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METHOD AND SYSTEM FOR ANOMALY DETECTION

This application isbeing filed on 15 June 2007 as aPCT International
Patent application in the name of Robert Bosch GmbH, a German corporation, and
ETAS, Inc., aU.S. national corporation, applicants for the designation of all
countries except the US, William L. Miller and Kenneth Mark, both citizens of the
U.S., applicants for the designation of the US only, and Dragan Djurdjanovic, a
citizen of Serbiaand Montenegro, and Jianbo Liu, acitizen of China, applicants for
the designation of all countries, and claims priority to U.S. Utility Patent
Application No. 11/454,295, filed June 16, 2006.

Cross Reference to Related Applications

The present application isa continuation-in-part of and claims
priority to U.S. Patent Application Serial No. 10/967,102, filed October 15, 2004,
the disclosure of which is hereby incorporated by reference.

Technical Field
The present invention relates to software and systems, and more

particularly to anomaly detectors in run-time environments.

Background
In the current paradigm of product development, the quality of a

product, its production, and its service ismainly designed, tested, and implemented
during development. Anomalies in aproduct, its production, or its service are
identified during development and corrected. Once aproduct isreleased, itis
difficult to find remaining quality problems.

hi the automotive industry, warranty repair is expensive and can
consume acompany's profits. Engineering isthe root cause of more than fifty
percent of warranty repair costs. Software, operating within the vehicle, isacore
part of the engineering problem. Because engineering is often the root cause of the
problem, swapping parts during the repair will not solve the problem.

Anomaly detection in complex non-linear systems, such as an
automotive system, requires a high-fidelity model or representation of nominal
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system behavior that can be compared to actual system behavior to detect deviations.

Such systems often require expert guidance or substantial computation time, due to

which real-time monitoring becomes difficult. Furthermore due to the large number

of inputs, environmental factors, and complex interrelationships in many such

systems, the root cause for one or more anomalies is difficult to determine.
Therefore, improvements are desirable.

Summary
In accordance with the present invention, the above and other

problems are solved by the following:

In one aspect of the present invention, a system for detecting
anomalies includes a diagnostic agent. The diagnostic agent includes a
regionalization tool and a performance assessment tool. The regionalization tool is
responsive to data indicative of system operation and identifies acurrent operational
region. The performance assessment tool compares actual operational behavior of
the system in that current operational region to normal operationa behavior in the
sameregion. Thenormal operational behavior isdetermined from alocal model for
the current operational region.

In asecond aspect of the present invention, amethod for detecting
anomaliesin asystemisdisclosed. The method includes identifying a current
operational region of a system from aplurality of operational regions. The method
further includes comparing actual operational behavior of the system with normal
operational behavior within the current operational region to calculate aperformance
indicator. The performance indicator represents of a degree of deviation from the
normal operational behavior within the current operational region. The normal
operational behavior is determined from alocal model for the current operational
region.

In athird aspect of the present invention, amethod for training an
anomaly detector isdisclosed. The method includes collecting normal operational
data indicative of normal operational behavior of asystem. The method further
includes partitioning the overall operational space of the system into aplurality of
operational regions using aregionalization tool in the anomaly detector. The
method also includes computing an estimated model of the normal operational
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behavior for at least one of the plurality of operational regions of the system. In
such amethod, the operational datais system input data and initial condition data.
The partitioning step trains the regionalization tool using the normal condition
operational data.

In yet another aspect, a computer program product readable by a
computing system and encoding instructions for diagnosing anomalies in asystem is
disclosed. The product includes instructions for collecting normal operational data
indicative of normal operational behavior of a system. The product further includes
instructions for partitioning the system into aplurality of operational regions to train
aregionalization tool in the diagnostic agent. The product also includes instructions
for computing alocal model of the normal operational behavior for at least one of
the plurality of operational regions of the system. The product also includes
instructions for identifying the current operational region of a system as selected
from aplurality of operational regions. The product also includes instructions for
comparing actual operational behavior of the system with normal operational
behavior within the current operational region to calculate a performance indicator.
The operational data includes system input data and initial condition data for an
output of the system. The performance indicator represents a degree of deviation
from the normal operational behavior within the current operational region.

The invention may be implemented as a computer process; a
computing system, which may be distributed; or as an article of manufacture such as
acomputer program product. The computer program product may be a computer
storage medium readable by a computer system and encoding acomputer program
of instructions for executing a computer process. The computer program product
may also be apropagated signal on a carrier readable by a computing system and
encoding a computer program of instructions for executing a computer process.

A more complete appreciation of the present invention and its scope
may be obtained from the accompanying drawings, which are briefly described
below, from the following detailed descriptions of presently preferred embodiments
of the invention and from the appended claims.
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Brief Description of the Drawings

Referring now to the drawings in which like reference numbers
represent corresponding parts throughout:

FIG. 1lisaschematic representation of methods and systems for root
cause identification, according to an exemplary embodiment of the present
disclosure;

FIG. 2 is aschematic representation of acomputing system that may
be used to implement aspects of the present disclosure;

FIG. 3isaschematic representation of methods and systems for root
cause identification, according to an exemplary embodiment of the present
disclosure;

FIG. 4 is aschematic representation of methods and systems for root
cause identification, according to an exemplary embodiment of the present

disclosure;

FIG. 5is aschematic representation of methods and systems for
learning model-based lifecycle diagnostics, according to an exemplary embodiment
of the present disclosure;

FIG. 6 isablock diagram of a development of aproduct; according to
an exemplary embodiment of the present disclosure;

FIG. 7 is aschematic representation of the requirements associated
with awicked problem, according to an exemplary embodiment of the present
disclosure;

FIG. 8 isaschematic representation of methods and systems for
learning model-based lifecycle diagnostics, according to an exemplary embodiment
of the present disclosure;

FIG. 9is aschematic representation of methods and systems for
learning model-based lifecycle diagnostics, according to an exemplary embodiment
of the present disclosure;

FIG. 10 illustrates an example graphic user interface, according to an
exemplary embodiment of the present disclosure;

FIG. 1lisaschematic illustrating adistributed system, according to
an exemplary embodiment of the present disclosure;
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FIG. 12 isaprocess diagram illustrating a vehicle product
development, according to an exemplary embodiment of the present disclosure;

FIG. 13 isaprocess diagram illustrating the spiral lifecycle process,
according to an exemplary embodiment of the present disclosure;

FIG. 14 is aprocess diagram illustrating the spiral lifecycle process,
according to an exemplary embodiment of the present disclosure;

FIG. I Sisaprocess diagram illustrating the vehicle development
phase, according to an exemplary embodiment of the present disclosure;

FIG. 16 isaprocess diagram illustrating how the lifecycle method
progresses through requirements, according to an exemplary embodiment of the
present disclosure;

FIG. 17 isaprocess diagram illustrating how the lifecycle method
applies a spira sub process, according to an exemplary embodiment of the present
disclosure;

FIG. 18 isaprocess diagram illustrating how the lifecycle method is
applied, according to an exemplary embodiment of the present disclosure;

FIG. 19 isaprocess diagram illustrating how the lifecycle method
progresses, according to an exemplary embodiment of the present disclosure;

FIG. 20 isaprocess diagram illustrating how the lifecycle method
applies a spira sub process, according to an exemplary embodiment of the present
disclosure;

FIG. 21 isaprocess diagram illustrating how the lifecycle method is
applied in the spira sub process, according to an exemplary embodiment of the
present disclosure;

FIG. 22 isa system diagram, according to an exemplary embodiment
of the present disclosure;

FIG. 23 illustrates how the lifecycle method links the level stogether,
according to an exemplary embodiment of the present disclosure;

FIG. 24 isa schematic representation of methods and systems for
anomaly detection, according to an exemplary embodiment of the present disclosure;

FIG. 25 is a schematic representation of methods and systems for
training an anomaly detector for a system, according to an exemplary embodiment
of the present disclosure;
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FIG. 26 is a schematic representation of methods and systems for
anomaly detection, according to an exemplary embodiment of the present disclosure;

FIG. 27 is aprocess diagram illustrating an anomaly detection and
root cause identification system, according to an exemplary embodiment of the
present disclosure;

FIG. 28 is a schematic representation of an anomaly detection and
root cause identification system, according to an exemplary embodiment of the
present disclosure;

FIG. 29 is a schematic representations of methods and systems for
training a growing structure learning system according to an exemplary embodiment
of the present disclosure;

FIG. 30 is a schematic representation of an anomaly detection
system, according to an exemplary embodiment of the present disclosure;

FIG. 31lisaschematic representation of a gasoline engine model
system, according to an exemplary embodiment of the present disclosure;

FIG. 32 is aschematic representation of an integrated control system,
gasoline engine vehicle model system, and anomaly detectors, according to an
exemplary embodiment of the present disclosure;

FIG. 33 is a schematic representation of an anomaly detection
system, according to an exemplary embodiment of the present disclosure;

FIG. 34 isaprocess flow diagram of an anomaly detection system,
according to an exemplary embodiment of the present disclosure;

FIG. 35 isaschematic representation of aroot cause identification
system according to an exemplary embodiment of the present disclosure;

FIG. 36 isaschematic representation of aroot cause identification
system according to an exemplary embodiment of the present disclosure; and

FIG. 37 isaprocess flow diagram of an anomaly detection system
according to an exemplary embodiment of the present disclosure.

Detailed Description
In the following description of embodiments of the present

disclosure, reference is made to the accompanying drawings that form apart hereof,
and in which is shown by way of illustration specific embodiments in which the
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invention may be practiced. It isunderstood that other embodiments may be utilized
and changes may be made without departing from the scope of the present invention.

Increasingly complex and sophisticated control software, integrated
sensors, actuators, and microelectronics provide customers with higher reliability,
safety and maintainability. However, these impose more challenges than ever for
today's engineersto diagnosis the vehicle and to detect and isolate system
anomalies. The increasing portion of control software on avehicle makes it even
more difficult, because in order to reduce the cost, most of the manufacturers prefer
the solution of designing more sophisticated control software, instead of adding
hardware, to provide attractive features. The amount of software operating on a
vehicleisunlikely to stop growing in the future.

The control software and various hardware components used on the
vehicle usually exhibit nonlinear behaviors. Thisis especialy true for control
software. Therefore, once these software and hardware components are integrated in
avehicle and communicate with each other, they create alarge number of
operational regions. Those interactions are sometimes too complicated to
understand even for experienced engineers. In addition, the driver inputs and
external environmental conditions vastly vary and create infinite patterns of
conditions in which the vehicle operates. Signatures describing system behaviors
for different driver inputs and external influences are quite different. With infinitely
many behavioral patterns, anomaly detection and localization are complex, because
one has to compare the behavioral signaturesto appropriate behavioral regimes. The
best way to find anomalies is to compare the signatures within the same behavior
regime, and the deviation of the current signature from anormal signatureisthe
indication of the severity of the anomalies.

The present disclosure describes methods and systems for learning
model-based lifecycle software and systems. More particularly, the software and
systems typically include embedded diagnostic agents. These agents can include
anomaly detection agents and diagnostic agents. The diagnostic agents can detect
and quantify performance deviations or anomalous behavior. The anomaly detection
agents detect and quantify performance deviations or other anomalous system
behavior. Anomaly detection agents can beinterfaced with atested system to
facilitate root cause identification in the tested system. These agents can incorporate
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Self-Organizing Maps and use, for example, Time Frequency Analysis or Local
Models (such as local linear models) to detect anomalies in such systems. These
agents can be incorporated into a variety of run time or development environments
in order to diagnose errors throughout aproduct lifecycle.

Referring now to FIG. 1, aschematic representation of methods and
systems 100 for root cause identification is shown according to an exemplary
embodiment of the present disclosure. In general, such methods and systems can be
used for determining the cause of errors or other anomalous behavior in tested
systems, and may be embodied in avariety of hardware or software tools. System
100 includes an anomaly detection module 102. The anomaly detection module 102
is configured to detect anomalies in atested system. The anomaly detection module
102 compares actual operational behavior of the tested system to normal operational
behavior of the tested system to produce comparison data.

The system 100 aso includes acompression module 104. The data
compression module 104 accepts the comparison data from the anomaly detection
module 102. The compression module 104 creates patterns based on the comparison
data.

The system 100 further includes aroot cause identification module
106. The root cause identification module 106 generates a set of probable root
causes for each of the anomalies detected by the anomaly detection module 102.
The set may include one or more potential root causes of the anomaly, based on the
patterns generated by the compression module 104.

The behavior of the tested system should be partitioned into a
plurality of operational regions having predictable behavior. Normal operational
behavior isdetermined within any operationa region from performance related
features extracted from a distribution or model in that operational region. The
performance related features can be extracted from atime-frequency distribution.
The model can be alocal model of any form, such as alocal linear model or alocal
recurrent neural network fitted to the signals emitted by the system in the operational
region.

FIG. 2 and the following discussion are intended to provide abrief,
genera description of a suitable computing environment in which the invention
might be implemented. Although not required, the invention is described in the
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general context of computer-executable instructions, such as program modules,
being executed by acomputing system. Generally, program modules include
routines, programs, objects, components, data structures, etc. that perform particul ar
tasks or implement particular abstract data types.

Those skilled in the art will appreciate that the invention might be
practiced with other computer system configurations, including handheld devices,
pam devices, multiprocessor systems, microprocessor-based or programmable
consumer electronics, network personal computers, minicomputers, mainframe
computers, and the like. Theinvention might also be practiced in distributed
computing environments where tasks are performed by remote processing devices
that are linked through a communications network. In adistributed computing
environment, program modules might be located in both local and remote memory
storage devices.

Referring now to FIG. 2, an exemplary environment for
implementing embodiments of the present invention includes a general purpose
computing device in the form of acomputing system 200, including at |east one
processing system 202. A variety of processing units are available from avariety of
manufacturers, for example, Intel or Advanced Micro Devices. The computing
system 200 also includes a system memory 204, and a system bus 206 that couples
various system components including the system memory 204 to the processing unit
202. The system bus 206 might be any of several types of bus structuresincluding a
memory bus, or memory controller; aperipheral bus; and alocal bus using any of a
variety of bus architectures.

Preferably, the system memory 204 includes read only memory
(ROM) 208 and random access memory (RAM) 210. A basic input/output system
212 (BIOS), containing the basic routines that help transfer information between
elements within the computing system 200, such as during start up, istypically
stored in the ROM 208.

Preferably, the computing system 200 further includes a secondary
storage device 213, such as ahard disk drive, for reading from and writing to ahard
disk (not shown), and/or a compact flash card 214.

The hard disk drive 213 and compact flash card 214 are connected to
the system bus 206 by ahard disk drive interface 220 and a compact flash card
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interface 222, respectively. The drives and cards and their associated computer
readable media provide nonvolatile storage of computer readable instructions, data
structures, program modules and other data for the computing system 200.

Although the exemplary environment described herein employs a
hard disk drive 213 and a compact flash card 214, it should be appreciated by those
skilled in the art that other types of computer-readable media, capable of storing
data, can be used in the exemplary system. Examples of these other types of
computer-readable mediums include magnetic cassettes, flash memory cards, digital
video disks, Bernoulli cartridges, CD ROMS, DVD ROMS, random access
memories (RAMs), read only memories (ROMs), and the like.

A number of program modules may be stored on the hard disk 213,
compact flash card 214, ROM 208, or RAM 210, including an operating system 226,
one or more application programs 228, other program modules 230, and program
data232. A user may enter commands and information into the computing system
200 through an input device 234. Examples of input devices might include a
keyboard, mouse, microphone, joystick, game pad, satellite dish, scanner, digital
camera, touch screen, and atelephone. In the exemplary computing system, these
and other input devices are often connected to the processing unit 202 through an
interface 240 that i s coupled to the system bus 206. These input devices also might
be connected by any number of interfaces, such as aparallel port, serial port, game
port, or auniversal serial bus (USB). A display device 242, such as amonitor or
touch screen LCD panel, isaso connected to the system bus 206 via an interface,
such as a video adapter 244. The display device 242 might be internal or external.
In addition to the display device 242, computing systems, in general, typically
include other peripheral devices (not shown), such as speakers, printers, and palm
devices.

When used in aLAN networking environment, the computing system
200 is connected to the local network through anetwork interface or adapter 252.
When used in aWAN networking environment, such as the Internet, the computing
system 200 typically includes amodem 254 or other means, such as adirect
connection, for establishing communications over the wide area network. The
modem 254, which can be internal or external, is connected to the system bus 206
viathe interface 240. In anetworked environment, program modules depicted
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relative to the computing system 200, or portions thereof, may be stored in aremote
memory storage device. It will be appreciated that the network connections shown
are exemplary and other means of establishing acommunications link between the
computing systems may be used.

The computing system 200 might also include arecorder 260
connected to the memory 204. The recorder 260 includes a microphone for
receiving sound input and isin communication with the memory 204 for buffering
and storing the sound input. Preferably, the recorder 260 also includes arecord
button 261 for activating the microphone and communicating the sound input to the
memory 204.

