially fused together to form a contiguous whole.

5

The hydrophobic thermoplastic polymer particles used in connection with the present invention preferably have a coalescence temperature above 35°C. and more preferably above 50°C. The coalescence of the polymer particles may result from softening or melting of the thermoplastic polymer particles under the influence of heat.

- 10 The specific upper limit to the coalescence temperature of the thermoplastic hydrophobic polymer should be below the decomposition temperature of the thermoplastic polymer. Preferably the coalescence temperature is at least 10°C below the decomposition temperature of the polymer particle. When the polymer particles are subjected to a temperature above their coalescence temperature they
- 15 become an amorphous hydrophobic agglomerate so that the hydrophobic particles cannot be removed by water or an aqueous liquid.

Specific examples of hydrophobic thermoplastic polymer particles for use in connection with the present invention with a T_g above 40°C. are preferably polyvinyl

- 20 chloride, polyethylene, polyvinylidene chloride, polyacrylonitrile, poly(meth)acrylates etc., copolymers or mixtures thereof. More preferably used are polymethyl-methacrylate or copolymers thereof. Polystyrene itself or polymers of substituted styrene are particularly preferred, most particularly polystyrene copolymers or
- 25 polycrylates. The weight average molecular weight of the hydrophobic thermoplastic polymer in the dispersion may range from 5,000 to 1,000,000 g/mol.

The hydrophobic thermoplastic polymer in the dispersion may have a particle size from 0.01μm to 30μm, more preferably between 0.01μm and 3μm and most preferably

WO 02/066252

PCT/CA02/00198

between 0.02μm and 0.25μm. The hydrophobic thermoplastic polymer particle is present in the liquid of the imagable coating.

A suitable method for preparing an aqueous dispersion of the thermoplastic polymer 5 comprises the following steps:

- (a) dissolving the hydrophobic thermoplastic polymer in an organic water immiscible solvent with a boiling point less than 100C,
- (b) dispersing the solution in water or an aqueous medium and
- (c) evaporating the organic solvent to remove it.

10 Alternatively it can be prepared by the methods disclosed in U.S. Pat. No. 3,476,937.

The amount of hydrophobic thermoplastic polymer dispersion contained in the image forming layer is preferably between 20% by weight and 95% by weight and more preferably between 40% by weight and 90% by weight and most preferably between 50% by weight and 85% by weight.

15

In a preferred embodiment, the imagable coating may be applied to the lithographic base while the latter resides on the press. The lithographic base may be an integral part of the press or it may be removably mounted on the press. In this embodiment the imagable coating may be cured by means of a curing unit integral with the press,

20 as described by Gelbart in US Patent 5,713,287.

Alternatively, the imagable coating may be applied to the lithographic base and cured before the complete thermally convertible lithographic printing precursor is loaded on the printing cylinder of a printing press. This situation would pertain in a case where a 25 lithographic printing plate is made separate from the press or a press cylinder is provided with a lithographic printing surface without being mounted on the press.

WO 02/066252

PCT/CA02/00198

The term curing is here to be understood to include the hardening of the imageable medium, specifically including the drying thereof, either with or without cross-linking of the incorporated polymer.

5

Before applying the imageable coating to the lithographic base, the lithographic base may be treated to enhance the developability or adhesion of the imageable coating. In the preferred embodiment of the invention, the imageable material of the coating is imagewise converted by means of the spatially corresponding imagewise generation 10 of heat within the coating to form an area of coalesced hydrophobic polymer particles.

The imaging process itself may be by means of scanned laser radiation as described by Gelbart in US Patent 5,713,287. The wavelength of the laser light and the absorption range of the converter substance are chosen to match each other. This 15 process may be conducted off-press, as on a plate-setting machine, or on-press, as in digital-on-press technology.

The heat to drive the process of coalescence of the polymer particles is produced by the converter substance, herewith defined as a substance that has the property of 20 converting radiation into heat. Within this wider definition, the specific term "thermally convertible lithographic printing precursor" is used to describe the particular subset of lithographic printing precursors in which the imageable material of the coating is imagewise converted by means of the spatially corresponding imagewise generation of heat to form an area of coalesced hydrophobic polymer particles. This area of 25 coalesced hydrophobic polymer particles will therefore be the area to which lithographic printing ink will adhere for the purposes of subsequent printing.

