
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date (10) International Publication Number
27 December 2007 (27.12.2007) PCT WO 2007/149367 A2

(51) International Patent Classification: Not classified (72) Inventors; and
(75) Inventors/Applicants (for US only): MILLER, William,

(21) International Application Number: L. [USAJS]; 9255 Twin Oaks Drive, Dexter, MI 48130
PCT/US2007/014155

(US). MARKO, Kenneth [USAJS]; 2224 Highland Road,
(22) International Filing Date: 14 June 2007 (14.06.2007) Ann Arbor, MI 48104 (US).

(25) Filing Language: English (74) Agent: KOWALCHYK, Katherine, M.; Merchant &

(26) Publication Language: English Gould PC, P.O. Box 2903, Minneapolis, MN 55402-0903
(US).

(30) Priority Data:
11/454,295 16 June 2006 (16.06.2006) US (81) Designated States (unless otherwise indicated, for every

kind of national protection available): AE, AG, AL, AM,
(71) Applicants (for all designated States except US):

AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY,BZ, CA, CH,
ROBERT BOSCH GMBH [DE/DE]; Postfach 30 02 20, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
70442 Stuttgart (DE). ETAS, INC. [USAJS]; 3021 Miller ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL,
Road, Ann Arbor, MI 48103 (US). IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,

(71) Applicants and LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
(72) Inventors: DJURDJANOVIC, Dragan [YUAJS]; 2241 MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,

South Huron Parkway, Apt. 4, Ann Arbor, MI 48104 (US). PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
LIU, Jianbo [CNAJS]; 2260 Shadowood Drive, Ann Ar TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
bor, MI 48108 (US). ZM, ZW

[Continued on next page]

(54) Title: METHOD AND SYSTEM FOR ANOMALY DETECTION

(57) Abstract: A system and method
102 for detecting anomalies in a system are

described. The system incorporates a
diagnostic agent. The diagnostic agent

Data Compression identifies a current operational region
of the system and determines current
performance based on a local model of
normal system performance in that region.

104

Anomaly Detection

106

Root Cause Identification

(84) Designated States (unless otherwise indicated, for every Published:
kind of regional protection available): ARIPO (BW, GH, — without international search report and to be republished
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, upon receipt of that report
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT,BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT,LU, LV,MC, MT, NL, PL, For two-letter codes and other abbreviations, refer to the "Guid-
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, ance Notes on Codes and Abbreviations" appearing at the begin-
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

METHOD AND SYSTEM FOR ANOMALY DETECTION

This application is being filed on 15 June 2007 as a PCT International

Patent application in the name of Robert Bosch GmbH, a German corporation, and

ETAS, Inc., a U.S. national corporation, applicants for the designation of all

countries except the US, William L. Miller and Kenneth Mark, both citizens of the

U.S., applicants for the designation of the US only, and Dragan Djurdjanovic, a

citizen of Serbia and Montenegro, and Jianbo Liu, a citizen of China, applicants for

the designation of all countries, and claims priority to U.S. Utility Patent

Application No. 11/454,295, filed June 16, 2006.

Cross Reference to Related Applications

The present application is a continuation-in-part of and claims

priority to U.S. Patent Application Serial No. 10/967,102, filed October 15, 2004,

the disclosure of which is hereby incorporated by reference.

Technical Field

The present invention relates to software and systems, and more

particularly to anomaly detectors in run-time environments.

Background

In the current paradigm of product development, the quality of a

product, its production, and its service is mainly designed, tested, and implemented

during development. Anomalies in a product, its production, or its service are

identified during development and corrected. Once a product is released, it is

difficult to find remaining quality problems.

hi the automotive industry, warranty repair is expensive and can

consume a company's profits. Engineering is the root cause of more than fifty

percent of warranty repair costs. Software, operating within the vehicle, is a core

part of the engineering problem. Because engineering is often the root cause of the

problem, swapping parts during the repair will not solve the problem.

Anomaly detection in complex non-linear systems, such as an

automotive system, requires a high-fidelity model or representation of nominal

system behavior that can be compared to actual system behavior to detect deviations.

Such systems often require expert guidance or substantial computation time, due to

which real-time monitoring becomes difficult. Furthermore due to the large number

of inputs, environmental factors, and complex interrelationships in many such

systems, the root cause for one or more anomalies is difficult to determine.

Therefore, improvements are desirable.

Summary

In accordance with the present invention, the above and other

problems are solved by the following:

In one aspect of the present invention, a system for detecting

anomalies includes a diagnostic agent. The diagnostic agent includes a

regionalization tool and a performance assessment tool. The regionalization tool is

responsive to data indicative of system operation and identifies a current operational

region. The performance assessment tool compares actual operational behavior of

the system in that current operational region to normal operational behavior in the

same region. The normal operational behavior is determined from a local model for

the current operational region.

In a second aspect of the present invention, a method for detecting

anomalies in a system is disclosed. The method includes identifying a current

operational region of a system from a plurality of operational regions. The method

further includes comparing actual operational behavior of the system with normal

operational behavior within the current operational region to calculate a performance

indicator. The performance indicator represents of a degree of deviation from the

normal operational behavior within the current operational region. The normal

operational behavior is determined from a local model for the current operational

region.