A computing device, such as computing system 200, typically
includes at least some form of computer-readable media. Computer readable media
can be any available mediathat can be accessed by the computing system 200. By
way of example, and not limitation, computer-readable media might comprise
computer storage media and communication media.

Computer storage media includes volatile and nonvolatile, removable
and non-removable mediaimplemented in any method or technology for storage of
information such as computer readable instructions, data structures, program
modules or other data. Computer storage media includes, but is not limited to,
RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,
digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices, or any other medium
that can be used to store the desired information and that can be accessed by the
computing system 200.

Communication media typically embodies computer-readable
instructions, data structures, program modules or other data in a modulated data
signal such as acarrier wave or other transport mechanism and includes any
information delivery media. Theterm "modulated data signal” means a signal that
has one or more of its characteristics set or changed in such amanner as to encode
information in the signal. By way of example, and not limitation, communication
media includes wired media such as awired network or direct-wired connection, and
wireless media such as acoustic, RF, infrared, and other wireless media.
Combinations of any of the above should also be included within the scope of
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computer-readable media. Computer-readable media may also be referred to as
computer program product.

Referring now to FIG. 3, aschematic representation of methods and
systems 300 for root cause identification are shown according to an exemplary
embodiment of the present disclosure. In general, such methods and systems are
used to provide an indication of possible sources of system misbehavior based on
observations from anumber of anomaly detection agents. Preferably, system 300
includes aplurality of anomaly detection agents 302. The anomaly detection agents
302 detect anomalies in atested system. In preferred embodiments, the anomaly
detection agents 302 are trained by observations of the tested system or portions of
the tested system. The anomaly detection agents 302 can then derive statistical or
model-based representations of system behavior to assess behavior of the tested
system in unobserved situations. The diagnostic agents can be organized in
hierarchical levels, as described in greater detail in conjunction with FIGS. 25 and
31

The system 300 further includes adata compression tool 304. The
data compression tool 304 is configured to partition the tested system into aplurality
of operational regions. The data compression tool 304 is connected to the plurality
of anomaly detection agents 302. The data compression tool 304 is configured to
create patterns based on the comparison data. For example, the data compression
tool may produce a statistical signature of the tested system's operation based on the
output from the tested system within each of anumber of regions. This pattern
generation can be accomplished using principal components analysis (PCA) of time
frequency moments of output signals.

The system 300 further includes aroot cause identification tool 306.
The root cause identification tool, in general, uses the patterns to determine possible
root causes of the anomalies detected by the diagnostic agents. In various
embodiments, the root cause identification tool can use the hierarchical and failure
mode techniques described herein, such asin conjunction with FIGS. 31-33.

In an example embodiment, the anomaly detection agents 302 are
configured in hierarchical levelswith respect to the tested system. One anomaly
detection agent 302 could monitor overall tested system inputs and outputs, while
other anomaly detection agents 302 could monitor subsections of the tested system.
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The data compression tool can organize the detected anomalies into groups based,
for example, on timing of the anomaly. The root cause identification tool 306 could
then narrow the potential reasons for the anomaly by determining which anomaly
detection agents 302 detected the error. Anomaly detection agents 302 connected to
the anomaly-causing portion of the tested system will generally exhibit earlier or
greater error rates that affect other portions of the tested system. In this
embodiment, some knowledge of the hierarchical structure of the tested system is
necessary.

In an aternative embodiment, the plurality of anomaly detection
agents 302 can each betrained to detect a specific type or class of error of the tested
system overall, in which case the agents 302 essentially become diagnostic agents.
Each type of error, or "failure mode", might be triggered by any of anumber of
anomalies in the tested system. By determining which anomaly detection agents 302
detect an anomaly, the root cause identification tool 306 can produce a set of
possible root causes of the anomaly, allowing for more efficient detection/correction
of design issues. This embodiment can be accomplished by training a diagnostic
agent such as those described herein, with known error data in conjunction with
system operation rather than completely normal functional system operation.

Referring now to FIG. 4, aschematic representation of methods and
systems 400 for root cause identification are shown according to an exemplary
embodiment of the present disclosure. In the embodiment shown, the root cause
identification systems and methods are trained using a system with known errors in
order to separate the known errors from newly-discovered anomalies.

The system 400, as shown, isinstantiated by a start module 402.
Following the start module 402, operational flow ispassed to a collection module
404. The collection module 404 accepts anomaly data from diagnostic agents
trained on atested system. The anomaly data can be representative of anomalies
sensed in the tested system. For example, the collection module 404 can accept
known error values and known states for atested system. Thetested system can be a
system for which certain erroneous operation is expected, for example, due to errors
that are known but not corrected in the tested system. Thetraining can be, for
example, based on arecursive agorithm using Self-Organizing Mapsto reach a
designated variance or error level as discussed herein.
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The system 400 includes a behavior partition module 406. The
partition module 406 is configured to partition the behavior of the tested system into
anumber of operational regions. The partition module 406 trains aregionalization
tool, such as regionalization module 410 below, in accordance with data. The data
used to partition the tested system can be, for example, the normal or known faulty
behavior-related data collected by the collection module 404.

The system 400 includes a compute module 408. The compute
module 408 is configured to compute adistribution of signal features or amodel of
the known operational behavior. The distribution of signal features or model of
known operational behavior can bebased on the normal or known faulty behavior-
related data collected by the collection module 404. The compute module 408 can

- do such acomputation for each of the plurality of regions created by the partition

module 406, and preferably does so for at least one of the plurality of regions of the
tested system.

In the operation of one possible embodiment, the collection module
404, the partition module 406, and the compute module 408 execute concurrently.
For example, the collection module 404 can collect avariety of data samples from a
"baseline" operating system to betested, generally atested system including certain
known errors. The partition module 406 may partition the tested system into a
number of operational regions, or may partition those operational regions into a
larger number of smaller-sized operational regions as additional anomaly datais
collected by the collection module 404.

The compute module 408 can generate amodel or statistical
distribution, such as alinear model or distribution of time-frequency moments, from
the collected data in the current operational region. The current operational region
can be determined, for example, by aregionalization module 410, described below.”
The compute module 408 can update an estimated model or distribution using
subsequent data it can receive from the collection module 404. Further, the compute
module 408 can be configured to update or generate amodel or distribution in other
regions, such as neighbor regions to the current operational region.

The combi nati.on of the collection module 404, the partition module
406, and the execute module 408 produce amodel or distribution of the tested
system representative of normal or known faulty behavior in the operational

14



WO 2007/149367 PCT/US2007/014155

10

15

20

25

30

behavior of thetested system based on the data collected by the collection module
404.

The system 400 further includes aregionalization module 410. The
regionalization module 410 is configured to identify a current operational region in
the tested system. The regionalization module 410 may accept as inputs the input
and output of ahardware or software system to be tested. The regionalization
module 410 determines the current operational region of the tested system from
among the plurality of operational regions created by the partition module 406.

The system 400 includes aperformance module 412. In operation,
the performance module 412 compares actual operational behavior of the tested
system in the current operational region to the known operational behavior of the
tested system in the current operational region. The known operationa behavior of
the tested system is based on amodel derived from the data that is collected from a
tested system when this system behaved normally or when it underwent aknown
fault. This comparison determines if the actual behavior fits the expected fault. If it
does not, the difference may indicate a newly-detected fault. This new error may in
turn be an unexpected error and may have anew root cause.

The system 400 determines known operational behavior from an
estimated model or distribution for the current operational region. The estimated
model or distribution, as generated by the compute module 408, can be alocal linear
model or time-frequency distribution.

Operational flow among the operations 404-412 is generally ordered
from training to testing. This does not necessarily dictate the order illustrated,
although it is apparent that some amount of initial error data collection will take
place before any partitioning module 406 can execute and the compute module 408
can derive amodel or distribution. Furthermore, at least one operational region must
exist for the regionalization module 410 to determine the current operational region,
and some known and actual operational behavior must be available to determine
performance in the performance module 412.

The system 400 terminates a an end module 414. '

Referring now to FIG. 5, an example schematic representation of a
learning model-based lifecycle system 500 isillustrated. The learning model-based
life cycle described herein provides a construct upon which the root cause systemis
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based. The system 500 includes an Integrated Design Environment (IDE) and a
Run-Time Environment (RTE). The IDE 505 includes aset of software tools, or
agents, linked within the IDE 505. The RTE 510 includes another set of software
agents linked within the RTE 510. The IDE 505 and the RTE 510 are linked via link
515.

The root cause identification system and anomaly detection systems
described herein can be incorporated in the IDE 505 or the RTE 515. When
incorporated in the RTE, the root cause identification system and anomaly detection
systems are configured in such away that they provide real-time feedback and
learning based on other elements integrated in the RTE 515.

FIG. 6 isablock diagram illustrating a development system 600,
which can include software and development tools. The development system 600
includes three basic types of components in the development of aproduct, for
example, avehicle. Block 610 isthe requirements component. The first step in
product and system development uses the requirements component. The
requirements component defines what the product and system will include. Block
620 isthe design component. After the requirements for the product and system are
determined, the product and system are designed to conform to those requirements.
Block 630 isthe implementation component. After the product and system are
designed, the product and system are manufactured according to the design
component and put into service. The system can also include enterprise applications
for supply and service chain integration. In addition, the system can include run-
time application services including telecommunications and operations infrastructure
and vehicles.

Using avehicle as an example, acar manufacturer decides to make a
new model X car with systems for learning model-based lifecycle diagnostics. At
block 610, the requirements for the X car and systems are determined. For example,
the X car should be a sedan having acertain payload, acceleration, and should not
exceed $20,000. The system should reduce warranty repair costs and improve
customer satisfaction.

At block 620, the X car and the systems are des gned according to
those requirements. The frame and suspension of the car are designed to carry the
required payload, the power train isdesigned or chosen based on the gross vehicle
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weight and the acceleration requirement, and the rest of the X car is designed to not
exceed $20,000. For example, knowing the X car should not exceed $20,000, an
engineer may decide to choose an engine that barely meets the acceleration
requirement and would not choose an engine that would greatly exceed the
acceleration requirement. The system could be designed using web services with an
imbedded web platform to run on athree-tier architecture consisting of servers,
telematics, and electronics embedded in the vehicle. The system can have a
distributed database to enable serversto be located throughout the supply and
service chain. The system can include development, manufacturing, and service
tools.

At block 630, the X car and the systems are implemented, i.e.
manufactured and put into service, according to the design. Implementation deploys
the software and hardware throughout the three-tier architecture in the supply and
service chains.

Typically, softwareis utilized in each step of the product and system
lifecycle, which includes product and system development, production, and service.
Requirements management (RM) processes of vehicles and systems requires tools to
facilitate collaboration among people in the supply and service chain. Currently,
requirements management (RM) software uses model -driven, objected-oriented
(OO0) tools based on information authored and collected by people. Sincethe RM is
dependant on the information input into it, the RM islimited. Therefore, these
typical RM tools areinflexible and cannot autonomously recognize anomalies
without intervention from people. Some RM tools are based on knowledge agents,
giving it the ability to learn and recognize anomalies. Such RM tools are also
inflexible.

In the requirements step, there are two classes of knowledge
problems that determine the type of product and system to be analyzed, and then the
tools and processes required for development, production, and service. These two
classes of problems include "tame" and "wicked" problems. Most problems are
tame and can be solved with a stage-gate, linear process and information-based
tools. Developing the requirements for a system to manage wicked problems
requires a spiral process and knowledge-based tools.
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Wicked problems are composed of a linked set of issues and
constraints, and do not have a definitive statement of the problem itself. The
problem (and therefore the requirements for designing a solution) cannot be
adequately understood until iterative prototypes representing solution candidates
have been developed. Within the primary overall development process, which is
linear, a secondary spiral process for iterative prototypes isrequired. The spiral
process involves "rolling out" aportion of the software at a time while another
portion isbeing developed. The software engineering community has recognized
that a spiral process is essential for rapid, effective development.

An example of awicked problem isthe design of a car and the
diagnostics for the car. The "wicked" terminology was introduced by Horst Rittel in
1970. Rittel invented atechnology called issue-based information systems (IBIS) to
help solve this new class of problems. Wicked problems look very similar toiill-
structured problems, but have many stakeholders whose views on the problem may
vary. Wicked problems must be analyzed using a spiral, iterative process, and the
ideas, such asrequirements associated with the problem, have to belinked in anew
paradigm 700, illustrated in FIG. 7.

Referring to FIG. 7, the three key I1BIS entities are (1) issues 702,
703, 704, or questions, (2) positions 705, 706, 708, or ideas, that offer possible
solutions or explanations of the issues, and (3) arguments 710, 712, or the pro's and
con's. AU three entities can belinked by relationships such as supports, objects-to,
is—suggested —by, responds to, generalizes, specializes, replaces, and others. The
visualization of 1BIS becomes a graph or anetwork. IBIS builds abridge between
design and argumentation or the expressed dialog of ideas that forms the core of
knowledge management.

IBIS isagraphica language with a grammar, or a form of argument
mapping. Applying IBIS requires askill similar to the design of experiments
(DOE). Jeffrey Conklin (http://cognexus.org/idl 7.htm) pioneered the application of

graphical hypertext views for IBIS structures with the introduction of graphical IBIS
or gIBIS. The strength of IBIS, according to Conklin, stems from three properties:
(1) 1BIS maps complex thinking into analytical structured diagrams, (2) IBIS
exposes the questions that form the foundation of knowledge, and (3) IBIS diagrams
are much easier to understand than other forms of information.
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In the Compsim IBIS tool architecture, ideas can be specified in
either the form of atext outline or atree structure of nodes. Ideas of agiven level
can have priorities and weights to change the ordering of the display of ideas.
Priorities can be easily edited in avariety of graphical ways. A unigque decision
making mechanism mimics human thinking with relative additions and subtractions
for supporting negating arguments. The IBIS logic is captured as XML definitions
and is used to build linked networks of knowledge-based agent networks. Compsim
calls this agent structure knowledge enhanced electronic logic (KEEL). The agents
execute an extended form of the IBIS logic.

The current field that contains IBIS is called computer-supported
argument visualization (CSAV). Related fields that apply CSAV are computer-
supported cooperative work (CSCW) and computer-mediated communication
(CMC), which helped spawn the Internet. CMC tools include Microsoft's
NetMeeting™ product.

Argument visualization is akey technology for defining the complex
relationships found in requirements management, which is a subset of knowledge
management (KM). One of the principles for KM is found in constructivist learning
theory, which requires the negotiated construction of knowledge through
collaborative diélog. The negotiation involves comparative testing of ideas. The
corresponding dialog with visualization of ideas creates the tacit knowledge that
comprises the largest part of knowledge as opposed to the explicit part of knowledge
directly linked to information. Tacit knowledge is essential for shared
understanding.

IBIS is aknowledge-based technology. 1BIS tools for requirements
management such as Compenium™ or QuestMap™ ( trademarks of GDSS, Inc.) are
distinctly different from object-oriented (OO) framework tools for RM such as
Telelogics's Doors™ or IBM's Requisite-Pro™. Wicked problems cannot be easily
defined such that all stakeholders agree on the problem or the issues to be solved.
There are tradeoffsthat cannot be easily expressed in OO framework with RM tools.
IBIS alows dyadic, situated scenarios to define requirements. 1BIS allowsthe
requirements to be ssimulated. IBIS can sense those situations and determine which
set of requirementsis appropriate or whether the requirements even adequately
apply to the situation.
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In summary, current RM tools have limitations. OO RM tools enable
traceability between requirements, design, and implementation during devel opment,
but not during the production or service deployment phases. OO RM tools are not
knowledge-based and cannot easily handle ill-structured, wicked problems with
multiple stakeholder views that conflict with different weighted priority ranking of
those views expressed as the pro's and con's of argumentation. IBIS RM tools
overcome most of those limitations but do not develop traceable requirements for a
system design.

Both OO RM and IBIS RM tools recognize that the relationship
between ideas as expressed in text alone isnot clear without additional structure
such as an outline with an associated hierarchy. Network structures such as those
made possible by hypertext technology can be traced back to Vannevar Bush and his
1945 article As We May Think. In 1962, Douglas Englebart defined a framework for
cognitive augmentation with toolsin his report from the Stanford Research Institute,
Augmenting Human Intellect: A Conceptual Framework. The result of Englebart's
research and development work was the development of the modern windows, icon,
mouse, and pointer (WIMPT) graphical user interface (GUI) and an early
implementation of hypertext-based tools.

Round-trip engineering for OO, or model-driven software
development, is a source code for implementation that is traceable back to elements
of design and requirements. The round-trip isbetween requirements, design, and
implementation as source code and then back to design and requirements. Since
round-trip engineering currently occurs only during development and only within
certain segments of the IDE, model anomalies that appear in the RTE after
development cannot be traced back to root causes in requirements, desi gn, or
implementation. A segmented IDE might consist of four quadrants. These
guadrants contain methods and tools for (1) enterprise applications in a system, (2)
embedded software for the vehicles, (3) telematics for the vehicle, and (4) service
systems for the vehicle.