WO 02/066252

PCT/CA02/00198

Where the imagewise exposure is to be performed by lasers, it is desirable that the converter substances present in the composition have high absorbance at the wavelength of the laser. Such substances are disclosed in JOEM Handbook 2 Absorption Spectra of Dyes for Diode Lasers, Matsuoka, Ken, bunshin Shuppan, 1990 and Chapter 2, 2.3 of Development and Market Trend of Functional Colouring Materials in 1990's, CMC Editorial Department, CMC, 1990, such as polymethine type colouring material, a phthalocyanine type colouring material, a dihydro metallic complex salt type colouring material, an anthraquinone type colouring material, a triphenylmethane type colouring material an azo type dispersion dye, and an intermolecular CT colouring material. The representative examples include N-[4-[5-(4-dimethylamino-2-methylphenyl)-2,4-pentadienylidene]-3-methyl-2,5-cyclohexadiene-1-ylidene]-N,N-dimethylammonium acetate, N-[5-(4-dimethylaminophenyl)-3-phenyl-2-pentene-4-in-1-ylidene]-2,5-cyclohexadiene-1-ylidene]-N,N-dimethylammonium perchlorate, bis(dichlorobenzene-1,2-dihydro)nickel(2:1)tetrabutylammonium and polyvinylcarbazol-2,3-dicyano-5-nitro1,4-naphthoquinone complex.

Carbon black, other black body absorbers and other infra red absorbing materials, dyes or pigments may also be used as the thermal converter, particularly with higher levels of infra-red absorption/conversion at 800-1100nm and particularly between 800 and 850nm.

Some specific commercial products that may be employed as light to heat converter substances include Pro-jet 830NP, a modified copper phthalocyanine from Avecia of Blackley, Lancashire in the U.K., and ADS 830A, an infra-red absorbing dye from American Dye Source Inc. of Montreal, Quebec, Canada.

WO 02/066252

PCT/CA02/00198

Embodiments of the present invention provide an organic base for use in the imaging element. The organic bases are chosen for their solubility in water, aqueous solution or press fountain solution. The concentration of organic base used is sufficient to make the unexposed dispersion more permeable to water or fountain solution whilst at the same time can be extracted by the fountain solution from the coalesced areas. In operation, the non-coalesced areas (unexposed during the imaging process) are easily developed because of the presence of the organic base. However, during the continuation of the print run the organic base is slowly extracted out of the coalesced areas of the coating due to its solubility in fountain solution. The result is that the coalesced area becomes more hydrophobic. The leaching out of the organic base enhances the long term durability of the plate throughout its run.

The function of the organic base is such that it should be substantially soluble in the dispersion that is to be coated. In addition to the solubility characteristics, the organic base should also be capable of facilitating the removal of the unexposed portions of the image coat by fountain solution thus enhancing the developability of the un-irradiated portion of the imaging element. Further, the organic base must be capable of being extracted from the coalesced image, thus maintaining the durability of the image area during the print run and increasing the resistance of the image to wear by offset powder or other press-room chemicals.

A further enhancing feature of the incorporation of the organic base is that it permits polymers to be used that have lower coalescence temperatures than could be used hitherto. This has the beneficial effect of increasing the conversion sensitivity of the system to the laser light.

The preferred concentration of such organic bases is between 50 and 500% w/w of the polymer particles; more preferably, between 80 and 200% w/w of the polymer

WO 02/066252

PCT/CA02/00198

particles. Examples of suitable organic bases include, but are not limited to piperazine, 2-methylpiperazine and 4-dimethylaminobenzaldehydein.

The organic base could in fact be a mixture of two or more organic bases or could 5 contain two or more amino-groups within the base molecule, and such a mixture could perform synergistically in a more improved way than any one organic base would suggest. Similarly, organic bases which form part of a mixture may not necessarily perform in the desired way when used alone.

10 The aforementioned description of the process is not intended to limit the scope of the invention but to provide an insight into the mechanism for the benefit of practitioners.