In a third aspect of the present invention, a method for training an

anomaly detector is disclosed. The method includes collecting normal operational

data indicative of normal operational behavior of a system. The method further

includes partitioning the overall operational space of the system into a plurality of

operational regions using a regionalization tool in the anomaly detector. The

method also includes computing an estimated model of the normal operational

behavior for at least one of the plurality of operational regions of the system. In

such a method, the operational data is system input data and initial condition data.

The partitioning step trains the regionalization tool using the normal condition

operational data.

In yet another aspect, a computer program product readable by a

computing system and encoding instructions for diagnosing anomalies in a system is

disclosed. The product includes instructions for collecting normal operational data

indicative of normal operational behavior of a system. The product further includes

instructions for partitioning the system into a plurality of operational regions to train

a regionalization tool in the diagnostic agent. The product also includes instructions

for computing a local model of the normal operational behavior for at least one of

the plurality of operational regions of the system. The product also includes

instructions for identifying the current operational region of a system as selected

from a plurality of operational regions. The product also includes instructions for

comparing actual operational behavior of the system with normal operational

behavior within the current operational region to calculate a performance indicator.

The operational data includes system input data and initial condition data for an

output of the system. The performance indicator represents a degree of deviation

from the normal operational behavior within the current operational region.

The invention may be implemented as a computer process; a

computing system, which may be distributed; or as an article of manufacture such as

a computer program product. The computer program product may be a computer

storage medium readable by a computer system and encoding a computer program

of instructions for executing a computer process. The computer program product

may also be a propagated signal on a carrier readable by a computing system and

encoding a computer program of instructions for executing a computer process.

A more complete appreciation of the present invention and its scope

may be obtained from the accompanying drawings, which are briefly described

below, from the following detailed descriptions of presently preferred embodiments

of the invention and from the appended claims.

Brief Description of the Drawings

Referring now to the drawings in which like reference numbers

represent corresponding parts throughout:

FIG. 1 is a schematic representation of methods and systems for root

cause identification, according to an exemplary embodiment of the present

disclosure;

FIG. 2 is a schematic representation of a computing system that may

be used to implement aspects of the present disclosure;

FIG. 3 is a schematic representation of methods and systems for root

cause identification, according to an exemplary embodiment of the present

disclosure;

FIG. 4 is a schematic representation of methods and systems for root

cause identification, according to an exemplary embodiment of the present

disclosure;

FIG. 5 is a schematic representation of methods and systems for

learning model-based lifecycle diagnostics, according to an exemplary embodiment

of the present disclosure;

FIG. 6 is a block diagram of a development of a product; according to

an exemplary embodiment of the present disclosure;

FIG. 7 is a schematic representation of the requirements associated

with a wicked problem, according to an exemplary embodiment of the present

disclosure;

FIG. 8 is a schematic representation of methods and systems for

learning model-based lifecycle diagnostics, according to an exemplary embodiment

of the present disclosure;

FIG. 9 is a schematic representation of methods and systems for

learning model-based lifecycle diagnostics, according to an exemplary embodiment

of the present disclosure;

FIG. 10 illustrates an example graphic user interface, according to an

exemplary embodiment of the present disclosure;

FIG. 11 is a schematic illustrating a distributed system, according to

an exemplary embodiment of the present disclosure;

FIG. 12 is a process diagram illustrating a vehicle product

development, according to an exemplary embodiment of the present disclosure;

FIG. 13 is a process diagram illustrating the spiral lifecycle process,

according to an exemplary embodiment of the present disclosure;

FIG. 14 is a process diagram illustrating the spiral lifecycle process,

according to an exemplary embodiment of the present disclosure;

FIG. IS is a process diagram illustrating the vehicle development

phase, according to an exemplary embodiment of the present disclosure;

FIG. 16 is a process diagram illustrating how the lifecycle method

progresses through requirements, according to an exemplary embodiment of the

present disclosure;

FIG. 17 is a process diagram illustrating how the lifecycle method

applies a spiral sub process, according to an exemplary embodiment of the present

disclosure;

FIG. 18 is a process diagram illustrating how the lifecycle method is

applied, according to an exemplary embodiment of the present disclosure;

FIG. 19 is a process diagram illustrating how the lifecycle method

progresses, according to an exemplary embodiment of the present disclosure;

FIG. 20 is a process diagram illustrating how the lifecycle method

applies a spiral sub process, according to an exemplary embodiment of the present

disclosure;

FIG. 2 1 is a process diagram illustrating how the lifecycle method is

applied in the spiral sub process, according to an exemplary embodiment of the

present disclosure;

FIG. 22 is a system diagram, according to an exemplary embodiment

of the present disclosure;

FIG. 23 illustrates how the lifecycle method links the levels together,

according to an exemplary embodiment of the present disclosure;

FIG. 24 is a schematic representation of methods and systems for

anomaly detection, according to an exemplary embodiment of the present disclosure;

FIG. 25 is a schematic representation of methods and systems for

training an anomaly detector for a system, according to an exemplary embodiment

of the present disclosure;

FIG. 26 is a schematic representation of methods and systems for

anomaly detection, according to an exemplary embodiment of the present disclosure;

FIG. 27 is a process diagram illustrating an anomaly detection and

root cause identification system, according to an exemplary embodiment of the

present disclosure;

FIG. 28 is a schematic representation of an anomaly detection and

root cause identification system, according to an exemplary embodiment of the

present disclosure;

FIG. 29 is a schematic representations of methods and systems for

training a growing structure learning system according to an exemplary embodiment

of the present disclosure;

FIG. 30 is a schematic representation of an anomaly detection

system, according to an exemplary embodiment of the present disclosure;