Freguently, the OO model is defined using aunified modeling
language (UML). UML isathird generation OO graphical modeling language. The
system model has structural, behavioral, and functional aspects that interact with
external users called actors asdefined in use cases. A use case is anamed capability
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of the system. System requirements typically fall into two categories. functional
requirements and non-functional or Quality of Service (QoS) requirements.

Functional means what the system should do. QoS means how well
or the performance attributes of the function. In common usage, functional can
imply both functional and performance. The structural aspect defines the objects
and object relations that may exist at run-time.  Subsystems, packages, and
components also define optional structural aspects. The behavioral aspect defines
how the structural elements operate in the run-time system. UML provides state-
charts (formal representation of finite-state-machines) and activity diagrams to
specify actions and allowed sequencing. A common use of activity chartsis
specifying computational algorithms. Collections of structural elements work
together over time as interactions. Interactions are defined in sequence or
collaboration diagrams.

The requirements of a system consisting of functional and QoS
aspects are captured typically as either one or both of two ways. (1) amodel isuse
cases with detailed requirements defined in state charts and interaction diagrams, or
(2) specifications as text with or without formal diagrams such as sequence diagrams
that attempt to define all possible scenarios of system behavior.

Round-trip engineering traces OO requirements through OO design
into an OO implementation that includes the OO source code for software. This
round-trip occurs only in certain segments of the IDE, which are OO IDE segments,
and only during development. Currently, there isno round-trip traceability between
an RTE and an IDE during development, production, and service. Round-trip
engineering has been extended to use ameta-model rather than require obtrusive
source code markers, but extended round-trip engineering still occurs only within
certain segments of the IDE during devel opment.

Model-based diagnostics is a state-of-the-art method for fault
isolation, which isaprocess for identifying afaulty component or components of a
vehicle and a system that i s not operating properly in compliance with operating
parameters specified as part of the vehicle and system's implementation model.

M odel-based diagnostics suffers from the limitations of assuming that all the
operating scenarios of the system and all of the potential faults of the system are a
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priori known and can be described. The operating scenarios of the system include
all expected faults.

If an adequate amount of observable information from the vehicleis
available at run-time, model-based diagnostics can determine the root cause for
previously known and expected failure modes predicted by an expanded model that
includes both normal and failure modes. The expanded model is used to ssmulate
and record the behavior resulting from all possible single component failures, then
combinations of multiple component failures. When failure behavior is observed, a
sequence of pre-determined experiments can be performed to determine the root
cause.

Faults in the vehicle and system's requirements or design and
implementation models are mainly detected after development by users who may
complain and have their complaints analyzed by service technicians and then
possibly by engineers. Situations that led to the complaints are frequently not easily
identified and reproducible. The process of fault isolation or root cause
determination generally begins at detection of abnormal system behavior and, as
described herein, attempts to identify the defective and improperly operating
component or components. These components perform some collection of functions
in the system. The components are frequently designed to be field replaceable
hardware units that may contain software. However, the failure model assumed in
current practice considers functional failure modes of the replaceable component
and may not determine whether the failure inside the component or componentsis a
hardware or a software failure. If the failureisin software, then the failure may
have occurred at the requirements, design, or implementation level. Replacing the
hardware component or components may not repair the problem, because the user of
the system cannot readily examine the software operation.

In one example embodiment, an improved method and system of
detecting lifecycle failures in vehicle functional subsystems, that are caused either
by hardware failures or by software anomalies in requirements, design, or
implementation and tracing the failure back to the root cause in the model, is
contemplated. For tracing, the method uses a new capability for lifecycle round-trip
engineering that links diagnostic agentsin the RTE with adyadic model in the IDE
for managing the devel opment and maintenance of vehicle functions and the
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corresponding diagnostics. The dyadic model in the IDE is managed by linked
dyadic tools that develop functions and corresponding diagnostics at each level of
the spiral development "V*" process (which will be described in more detail |ater):
requirements, design and implementation. The lifecycle diagnostic method, which
links the IDE and RTE, can be applied during development, production, and service
of the vehicle RTE.

Referring to FIGS. 8 and 9, a learning model-based lifecycle
diagnostic system 799 isillustrated. Preferably, the system 799 includes an IDE 800
and aRTE 900 linked by aDRD link 799. FIG. 8 isasystem diagram, according to
one example embodiment, for alifecycle diagnostic method for the development of
vehicle functions and corresponding diagnostics in the IDE 800 and the deployment
of diagnostics in an RTE 900 to service vehicles. Thediagram illustrates how the
lifecycle method links development tools together in the IDE 800 with linkages.
The IDE 800 in the lifecycle method contains devel opment tools and processes to
develop vehicle functions and a corresponding diagnostic application consisting of a
set of integrated and linked diagnostic agents for deployment in the RTE 900. The
IDE 800 and the RTE 900 are linked through a DRD link 799 and corresponding
processes. The DRD 799 can include a database, which can be adistributed
database.

FIG. 9 isasystem diagram, according to one example embodi ment,
for alifecycle diagnostic method for the development of diagnostics in an IDE 800
and the deployment of diagnostics in a RTE 900 to service vehicles. The diagram
illustrates how the lifecycle method links diagnostic agents together in the RTE 900
with linkages. The RTE 900 in the lifecycle method contains and operates the
diagnostic application deployed as athree level system consisting of diagnostic
agents, running on servers, TCUSs, or equivalent modules that plug into vehicles, and
ECU's. Production Service tools interface to the vehicle and are part of the RTE
900. The RTE 900 islinked back to the IDE 800 through the DRD link 899 and
corresponding processes.

. Asshown in FIG. 10, an IDE tool such asthe Compsim KEEL toolkit

can be driven by the datareturned in the DRD link 799, FIG. 8, to simulate and test
the design model and analyze the failure mode. The data shown below isan
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- <Schema name="KEEL DataSchemaxml" xmlns="urn:schemas-
microsoft-com:xml-data" xmins.dt="urn:schemas-microsoft-
com:datatypes'>

<ElementType name="Index" dt:type="ui2" />

<ElementType name="Vaue" dt:type="float" />

- <ElementType name="InDat" content="€elt6 nly" model- "closed">
<element type="Index" min@ ccurs="1" t>

<element type="Vaue" mind ccurs="1" 1>

</ElementType>

<ElementType name="ProjectTitle" content="text 0 nly"
model="closed" dt:type="string" />

- <ElementType name="Report" content="eltO nly" model="closed">
<element type="ProjectTitle" min6 ccurs="1" />

<element type="InDat" minOccurs="0" maxOccurs- "*" />
</ElementType>

</Schema>

The DRD link 899 eliminates the need for the RTE agents 600 to
know how to communicate with the toolsin the IDE 800. The system 799 creates
the proper linkages between the IDE 800 and the RTE 900 using only the
information in the DRD link 899. An example of the data returning from the RTE
900 to the IDE 800 is shown below:

<?ml version="1.0" ?>

- <Report xmlns="x-schema:K EEL DataSchemaxml.xml" >
<ProjectTitle>UAVI </ProjectTitle>

- <InDat>

<Index>0</Index>

<Vaue>| 00</Vaue>

</InDat>
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- <InDat>

<Index> I<yindex>
<Vaue>22</Vaue>
</InDat>

- <InDat>
<lhdex>2</Index>
<Vaue>82</Vaue>
</InDat>

- <InDat>
<Index>3</Index>
<Vaue>60</Vaue>
</InDat>

- <InDat>
<Index>4</Index>
<Vaue>64</Vaue>
</InDat>

- <InDat>
</Report>

Referring back to FIG. 8, preferably, the IDE 800 has three levels of
development activity for users of the system 799 with corresponding tools and
processes. These three levels are requirements management, design, and
implementation. The system 799 creates alinked dyadic tool pair for functions and
diagnostics at each level in the IDE 800.

At thetop of FIG. 8isthe activity called requirements management.
Typical model-driven, object-oriented (OO) development tools for requirements
management (RM) are IBM/Rational Requisite Pro™ and Telelogic DOORS™.
The lifecycle method creates a new dyadic capability for RM by augmenting
existing OO RM tools with an issue-based information (IBIS) tool such asthe
Compsim Management Tool™ (CMT).

The IDE 800 includes afirst RM 802, a second RM 804, afirst
design tool 806, a second design tool 808, athird design tool 810, afirst deployment
tool 812, a second deployment tool 814, and athird deployment tool 816.
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Preferably, the first RM 802 isimplemented as OO RM Tool, and the second RM
804 isimplemented as an IBISRM Tool. The first design tool 806 isimplemented
as an OO model-driven function design tool, such as IBM/Rational Rose™, iLogix's
Rhapsody™, the MathWorkss Simulink™ or ETAS's ASCET/SD™.

The second design tool 808 isimplemented as aknowledge-based
diagnostics design tool. Thethird design tool 810 is implemented as a model-based
diagnostics design tool. The second design tool 808 and the third design tool 810
comprise a diagnostic builder tool suite that contains both knowledge-based
diagnostic design tools and model-based diagnostic design tools. These tools enable
the user of the system 799 to develop run-time diagnostic agents for the
corresponding designed vehicle functions. The diagnostic agents are intended to run
on the three levels of the RTE 900, FIG. 9. The diagnostic builder suite specifies the
targeted level of the RTE 900 for each diagnostic agent and builds the links shown
in FIG. 9 between the agentsin the RTE 900. An example of a knowledge-based
agent development tool isCompsim's KEEL ™. An example of amodel-based
agent development tools isR.O.S.E. ‘sRodon™.

The first deployment tool 812 isimplemented as a software function
code generation, management, and deployment tools such as ASCET/SD™. The
second deployment tool 814 isimplemented as a software diagnostic code
generation, management, and deployment tool. And, the third deployment tool 816
isimplemented as a software diagnostic code generation, management, and
deployment tool.

The first RM 802 is linked to the second RM 804 vialink 818. The
link 818 is any standard communication link known in the art. The link 818 isabi-
directional, integrated link that enables capturing the knowledge, assumption, and
decision logic behind the requirements captured in the first RM 802. Preferably, the
system 799 implements link 818 by passing uniqgue XML function identifier
descriptors (FIDs - RM) for objects in the first RM 802 to the second RM 804 and
by building a data relationship with XML diagnostic identifier descriptors (DIDs-
RM). The dyadic relationship for link 818 is stored inthe DRD link 899. By
windowing the second RM 804 into the graphic user interface of the first RM 802,
the system 799 enables the user to define the decision logic behind the requirement
being captured as objects in the first RM 802, such as ause case. Thelogic in the
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second RM 804, corresponding to the object in the first RM 802, is defined as
unique XML diagnostic identifier descriptors (DIDs).

The first design tool 806 is linked to the second and third design tools
808, 810 vialink 820. Link 820 bi-directionally passes unique XML defined
function identifier descriptors for design (-D) and diagnostic identifier descriptors
for design (-D) and integrates the graphical user interface of the separate tools at the
design level.

The first deployment tool 812, or functional module, islinked to the
second and third deployment tools 814, 816, or diagnostic agents, via link 822. Link
822 hi-directionally passes unique XML defined function identifier descriptors for
implementation (-1) and diagnostic identifier descriptors (-1) and integrates the
graphic user interface of the implementation tools. Link 822 isimplemented by
defining the ECU memory locations and data types for the information
corresponding to vehicle modules. ASAM MCD™ with XML is an example of
such alink. Tools, such as ETASs ASCET/SD™ and INCA™, can be used to
implement link 822.

The first RM 802 is also linked to the first design tool 806 via link
824. Thefirst design tool 806 isaso linked to the first deployment tool 812 via link
826 for implementation. Links 824, 826 enable what is called round-trip
engineering for functions in the development environment. Objects corresponding
to requirements can be traced through design to the source code in implementation
and back up to design and requirements.

Likewise, the second RM tool 804 is linked to the second and third
design tools 808, 810 via links 828, 830, respectively. The second and third design
tools 808, 810 are linked to the second and third deployment tools 814, 816 vialinks
832, 834, respectively. Links 832, 834 enable round-trip engineering for diagnostics
in the development environment. XML defined design objects for diagnostics are
linked to source code for diagnostics.

The system 799 integrates model-based diagnostic design tools, such
as R.O.S.E's Rodon™, that generate source code with tools, such as ASCET/SD™,
to generate executable code on areal-time operating system for implementation on
the RTE 900, FIG. 9.
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Referring to FIG. 9, the RTE 900 has three levels of software and
hardware. Using the tools in the IDE 800, the DRD Link 899, and processes, the
system 799 enables the building of adiagnostic application as acollection of linked
diagnostic agents that run on the three levels. Some of the agents can be
downloaded onto level 2 using OSGi ™.

The RTE 900 includes afirst database 902, a server application 904,
a second database 906, abroker 908, an electronic control unit (ECU) 910, learning
agents 912, and agents 912, 914. Preferably, the first database 902 is an embedded
distributed database known inthe art. The server application 904 is a server
diagnostic software application and meshed network of KBD modules. The second
database 906 is an embedded distributed database. The broker 908 manages KBD
bundles of diagnostic agents and data. The ECU 910 includes software and other
hardware connected to the ECU. The learning agents 912 include software learning
model-based diagnostic agents and datain ECU's. The agents 914 include software
model-based diagnostic (MBD) agents and datain ECU's.

The first database 902 is linked to the server application 904 via link
916. The second database 906 is linked to the broker 908 via link 918. The ECU
910 islinked to the learning agents 912 and the agents 914 via link 920. The server
application 904 is also linked to the broker 908 via link 922. The broker 908 is
linked to the learning agents 912 and agents 914 via link 924.

The IDE 800 and RTE 900 are linked vialink 899. Link 899 isa
Development, Run-time, Development (DRD) link. Preferably, the DRD link 899is
implemented using atelecommunications and operations infrastructure (TOI)
containing combinations of a distributed database and software interprocess
communication (IPC) mechanisms. In the DRD link 899, the information sent
through the database or IPC mechanisms are defined by XML schemas and contain
both IDE 800 and RTE 900 data. The XML schema could be sent in messages or
optionally be used to configure adistributed database.

During development, new diagnostic tools in the IDE 800 are used to
guide users to follow aspiral "V" process "down" and "up" the "V" tobuild IDE
model linkages (asis described in more detail below) between functions uniquely
identified with function identifier descriptors (FIDs) and corresponding diagnostics
uniquely identified with diagnostic identifier descriptors (DIDs) at the levels of
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requirements, design, and implementation. The EDE dyadic (function-diagnostic)
model linkages with FIDs and DDDs are stored in the DRD link 899 database.

Consequently as the method follows the spiral "V" process over
iterative prototyping cycles during development, anew dyadic system model isbuilt
in the IDE 800 and the DRD link database 899. An RTE 900 is also built for the
vehicle. The RTE 900 contains athree-tier level of diagnostic agents that are linked
together into an integrated diagnostic application architecture (DAA) and linked to
the vehicle functions including software with corresponding calibration parameters
in ECU'S.

The three-tier RTE 900 includes managers on the servers 904 and
brokers 908 on the TCUs for dynamically deploying the agents 912, 914 onto
vehicles such as downloading agents to avehicle's TCU or avehicle service module
(VSM).

In the RTE 900, run-time linkages or run-time binding between
software objects isperformed by the agent manager and brokers using the BDE
defined XML schemas and data such as the FIDs and DIDs contained in the DRD
link 899. This enables linking agents together and linking agents with functions.

An example of the linking isconnecting a diagnostic agent with a
calibration parameter in an engine ECU. In an DDE 800 using UML, these
connections might also include ports and protocols. In an DDE 800 and a RTE 900
complying with the Association for Standardization of Automation and
Measurement (ASAM), additional access methods for measurement, calibration and
diagnosis (MCD) that relate to ECU's in vehicles would be defined. These access
methods would still be contained in the DRD link 899 and represented as XML
schemas with embedded data.

Referring to FIG. 11, alifecycle diagnostic method manages vehicles
in adistributed system 1180. The distributed system include adatabase, 1181,
servers 1182, vehicles 1184, tools for development, production and service, 1186,
1188, 1190 and modules inside the vehicle such as TCUs 1192 and ECUs 1194.
Preferably, the architecture that the method uses to define the system isthe 1SO
Open System Interconnection (OSl) seven layer reference model. The layers are

application, presentation, session, transport, network, data link, and physical. The
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DAA comprises the top three layers of the seven layer "stack" for anode, and the
TOI comprises the bottom four layers of the stack.

Root cause tracing occurs with lifecycle round-trip engineering that
links the detected failuresin the vehicle RTE 900, FIG. 9, with the elements of the
model in the IDE 800, FIG. 8. The linkage isimplemented by using the IDE 800
linkages stored in the database. By tracing the linkages built with tools in an IDE
800, the candidates for root cause in requirements, design, and implementation can
be determined.