The thermally convertible lithographic printing precursor may be subsequently developed after exposure using an aqueous medium. During such development, the 15 area of coalesced hydrophobic polymer particles will not allow water or aqueous medium to penetrate it or adhere to it, while the unexposed areas of the coating may be readily washed off using an aqueous medium such as fountain solution. Again, as described by Gelbart in US Patent 5,713,287, this process may be conducted on the press as part of the digital-on-press technological approach.

20 During subsequent inking with an oil-based lithographic ink, the exposed areas of the imagable coating will be the areas to which the lithographic printing ink will adhere. This makes possible the subsequent use of the inked surface for the purposes of printing.

25 While the present invention pertains very directly to the manufacture of lithographic plates, it has particular significance in the on-press-processing environment. In the

WO 02/066252

PCT/CA02/00198

case of fully on-press processing, where the imagable medium is sprayed onto a plate on the printing cylinder, or even on to the printing cylinder itself, there is a considerable list of criteria, all of which are to be met by any thermally convertible lithographic printing precursor that is to meet the needs of industry. The thermally 5 convertible lithographic printing precursor of the present invention meets these criteria.

In the first place, the imagable medium forming part of the thermally convertible lithographic printing precursor of the present invention is of such consistency as to be 10 sprayable. This is required for on-press application of the medium to the lithographic base.

Secondly, the imagable medium contained within the present invention is also capable 15 of being cured without cross-linking such that the unexposed imagable medium may be removed by an aqueous medium.

The thermally convertible lithographic printing precursor of the present invention also exhibits good sensitivity to the light wavelength of interest; this being determined by the light-to-heat converting material that is added to the imagable medium. Upon 20 being imagewise exposed to such radiation, there is good coalescence of the hydrophobic polymer particles in order to produce areas of hydrophobic polymer corresponding to the image. The illuminated and coalesced area is distinctly more hydrophobic than the lithographic base, adheres well to it, and does not wash off in aqueous media.

25 By contrast, the unexposed areas of the same imagable medium on the thermally convertible lithographic printing precursor, are readily washed off by aqueous media. This difference in removability between exposed and unexposed areas of the

WO 02/066252

PCT/CA02/00198

imaginable medium determines the basic contrast and, therefore, the effectiveness of the thermally convertible lithographic printing precursor of the present invention.

Whilst satisfying all of the above criteria, the thermally convertible lithographic printing precursor of the present invention furthermore demonstrates, upon coalescence of the hydrophobic polymer particles, durability of such scope as to withstand the rigors of practical lithographic offset printing. This is a key factor wherein existing thermally convertible lithographic media do not excel.

10 **Examples:**

The following examples describe thermally convertible lithographic printing precursors made in accordance with the present invention. In these examples, materials were supplied as follows:

15

Organic base: Piperazine from Aldrich Chemicals Milwaukee, Wisconsin, U.S
4-dimethylaminobenzaldehyde from Aldrich Chemicals Milwaukee,
Wisconsin, U.S
2-methylpiperazine from Aldrich Chemicals Milwaukee, Wisconsin, U.S

20

Polymers: Rhoplex WL-91 from Rohm & Haas, Philadelphia, Pennsylvania,
U.S.A.
Vancryl 989 from Air Products, Allentown, Pennsylvania, U.S.A.

25

Light-to-heat-converter: ADS 830A an infra-red absorbing dye from American
Dye Source Inc. Montreal, Quebec, Canada.

WO 02/066252

PCT/CA02/00198

Grained, anodized aluminum was obtained from Precision Lithoplate of South Hadley, Massachusetts

In order to serve as a reference and to evaluate the relative efficacy of the invention, a
5 lithographic element was prepared with one of the key components intentionally omitted. 6g Rhoplex WL-91, 12g 1 wt% ADS 830A in ethanol, 44g deionized water were mixed and the resultant emulsion was coated onto grained anodized aluminum. The coating was dried in an oven at 60°C for 1 minute. When the coating was dry, a coating weight of 0.9 g/m² was obtained. The plate was imaged using a Creo Products
10 Inc. Trendsetter laser plate setting machine with 830nm light. The exposure was carried out with 500 mJ/cm² at 12 Watts. Following exposure the plate was washed with town water the unexposed polymer did not wash off in the non-image areas. Clearly this approach leads to a result that does not obtain a usable thermally
convertible lithographic printing precursor.

15

In contrast with this result, the following examples serve to describe the embodiment of the invention.