FIG. 31 is a schematic representation of a gasoline engine model

system, according to an exemplary embodiment of the present disclosure;

FIG. 32 is a schematic representation of an integrated control system,

gasoline engine vehicle model system, and anomaly detectors, according to an

exemplary embodiment of the present disclosure;

FIG. 33 is a schematic representation of an anomaly detection

system, according to an exemplary embodiment of the present disclosure;

FIG. 34 is a process flow diagram of an anomaly detection system,

according to an exemplary embodiment of the present disclosure;

FIG. 35 is a schematic representation of a root cause identification

system according to an exemplary embodiment of the present disclosure;

FIG. 36 is a schematic representation of a root cause identification

system according to an exemplary embodiment of the present disclosure; and

FIG. 37 is a process flow diagram of an anomaly detection system

according to an exemplary embodiment of the present disclosure.

Detailed Description

In the following description of embodiments of the present

disclosure, reference is made to the accompanying drawings that form a part hereof,

and in which is shown by way of illustration specific embodiments in which the

invention may be practiced. It is understood that other embodiments may be utilized

and changes may be made without departing from the scope of the present invention.

Increasingly complex and sophisticated control software, integrated

sensors, actuators, and microelectronics provide customers with higher reliability,

safety and maintainability. However, these impose more challenges than ever for

today's engineers to diagnosis the vehicle and to detect and isolate system

anomalies. The increasing portion of control software on a vehicle makes it even

more difficult, because in order to reduce the cost, most of the manufacturers prefer

the solution of designing more sophisticated control software, instead of adding

hardware, to provide attractive features. The amount of software operating on a

vehicle is unlikely to stop growing in the future.

The control software and various hardware components used on the

vehicle usually exhibit nonlinear behaviors. This is especially true for control

software. Therefore, once these software and hardware components are integrated in

a vehicle and communicate with each other, they create a large number of

operational regions. Those interactions are sometimes too complicated to

understand even for experienced engineers. In addition, the driver inputs and

external environmental conditions vastly vary and create infinite patterns of

conditions in which the vehicle operates. Signatures describing system behaviors

for different driver inputs and external influences are quite different. With infinitely

many behavioral patterns, anomaly detection and localization are complex, because

one has to compare the behavioral signatures to appropriate behavioral regimes. The

best way to find anomalies is to compare the signatures within the same behavior

regime, and the deviation of the current signature from a normal signature is the

indication of the severity of the anomalies.

The present disclosure describes methods and systems for learning

model-based lifecycle software and systems. More particularly, the software and

systems typically include embedded diagnostic agents. These agents can include

anomaly detection agents and diagnostic agents. The diagnostic agents can detect

and quantify performance deviations or anomalous behavior. The anomaly detection

agents detect and quantify performance deviations or other anomalous system

behavior. Anomaly detection agents can be interfaced with a tested system to

facilitate root cause identification in the tested system. These agents can incorporate

Self-Organizing Maps and use, for example, Time Frequency Analysis or Local

Models (such as local linear models) to detect anomalies in such systems. These

agents can be incorporated into a variety of run time or development environments

in order to diagnose errors throughout a product lifecycle.

Referring now to FIG. 1, a schematic representation of methods and

systems 100 for root cause identification is shown according to an exemplary

embodiment of the present disclosure. In general, such methods and systems can be

used for determining the cause of errors or other anomalous behavior in tested

systems, and may be embodied in a variety of hardware or software tools. System

100 includes an anomaly detection module 102. The anomaly detection module 102

is configured to detect anomalies in a tested system. The anomaly detection module

102 compares actual operational behavior of the tested system to normal operational

behavior of the tested system to produce comparison data.

The system 100 also includes a compression module 104. The data

compression module 104 accepts the comparison data from the anomaly detection

module 102. The compression module 104 creates patterns based on the comparison

data.

The system 100 further includes a root cause identification module

106. The root cause identification module 106 generates a set of probable root

causes for each of the anomalies detected by the anomaly detection module 102.

The set may include one or more potential root causes of the anomaly, based on the

patterns generated by the compression module 104.

The behavior of the tested system should be partitioned into a

plurality of operational regions having predictable behavior. Normal operational

behavior is determined within any operational region from performance related

features extracted from a distribution or model in that operational region. The

performance related features can be extracted from a time-frequency distribution.

The model can be a local model of any form, such as a local linear model or a local

recurrent neural network fitted to the signals emitted by the system in the operational

region.

FIG. 2 and the following discussion are intended to provide a brief,

general description of a suitable computing environment in which the invention

might be implemented. Although not required, the invention is described in the

general context of computer-executable instructions, such as program modules,

being executed by a computing system. Generally, program modules include

routines, programs, objects, components, data structures, etc. that perform particular

tasks or implement particular abstract data types.

Those skilled in the art will appreciate that the invention might be

practiced with other computer system configurations, including handheld devices,

palm devices, multiprocessor systems, microprocessor-based or programmable

consumer electronics, network personal computers, minicomputers, mainframe

computers, and the like. The invention might also be practiced in distributed

computing environments where tasks are performed by remote processing devices

that are linked through a communications network. In a distributed computing

environment, program modules might be located in both local and remote memory

storage devices.