A spiral lifecycle process is triggered by the likely detection of
failures by cooperative, autonomous diagnostic agents in the vehicle RTE 900, FIG.
9. The agents would apply arange of algorithms and technologies that can be
classified in several categories. model-based diagnostics (MBD), learning model-
based diagnostics (LMBD) or knowledge based diagnostics (KBD). Current OBD
diagnostic agents use MBD that frequently applies exponential moving averages,
which are first order Kalman filters, to design acceptable Type 1and Type 2
statistical error profiles.

The trigger can be assisted by service tools connected to the vehicle
RTE 900, FIG. 9. Thetrigger sends information through messages or a distributed
database to the vehicle's diagnostic application running on one or more servers. The
messages or database transactions from the vehicle to the servers) are created by the
vehicle's TCU after being fed information from a combination of MBD and LMBD
agents running in ECU's and a combination of MBD, LMBD, and KBD agents
running in the TCU.

In apossible embodiment, LMBD agents can apply time-frequency
based performance assessment technology for anomaly detection and fault isolation.
Time-frequency analysis (TFA) based performance assessment provides atool for
managing a combined time-frequency representation of asignal or a set of signals
that represent the normal behavior of a system into amodel of that system. The
behavior can vary over time and frequency. TFA isamethod for detecting both
slow degradation and abrupt failures.

Newly developed TFA signal representation methods can identify the
behavior of asystem's signature in ways that are difficult or impossible using time-
series or spectral analysis. Optimal design methods for TFA include the Reduced
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Interference Distribution or RDD. RID charts of time frequency distributions
achieves the goal of providing high resolution time-frequency representations with
desirable mathematical properties such astime, frequency, and scale shift
covariance, time and frequency marginal property, group delay and constant
frequency properties and suppression of cross-terms (Cohen). Learning MBD
agents built with RID TFA technology exhibit many desirable properties such as
very rapid identification of failures without using amodel, with minimal processing
and with engineered statistical confidence in the detection.

LMBD and other diagnostic agents can alternately apply local linear
models in combination with growing structure competitive learning to detect system
anomalies while minimizing error, even in extremely nonlinear systems. Local
linear models provide an easily-computable, close estimation that represents the
normal behavior of asystem. Local linear model usage avoids complicated,
computationally-intensive analysis, and can therefore easily be adapted to real-time
applications.

Consider ageneral dynamic system to betested whose input-output
relationship isdescribed by the following differential equations, in which u
represents system inputs, y represents outputs, X represents state variables, and T
denotes the matrix transposition operator:

u =[u,,u2,...,up]r
x(k +1) = f(x(k),u(k))

y(k)=h(x(k),u(k)) where: y =[yl’y2 ""’yr]

x=[x;,X55005 %, I
If the tested system inputs and outputs are observable, and the state
variables can be reconstructed from system observation, then the system can be
described by anonlinear autoregressive with exogenous inputs (NARX) model

which takes the following form:
M
y(k+1) = D vim(s(k))Fm(s(k))
m=1

In further embodiments, additional models can be used, including a
Takagi-Sugeno method, auto-regressive with exogenous inputs (ARX) and a

combination of these models.
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In these systems, the problem of nonlinear dynamic modeling reduces
to the problem of approximating the functional relationship of F_(s(k)) in the above
eguation by using a set of local models focused on a small region in the space
occupied by the system spanned by vectors of the form:

s(k) = [y oo yk =, + 1) uk =1, sl =y —n, +1)7 |

If the model structureis such that it islinear with respect to its
parameters, then the model parameters can be estimated by recursively non-linearly
minimizing in the least squares sense the modeling errors in the training set. One
example model useful in this context isalocal model, in particular alocal linear
model. Local linear models are agood choice for use because of their limited
computational demands.

Diagnostic agents can use local models to detect anomalous system
behavior by setting athreshold onresidual error. In one possible embodiment, a
local linear model can be used. The threshold on residual error is set with respect to
each operational region in order to avoid detection of anomalies in regions sparsely
populated during the training process, which would result in high missed detection
and false dlarm rates. By splitting the entire operational space of the tested system
into sufficiently small regions at places where nonlinearity is high, alinear model
provides an acceptable and easily computable estimate of actual system operation.

Either of the preceding methods for detecting anomalies, using time-
frequency analysis or local linear modeling, are suitable for usage consistent with
the present disclosure, either for initial detection of anomalies or for comparison of
error-prone systems to identify and root-cause newly encountered anomalies. Use of
these techniques is discussed in greater depth in conjunction with Figures 24-37.

Referring back to FIGS. 8 and 9, a possible embodiment of a
learning model-based lifecycle diagnostics system 799 includes an IDE 800,
linkages within the IDE between IDE tools, an RTE 900, linkages within the RTE
900, and aDRD link 899. These linkages, operating with agents and tools in the
RTE 900 and tools in the IDE 800, enable the system to trace failures, or anomalies,
detected in the RTE back to the root cause as model anomaliesin the IDE.

To trace model failures back from the RTE 900 to the IDE 800, the
method implements round-trip engineering between diagnostic agents in the RTE
900 and diagnostics linked to the corresponding vehicle functions in the IDE 800.

32



WO 2007/149367 PCT/US2007/014155

10

15

20

25

30

The functions are represented as amodel with objects. Because the agents,
processes, tools, and linkages operate together in a spiral process to learn model
anomalies over avehicle's lifecycle, the method is called lifecycle learning-model
based diagnostics.

An IDE 800 isan integral part of the lifecycle method in addition to a
RTE 900 for software on the vehicle and software that supports the production and
service of the vehicl é. Service of the vehicle includes service operations at dealers
and atelematic service such as OnStar™. Preferably, the RTE 900 includes fleets of
vehicles, the electronic control units (ECU's), networks, sensors, actuators and user
interface devices such as speedometers on dashboards on individual vehicles, and a
telecommunications and operations infrastructure (TOI) that includes computers
such as distributed servers, communication networks such as cellular and wireless
LAN's such as WIFI, and tools such as diagnostic scan tools generally found at
OEM dealerships and independent aftermarket (IAM) repair shops.

Preferably, the IDE 800 is acomputing laboratory and experimental
driving environment with a collection of development tools for developing and
maintaining vehicle functions such as power train electronics, including the ECU's,
sensors, and actuators for an engine and transmission, body e ectronics, such as the
ECU's, sensors, and actuators for lighting systems, and chassis electronics, such as
the ECU's, sensors, and actuators for anti-lock braking systems (ABS). The vehicle
functions are implemented in systems such as power train and corresponding
subsystems, such as engine cooling. These systems and subsystems include both
hardware and software. The IDE 800 is also used to develop the enterprise
application software (alternately called the information technology or IT software)
to support vehicle production and service operations.

The software that implements vehicle functions generally runson
electronic control units (ECU's) and an optional telematic control unit (TCU)
residing on the vehicle. The application software runs on computers such as servers
and PC's and for service tools such as diagnostic scan tools. The development of
vehicle diagnostic software for service operations is commonly called authoring.
The diagnostic software on the vehicle is called on-board diagnostics (OBD).

The processes used in the methods of the IDE 800, FIG. 8, are
illustrated in FIGS. 12-21. Asthese processes are followed, the linked tools in the
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IDE 800 build information inthe DRD 899 to link the diagnostic application and
agents in the RTE 900 with the IDE 800. Those agents read the DRD 899 to find
FIDs linked with DIDs.

FIG. 12 isaprocess diagram illustrating avehicle product
development lifecycle 1200, according to an exemplary embodiment of the present
disclosure. The product development process for a specific model year of avehicle
over its lifecycle is conceptually divided into three phases including adevelopment
phase 1202, aproduction phase 1204, and a service phase 1206. Development,
production and service activities require the management of large amounts of
software. Software creates amajor part of the vehicle function and amajor part of a
business information system to support the vehicle's lifecycle.

Development of aproduction and service capability including the
tools for production and service occurs during the development phase 1202.
Capability isdefined as people with knowledge, tools, technology, and processes.
There isan associated architecture that represents the structure of the capability,
including abusiness information system, represented by tools and technology.
There isalarge amount of software in the business system. The associated
architecture also includes the structure of the vehicle, including its subsystems,
which include its on-board information system. There isalso aboard diagnostic
(OBD) system in the vehicle. This OBD system includes a large amount of
software. Part of the OBD system isrequired by government regulations to
indirectly monitor the vehicle's emissions by monitoring the operation of the
vehicle's emission control systems. Typicaly, there isamost as much diagnostic
software in avehicle's power train ECUs as there is control software.

The information system on the vehicle typically includes many
electronic control units (ECUs). Vehicles typicaly have fifty or more ECUs. These
ECUs contain alarge amount of software. The architecture of avehicle, and its
production and service systems, are completely defined during development. The
development phase 1202 typically begins with alarge part of the architecture
previously determined in aresearch and development (R&D) phase (not shown) that
precedes the development phase 1202. The architectural model for avehicle model
istypically derived from aplatform model, which includes power train, chassis
body, and other subsystem components.
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The product development process enables development, production,
and service of both the vehicle and the business system as a product. The process
operates with the corresponding business system that supports the vehicle during
development, production, and service.

The product and the business system are supported by the process,
which ispart of an organizational capability. The capability has an associated
architecture. The architecture relates to both the vehicle and the business system.
The capability includes internal and external (outsourced) services with people and
their knowledge, applications, tools, platforms, components, and technology. The
capability supports the vehicle as aproduct and the business system in the supply
and service chains. These chains support the origina equipment manufacturer
(OEM) and the vehicle as aproduct over the lifecycle.

The lifecycle for avehicle typically lasts more than ten years. The
development phase 1202 is about two to three years, followed by severa years of the
production phase 1204 for several model years. The production phase 1204 is
followed by many years of the service phase 1206. The initial part of the service
phase 1206 for a specific vehicle typically includes an original equipment service
(OES) warranty period of three or more years that is followed by a service period
that includes the independent aftermarket (IAM).

These development, production, and service phases 1202, 1204, 1206
areillustrated as following each other sequentially over time, but there is overlap
that will beillustrated in subsequent figures. The production phase 1204 begins
with the start of production (SOP). The service phase 1206 begins with the first
customer shipment (FCS) of avehicle. Asmany vehicles are produced for a model
year, the production and service phases 1204, 1206 overlap.

In each phase 1202, 1204, 1206 of the process, there isan RTE and
an IDE. The RTE is specific to aphase. D-RTE 1208 represents a devel opment-
RTE; P-RTE 1210 represents aproduction RTE; and S'RTE 1212 represents a
service RTE. A manufacturing plant with production tools would be included in the
P-RTE 910. An OEM deder's service department with service tools would be
included in the S'RTE 1212. A single IDE 1214 with development tools is common
to all phases and linked to each specific RTE 1208, 1210, 1212. The IDE 1214
would typically be applied in the supply and service chains, and in the OEM and its
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business partners. The specific RTEs 1208, 1210, 1212 are connected to the IDE
1214 through aDRD Link 1216.

FIG. 13 isaprocess diagram illustrating the spiral lifecycle process
1300 used during the development phase 1202, FIG. 12, of the lifecycle to produce
prototype cycles, according to an exemplary embodiment of the present disclosure.

The development phase 1202, FIG. 12, of the product development
process isused to develop prototypes with aspiral sub process 1300. The sub
process 1100 fits inside the development phase 1202. The vehicle model, and its
supporting business system to be developed, consists of components in the
categories of requirements, design, and implementation. Development typically
begins with an activity to determine and specify some parts of the requirements
model for the vehicle and its supporting business system, and then development
proceeds to determine and specify some part of the design model for the vehicle and
its supporting business system, which includes the RTE with its development,
production, and service tools.

Development tools typically support simulation of design models,
which enable testing to occur without fully implemented vehicles and supporting
systems. Development tools with ssimulation and testing capabilities such as
hardware in the loop (HIL) or software in the loop (SEL) are used to permit
incremental development of subsystems before a completed vehicle isavailable. As
development proceeds, some part of an implementation model can be determined
and specified. The spiral process isused to incrementally complete parts of
requirements, design, and imblementation. The spiral process permits repeated
forward sequences such asimplementation determination and specification that
follows design or reverse sequences such as requirements development that follow
either design or implementation. Modern software engineering and corresponding
tools encourages use of a spiral process during development to speed development,
improve quality, and lower development cost.

FIG. 14 isaprocess diagram illustrating the spiral lifecycle process
1400, with periods of concurrent development and service operations, according to
an exemplary embodiment of the present disclosure.

The Lifecycle Spiral Process 1400 isrequired because during the
service phase of the vehicle's lifecycle, faults and anomalies will be encountered.

36



WO 2007/149367 PCT/US2007/014155

10

15

20

25

30

Faults are failures that have been previously analyzed and are predicted from a
failure mode model. A procedure for determining root cause is probably known and
can be effectively applied. Faults can typically be corrected in the field by repair
procedures that include swapping or replacing parts.

Anomalies are failuresthat have not been previously analyzed and
are not predicted from afailure mode model. A large part of the anomalies will have
root causes in model anomalies, such as software bugs. Model anomalies will be
found in the implementation of the vehicle and/or its supporting business system.
The correction of these anomalies must be performed by returning to a development
phase. The development phase operates concurrently with service operations as
shown.

FIG. 15 isaprocess diagram illustrating the vehicle development
phase containing prototype cycles 1500 as conceptual "V" cycles, according to an
exemplary embodiment of the present disclosure.

The Development Phase 1202, FIG. 12, includes prototype cycles
1500 that follow the shape of a"V". The"V" begins with the development of some
parts of avehicle model and business system as requirements, then optionally
proceeds to development of parts of the design model and then optionally to
development of parts of the implementation model. At the bottom of the "V", the
focus of development activity then shifts to integration, testing, calibration, and
validation of the parts of the model that have been devel oped.

The "down cycle" ison the left and the "up cycle" ison theright side
of the diagram. Horizontally acrossthe"V" isacorresponding part of the model to
be integrated, tested, calibrated, or validated. After being partially developed,
components of requirements can be integrated, tested, and validated through
methods like smulation. An early prototype "V" cycle might only include
development and testing of requirements. After some parts of the design or
implementation model have been developed, that part of the model can be
integrated, tested, and validated with the previous parts of the model for the vehicle
and business system. Each prototype cycle develops, integrates, tests, and validates
more parts of the model, with components that include requirements, design, and
implementation.
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FIG. 16 is aprocess diagram illustrating how the lifecycle method
progresses using the spiral process through requirements, design, and
implementation, according to an exemplary embodiment of the present disclosure.

The development phase 1202, FIG. 12, progresses through
prototyping cycles 1602, 1604, 1606. Each cycle initially moves through a"down
cycle" of the"V" cycle that includes the development of the model in terms of the
attributes of requirements, then design, and finally implementation. Early "down
cycles' need only develop requirements before entering an "up cycle" to begin
testing and validating the requirements. Most prototyping cycles in the development
phase will include the development of the model in terms of the attributes of
requirements, design, and implementation in the "down cycle".

FIG. 17 isaprocess diagram illustrating how the lifecycle method
applies a spiral sub process, according to an exemplary embodiment of the present
disclosure.

The development phase 1202, FIG. 12, includes prototype cycles
1700. The cycles 1700 use a spiral process to move through the "V" initialy in a
"down cycle" asillustrated. With the spiral process, parts of the requirements
attributes of the prototype model are developed and then tested, followed by parts of
the design being developed and then tested, and then parts of the implementation
attributes are developed and then tested.

FIG. 18 isaprocess diagram illustrating how the lifecycle method is
applied with alinked IDE and RTE, according to an exemplary embodiment of the
present disclosure.

The development phase 1202, FIG. 12, has prototype cycles 1800 and
uses a spiral process to move through the "V". In developing parts of the model, an
IDE 1802 isrequired. In testing, calibrating, and validating parts of the
implementation model, aRTE 1804 isrequired. To effectively move along the
spiral process, the IDE 1802 and RTE 1804 should be linked viaa DRD link 1806.
The IDE 1802 ismainly applied on the top and middle of the"V", and the RTE
1804 is applied on the bottom of the "V". The spiral process that moves through the
"V" isenabled by the linked IDE 1802 and RTE 1804. The linkage isrequired
during "down cycles' and "up cycles®. Inthe "down cycle" the information flow is
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mainly from the IDE 1802 to the RTE 1804 because the focus ison ending with an
implementation as aRTE 1804.

FIG. 19 isaprocess diagram illustrating how the lifecycle method
progresses, according to an exemplary embodiment of the present disclosure.

The development phase 1202, FIG. 12, progresses through
prototyping cycles 1902, 1904, 1906. Each cycle eventually moves through an "up
cycle" inthe "V" that includes the integration, testing, calibration, and validation of
the model in terms of the attributes of implementation, then design, and finally
requirements. Early "up cycles' involve only requirements. Later "up cycles
involve requirements and design. Most prototyping cycles in the development phase
will include the development of the model in terms of the attributes of requirements,
design, and implementation in the "down cycle" followed by the integration, testing,
calibration, and validation of the implementation, design, and requirements in an "up
cycle'.