Example 1:

20

5g of Rhoplex WL-91, 20g of 10 wt% piperazine in deionised water, 10g of 1 wt% ADS 830A in ethanol and 20g of deionised water were mixed and the resultant emulsion was coated onto a grained, anodized aluminium plate. The coating was dried in an oven at 60°C for 1 minute. When the coating was dry a coating weight of
25 0.9 g/m² was obtained. The plate was mounted onto a single colour SM74 press (Heidelberg Druckmaschinen, Germany) and imaged with a Creo Products Inc. digital on-press laser exposure device using 830 nm light. The exposure was carried out with 500mJ/cm² at 15 Watts. Following exposure the plate was washed with fountain

WO 02/066252

PCT/CA02/00198

solution for 30 seconds. The plate was allowed to dry and the image examined. The plate was dampened for 2 revolutions before the ink form rollers were applied. 2,000 impressions were obtained when printed on uncoated recycled paper.

5 **Example 2:**

5g of Rhoplex WL-91, 20g of 10 wt% 2-methylpiperazine in deionised water, 10g of 1 wt% ADS 830A in ethanol and 20g of deionised water were mixed and the resultant emulsion was coated onto a grained, anodized aluminium plate. The coating was 10 dried in an oven at 60°C for 1 minute. When the coating was dry a coating weight of 0.9 g/m² was obtained. The plate was mounted onto a single colour SM74 press (Heidelberg Druckmaschinen, Germany) and imaged with a Creo Products Inc. digital on-press laser exposure device using 830 nm light. The exposure was carried out with 500mJ/cm² at 15 Watts. Following exposure the plate was washed with fountain 15 solution for 30 seconds. The plate was allowed to dry and the image examined. The plate was dampened for 2 revolutions before the ink form rollers were applied. 2,000 impressions were obtained when printed on uncoated recycled paper.

Example 3:

20 5g of Rhoplex WL-91, 20g of a saturated solution of 4-dimethylaminobenzaldehyde in deionised water, 10g of 1 wt% ADS 830A in ethanol and 20g of deionised water were mixed and the resultant emulsion was coated onto a grained, anodized aluminium plate. The coating was dried in an oven at 60°C for 1 minute. When the coating was 25 dry a coating weight of 0.9 g/m² was obtained. The plate was mounted onto a single colour SM74 press (Heidelberg Druckmaschinen, Germany) and imaged with a Creo Products Inc. digital on-press laser exposure device using 830 nm light. The exposure was carried out with 500mJ/cm² at 15 Watts. Following exposure the plate was

WO 02/066252

PCT/CA02/00198

washed with fountain solution for 30 seconds. The plate was allowed to dry and the image examined. The plate was dampened for 2 revolutions before the ink form rollers were applied. 2,000 impressions were obtained when printed on uncoated recycled paper.

5

Example 4

4g Vancyl 989, 8g 1 wt% ADS 830A in ethanol, 28g deionised water, 4g 10wt% piperazine in deionised water were mixed and the resultant emulsion was coated onto 10 grained anodized aluminum. The coating was dried in an oven at 60C for 1 minute. When the coating was dry a coating weight of 0.9 g/m² was obtained. The plate was imaged using a Creo Products Inc. Trendsetter laser plate setting machine with 830nm light. The exposure was carried out with 500 mJ/cm² at 12 Watts. Following exposure the plate was washed with town water and dried in air. The imaged sample 15 was mounted onto a press (Ryobi single color printing press) and dampened with fountain solution for 20 revolutions before the ink was applied to the plate. 2,000 impressions of good quality were obtained when printed on coated paper.

WO 02/066252

PCT/CA02/00198

What is claimed is

1. A thermally convertible lithographic printing precursor developable using an aqueous medium, said thermally convertible lithographic printing precursor comprising
 - 5 a) a hydrophilic lithographic base,
 - b) a radiation sensitive coating on at least one surface of said hydrophilic lithographic base, said coating comprising within at least one layer
 - i. uncoalesced particles of at least one hydrophobic thermoplastic polymer,
 - 10 ii. at least one organic base and
 - iii. at least one converter substance capable of converting radiation into heat
- 15 2. A thermally convertible lithographic printing precursor as in claim 1, wherein said radiation is light.
- 20 3. A thermally convertible lithographic printing precursor as in claim 2, wherein said light is infra-red.
- 25 4. A thermally convertible lithographic printing precursor as in any of the above claims, wherein said at least one hydrophobic thermoplastic polymer is a member of at least one of the following groups of polymers and their associated copolymers: polystyrene, polymers of substituted polystyrene,

WO 02/066252

PCT/CA02/00198

polyethylene, poly(meth)acrylates, polyvinylchloride, polyurethanes,
polyesters, polyacrylonitrile.