Referring now to FIG. 2, an exemplary environment for

implementing embodiments of the present invention includes a general purpose

computing device in the form of a computing system 200, including at least one

processing system 202. A variety of processing units are available from a variety of

manufacturers, for example, Intel or Advanced Micro Devices. The computing

system 200 also includes a system memory 204, and a system bus 206 that couples

various system components including the system memory 204 to the processing unit

202. The system bus 206 might be any of several types of bus structures including a

memory bus, or memory controller; a peripheral bus; and a local bus using any of a

variety of bus architectures.

Preferably, the system memory 204 includes read only memory

(ROM) 208 and random access memory (RAM) 210. A basic input/output system

212 (BIOS), containing the basic routines that help transfer information between

elements within the computing system 200, such as during start up, is typically

stored in the ROM 208.

Preferably, the computing system 200 further includes a secondary

storage device 213, such as a hard disk drive, for reading from and writing to a hard

disk (not shown), and/or a compact flash card 214.

The hard disk drive 213 and compact flash card 214 are connected to

the system bus 206 by a hard disk drive interface 220 and a compact flash card

interface 222, respectively. The drives and cards and their associated computer

readable media provide nonvolatile storage of computer readable instructions, data

structures, program modules and other data for the computing system 200.

Although the exemplary environment described herein employs a

hard disk drive 213 and a compact flash card 214, it should be appreciated by those

skilled in the art that other types of computer-readable media, capable of storing

data, can be used in the exemplary system. Examples of these other types of

computer-readable mediums include magnetic cassettes, flash memory cards, digital

video disks, Bernoulli cartridges, CD ROMS, DVD ROMS, random access

memories (RAMs), read only memories (ROMs), and the like.

A number of program modules may be stored on the hard disk 213,

compact flash card 214, ROM 208, or RAM 210, including an operating system 226,

one or more application programs 228, other program modules 230, and program

data 232. A user may enter commands and information into the computing system

200 through an input device 234. Examples of input devices might include a

keyboard, mouse, microphone, joystick, game pad, satellite dish, scanner, digital

camera, touch screen, and a telephone. In the exemplary computing system, these

and other input devices are often connected to the processing unit 202 through an

interface 240 that is coupled to the system bus 206. These input devices also might

be connected by any number of interfaces, such as a parallel port, serial port, game

port, or a universal serial bus (USB). A display device 242, such as a monitor or

touch screen LCD panel, is also connected to the system bus 206 via an interface,

such as a video adapter 244. The display device 242 might be internal or external.

In addition to the display device 242, computing systems, in general, typically

include other peripheral devices (not shown), such as speakers, printers, and palm

devices.

When used in a LAN networking environment, the computing system

200 is connected to the local network through a network interface or adapter 252.

When used in a WAN networking environment, such as the Internet, the computing

system 200 typically includes a modem 254 or other means, such as a direct

connection, for establishing communications over the wide area network. The

modem 254, which can be internal or external, is connected to the system bus 206

via the interface 240. In a networked environment, program modules depicted

relative to the computing system 200, or portions thereof, may be stored in a remote

memory storage device. It will be appreciated that the network connections shown

are exemplary and other means of establishing a communications link between the

computing systems may be used.

The computing system 200 might also include a recorder 260

connected to the memory 204. The recorder 260 includes a microphone for

receiving sound input and is in communication with the memory 204 for buffering

and storing the sound input. Preferably, the recorder 260 also includes a record

button 261 for activating the microphone and communicating the sound input to the

memory 204.

A computing device, such as computing system 200, typically

includes at least some form of computer-readable media. Computer readable media

can be any available media that can be accessed by the computing system 200. By

way of example, and not limitation, computer-readable media might comprise

computer storage media and communication media.

Computer storage media includes volatile and nonvolatile, removable

and non-removable media implemented in any method or technology for storage of

information such as computer readable instructions, data structures, program

modules or other data. Computer storage media includes, but is not limited to,

RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM,

digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic

tape, magnetic disk storage or other magnetic storage devices, or any other medium

that can be used to store the desired information and that can be accessed by the

computing system 200.

Communication media typically embodies computer-readable

instructions, data structures, program modules or other data in a modulated data

signal such as a carrier wave or other transport mechanism and includes any

information delivery media. The term "modulated data signal" means a signal that

has one or more of its characteristics set or changed in such a manner as to encode

information in the signal. By way of example, and not limitation, communication

media includes wired media such as a wired network or direct-wired connection, and

wireless media such as acoustic, RF, infrared, and other wireless media.

Combinations of any of the above should also be included within the scope of

computer-readable media. Computer-readable media may also be referred to as

computer program product.

Referring now to FIG. 3, a schematic representation of methods and

systems 300 for root cause identification are shown according to an exemplary

embodiment of the present disclosure. In general, such methods and systems are

used to provide an indication of possible sources of system misbehavior based on

observations from a number of anomaly detection agents. Preferably, system 300

includes a plurality of anomaly detection agents 302. The anomaly detection agents

302 detect anomalies in a tested system. In preferred embodiments, the anomaly

detection agents 302 are trained by observations of the tested system or portions of

the tested system. The anomaly detection agents 302 can then derive statistical or

model-based representations of system behavior to assess behavior of the tested

system in unobserved situations. The diagnostic agents can be organized in

hierarchical levels, as described in greater detail in conjunction with FIGS. 25 and

31.

The system 300 further includes a data compression tool 304. The

data compression tool 304 is configured to partition the tested system into a plurality

of operational regions. The data compression tool 304 is connected to the plurality

of anomaly detection agents 302. The data compression tool 304 is configured to

create patterns based on the comparison data. For example, the data compression

tool may produce a statistical signature of the tested system's operation based on the

output from the tested system within each of a number of regions. This pattern

generation can be accomplished using principal components analysis (PCA) of time

frequency moments of output signals.