FIG. 20 is aprocess diagram illustrating how the lifecycle method
applies a spiral sub process, according to an exemplary embodiment of the present
disclosure.

The development phase 1202, FIG. 12, includes prototype cycles.
The cycles use a spiral process 2000 to move through the "V" initially in a"down
cycle" and then in an "up cycle" asillustrated. With the spiral process, parts of the
implementation attributes of the prototype model are integrated and then tested,
followed by parts of the design being developed and then tested, and then parts of
the requirements attributes are then tested and validated.

FIG. 21 isaprocess diagram illustrating how the lifecycle method is
applied in the spiral sub process, according to an exemplary embodiment of the
present disclosure.

The development phase 1202, FIG. 12, has prototype cycles and uses
aspiral process 2100 to move through the "V". In developing parts of the model, an
IDE 2102 isrequired. In testing, calibrating, and validating parts of the
implementation model, aRTE 2104 isrequired. To effectively move along the
spiral process, the IDE 2102 and RTE 2104 should be linked viaa DRD link 2106.
The IDE 2102 ismainly applied on the top and middle of the "V", and the RTE
2104 is applied on the bottom of the "V*". The spiral process 2100 that moves
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through the "V" is enabled by the linked the IDE 2102 and the RTE 2104. The
linkage is required during "down cycles' and "up cycles'. Inthe "up cycle", the
information flow ismainly from the RTE 2104 to the IDE 2102 because the focusis
on ending with avalidated model with a set of requirements and adesign in the IDE.

Asshown in FIG. 22, adiagnostic agent, built with a specific DID-I
that it reads asinternal data, can detect afailurein acorresponding function's
module in the RTE 900. The agent then accesses the DRD 899 to find the FID-I
linkage to write information into the DRD 899 that can be read by any of the tools in
the IDE 800 or by additional agents in the RTE 900. If the agent isin an ECU and
the ECU has no direct access to the DRD 899, the agent sends amessage to an agent
in the TCU, which does have access to the DRD 899.

Once linked to the EDE 800, round-trip engineering of the diagnostics
to functionsis enabled using the linkages inside the IDE 800 guided by the
information created in the DRD 899 by the RTE 900.

Asshown in FIG. 23, the system 799 uses first and second agents
2312, 2314 to detect failures, faults, or anomalies. The second agent 2314 isa
model-based diagnostic (MBD) agent that can use model and iterative procedures to
determine aroot cause for known failure modes. Examples of such agents are the
MBD agents built using atool, such as R.O.S.E. Rodon™. These MBD agents are
not effective with new failures that were not anticipated in the model. To
compensate for that gap in detection capability, the system 799 creates and applies
the first agent 2312, or alearning model-based diagnostic (LMBD) agent, using
embedded data mining algorithms, such astime-frequency analysis (TFA) or local
models, that learn amodel by observing an operating vehicle. These algorithms are
trained and calibrated during specific normal operating times and then placed in a
watch mode at run-time in the vehicle RTE 900.

In the system 799, the LMBD agents 2312 detect a superset of the
failures detected by the MBD agents 2314. The LMBD failures can be classified as
either (1) apreviously anticipated failurethat can be fixed in the field, or (2) a new
failure that can be either amodel error or another new type of hardware failure. The
classification occurs by comparing the output of the MBD agents 2314 with the
LMBD agents2312. If the MBD agents 2314 have seen the failure mode before
with astatistical confidence factor, then the failure is probably not amodel error. |If
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the MBD agents 2314 have alow confidence factor indicating anew failure mode
not previously seen, then amodel error needs to be investigated and the service
technician istold not to swap apart in the field.

An investigation occurs asthe RTE agents write information into the
DRD link 899, FIG. 9, which enablesthe IDE 800, FIG. 8, to trace the failures back
to the levels of the model represented at the levels of implementation, design and
requirements. The system 799 identifies which functions are linked to the failure as
discussed in the herein disclosed hierarchical or failure mode error determinations.
A simulation can berun inthe IDE 800, FIG. 8, to duplicate the failure mode. The
simulation assists in the determination of the root cause. Thus, the LMBD agents
2012 can detect anomalies.

Referring now to FIG. 24, a schematic representation of methods and
systems 2400 for anomaly detection is shown according to an exemplary
embodiment of the present disclosure. System 2400 includes aregionalization tool
2402. Theregionalization tool 2402 isresponsive to dataindicative of atested
system's operation. The regionalization tool 2402 is configured to use the datato
identify acurrent operational region of the tested system. For example, the
regionalization tool 2402 may accept as inputs the input of ahardware or software
system. The regionalization tool 2402 determines the current operational region of
the tested system based on the data.

The regionalization tool 2402 is linked to aperformance assessment
tool 2404 and can communicate the current operational region to that tool. The
performance assessment tool 2404 compares actual operational behavior of the
tested system in the current operational region to normal operational behavior of the
tested system in the current operational region. The tested system can be partitioned
into aplurality of operational regions, each having arelatively consistent system
behavior. The tested system determines normal operational behavior from a model
for the current operational region. The model can be alocal linear model as
described below.

Referring now to FIG. 25, a schematic representation of methods and
systems 2500 for training an anomaly detector for a system are shown according to
an exemplary embodiment of the present disclosure. In general, such methods and
systems are used to provide aprediction of system behavior based on adiscrete
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number of training observations, and may be embodied in avariety of hardware or
softwaretools. System 2500 includes acollection module 2502. The collection
module 2502 accepts data representative of the inputs and outputs of the tested
system.

The system 2500 further includes a partition module 2504. The
partition module 2504 is configured to partition the tested system into aplurality of
operational regions. The partition module 2504 can train aregionalization tool in
the anomaly detector in accordance with data. The data can be, for example, the
data collected by the collection module 2502.

The system 2500 also includes a compute module 2506. The
compute module 2506 computes amodel 2508 of normal operational behavior of the
tested system. The compute module 2506 may do such a computation for each of
the plurality of regions created by the partition module 2504, and does so for at |east
one of the plurality of regions of the tested system. The compute module 2506 can
be configured to operate on each of the plurality of regions serialy, producing a
model for eachregion on a"oneregion a atime" basis.

Referring now to FIG. 26, a schematic representation of methods and
systems 2600 for anomaly detection are shown according to an exemplary
embodiment of the present disclosure. The system 2600, as shown, is instantiated
by a start module 2602. Following the start module 2602, operational flow is passed
to acollection module 2604. The collection module 2604 accepts data from a tested
system. The data should be representative of the inputs and outputs of the tested
system. From observed outputs, initial conditions of the outputs can be estimated as
well. For example, the collection module 2604 can accept inputs and known state
values for atested system. The tested system can be a system for which normal
operation is expected, and to which the anomaly detection system 2600 can compare
subsequent performance.

The system 2600 includes a partition module 2606. The partition
module 2606 is configured to partition the tested system into a number of
operational regions. The partition module 2606 can train aregionalization tool, such
as regionalization module 2610 below, in accordance with data. The data used to
partition the tested system can be, for example, the data collected by the collection
module 2604.
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The system 2600 includes a compute module 2608. The compute
module 2608 is configured to compute alocal model of normal operational behavior.
The model of normal operational behavior can be based on the data collected by the
data collection module. The compute module 2608 can do such a computation for
each of the plurality of regions created by the partition module, and preferably does
so for & least one of the plurality of regions of the tested system.

In the operation of apossible embodiment, the collection module
2604, partition module 2606, and compute module 2608 execute concurrently. For
example, the collection module 2604 can collect avariety of data samples from a
"baseline” normally operating system to betested. The partition module 2606 may
partition the tested system into anumber of operational regions, or may partition
those operational regions into alarger number of smaller-sized operational regions
as additional data is collected by the collection module 2604.

The compute module 2608 can generate amodel, such as alocal
linear model, from the collected datain the current operational region. The current
operational region can be determined, for example, by aregionalization module
2610, described below. The compute module 2608 can update an estimated model
using subsequent data it can receive from the collection module 2604. Further, the
compute module 2608 can be configured to participate in generation or updating of
an estimated model in other regions, such as neighbor regions to the current
operational region.

The combination of the collection module 2604, the partition module
2606, and the execute module 2608 produce an estimated model of the tested system
representative of normal operational behavior based on the data collected by the
collection module 2604.

The system 2600 further includes aregionalization module 2610.
The regionalization module 2610 isresponsive to data indicative of the tested
system's operation. The regionalization module 2610 is configured to identify a
current operational region of the tested system. The regionalization module 2610
may accept as inputs the inputs and outputs of ahardware or software system to be
tested. The regionalization module 2610 determines the current operational region
of the tested system based on those inputs and outputs. The regionalization module
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2610 selects from among the plurality of operational regions created by the partition
module 2606.

The system 2600 includes a performance module 2612. In operation,
the performance module 2612 compares actual operational behavior of the tested
system in the current operational region to normal operational behavior of the tested
system in the current operational region. The normal operational behavior of the
tested system isbased on amodel derived from data collected from anormally
operating system.

The system 2600 determines normal operational behavior from an
estimated model for the current operational region. The estimated model, as
generated by the compute module 2608, can be alocal linear model. In an aternate
embodiment, Time Frequency Analysis can be used.

Operational flow among the operations 2604-2612 is again ordered
generally from training to testing. However, this does not require strict ordering, in
that operations can execute in various orders, or in serial or parallel. Some ordering
is apparent, in that some amount of initial data collection will take place before any
partitioning module 2606 can execute and the compute module 2608 can derive a
model. Furthermore, at least one operational region must exist for the
regionalization module 2610 to determine the current operational region, and some
"normal" and actual operational behavior must be available to determine
performance in the performance module 2612.

The system 2600 terminates at an end module 2614.

FIG. 27 isaflow chart representing logical operations of alearning
model-based diagnostic system 2700. System 2700 can be used to implement
aspects of the present disclosure, specifically when used in conjunction with the
systems described below in FIGS 30-32. Entrance to the operational flow of the
learning model-based diagnostic system 2700 begins at a flow connection 2702. A
detect operation 2704 detects an anomaly. It isnoted that anomaly detection agents,
such as those previously described herein, continuously monitor avehicle's
functions. Such agents can be located within the RTE, such as RTE 900 of FIG. 9,
operating on avehicle. A found module 2706 determines if an anomaly has been
found. If the found module 2706 determinesthat afailure has not been found,
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operational flow branches "No" to the detect operation 2704. In this manner, the
vehicle is continuously monitored for failures.

If the found module 2706 determines that an anomaly has been
found, operational flow branches"Yes' to aknown module 2708. The known
module 2708 determines if the failureis aknown failure. 1f the known module 2708
determines that the failure is aknown failure, operational flow branches"Yes" to an
identify operation 2710. The identify operatioh 2710 identifies the remedy for the
known failure. Operational flow ends at termination point 2712.

If the known module 2708 determines that the failure isnot a known
failure, operational flow branches "No" to awrite operation 2714. The write
operation 2714 writes the failure information to alink, such asthe DRD link 899 of
FIG. 9. A read operation 2716 reads the failure information from the link. The
failureisread into the IDE, such as IDE 800 of FIG. 8. A model operation 2718
identifies the model error, which may be an error isthe requirements, design, or
implementation level of the IDE. Operational flow ends at termination point 2712.

FIG. 28 isablock diagram illustrating a diagnostic layer 2800 that
includes software diagnostic systems 2802 and hardware diagnostic systems 2804,
which can contain for example, the LMBD agents 2012 of FIG. 20, or other anomaly
detection agents or diagnostic agents. The diagnostic layer 2800 can run in an RTE,
for example, the RTE 900 of FIG. 20. The diagnostic layer 2800 monitors avehicle
system 2810. The vehicle system 2810 includes a control system 2812 and a
hardware system 2814. The control system 2812 receives driver inputs 2816 and
provides control inputs 2818 to the hardware system 2814. The hardware system
2814 provides vehicle outputs 2820 to operate the vehicle.

The software diagnostic systems 2802 monitor the control system
2812. Likewise, the hardware diagnostic systems 2804 monitor the hardware system
2814. Preferably, the diagnostic systems 2802, 2804 detect anomalies in accordance
with an anomaly detection scheme based on regionalization using self-organizing
maps and local linear models or time frequency analysis. Of course, other suitable
methods can be used.

Self-Organizing Maps (SOM) define a nonparametric regression
solution to aclass of vector quantization problems. Self-Organizing Maps are first
described generally, followed by a specific application using growing structure and
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local modeling or Time Frequency Analysis in conjunction with the SOM for
anomaly detection. This nonparametric regression method involves fitting a number
of ordered discrete reference vectors to the probability distributions of input
vectorial samples. SOM issimilar to a Vector Quantization (VQ) technique, which
isaclassical data compression method that usually forms an approximation to the

probability density function P(X) of stochastic vectors x e 91", using a finite
number of code vectors or code words &, e 91",i=1,2,...,M . For each codeword &,
aVoronoi set, or cell, can be defined as follows,

v ={xe®"||x-&| <[x-¢&,], v}
that contains all the vectors that are the nearest neighbors to the corresponding code
vector &,. AUthe Voronoi sets construct apartition of the entire vector space 91" .

Therefore, once the codebook isdetermined according to some optimization
criterion, then for any input vector X, it can be encoded into a scalar number C,
called Best Matching Unit (BMU), whose associated code vector isclosest to x , i.e.

c=argmin {Jx—&}

A possible selection of the codewords §,e€9T,i =1,2,...M shall
minimize the average expected quantization error function:

E = [|x-&.[ p(dx

It isnoted that the index cis afunction of input vector x and all the
code vectors &. . It can be easily observed that C can change discontinuously. Asa

result, the gradient of expected quantization error E with respect to

¢ ean J1=12,..,Misnot continuously differentiable. Since the close form
solutions for §, e 9t",i=12,.., M that minimize are generally not available, one has
to iteratively approximate the optimal solutions. It has been shown, in aparticular
case, when f(d(X, &) = |Ix- &|”, the steepest descent can be obtained in the
direction of -V, E\(:Z 3, - (X(K) - &;(Jc) at iteration step t, where 5, isthe
Rronecker delta function. If one defines the step size by the learning rate factor

a(t) that includes the constant -2 from the gradient Vy, E\(= - 23, (x(AN- &,(AD) |
then one arrives at an updating formula:
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E,(* +1)=8,(0 +a(*)-«y -(x(k) - &,(*))
The set of vectors &, e R",i =1,2,...,Af obtained, which minimize the

average expected quantization error E , can map the space of input vectors into a set
of finite codebook reference vectors. However, the indexing of those reference
vectors can be arranged in an arbitrary way, i.e. the mapping is still unordered. The
reason is, for any input vector X , it can only affect the code vector that is nearest to
it because of the delta function 9, used in the updating formula.

The SOM can be interpreted as anonlinear projection of ahigh-
dimension sample vector space onto avirtually one or two dimension array that is
represented by a set of self-organized nodes. Unlike the VQ technique, SOM is able
to map high dimensional data onto amuch lower dimensional grid, while preserving
the most important topological and metric relationships of the original data
elements. Thiskind of regularity of the neighboring reference vectorsis coming
from their local interactions, i.e. the reference vectors of adjacent nodes in the low
dimensional grid up to acertain geometric distance will activate each other to learn
something from the same input vector x e R". Thisresultsin alocal smoothing
effect on the reference vectors of the nodes within the same neighborhood and leads
to global ordering. Due to this order property, the map tends to reveal the natural
clusters inherent to input vector space and their relationships. Each node in the SOM
is associated with areference vector that has the same dimension as the input vector.
The distance measure used in this disclosure is the well-known Euclidean distance.

In simple terms, the reference vector associated with the BMU vyields
the minimum Euclidean distance with respect to the input vector x . To ensure the
global ordering of the SOM during learning process, one has to expand the influence
region of the input vector, instead of only updating the reference vector of the BMU.
One alternative isto replace the delta function 6, with anew neighborhood

function A(») that depends on time k and the distance between two nodes ¢ and i

on the low dimensional grid. This givesthe following formulafor the reference
vectors:

E;(k+1) =& (k) +a(*)A(*,dis(r o,rd)(x(*)-"(*))
where k =0,1,...isthe discrete time index, a(k) isthe learning rate factor and

r..I; arelocations of nodes ¢ and i inthe low dimensional grid respectively. Thisis
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similar to the vector quantization updating function above, but isdifferent at least in
that it allows soft competitive learning, i.e. system training outside the current
operational region. For convergence of the network, it is necessary that as

h(fc,dis(r,,t.)) > 0 when k ->c0 . In addition, the degree of the "elasticity” of the
network isrelated to the average width of the neighborhood function a(k,dis(r.,r))
where h(k,dis(r.,r.))—=0 with increasing dis(r.,n). A common choice for the
neighborhood function is

1 2
(ks dis(r,, 7)) =ex,,(__d;<:;z:)> )
where and <{Kk) defines the width of the neighborhood function. They are both

monotonically decreasing functions of time.