5 5. A thermally convertible lithographic printing precursor as in any of the above
claims, wherein said converter substance is at least one of carbon black, a
pigment and a dye.

10 6. A thermally convertible lithographic printing precursor as in any of the above
claims, wherein said converter substance is an infrared absorbing dye.

15 7. A thermally convertible lithographic printing precursor as in any of the above
claims, wherein said organic base is at least one of a water-soluble organic
base and a water-miscible organic base.

20 8. A thermally convertible lithographic printing precursor as in any of the above
claims, wherein said organic base is a tertiary amine that is a solid at room
temperature.

25 9. A thermally convertible lithographic printing precursor as in any of the above
claims, wherein said hydrophilic lithographic base is one of a metalized plastic
sheet, a treated aluminum plate, a sleeve-less printing press cylinder, a
printing press cylinder sleeve, and a flexible support having thereon a cross-
linked hydrophilic layer.

WO 02/066252

PCT/CA02/00198

10. A thermally convertible lithographic printing precursor as in claim 9, wherein
said sleeve-less printing press cylinder and said printing press cylinder sleeve
are seamless.

5

11. A thermally convertible lithographic printing precursor as in claim 9 wherein
the surface of said lithographic base is anodized aluminum.

10

12. A thermally convertible lithographic printing precursor as in any of the above
claims, wherein said at least one converter substance is present in the same
layer as said uncoalesced particles of at least one hydrophobic thermoplastic
polymer.

【国際公開パンフレット（コレクトバージョン）】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
29 August 2002 (29.08.2002)

PCT

(10) International Publication Number
WO 02/066252 A1(51) International Patent Classification¹: B41C 1/10

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW);

(21) International Application Number: PCT/CA02/00198

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM);

(22) International Filing Date: 18 February 2002 (18.02.2002)

European patent (AL, BL, CH, CY, DL, DK, ES, FI, FR,

(25) Filing Language: English

GB, GR, IE, IT, LU, MC, NL, PT, SI, TR); OAPI patent

(26) Publication Language: English

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,

(30) Priority Data: 09/785,339 20 February 2001 (20.02.2001) US

NE, SN, TD, TG).

(71) Applicant (for all designated States except US): CREO INC. [CA/CA]; 3700 Gilmore Way, Burnaby, British Columbia V5G 4M1 (CA).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i)) for all designations

as to applicant's entitlement to apply for and be granted

a patent (Rule 4.17(ii)) for the following designations: AE,

AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,

CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES,

FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IS, IS, JP, KE,

(72) Inventors; and

KG, KP, KR, KZ, LC, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN,

(73) Inventors/Applicants (for US only): YU, Yisong

MW, MN, MR, MZ, NO, NZ, OM, PH, PL, PT, RO, RU,

[CA/CA]; 6391 Goldsmith Avenue, Vancouver, British Columbia V7P 4G6 (CA). GOODIN, Jonathan, W.

SD, SE, SG, SL, SZ, TZ, TM, TN, TR, TT, TZ, UA, UG,

[GB/CA]; 5253 11A Avenue, Tsawwassen, British Columbia V4M 1Z9 (CA). EMANS, John [GB/GB]; 113 Dryden Road, Low Fell, Gateshead, Tyne and Wear (GB).

UZ, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS,

(74) Agent: MCGRUDER, David, J.; 480 - The Station, 601

West Cordova Street, Vancouver, British Columbia V6B

MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW); Eurasian patent

1G1 (CA).