The system 300 further includes a root cause identification tool 306.

The root cause identification tool, in general, uses the patterns to determine possible

root causes of the anomalies detected by the diagnostic agents. In various

embodiments, the root cause identification tool can use the hierarchical and failure

mode techniques described herein, such as in conjunction with FIGS. 31-33.

In an example embodiment, the anomaly detection agents 302 are

configured in hierarchical levels with respect to the tested system. One anomaly

detection agent 302 could monitor overall tested system inputs and outputs, while

other anomaly detection agents 302 could monitor subsections of the tested system.

The data compression tool can organize the detected anomalies into groups based,

for example, on timing of the anomaly. The root cause identification tool 306 could

then narrow the potential reasons for the anomaly by determining which anomaly

detection agents 302 detected the error. Anomaly detection agents 302 connected to

the anomaly-causing portion of the tested system will generally exhibit earlier or

greater error rates that affect other portions of the tested system. In this

embodiment, some knowledge of the hierarchical structure of the tested system is

necessary.

In an alternative embodiment, the plurality of anomaly detection

agents 302 can each be trained to detect a specific type or class of error of the tested

system overall, in which case the agents 302 essentially become diagnostic agents.

Each type of error, or "failure mode", might be triggered by any of a number of

anomalies in the tested system. By determining which anomaly detection agents 302

detect an anomaly, the root cause identification tool 306 can produce a set of

possible root causes of the anomaly, allowing for more efficient detection/correction

of design issues. This embodiment can be accomplished by training a diagnostic

agent such as those described herein, with known error data in conjunction with

system operation rather than completely normal functional system operation.

Referring now to FIG. 4, a schematic representation of methods and

systems 400 for root cause identification are shown according to an exemplary

embodiment of the present disclosure. In the embodiment shown, the root cause

identification systems and methods are trained using a system with known errors in

order to separate the known errors from newly-discovered anomalies.

The system 400, as shown, is instantiated by a start module 402.

Following the start module 402, operational flow is passed to a collection module

404. The collection module 404 accepts anomaly data from diagnostic agents

trained on a tested system. The anomaly data can be representative of anomalies

sensed in the tested system. For example, the collection module 404 can accept

known error values and known states for a tested system. The tested system can be a

system for which certain erroneous operation is expected, for example, due to errors

that are known but not corrected in the tested system. The training can be, for

example, based on a recursive algorithm using Self-Organizing Maps to reach a

designated variance or error level as discussed herein.

The system 400 includes a behavior partition module 406. The

partition module 406 is configured to partition the behavior of the tested system into

a number of operational regions. The partition module 406 trains a regionalization

tool, such as regionalization module 410 below, in accordance with data. The data

used to partition the tested system can be, for example, the normal or known faulty

behavior-related data collected by the collection module 404.

The system 400 includes a compute module 408. The compute

module 408 is configured to compute a distribution of signal features or a model of

the known operational behavior. The distribution of signal features or model of

known operational behavior can be based on the normal or known faulty behavior-

related data collected by the collection module 404. The compute module 408 can

do such a computation for each of the plurality of regions created by the partition

module 406, and preferably does so for at least one of the plurality of regions of the

tested system.

In the operation of one possible embodiment, the collection module

404, the partition module 406, and the compute module 408 execute concurrently.

For example, the collection module 404 can collect a variety of data samples from a

"baseline" operating system to be tested, generally a tested system including certain

known errors. The partition module 406 may partition the tested system into a

number of operational regions, or may partition those operational regions into a

larger number of smaller-sized operational regions as additional anomaly data is

collected by the collection module 404.

The compute module 408 can generate a model or statistical

distribution, such as a linear model or distribution of time-frequency moments, from

the collected data in the current operational region. The current operational region

can be determined, for example, by a regionalization module 410, described below.

The compute module 408 can update an estimated model or distribution using

subsequent data it can receive from the collection module 404. Further, the compute

module 408 can be configured to update or generate a model or distribution in other

regions, such as neighbor regions to the current operational region.

The combination of the collection module 404, the partition module

406, and the execute module 408 produce a model or distribution of the tested

system representative of normal or known faulty behavior in the operational

behavior of the tested system based on the data collected by the collection module

404.

The system 400 further includes a regionalization module 410. The

regionalization module 410 is configured to identify a current operational region in

the tested system. The regionalization module 410 may accept as inputs the input

and output of a hardware or software system to be tested. The regionalization

module 410 determines the current operational region of the tested system from

among the plurality of operational regions created by the partition module 406.

The system 400 includes a performance module 412. In operation,

the performance module 412 compares actual operational behavior of the tested

system in the current operational region to the known operational behavior of the

tested system in the current operational region. The known operational behavior of

the tested system is based on a model derived from the data that is collected from a

tested system when this system behaved normally or when it underwent a known

fault. This comparison determines if the actual behavior fits the expected fault. If it

does not, the difference may indicate a newly-detected fault. This new error may in

turn be an unexpected error and may have a new root cause.

The system 400 determines known operational behavior from an

estimated model or distribution for the current operational region. The estimated

model or distribution, as generated by the compute module 408, can be a local linear

model or time-frequency distribution.