For small sized SOMs, the choice of those parameters isnot
important, for example, a few hundred nodes. However, for very large SOM, those
parameters have to be chosen carefully to ensure convergence and global ordering of
the reference vectors. The computation steps of the algorithm can be summarized as
follows:

1 Choose the size and topol ogy of the maps, initialize the set of
reference vectors &, e 9T,z=1,2,...,M by setting them randomly, or for instance,

choose the first k copies of the first training vectors x .

2. Find the BMU for the input vector x(f) , and adjust the
reference vectors of BMU and its neighborhood units.

3. Repeat step 2, until the changes of reference vectors are not
significant.

A batch computation algorithm of SOMs (Batch Map) isalso
availableif al the training samples are assumed to be available when learning
begins. It resemblesthe K-means algorithms for VQ, particularly at the last phase of
the learning process when the neighborhood shrinksto a set only containing the
BMU. ThisBatch Map agorithm contains no learning rate factor, thus has no
convergence problems and yields more stable values for the reference vectors

¢ elRV=12..,M
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Different learning process parameters, initialization of the reference
vectors ¢&,(0) e 5R"i=1,2,..., M , and sequence of training vectors x(*)can result in

different maps. Depending on the criterion of optimality, different SOMs can be
considered optimal, for example, the average quantization error. The average

quantization error, which isthe mean of ||lx—&||, is ameaningful performance index

that can measure how well the map is fitted to the set of training samples. Further
information regarding SOMs can be found in the following references, and the
references therein, al of which are incorporated herein by reference:

- Kohonen, T., Oja, E., Smula, O., Visa, A., Kangas, J.(1996), "
Engineering applications of the self-organizing map", Proceedings d the IEEE, v
84, n 10, p 1358-1384

Kohonen, T.(1995), Salf-Organizing Maps. Springer, Berlin,
Heidelberg.

A variety of partitioning methods can be used to partition the system
dynamic behaviors into different operational regions. To accomplish this
regionalization, one first might attempt to find an appropriate base on which the
regionalization can be conducted. In one embodiment, variety of the physical
system, such as mechanical, electrical, electromechanical, thermal, and hydraulic
systems, might be modeled by «* order ordinary differential equations, such as those

of the following form,

y(">: F(t,y,y'. " ...y('— I>uU,...,u ("|))

where ¥ > Y ™ are the derivatives of the system outputs up to " order and

u,u’..., u arg ~ o inputs ang their derivatives up to m% order. If the inputs,

denoted asu = B(O) = [u (@), ux(t),— ™ )", have been specified as piecewise
continuously differentiable functions up tom" order, we can eiminae U and its
derivatives to yield

YO =y, 3. y)

It can be proven using the global existence and uniqueness theorem in
Khalil, H.(2002), Nonlinear Systems, 3rd edition. Prentice-Hall, NJ, that if

\r(”y’y"y"’---y("-l)\){S piece-wise continuous in t and satisfies the Lipschitz

condition
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where ¥i =i Y5 Y0771 and L is afinite positive number, then the =* order

ordinary differential equation with initia conditions
dy, d’y d"y. 1
)=ty 5 limty s o7 li=e ) =Y . _ .
T g d” ’has a unique solution over the time

interval Fofo+ '],

Suppose that F() js piece-wise continuous in t and it arguments,
then it follows from the assumption that the inputs and their derivatives

(m)

UU,..., U™ are piece-Aise continuous in t, Ytysy'sy ™~y ™) [ always piece-

wise continuous in t. Therefore, once the Lipschitz condition is satisfied, the system

output y over the time interval [£0'1° + 1] can be uniquely determined by the inputs

U during time interval [£0'2° + Tlangd the initial conditions
dy ~ d’y "'y
t > =ty ® . o lt=tg?***? =, ] .
YWod gy litor g e g el o output y a timef. Therefore, the

concatenated vector of the output and its derivatives at time' 0, and the input

sequences U@ during agiven time interval [f0'€0 + 11

O R M
contains all the information necessary to determine the system outputs during the
time interval®O'O * 1. This observation indicates that the regionalization can be
based on the concatenated vector in the form of (4.4).

We note that the condition specified aboveisonly a sufficient

condition for the outputs during [f0*o + Tito be uniquely determined by the initial

conditions of the output at time *°and the inputs duringlfe>t° + 11, For general
nonlinear system, obtaining anecessary and sufficient condition iswell beyond the
scope of thispaper. i general, the condition is closely related to system
observability.

A tremendous number of system behavior patterns impose a great
challenge on anomaly detection and localization, or regionalization. Traditional
model-based faults diagnosis techniques are unsuitable for many cases, since
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detailed knowledge about the underlying physical system isnot available. The
system can only be viewed as ablack box. Therefore, thereisaneed to find away
that can approximately build amodel that relates the system inputs and outputs.
Preferably, the system is partitioned into different regions, based on the inputs
sequences and initial conditions of outputs.

If we concatenate the initial conditions of the outputs including

d’? d’ .
Y(to),‘;y lwto » dty lictg 5+-s ™ 3' |, and the ™ PUt sequences u(f) during acertain time
interval [¢,,t,] together to form abig vector as follows:
d’? d"y
Y6 1 2 s S | 08Oy + Y

d dy .
where y(t,) =[1,(20)s-» ¥, (¢)], — 4y I,g,., [ ;:’ I.-,o,---,Tt"L-,,]andSOOH- This

vector contains all the information necessary to determine the system outputs.
However, in real applications, this vector usually has avery high dimension.
Therefore, SOMs is used to regionalize the space spanned by those vectors, because
of its excellent capability of visualization of high dimensional data. The Voronoi
sets use all the reference vectors of the trained SOM, to form apartition of the entire
space spanned by the vectors. The Voronoi set isreferred to as a system
"operational region”.

Methodologies for anomaly detection, such as the time-frequency
analysis and local modeling described herein, can be enhanced by the
regionalization accomplished using a Self-Organizing Map. Inthe general SOM
case, the problem of determining the precise number of regionsis largely unsolved,
since no prior knowledge may be available about the system except its input and
output signals. In the above description of Self-Ordering Map initialization, the
number of Voronoi cellsincluded in the map must bejudiciously chosen before
System operation using guesses about system behavior. Thisis particularly the case
when SOMs are used in conjunction with alocal model, which would tend to have
increased error in sparsely populated operational regions. In such a SOM,
frequently visited regionswill have finer partitions and generally smaller fitting
areas. However, regions having high nonlinearity that are not frequently visited are

51



WO 2007/149367 PCT/US2007/014155

10

15

20

25

30

poorly approximated. In such regions a linear model may be non-optimal due to the
inherent error of modeling anonlinear system with a linear model.

This disclosure contemplates a solution that allows for more uniform
organization of observed values by starting with avery low number of nodes and
adding additional nodes to areas in which the system ismost highly nonlinear or
where modeling errors are the highest. This node addition results in creating smaller
Voronoi sets, or operational regionsin this disclosure, in regions which are likely to
be highly nonlinear. This Voronoi cell-splitting technique allows models to more
accurately represent these regions by improving their linearity. This node addition,
referred to herein under the generalized term "growing structure competitive
learning”, is accomplished during the training process, growing the size of the SOM
as additional inputs are added to the various operational regions.

In the generalized SOM, the regionalization of data points isoptimal
only in the sense of minimizing the expected square of quantization error,

represented as J]|x—§c||j;(x)ds,where §,,1=1 ..., M isasetof weight vectors

and c istheindex of the best matching unit, as described above. Conversely, the
systems according to the preferred embodiment can be configured to add nodes
while attempting to minimize the square of the expected modeling error,
ElJy-s67]].

This splitting strategy promotes evenly distributed accumulated
modeling error, atradeoff between density and modeling errors corresponding to
each local model. Additional embodiments may incorporate a penalty term
expressing arelative nonlinearity measure dependent on fitting errors.

In an alternate embodiment, the system may insert additional nodes
near the region where the dynamic nonlinearity is high, or equivalently, where the
local expected mean square error islarge. Since the mean square modeling error is
not affected by the visiting frequency to the operational region, this may be
favorable for approximating the distribution of the tested system's dynamic
nonlinearities.

In order to incorporate such a growing mechanism into the growing
structure model, the local model adaptations must be fast enough to follow the
dynamics of the modified configurations due to the newly inserted nodes in the
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network. In apreferred embodiment arecursive least square algorithm with
exponential forgettingisused for local linear model parameter estimation. The
updating rate can be adjusted through the forgetting factor A in the local linear
model estimations discussed below. For example, varying the forgetting factor A
from 0.95 to 0.99 corresponds approximately to remembering the 20 to 100 most
recent inputs in generating the local model estimation.

By using agrowing structure competitive learning system, the
anomaly detection scheme of this disclosure can be instantiated with a small number
of operational regions when initialized, adding more operational regions where the
tested system isnonlinear, i.e. the squared expected modeling error is high.

Two methods for anomaly detection contemplated by the present
disclosure incorporate either time-frequency analysis or local modeling to predict
behavior of atested system. Each compares the tested system'’s "expected” output to
its actual output. If the actual output is, in general, far enough "off 1from the
expected output, then an anomaly is considered to be present. Each of these
methods is now described briefly.

Time frequency analysis (TFA) has long been recognized as a
powerful non-stationary signal processing method and has been widely applied into
different areas, such as radar technology, marine biology, and biomedical
engineering. Unlike the well-known Fast Fourier Transform (FFT) that can only
decompose the signal into frequency components, but does not depict the time
location related information, TFA is capable of decomposing the signal into both
time and frequency simultaneously. This makes TFA an appropriate method to
analyze signals, in which the frequency contents of the signal change over time. It
may be difficult to detect permutations of signal componentsin a control system
using FFT, but ismuch easier using TFA. Capability of dealing with non-stationary
signals makes TFA quite suitable to process signals from complex control systems,
such as automobiles or aircrafts.

Consider atwo-dimensional distribution/* , (x,y) , whose

characteristic function is given by:
#(n,€) = Ele"" "] = ([ 7 p, , (x, y)dxdy
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It can be approximated by a Taylor series, Cohen, L. (1994), Time-
Frequency Analysis, Prentice Hall, incorporated herein by reference, and the
characteristic function can be expressed as

$1.0)= 3 LoECY e +oln’ +6)7)

Since the time-frequency distribution can be uniquely determined by

its characteristic function, the sequence of moments E(X PY") can be used to
describe the distribution Py.y (x,y).

However, the moment sequence is infinitely long and hence cannot
be directly used as afeature set. Furthermore, moments of different orders are
highly correlated with each other. Nevertheless, only moments of the lower order
describe the general properties of the time frequency distribution, and hence we can
truncate the moment sequence in order to approximately represent atime frequency
distribution. In order to remove connections between moments and to reduce
dimensionality of the moment vector, further processing is necessary. This can be
achieved through Principal Component Analysis (PCA), Richard, O. Duta, P., David
G. (2000), Pattern Classification, Wiley, 2nd edition, incorporated herein by
reference, which is an appropriate dimensional reduction method since the time
frequency moments are asymptotically Gaussian, Zalubas, E.J., O'Neill, J.C,,
Williams, WJ. and Hero, A.O., "Shift and Scale Invariant Detection,” in Proc. |IEEE
Int. Conf. Acoustic, Speech, and Sgnal Processing, vol.5, 1996, pp. 3637-3640,
incorporated herein by reference.

Due to asymptotic Gaussianity and independence of the principle
components, the Mahalanobis distances between feature vectors are asymptotically
following the x 2distribution with r degrees of freedom, where r isthe number of
extracted principal components. Therefore, the deviation of the signals from the
training set, which represents the normal distribution, can be measured by the
probability that the Mahalanobis distance iswithin a certain range. This probability
isreferred to as a confidence value (CV) indicating the degree of the deviation from
normal state. For more detailed information, see Djurdjanovic, D., Widmam, S. E.,
Willians, W. J.,, Koh, C.K.H. and—Yang, K. P. (2000), "Computerized Classification
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of Temporomandibular Joint Sounds', | EEE transaction on biomedical engineering,
vol. 47, No.8, herein incorporated by reference.

Loca models provide an efficient method for deriving "normal”
operational behavior of a system based on afinite training sample set. Such models
areused in the present disclosure in the context of growing, self-ordering maps.
Local modules are used herein as follows. Assume the system dynamics can be
described by aNonlinear Auto-Regressive model with exogenous input (NARX)

y(k+1) =¥(y(K),...y(k-n j+V)uk-ny),..Mk-n - n,+iy)
where u(f) € R” arethe system inputs, y(&) € 91 are the system out-puts, ny isthe
time lag from the moment that the excitation is applied until the effects are
manifested through the outputs, and n, and nb are the order of the model.

If F(») isdifferentiable at apoint § in the reconstruction space,
which is spanned by vectors of the form
S*)=ly' (K. ...yt (k-n g+1),ut(k-n g),...,u" (k- ny- n,+1), the Taylor series
expansion of F(*) isprovided as

F(s) = F(s,) +%Isi(so)(s -s,) +2l!(s -s,)" %:—I;(so)(s —S,)+...
The higher order terms such that the limit of the absolute value of their squaresis
zero as s approaches sa. So, within asmall region around sg, the approximation
errors can be arbitrarily small. For example, if we choose the first two terms of the

Taylor series expansion, F(s) can be approximated using a set of local models as
follows:

F(s)=b,+a’s,i=1,...M
Notice that the local model is linear in terms of its parameters b,- and a- that need to
be estimated. It isnoted that in instances where local models are nonlinear in terms
of their parameters, amore sophisticated optimization procedure may berequired to
find the model parameters. Some physical insights into the system to be tested may
be vauable in simplifying the local model structures chosen.

In still other aternative embodiments, other functional forms can be
used to locally approximate the nonlinear function within asmall region around a
point, such as " order polynomials. Such alternative representations may have
additional parameters that must be estimated.
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The overall system dynamics can then be approximated through the
combination of the local models through agating function as follows:

Y+ = Zgi (s(k))F(s(k)),

where g,((Kk)) could be the Kronecker delta function:

o
L

In this case, only one local model can "win" the competition to be the current
operational region. Other types of gating function can also be used here to weight
local models together to approximate the global system dynamics, such as radial
basis functions.

Without loss of generality, we assume the dimension of the input and
output is one for notation convenience. A widely accepted method for local model
identification isto find the model parameters that minimize the sum of the weighted
squared residuals in each operation region.

Ji(8,)= %Z w SN |y =5

In this embodiment, model parameters 6, represent the model
parameters to be estimated for the I'" region, and A isthe forgetting factor that
adjusts the speed of the adaptation of parameter estimation. This forgetting factor is
necessary to allow the system to adapt to changes of regionalization that will occur
as the model is trained. w,{s(K)) isthe weight for the k™ observation when updating
the model parameters for the I region.

Since using the SOM training process above results in the operational
space being divided into small regions, during the training process, whenever a
training pair S(£) — y(k) becomes available, after finding the BMU based on vector

s(A:) it is advantageous to update the local models of the BMU and the models of
other adjacent regions. In updating the adjacent, or "neighborhood" regions, not all
weights can be the same, in order to prevent the system's convergence to a single
local model. Therefore, as theregion gets farther away from the BMU, the smaller
the weight applied to that region. Specificaly, this cooperative learning strategy
among neighboring regions can improve the convergence speed of the algorithm and

the effects are more significant at the beginning of the learning. In addition, this
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neighborhood updating process allows for smoothing effects a the boundaries of
operational regions, and additionally alows for global ordering of the local models
A weighting factor w,(s(/)) is introduced that determines the importance of
observation s(f) on the estimation of the parameters of local model inregioni . In
one implementation, the weights can beinversely proportional to the distance
between the location of the region and BMU on the network. For example, the
neighborhood function which measures memberships of a given observation can be
used

~dis(i, c(k))?

w.-(s(k»=exp( 203

) = h(k,dis(i,c))

Minimizing J,(Q,) isperformed recursively, as follows, using
P.(0) = P, ( adiagonal matrix whose elementsislarge) and 8,(0) =8, asinitial
values for the recursion to startup:
P, (k —Ds(k)
+s7 (k)P,(k —1)s(k)

L,(k) =

A
w; (s(k))

8,(k) = 6,(k 1) + L, ()| y(k)— 87 (k ~Dys(k) |

P.() = [B(k~D L (k)" (RP(-D]

During the training process, the local model should be updated as additional data
points become available and as additional operational regions are created.