(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM); European patent

(48) Designated States (national): AE, AG, AL, AM, AT (utility model), AI, AU, AZ, BA, BB, BG, BR, BY, BZ, CA,

(47) Date of publication of this corrected version: 30 October 2003

CH, CN, CO, CR, CU, CZ (utility model); CZ, DE (utility model), DE, DK (utility model), DK, DM, DZ, EC, EE, ES,

(45) Information about Correction: see PCT Gazette No. 44/2003 of 30 October 2003, Section II

(49) Title: THERMALLY CONVERTIBLE LITHOGRAPHIC PRINTING PRECURSOR COMPRISING AN ORGANIC BASE

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(57) Abstract: In accordance with the present invention there is provided an imaging element for lithographic offset printing. The imaging element comprises hydrophobic polymer particles in an aqueous medium, a substance for converting light into heat, and an organic base. The imaging element may be used for printing long run lengths on lower quality paper and in the presence of set-off powder. The imaging element may be imaged and developed on-press and may be sprayed onto a hydrophilic surface to create a printing surface that may be processed wholly on-press. The hydrophilic surface may be a printing plate substrate or the printing cylinder of a printing press or a seamless sleeve around the printing cylinder of a printing press. This cylinder may be conventional or seamless.

WO 02/066252 A1

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International Application No. PCT/CA 02/00198
A. CLASSIFICATION OF SUBJECT MATTER IPC 7 B41C1/10		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 B41C		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, WPI Data, PAJ		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 0 802 457 A (AGFA GEVAERT NV) 22 October 1997 (1997-10-22) column 6, line 24 -column 8, line 41 ---	1-12
A	US 6 030 750 A (VAN DAMME MARC ET AL) 29 February 2000 (2000-02-29) column 2, line 26 - line 41 column 4, line 25 - line 44 column 5, line 65 -column 7, line 5 -----	1-12
<input type="checkbox"/> Further documents are listed in the continuation of box C. <input checked="" type="checkbox"/> Patent family members are listed in annex.		
* Special categories of cited documents: *A* document defining the general state of the art which is not considered to be of particular relevance *E* earlier document but published on or after the international filing date *U* document which may throw doubt on priority, claims or which may affect the publication date of another citation or other special reason (as specified) *O* document referring to an oral disclosure, use, exhibition or other means *P* document published prior to the international filing date but later than the priority date claimed		
Date of the actual completion of the international search 27 May 2002	Date of mailing of the international search report 06/06/2002	
Name and mailing address of the ISA European Patent Office, P.B. 5015 Patentlaan 2 NL-2280 Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax. (+31-70) 340-3016	Authorized officer Whelan, N	

Form PCT/ISA/210 (Second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int'l Application No.
PCT/CA 02/00198

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0802457	A 22-10-1997	EP 0802457 A1 JP 3122717 B2 JP 10058851 A	22-10-1997 09-01-2001 03-03-1998
US 6030750	A 29-02-2000	EP 0770494 A2 DE 69517174 D1 DE 69517174 T2 JP 2938397 B2 JP 9123387 A US 6096481 A	02-05-1997 29-06-2000 09-11-2000 23-08-1999 13-05-1997 01-08-2000

Form PCT/ISA/210 (Patent family annex) (July 1992)

フロントページの続き

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT, BE,CH,CY,DE,DK,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN, TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE, GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,NO,NZ,OM,PH,P L,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VN,YU,ZA,ZM,ZW

(72)発明者 グッディン、ジョナサン ダブリュ.

カナダ国 ブイ4エム 1ズイ9 ブリティッシュ コロンビア ツオッセン 11エイ アベニ
ュー 5253

(72)発明者 エーマンス、ジョン

イギリス国 タイン アンド ウェア ゲイツヘッド ロウ フェル ドライデン ロード 11
3

(72)発明者 クリストール、キース

カナダ国 ブイ8ズイ 7ジェイ1 ブリティッシュ コロンビア ピクトリア マルセット ブ
レイス 410-494

F ターム(参考) 2H025 AA12 AB03 AC08 AD01 BH03 BJ03 CB08 CB09 CB14 CB16
CB20 CB22 CC08 CC12 CC13 CC17 CC20 DA18 DA19 DA36
FA17
2H096 AA06 BA01 CA03 EA04 EA23 GA08
2H114 AA04 AA22 AA23 AA27 BA02 BA10 DA47 DA48 DA49 DA52
DA53 DA56 DA60 DA75 EA01 EA03 FA01 GA01 GA34