Operational flow among the operations 404-412 is generally ordered

from training to testing. This does not necessarily dictate the order illustrated,

although it is apparent that some amount of initial error data collection will take

place before any partitioning module 406 can execute and the compute module 408

can derive a model or distribution. Furthermore, at least one operational region must

exist for the regionalization module 410 to determine the current operational region,

and some known and actual operational behavior must be available to determine

performance in the performance module 412.

The system 400 terminates at an end module 414.

Referring now to FIG. 5, an example schematic representation of a

learning model-based lifecycle system 500 is illustrated. The learning model-based

life cycle described herein provides a construct upon which the root cause system is

based. The system 500 includes an Integrated Design Environment (IDE) and a

Run-Time Environment (RTE). The IDE 505 includes a set of software tools, or

agents, linked within the IDE 505. The RTE 510 includes another set of software

agents linked within the RTE 510. The IDE 505 and the RTE 510 are linked via link

515.

The root cause identification system and anomaly detection systems

described herein can be incorporated in the IDE 505 or the RTE 515. When

incorporated in the RTE, the root cause identification system and anomaly detection

systems are configured in such a way that they provide real-time feedback and

learning based on other elements integrated in the RTE 515.

FIG. 6 is a block diagram illustrating a development system 600,

which can include software and development tools. The development system 600

includes three basic types of components in the development of a product, for

example, a vehicle. Block 610 is the requirements component. The first step in

product and system development uses the requirements component. The

requirements component defines what the product and system will include. Block

620 is the design component. After the requirements for the product and system are

determined, the product and system are designed to conform to those requirements.

Block 630 is the implementation component. After the product and system are

designed, the product and system are manufactured according to the design

component and put into service. The system can also include enterprise applications

for supply and service chain integration. In addition, the system can include run¬

time application services including telecommunications and operations infrastructure

and vehicles.

Using a vehicle as an example, a car manufacturer decides to make a

new model X car with systems for learning model-based lifecycle diagnostics. At

block 610, the requirements for the X car and systems are determined. For example,

the X car should be a sedan having a certain payload, acceleration, and should not

exceed $20,000. The system should reduce warranty repair costs and improve

customer satisfaction.

At block 620, the X car and the systems are designed according to

those requirements. The frame and suspension of the car are designed to carry the

required payload, the power train is designed or chosen based on the gross vehicle

weight and the acceleration requirement, and the rest of the X car is designed to not

exceed $20,000. For example, knowing the X car should not exceed $20,000, an

engineer may decide to choose an engine that barely meets the acceleration

requirement and would not choose an engine that would greatly exceed the

acceleration requirement. The system could be designed using web services with an

imbedded web platform to run on a three-tier architecture consisting of servers,

telematics, and electronics embedded in the vehicle. The system can have a

distributed database to enable servers to be located throughout the supply and

service chain. The system can include development, manufacturing, and service

tools.

At block 630, the X car and the systems are implemented, i.e.

manufactured and put into service, according to the design. Implementation deploys

the software and hardware throughout the three-tier architecture in the supply and

service chains.

Typically, software is utilized in each step of the product and system

lifecycle, which includes product and system development, production, and service.

Requirements management (RM) processes of vehicles and systems requires tools to

facilitate collaboration among people in the supply and service chain. Currently,

requirements management (RM) software uses model-driven, objected-oriented

(OO) tools based on information authored and collected by people. Since the RM is

dependant on the information input into it, the RM is limited. Therefore, these

typical RM tools are inflexible and cannot autonomously recognize anomalies

without intervention from people. Some RM tools are based on knowledge agents,

giving it the ability to learn and recognize anomalies. Such RM tools are also

inflexible.

In the requirements step, there are two classes of knowledge

problems that determine the type of product and system to be analyzed, and then the

tools and processes required for development, production, and service. These two

classes of problems include "tame" and "wicked" problems. Most problems are

tame and can be solved with a stage-gate, linear process and information-based

tools. Developing the requirements for a system to manage wicked problems

requires a spiral process and knowledge-based tools.

Wicked problems are composed of a linked set of issues and

constraints, and do not have a definitive statement of the problem itself. The

problem (and therefore the requirements for designing a solution) cannot be

adequately understood until iterative prototypes representing solution candidates

have been developed. Within the primary overall development process, which is

linear, a secondary spiral process for iterative prototypes is required. The spiral

process involves "rolling out" a portion of the software at a time while another

portion is being developed. The software engineering community has recognized

that a spiral process is essential for rapid, effective development.

An example of a wicked problem is the design of a car and the

diagnostics for the car. The "wicked" terminology was introduced by Horst Rittel in

1970. Rittel invented a technology called issue-based information systems (IBIS) to

help solve this new class of problems. Wicked problems look very similar to ill-

structured problems, but have many stakeholders whose views on the problem may

vary. Wicked problems must be analyzed using a spiral, iterative process, and the

ideas, such as requirements associated with the problem, have to be linked in a new

paradigm 700, illustrated in FIG. 7.

Referring to FIG. 7, the three key IBIS entities are (1) issues 702,

703, 704, or questions, (2) positions 705, 706, 708, or ideas, that offer possible

solutions or explanations of the issues, and (3) arguments 710, 712, or the pro's and

con's. AU three entities can be linked by relationships such as supports, objects-to,

is —suggested —by, responds to, generalizes, specializes, replaces, and others. The

visualization of IBIS becomes a graph or a network. IBIS builds a bridge between

design and argumentation or the expressed dialog of ideas that forms the core of

knowledge management.