Besides the local model parameters, the structural parameters
including the locations of operational regions have to be identified. Most of the local
modeling techniques utilizing self-organizing networks in the literature separate the
modeling procedure into two independent stages: regionalization and local model
fitting. The conventional self-organizing network normally aimed at minimizing the
expected square of the quantization error. Non-uniformity in the distribution of
visiting frequencies in the training data set may result in more weight vectors being
associated with the region which the system frequently visits. This may result in
regions which are highly nonlinear, but not frequently visited, being poorly
approximated by fewer local models. Therefore, it isclear that in order to achievea
better modéling performance for a specific application, one needs to balance

between the visiting frequencies and modeling errors across different’ regions. This
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will berealized by adding a penalty term to the learning rate of the weight vector
updating

& (k +) =g,(k)+a(k) §; (KKkdis(r, £)) (X(k)- & (K)
where (,{k) isthe penalty term penalizing the amount of movement to achieve a

balance between the effects of visiting frequency and modeling errors in different
regions.
Introduction of such apenalty term isto achieve finer partitions

where the local model fitting errors are high. In this paper, the normalized modeling
errors are used to penalize the movements of the weight vectorsin each region at
training step k for sequential training

e (k)
m}'glx {ej""’" (k)}
€7 (%) =[ A + Arnin = A I (SUN]EF™ (ke = 1)+ [1= Ay, = (A = A )W (5GeN] e, (1))
where e, (k) = y(k) — y,(k) represents the output error for the "™ local model at

gi(k)=

training step k. The "ewma" designation reflects the fact that the error isbased on an
exponential weighted moving average of training points, and becomes less
significant when the corresponding node i s further away from the best matching unit
on the network. This provides a direct feedback from the local model fitting errors to
the system regionalization process. It has the effect of moving the weight vectors
toward the region where system nonlinearity ishigh.

Once adiagnostic agent istrained using anormally operating or
known-erroneous system, the same diagnostic agent can detect suddenly occurring
as well as gradually occurring anomalies by comparing actual system output to the
model or distribution based on tested system input. The current operational region is
determined, and a determination is made as to whether the difference between the
actual and known output isoutside aresidual error threshold. Theresidual error
threshold isbased generally on the tested system'’s predictability, and can be
computed independently for each region.

Theresidua error threshold can be set for each operational region to
prevent false anomaly detection in sparsely trained regions. A lower predictability
(i.e. by higher nonlinearity within aregion) will indicate aless predictable region,
and will have alooser threshold. Therefore, alarge variation from the normal

operationa behavior would be required for an anomaly to be detected. Conversely,
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ahigher predictability will result in alower threshold. In such cases, the residua
error would be expected to be tighter in that operational region, so asmaller
deviation from normal operational behavior would be detected as an anomaly.

FIG. 29 is aflow chart representing a sequential training system
2900. System 2900 can be used for a growing structure competitive learning model,
such as are disclosed herein. Operational flow to the system 2900 isinstantiated at a
begin operation 2902. An update operation 2904 can update model parameters, such
as the parameters 6.(k) of the local models. Operational flow proceeds to a

nonlinearity module 2906. The nonlinearity module can calculate a nonlinearity
measure, such as nonlinearity ¢, (k) of the /* operational region. Operational flow

proceeds to an update module 2908. The update module 2908 updates the weight
vectors in the self-ordering network, such as viathe previously discussed equation
E(k+1) =& (k) +a(kK (K)Nk,dis(r_./;.))(X(A)-EW) .

A stop operation 2910 determines if the stopping criteria are met.
Stopping criteriamay be set, for example, based on the desired accuracy, actual test
runtime, or other factors related to the detected error rate of the system 2900. If the
stopping criteria are met, operational flow branches "yes' to atuning module 2912.
If the stopping criteria are not met, operational flow branches "no" to a sample
counting operation 2914.

The sample counting operation 2914 determines whether the number
of samplestaken is equal to or exceeds N-Multiple of the current size of the self
organizing network. If the number of samples has not been reached, operational
flow branches "no" and returns to the update module 2904, allowing the system to
continue its learning process. If that number of samples has been reached in the
training process, operational flow branches "yes' to an insert module 2916. The
insert module 2916 inserts a new node in a location (i.e. in aregion) where the
system nonlinearity is at its highest.

Operational flow from the insert module 2916 proceeds to adeletion
module 2918. The deletion module 2918 removes & least one node which has no
near neighbors. This node isin aregion which the system 2900 likely cannot model
well, and that node istherefore deleted.

It is understood that the growing structure competitive learning

system 2900 disclosed herein can be used in conjunction with awide variety of
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types of models for each region, such as alocal linear model. It isfurther
understood that multiple models can be used in implementing the present disclosure.

FIG. 30 shows an anomaly detection system 3000 in greater detail
after the SOM has been trained to define aplurality of operational regions 3002.
Data 3004 indicative of the operation of the dynamic system isanayzed in
accordance with the plurality of operational regions 3002 to determine both a current
operational region and a quantization error. If the quantization error isbelow a
certain threshold, an error determination module 3006 passes control to an anomaly
detection module 3008 for assessment of the performance viathe above described
techniques, i.e. TFA or local models. In some embodiments, the anomaly detection
module 3008 may include a switch or trigger 3010 to enable such processing. The
anomaly detection module can include one or more memories 3012 that can store
normal aswell aspreviously observed faulty operational behavior in each region in
the form of alocal model or time frequency moments distribution parameters (e.g.
the mean vector and covariance matrix of the distribution). Using the identified
current operation region, one of the records of the memory 3012 is accessed and
compared to the distribution or model 3014 generated from the system output data
3016 indicative of current operation. The manner in which the distribution data or
models are stored in the memory 3012 isnot important for purposes of the present
disclosure, and any of anumber of data storage devices can be used to implement
such a system 3000. In some cases, the error determination module 3006 can be
coupled to one or more elements (not shown) configured to generate an alarm or
other notification or data that the system 3000 is being operated outside of known,
expected, or permissible limits.

FIG. 31illustrates adiagnostic system 3100 for which performance
can be evaluated, according to an example embodiment. hi this example
embodiment, TFA isused, but it isunderstood that any other predictive anaysis
methodology would be suitable, such asalinear model. A system 3101 includes
inputs 3102, initial conditions of the outputs 3104, and outputs 3106.
Regionalization can be accomplished using a SOM 3108 based on the inputs 3102
and initial conditions 3104. A model-based performance assessment technique can
be directly applied within operational regions 3110 based on acurrent output. An
assumption is made that no knowledge about the model or structure of the system
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3101 isavailable. The only assumption isthat the inputs 3102 and outputs 3106 are
available when the system 3101 isoperating normally.

Preferably, the system 3101 is avehicle 3120; however, the system
3120 can be any suitable system. FIG. 32 illustrates avehicle 3220 in more detail.
The vehicle 3220 includes an engine 3222, adrivetrain 3224, other components
3226, and vehicle dynamics 3228. A driver 3230 can provide inputs 3202 into the
system 3201, FIG. 32. An environment 3232 also provides inputs 3202 into the
system 3201, FIG. 32, such as temperature, wind speed, road slope, and atmospheric
pressure.

In applying the anomaly detection techniques described herein to the
vehicle 3220, the vehicle 3220 might be regionalized into afirst subsystem 3300,
FIG. 33. In an example embodiment, the first subsystem 3300, or regionalized
system, isathrottle plate subsystem 3302. The throttle plate subsystem 3302 could
include athrottle plate controller 3304, athrottle plate 3306, a controller 3308 and a
plant 3310.

The input, for example, the inputs 3302 of FIG. 33, to the throttle .
plate subsystem 3302 is acontrol signal 3311 from the throttle plate controller 3304,
which regulates athrottle plate angle 3316 in the throttle plate 3306. The actua
throttle angle ismeasured by sensors and fed back into the integrated system 3300.
There are two inputs to the throttle plate controller 3304 when the vehicle 3320 is
operating: arelative accelerator position 3312 and an engine speed 3314. Based on
these two inputs 3312, 3314, the throttle plate controller 3304 calculates the control
signal 331 1and sends it back to the throttle plate 3306 that sets the absolute throttle
angle 3316.

An anomaly detection system 3350 detects the gradual parameter
degradation of either the plant (throttle mechanism) 3310 or the controller 3308, as
the system 3302 is operating. Moreover, the anomaly detection system 3350 should
be able to locate any anomalies, whether the anomalies happen in the controller
3308 or in the plant 3310. Preferably, the anomaly detection system 3350 includes a
first anomaly detector 3352 and a second anomaly detector 3354. The first anomaly
detector 3352 detects anomalies on the control side while the second anomaly
detector 3354 detects anomalies on the plant side. Each of the anomaly detectors
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3352, 3354 are generated independently based on the divide and conquer approaches
as described above.

In thei rﬁpl ementation shown, the relative accelerator signal
(Accelerator ) 3312, the engine speed (n__Engine) 3314, the control signal

5 (al _ThrottleECU ) 331 1, and the absolute throttle angle (al _ Throttle) 3316, can

be sampled frequently, such as every 5 milliseconds for the case shown here, which
corresponds to a sampling rate of approximately 200 Hz. In this embodiment, these
signals might then be downsampled by two to reduce the sampling rate to 100 Hz. It
isunderstood that other sampling rates can be used, and can optionally be used in
10 conjunction with any of a number of downsampling methods.
Therelative accelerator signal ( Accelerator ) 3312, the engine speed
(n__Engine) 3314, the control signal (al _ ThrottleECU ) 3311, and the absolute

throttle angle (al _Throttle) 3316 are first collected as the vehicle 3320 operates
under normal conditions, or as determined in an IDE, for example, the IDE 800 of

15 FIG.s.
The following table illustrates the training and testing data sets:

Name of test cycles

Training data set | Japan 15 & Japan 11: Japanese cycles
FTP72: USA (Federal Test Procedure of 1972)

Manual driving profiles

Testing data set | FTP75: USA (Federal Test Procedure of 1975)
ECE2: New European Test Cycle of the ECE

The following illustrates the mechanical throttle plate 3306 within the vehicle
3320:
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The input to the subsystem 3300 is labeled as al _ThrottleECU 3311,
which is the control signal 3311 coming from the throttle plate controller 3304,
usualy ranging from O~l. By varying the al _ThrottleECU signal 3311, one can
regulate the output of the throttle plate 3306, labeled as al _ Throttle 3316, which is
the absolute throttle angle, as shown above. Two parameters al _ThrottleMin and
al _ThrottleDelta define the range that the throttle plate 3306 can open. The

dynamics of the throttle plate 3306 are modeled as a second order dynamic system
with three parameters. the mass M , the viscous damping coefficient C and the
stiffness K. The nominal values for the parameters of this throttle plate 3306 are
M =X, C=10, K =40, al ThrottleDelta=80 and a _ThrottleMin =S

The following figureillustrates the signals that are collected when all
the parameters of throttle plate 3306 are set to the nominal values:
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Asdescribed above, system dynamic behaviors are partitioned into different
operational regions, and within each of the regions training is necessary to establish
the distribution or local model using the output sequences. This training information
5 canbeinformation learned from the IDE, for example IDE 800 of FIG. 8, through
the DRD link 899. The example regionalization below uses time frequency anaysis
and auniform size SOM for this throttle plate subsystem 3300 isbased on the initia
conditions of output, which isthe absolute throttle angle (al_Throttle) 3316, and the
input data, which isthe control signal 331 1 from the throttle plate controller 3304,
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al_ThrottleECU 331 1. It isrecognized that growing structure competitive learning
and/or local modeling could be used to produce the predictive behavior models in
regions of the SOM aswell.

alJThrottleECU is denoted as u and al_Throttleisdenoted as y . To
include all the information about initial conditions of output and input, we
concatenate them together into abig feature vector as

d d? dy d*y
D0 s sttty + OV, WheTE Y00, =

the initial value, 13t derivative, and 2nd derivative etc. of the system output.

ety »--- @€

u(t,),....u(ty + 1) isthe input sequence during time interval ltolo* T]. The
corresponding output sequence is [Y(t,),....y(t o +T1)]7. Similarly, one can shift the

window of lengthr to another start point ¢,, giving another big feature vector

[y ),% |, %:21 e, »++s8(ty )5 24ty + 7)1 and its corresponding output sequence
Ly(O»—».y('i * )] 3sillustrated. In thisway, two sets of vectors are collected: one
containing all the information of the initial conditions of the output together with the
input sequence, and the other consisting of the output sequence of the same time
interval. Moreover, there is aone-to-one correspondence between these two sets of
feature vectors.

hi some instances, only the signals with highly dynamic inputs might
be used for training and later used for testing. Relatively static inputs may not
stimulate dynamic modes of the system and hence would not reveal faults caused by
dynamic system parameter drifts. Therefore, to detect static changes (such as the
gain change) aswell as dynamic changes of the system, the training set of only
rapidly changing signals can be used. One possible way isto set athreshold on the
variance of the input sequences. Only the input sequences whose variances are
greater than the predefined threshold are selected as atraining set. Although this
may not bethe optimal way, it is easier to implement.

After collecting al the feature vectors, regionalization can be done
using SOM based on the vectors consisting of input sequence and initial conditions
of output. In this example embodiment for the throttle plate subsystem 3302, a data
sequence length is chosen as 0.6 seconds, which corresponds to 60 points after the
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original data has been downsampled by two, as described above. For theinitial
conditions of output, only theinitial value, and the first and second derivatives are
included. Sincethe input to the throttle plate subsystem 3302 is anumber from O~l,
no normalization is necessary for the input sequence. Theinitial conditions of the
output, including the initial value, and the first and second derivatives, has been
normalized using the following formula:

X -E(X)
Xnorma]ized =
0 X

where E(X) and o, arethe mean and the deviation of variable X .
This step is necessary to eliminate the situation in which there is huge magnitude of
difference in the feature vector elements, because the features of big magnitude will
dominate the effects on the resulting SOM. An example software package that can
be used is SOM Toolbox, Alhoniemi, E., Himberg, J., Kiviluoto, K., Parviainen, J.
and Vesanto, J.(1997), SOM toolbox for Matlab, available viaWWW at

fttp. V/www. cis. hut.fi/somtool box/.

Note that while collecting the training data, regionalization is done
using the SOM and growing model, based on the input sequence and initial
conditions of output.

Relatively static inputs do not stimulate dynamic modes of the system
and hence cannot reveal faults caused by dynamic system parameter changes.
Therefore, to detect the gain change parameter (which is achange in a static system
parameter) as well as dynamic change parameter of the system, the training set of
only rapidly changing signals might be used. One possible way isto set athreshold
on the variance of the input sequences, and select for training or later for testing only
the input sequences whose variances are greater than the predefined threshold.

In creating the SOM, there is atrade-off between a degree of
generalization and quantization accuracy of SOM. A small SOM has good
generalization of the training feature vectors but poor quantization accuracy. A
large SOM can have high quantization accuracy, but the training feature vectors are
not well generalized, and it consumes more computation power. Two possible
SOMss obtained from the training process are illustrated below, athough there isno
constraint that operational regions remain the same size (and in most instances will
not be):
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In the case of local models, the SOM size selection process is largely
eliminated, asthe size of the SOM created is based on minimizing the square of the
expected modeling error, Ef|ly — $(s)|*]. This splitting strategy promotes evenly

S distributed accumulated modeling error, a tradeoff between density approximation
and nonlinearity optimization.

While the SOM istraining by determining expected modeling error,
the distribution or models update, therefore updating the expected error or variance
threshold within the region. Asmore normal datais collected by the system, the

10  expected modeling error or variance isreduced and the SOM convergesto a
relatively stable state. Oncethe models are fully trained, the anomaly detector can
be used to accurately compare actual output to the modeled output.

FIG. 34 illustratesalogica flow diagram of an anomaly detector
3400. Operational flow begins at a start terminal 3402. An output operation 3404

15 alocates a current output, and its corresponding inputs and initial conditions, into an
operational region. A calculate operation 3406 cal culates a quantization error.

An error module 3408 determines if the quantization error is smaller
than apreset threshold, which isthe distance from the observed vector or inputs and
initial conditions to the best matching unit in the SOM. If the error module 3408

20  determines that the quantization error isnot smaller than the predetermined
threshold, operational flow branches "NQO", indicating the bresence of anewly
observed operating condition. Operational flow proceeds to alearning module 3413,
which triggers additional development of the anomaly models or distributions

consistent with the disclosure above. No aert istriggered, because no model exists
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for the region near the newly observed vector of inputs and initial conditions. If the
error module 3408 determines that the quantization error is smaller, operational flow
branches "YES" to an anomaly operation 3410 and an anomaly detection aertis
triggered in an output module 3412. Operational flow ends at terminal point 3414.

The logical flow of the anomaly detector of FIG. 34 is seenin the
following figure, which illustrates some example results of the anomaly detector on
the throttle plate subsystem 3302 of FIG. 33:
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The horizontal axis shows the system parameter values, and each
point represents the mean of confidence values when the system parameter is set to
the specified value as indicated in along x axis. Such comparisons can be made
within each trained region. In addition, the 3- o limits are also illustrated as intervals
made of short solid lines. Asdiscussed herein previously, the nominal values for
viscous damping coefficient C and stiffnessK are 10 and 40 respectively. It can be
observed that as the parameters degrade away from the nominal value, the
confidence value drops down. Thisin turn provides an indication that the system
performance is deviating away from the normal behaviors. Similar trends have also

been observed for the other two parameters, the mass M and the ThrottleDelta. This
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indicates the anomaly detector is capable of detecting different kinds of anomalies
and the gradual degradation of the system parameters without a priory presenting
signatures characterizing those faults to the anomaly detector.