IBIS is a graphical language with a grammar, or a form of argument

mapping. Applying IBIS requires a skill similar to the design of experiments

(DOE). Jeffrey Conklin (http://cognexus.org/idl 7.htm) pioneered the application of

graphical hypertext views for IBIS structures with the introduction of graphical IBIS

or gIBIS. The strength of IBIS, according to Conklin, stems from three properties:

(1) IBIS maps complex thinking into analytical structured diagrams, (2) IBIS

exposes the questions that form the foundation of knowledge, and (3) IBIS diagrams

are much easier to understand than other forms of information.

In the Compsim IBIS tool architecture, ideas can be specified in

either the form of a text outline or a tree structure of nodes. Ideas of a given level

can have priorities and weights to change the ordering of the display of ideas.

Priorities can be easily edited in a variety of graphical ways. A unique decision

making mechanism mimics human thinking with relative additions and subtractions

for supporting negating arguments. The IBIS logic is captured as XML definitions

and is used to build linked networks of knowledge-based agent networks. Compsim

calls this agent structure knowledge enhanced electronic logic (KEEL). The agents

execute an extended form of the IBIS logic.

The current field that contains IBIS is called computer-supported

argument visualization (CSAV). Related fields that apply CSAV are computer-

supported cooperative work (CSCW) and computer-mediated communication

(CMC), which helped spawn the Internet. CMC tools include Microsoft's

NetMeeting™ product.

Argument visualization is a key technology for defining the complex

relationships found in requirements management, which is a subset of knowledge

management (KM). One of the principles for KM is found in constructivist learning

theory, which requires the negotiated construction of knowledge through

collaborative dialog. The negotiation involves comparative testing of ideas. The

corresponding dialog with visualization of ideas creates the tacit knowledge that

comprises the largest part of knowledge as opposed to the explicit part of knowledge

directly linked to information. Tacit knowledge is essential for shared

understanding.

IBIS is a knowledge-based technology. IBIS tools for requirements

management such as Compenium™ or QuestMap™ (trademarks of GDSS, Inc.) are

distinctly different from object-oriented (OO) framework tools for RM such as

Telelogics's Doors™ or IBM's Requisite-Pro™. Wicked problems cannot be easily

defined such that all stakeholders agree on the problem or the issues to be solved.

There are tradeoffs that cannot be easily expressed in OO framework with RM tools.

IBIS allows dyadic, situated scenarios to define requirements. IBIS allows the

requirements to be simulated. IBIS can sense those situations and determine which

set of requirements is appropriate or whether the requirements even adequately

apply to the situation.

In summary, current RM tools have limitations. OO RM tools enable

traceability between requirements, design, and implementation during development,

but not during the production or service deployment phases. OO RM tools are not

knowledge-based and cannot easily handle ill-structured, wicked problems with

multiple stakeholder views that conflict with different weighted priority ranking of

those views expressed as the pro's and con's of argumentation. IBIS RM tools

overcome most of those limitations but do not develop traceable requirements for a

system design.

Both OO RM and IBIS RM tools recognize that the relationship

between ideas as expressed in text alone is not clear without additional structure

such as an outline with an associated hierarchy. Network structures such as those

made possible by hypertext technology can be traced back to Vannevar Bush and his

1945 article As We May Think. In 1962, Douglas Englebart defined a framework for

cognitive augmentation with tools in his report from the Stanford Research Institute,

Augmenting Human Intellect: A Conceptual Framework. The result of Englebart's

research and development work was the development of the modern windows, icon,

mouse, and pointer (WIMPT) graphical user interface (GUI) and an early

implementation of hypertext-based tools.

Round-trip engineering for OO, or model-driven software

development, is a source code for implementation that is traceable back to elements

of design and requirements. The round-trip is between requirements, design, and

implementation as source code and then back to design and requirements. Since

round-trip engineering currently occurs only during development and only within

certain segments of the IDE, model anomalies that appear in the RTE after

development cannot be traced back to root causes in requirements, design, or

implementation. A segmented IDE might consist of four quadrants. These

quadrants contain methods and tools for (1) enterprise applications in a system, (2)

embedded software for the vehicles, (3) telematics for the vehicle, and (4) service

systems for the vehicle.

Frequently, the OO model is defined using a unified modeling

language (UML). UML is a third generation OO graphical modeling language. The

system model has structural, behavioral, and functional aspects that interact with

external users called actors as defined in use cases. A use case is a named capability

of the system. System requirements typically fall into two categories: functional

requirements and non-functional or Quality of Service (QoS) requirements.

Functional means what the system should do. QoS means how well

or the performance attributes of the function. In common usage, functional can

imply both functional and performance. The structural aspect defines the objects

and object relations that may exist at run-time. Subsystems, packages, and

components also define optional structural aspects. The behavioral aspect defines

how the structural elements operate in the run-time system. UML provides state-

charts (formal representation of finite-state-machines) and activity diagrams to

specify actions and allowed sequencing. A common use of activity charts is

specifying computational algorithms. Collections of structural elements work

together over time as interactions. Interactions are defined in sequence or

collaboration diagrams.

The requirements of a system consisting of functional and QoS

aspects are captured typically as either one or both of two ways: (1) a model is use

cases with detailed requirements defined in state charts and interaction diagrams, or

(2) specifications as text with or without formal diagrams such as sequence diagrams

that attempt to define all possible scenarios of system behavior.