Unlike the throttle plate 3306, FIG. 33, where there isonly one input,
the throttle plate controller 3304 has two inputs: Accelerator 3312 and n_Engine
3314. A parameter can beintroduced into the throttle plate controller 3304 to scale
one of the tables in the nonlinear throttle plate controller 3304. The nominal value
for thisgain factor is 1 and the following figure illustrates the sample signals
collected when the gain factor is set to itsnominal value:

Accelerstor
T

-

time {ssconds)

Like the anomaly detection on the plant, a similar procedure can also
be applied here. Regionalization isbased is on two input sequences from
Accelerator 3312 and n_Engine 3314 and the initial conditions of the output
al_ThrottleECU3311. A SOM iscreated during the training process based on the
training data to regionalize the system dynamics behaviors, and local models are
also computed and updated astraining dataisintroduced. After thetrainingis
complete, the controller detector is likewise tested.

After the training is complete, the controller detector has been tested
on thetesting data. The following figure illustrates the results from the anomaly
detector associated with the controller:
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In this example, it can be observed that as the gain factor of the
controller isreduced from its nominal value of 1to 0.65, the confidence value
decreases, while the variance increases.

Individual anomaly detectors are capable of sensing gradual
degradations of system parameters. |f we combine the results from different
anomaly detectors, we can also locate the anomalies using ahierarchical root cause
identification. To demonstrate this capability, two scenarios are discussed. In the
first scenario, the stiffness K, which isaparameter of the plant, ismade to gradually
decrease from the nominal value 40 to 24 in about 700 seconds. Other parameters
including parameters of the controller and the plant, are kept a their nominal values.
In the second scenario, disturbance isintroduced to the gain factor, which isa
parameter of the controller, and is also made to exponentially decrease from the
nominal value 1to 0.6 in about 700 seconds. The following illustrates the time
varying parameters in the two scenarios.
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The two anomaly detectors discussed previously are then tested on
standard driving profiles, which are not used for training. The first scenario istested
on afirst driving profile ECE2, and the second scenario istested on a second driving

profile FTP75. These two particular driving profiles correspond to driving profiles
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within LABCAR®, aproduct of ETAS. The following illustrates the anomaly

detection results:
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In order to filter out the noise, the exponential weighted moving

average (EWMA) operator can be applied to the confidence values. The straight

line across the window isthe lower control limit that has been calculated based on

the statistics of the confidence values observed on the training data set.

It can be observed, that for the first scenario, the confidence values

from the controller are high al the time, but the confidence values from the anomaly

detector on the plant gradually decrease and finally go out of the control limits. This
indicates that an anomaly occurred in the plant but the controller is still operating
normally. For the second scenario, since disturbance was introduced into the
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controller parameter, the confidence values from the controller anomaly detector
decrease and go out the control limits, while the confidence values from the plant
anomaly detector remain within the control limit. Thus, one can easily determine
the location of the anomalies, in the controller, the plant, or both. The ability to
decouple plant and controller anomalies as demonstrated is important for finding the
locations of the anomalies.

FIGS. 35-36 show a schematic representation of aroot cause
identification system according to an exemplary embodiment of the present
disclosure. Specifically, FIGS. 35-36 show two possible configurations of a
hierarchical root cause identification system 3500, 3600 as connected to a gasoline
engine vehicle model exhibiting further embodiments of root cause identification.
Generally speaking, multiple diagnostic agents distributed throughout a control
system may target the set of faults known apriori.

In the embodiment shown in FIG. 35, the system 3500 has a
diagnostic agent 3502 connected across athrottle plate controller 3508, throttle plate
3510, and engine system 3512. In contrast, the embodiment shown in FIG. 35
shows a system 3600 having separate, dedicated diagnostic agents 3602, 3604, 3606
trained on the throttle plate controller 3608, throttle plate 3610, and engine system
3612, respectively.

In considering both FIGS. 35 and 36, the distribution of diagnostic
agents 3502, 3602, 3604, 3606 involves ahierarchical control architecture, in which
aprimitive fault tree isprovided by distributing the diagnostic agents through the
overall system 3500, 3600. Such hierarchical decomposition of the system can be
applied for purposes of fault isolation. FIG. 35 shows a system 3500 in which the
lowest level at which adiagnostic agent islocated is & the engine control subsystem.
In the system 3500, the anomaly detector can determine whether a system anomaly
occurs in the subsystem shown by determining if the anomaly is detected by
diagnostic agent 3502. FIG. 36 shows a system 3600 in which each component has
a dedicated diagnostic agent 3602, 3604, 3606. The system 3600, having a larger
number of diagnostic agents dedicated to smaller subcomponents of the system,
allows for narrower root cause isolation of potential anomalies in the system.

In operation, the root cause identification system may isolate a fault
through the identification of the lowest level segment of the system on which a
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diagnostic agent has detected afault. In the embodiment shown in FIG. 35, that
would bethe GEVM. In the embodiment shown in FIG. 36, the error could be
traced down to the throttle plate controller 3608, throttle plate 3610, or engine
system 3612. Of course, other subsystems or components of the tested system can
have diagnostic agents dedicated thereto aswell. For example, one diagnostic agent
may be configured to detect an anomalous connection between accel erator position
and rotational speed of the engine with the throttle valve position, an additional
diagnostic agent can observe the condition of the controller of the electronic throttle
mechanism, and the condition of the throttle mechanism.

A further embodiment of the root cause identification system, which
can be used in conjunction with hierarchical root cause identification, requires a
number of diagnostic agents specialized to identify specific failure modes. In this
approach, separate diagnostic agents such asthose described herein are specifically
trained to detect designated failure mode, such as at some predetermined threshold.

This aternate embodiment isbest illustrated with an example. For
purposes of example, the faults are identified herein as FO, Fl, F2, and F3. Further,
it isassumed that the input-output signals corresponding with the faults FO, FI, and
F2 are known, while the signature of fault F3 is unknown. So, asystemistrained
using the known operating condition data for the three known faults consistent with
the present disclosure. In this case, the operating condition data corresponding with
the fault replaces the data corresponding to normal operational behavior. So, using
TFA for example, adistribution of vector moments may be generated for each fault.
Instead of a confidence value for whether the system is operating normally as
described with general anomaly detection above, in this case the confidence value is
to whether the diagnostic agent detects its particular trained error with confidence.
The fault may thus be detected by the simultaneous drop in the confidence level of
the normal behavior diagnostic agent measuring proximity to normal behavior, along
with the growth in confidence level of the diagnostic agent associated with the
known fault. This indicates proximity of the tested system's behavior to the
particular fault for which that second diagnostic agent is trained.

Using the foregoing example assumptions, the following signature
may be seen by the normal operation diagnostic agent as well as the diagnostic
agents trained to detect specific errors:
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It is apparent in the above signature that from time 0-500, the FO
error isoccurring, because the FOdiagnostic agent has high confidence in its
occurrence, simultaneoudly to relatively low confidence values for other diagnostic
agents. The same can be said for the Fl error between times 500 and 1500, as well
as F2 between times 2500 and 3500. In the timeframe between times 1500 and
2500, none of the diagnostic agents have a confidence value above their determined
threshold. Thisisconsistent with the index, which shows that error F3 is occurring
at this point. Because no diagnostic agents are trained to recognize F3, it may bean
undetected anomaly that can be root caused using acombination of this method and
the hierarchical methods previously described.
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FIG. 37 is an example flow diagram of an anomaly detection system
3700 according to a specific embodiment. The anomaly detection system 3700 can
be used, for example, in multiple aspects of the error detection system, such as in the
diagnostic agent or for the failure mode root cause detection described above.
Operational flow begins at a start point 3702. A partition operation 3704 partitions a

run-time environment into at least one operational region. This partitioning can be

called regionalization. A learn operation 3706 learns known behaviors operating
within the operational region. Thislearning can be called training. A monitor
operation 3708 monitors current behaviors. A compare operation 3710 compares
the known behaviors to the current operating behaviors. A detect operation 3712
detects behavior modes when adeviation exists between the current operating
behaviors and the known operating behaviors. A trace operation 3714 can trace the
unknown behavior modes back to an integrated devel opment environment through a
link. An identify operation 3716 identifies the unknown anomalies in the integrated
development environment based on the tracing of the anomalies.

Asdiscussed herein, anovel root cause identification system that is
capable of localizing anomaliesisdisclosed. The proposed approaches do not
require detailed knowledge of the system dynamics. The existence of normal inputs
and outputs signals isthe only assumption for the proposed method.

This approach is capable of building the input-output relationship
statistically through SOM based regionalization and local model based performance
assessment using the normal input-output signals, regardless of system type, linear
or nonlinear. The model building process is quite efficient. This significantly
reduces the development time of the diagnostic system.

The disclosed method has been demonstrated on a subsystem of a
gasoline engine vehicle model. It has been shown that the anomaly detector can
detect and can root cause different kinds of parameter drifts of the system.

M orebver, the multiple anomaly detectors can decouple the plant and controller
anomalies. Based on the results of the anomaly detectors, one can localize the
anomalies in the plant, controller, or both.

One skilled in the art would recognize that the system described
herein can be implemented using any number of software configurations, network
configurations, hardware configurations, and the like.
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The logical operations of the various embodiments illustrated herein
are implemented (1) as a sequence of computer implemented steps or program
modules running on a computing system and/or (2) as interconnected logic circuits
or circuit modules within the computing system. The implementation is a matter of
choice dependent on the performance requirements of the computing system
implementing the invention. Accordingly, the logical operations making up the
embodiments of the present invention described herein are referred to variously as
operations, steps, engines, or modules.

The above specification, examples and data provide a complete
description of the manufacture and use of the composition of the invention. Since
many embodiments of the invention can be made without departing from the spirit
and scope of the invention, the invention resides in the claims hereinafter appended.
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CLAIMS:
1. A system for detecting anomalies, the system comprising:
adiagnostic agent comprising:
aregionalization tool responsive to data indicative of system
operation, the regionalization tool configured to identify acurrent
operational region;
aperformance assessment tool configured to compare actual
operational behavior of the system in the current operational region to
normal operational behavior of the system in the current operational region;
wherein the normal operational behavior is determined from alocal
model for the current operational region.
2. The system of claim 1, further comprising:
afirst hardware system that generates outputs, the hardware system
arranged such that anomalies in the first hardware system are detected by the
diagnostic agent;
afirst run-time environment having abi-directional link to an
integrated development environment, the first run-time environment including:
afirst control system that controls the hardware system
through control inputsto the hardware system; and
a second diagnostic agent for detecting anomalies in the
control system.
3. The system of claim 2, wherein the first and second diagnostic agents
can detect anomalies by detecting gradual degradation of performance of the system.
4. The system of claim 2, wherein:
the integrated development environment includes a collection of
software and hardware development tools operating within the integrated
development environment that enable deployment of the first and second diagnostic
agents into the run-time environment.
5. The system of claim 2, wherein:
the hardware system comprises aplurality of hardware systems.
6. The system of claim 2, wherein:
the diagnostic agent comprises aplurality of diagnostic agents.
7. The system of claim 2, wherein:
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the second diagnostic agent comprises aplurality of second
diagnostic agents.
8. The system of claim 2, wherein:
the bi-directional link receives the anomalies from the first run-time
environment and passes the anomalies to the integrated development environment.
9. The system of claim 1, wherein:
the performance assessment tool generates a performance indicator
representative of deviation of the actual operational behavior from the normal
operational behavior within the current operational region.
10. Thesystem of clam 9, wherein:
the performance assessment tool detects anomalies based on the
performance indicator.
11.  Thesystem of clam 1, wherein:
the performance assessment tool sets athreshold on residual error
within the current operational region.
12. The system of claim 11, wherein:
the performance assessment tool determines whether the difference in
output iswithin the threshold on residual error.
13.  Thesystem of claim 1, wherein:
the regionalization tool is configured to identify aVoronoi cell ina
self-organizing map to identify the current operational region.
14. A method of detecting anomalies in a system comprising:
identifying a current operational region of a system, the current
operational region selected from aplurality of operational regions,
comparing actual operational behavior of the system with normal
operational behavior within the current operational region to calculate a performance
indicator, the performance indicator representative of a degree of deviation from the
normal operational behavior within the current operational region;
wherein the normal operational behavior isdetermined from alocal
model for the current operational region.
15.  Themethod of claim 14, wherein:
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identifying includes selecting the current operational region based on
current data values of a system input to the system and of an initial condition of an
output of the dynamic system.
16. The method of claim 14, wherein:
identifying includes selecting the current operational region generated
by vector quantization.
17. The method of claim 16, wherein:
identifying includes selecting the current operational region of a self-
organizing map trained in accordance with data indicative of the normal operational
behavior.
18. The method of claim 17, wherein:
identifying includes determining a best-matching unit in the self-
organizing map for operation of the system.
19.  Themethod of claim 18, wherein:
identifying includes identifying aVoronoi cell in a self-organizing
map as the current operational region.
20. The method of claim 14, further comprising:
detecting anomalies based on the performance indicator.
21.  Themethod of claim 14, further comprising:
tracing the anomalies back to an integrated development environment
through alink from arun-time environment;
22. The method of claim 21, further comprising:
identifying the anomalies in the integrated development environment
based on the tracing of the anomalies.
23. The method of clam 14, wherein:
comparing includes determining whether the difference in output is
within the threshold on residual error.
24, A method of training an anomaly detector for a system, the method
comprising:
collecting normal operational data indicative of normal operational
behavior of a system, the operational data comprising system input data and initial
condition data for an output of the system,;
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partitioning the system into aplurality of operationa regionsto train
aregionalization tool in the anomaly detector in accordance with the normal
operational data; and

computing alocal model of the normal operational behavior for a
least one of the plurality of operational regions of the system.

25. The method of claim 24, wherein:

partitioning incorporates growing structure competitive learning.
26. The method of claim 24, wherein:
partitioning generates a number of operational regions proportional to
nonlinearity of the system.
27. The method of claim 24, wherein:
partitioning includes partitioning an operational region having ahigh
relative expected modeling error.

28. The method of claim 24, wherein:

computing includes estimating alocal linear model for a least one
neighborhood region to the at least one of the plurality of operational regions.

29. The method of claim 24, wherein

partitioning includes creating new operational regions in operational
regions where the system is highly nonlinear.

30. A computer program product readable by a computing system and
encoding instructions diagnosing anomalies in a system, the computer process
comprising:

collecting normal operational data indicative of normal operational
behavior of a system, the operational datacomprising system input data and initial
condition data for an output of the system;

partitioning the system into aplurality of operational regions totrain
aregionalization tool in the anomaly detector in accordance with the normal
operational data; and

computing alocal model of the normal operationa behavior for at
least one of the plurality of operational regions of the system;

identifying the current operational region of a system, the current
operational region selected from aplurality of operational regions; and
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comparing actual operational behavior of the system with normal
operational behavior within the current operational region to calcul ate a performance
indicator, the performance indicator representative of adegree of deviation from the
normal operational behavior within the current operational region.
31 Thecomputer program product of claim 30, wherein:
partitioning includes growing structure competitive learning.
32. The computer program product of claim 30, wherein:
the computer process further comprises detecting anomalies based on
the performance indicator.
33.  Thecomputer program product of claim 30, wherein:
comparing includes determining whether the difference in output is
within the threshold on residual error.
34. The computer program product of claim 30, wherein:
partitioning incorporates growing structure competitive learning.
35.  Thecomputer program product of claim 30, wherein:
partitioning generates anumber of operational regions according to
normalized local modeling errors.
36.  Thecomputer program product of claim 30, wherein:
partitioning includes partitioning an operational region having ahigh
relative expected modeling error.
37. A system for detecting anomalies, the system comprising:
atraining agent comprising:
acollection tool configured to collect normal operational data
indicative of normal operational behavior of a system, the operational data
comprising system input data and initial condition data for an output of the system;
apartition tool configured to separate the system into a
plurality of operational regions based on growing structure competitive learning;
acompute tool configured to generate alocal model of the
normal operational behavior for at |least one of the plurality of operational regions of
the system;
adiagnostic agent comprising:
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aregionalization tool responsive to data indicative of system
operation, the regionalization tool configured to identify the current operational
region; and
aperformance assessment tool configured to compare actual
operational behavior of the system in the current operational region to normal
operational behavior of the system in the current operational region.
38. A method for detecting anomalies comprising:

collecting normal operational data indicative of normal operational
behavior of a system, the operational datacomprising system input data and initial
condition data for an output of the system;

partitioning the systeminto aplurality of operational regions based
on growing structure competitive learning;

computing alocal model of the normal operational behavior for at
least one of the plurality of operational regions of the system;

identifying the current operational region of a system, the current
operational region selected from a plurality of operational regions; and

comparing actual operational behavior of the system with the normal

-operational behavior within the current operational region to calculate aperformance

indicator, the performance indicator representative of adegree of deviation from the
normal operational behavior within the current operational region.
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