Round-trip engineering traces OO requirements through OO design

into an OO implementation that includes the OO source code for software. This

round-trip occurs only in certain segments of the IDE, which are OO IDE segments,

and only during development. Currently, there is no round-trip traceability between

an RTE and an IDE during development, production, and service. Round-trip

engineering has been extended to use a meta-model rather than require obtrusive

source code markers, but extended round-trip engineering still occurs only within

certain segments of the IDE during development.

Model-based diagnostics is a state-of-the-art method for fault

isolation, which is a process for identifying a faulty component or components of a

vehicle and a system that is not operating properly in compliance with operating

parameters specified as part of the vehicle and system's implementation model.

Model-based diagnostics suffers from the limitations of assuming that all the

operating scenarios of the system and all of the potential faults of the system are a

priori known and can be described. The operating scenarios of the system include

all expected faults.

If an adequate amount of observable information from the vehicle is

available at run-time, model-based diagnostics can determine the root cause for

previously known and expected failure modes predicted by an expanded model that

includes both normal and failure modes. The expanded model is used to simulate

and record the behavior resulting from all possible single component failures, then

combinations of multiple component failures. When failure behavior is observed, a

sequence of pre-determined experiments can be performed to determine the root

cause.

Faults in the vehicle and system's requirements or design and

implementation models are mainly detected after development by users who may

complain and have their complaints analyzed by service technicians and then

possibly by engineers. Situations that led to the complaints are frequently not easily

identified and reproducible. The process of fault isolation or root cause

determination generally begins at detection of abnormal system behavior and, as

described herein, attempts to identify the defective and improperly operating

component or components. These components perform some collection of functions

in the system. The components are frequently designed to be field replaceable

hardware units that may contain software. However, the failure model assumed in

current practice considers functional failure modes of the replaceable component

and may not determine whether the failure inside the component or components is a

hardware or a software failure. If the failure is in software, then the failure may

have occurred at the requirements, design, or implementation level. Replacing the

hardware component or components may not repair the problem, because the user of

the system cannot readily examine the software operation.

In one example embodiment, an improved method and system of

detecting lifecycle failures in vehicle functional subsystems, that are caused either

by hardware failures or by software anomalies in requirements, design, or

implementation and tracing the failure back to the root cause in the model, is

contemplated. For tracing, the method uses a new capability for lifecycle round-trip

engineering that links diagnostic agents in the RTE with a dyadic model in the IDE

for managing the development and maintenance of vehicle functions and the

corresponding diagnostics. The dyadic model in the IDE is managed by linked

dyadic tools that develop functions and corresponding diagnostics at each level of

the spiral development "V" process (which will be described in more detail later):

requirements, design and implementation. The lifecycle diagnostic method, which

S links the IDE and RTE, can be applied during development, production, and service

of the vehicle RTE.

Referring to FIGS. 8 and 9, a learning model-based lifecycle

diagnostic system 799 is illustrated. Preferably, the system 799 includes an IDE 800

and a RTE 900 linked by a DRD link 799. FIG. 8 is a system diagram, according to

0 one example embodiment, for a lifecycle diagnostic method for the development of

vehicle functions and corresponding diagnostics in the IDE 800 and the deployment

of diagnostics in an RTE 900 to service vehicles. The diagram illustrates how the

lifecycle method links development tools together in the IDE 800 with linkages.

The IDE 800 in the lifecycle method contains development tools and processes to

S develop vehicle functions and a corresponding diagnostic application consisting of a

set of integrated and linked diagnostic agents for deployment in the RTE 900. The

IDE 800 and the RTE 900 are linked through a DRD link 799 and corresponding

processes. The DRD 799 can include a database, which can be a distributed

database.

0 FIG. 9 is a system diagram, according to one example embodiment,

for a lifecycle diagnostic method for the development of diagnostics in an IDE 800

and the deployment of diagnostics in a RTE 900 to service vehicles. The diagram

illustrates how the lifecycle method links diagnostic agents together in the RTE 900

with linkages. The RTE 900 in the lifecycle method contains and operates the

5 diagnostic application deployed as a three level system consisting of diagnostic

agents, running on servers, TCUs, or equivalent modules that plug into vehicles, and

ECU's. Production Service tools interface to the vehicle and are part of the RTE

900. The RTE 900 is linked back to the IDE 800 through the DRD link 899 and

corresponding processes

0 As shown in FIG. 10, an IDE tool such as the Compsim KEEL toolkit

can be driven by the data returned in the DRD link 799, FIG. 8, to simulate and test

the design model and analyze the failure mode. The data shown below is an

example of the input schema defined in XML by the IDE 800, FIG. 8; the schema is

stored in the DRD link 899:

- <Schema name="KEELDataSchemaxml" xmlns="urn:schemas-

microsoft-com:xml-data" xmlns:dt="urn:schemas-microsoft-

com:datatypes">

<ElementType name="Index" dt:type="ui2" />

<ElementType name="Value" dt:type="float" />

- <ElementType name="InDat" content="eltθ nly" model- 'closed">

<element type="Index" minθ ccurs="1" t>

<element type="Value" minθ ccurs="l" l>

</ElementType>

<ElementType name="ProjectTitle" content="text θ nly"

model="closed" dt:type="string" />

- <ElementType name="Report" content="eltθ nly" model="closed">

<element type="ProjectTitle" minθ ccurs="l" />

<element type="InDat" minOccurs="0" maxOccurs- *" />

</ElementType>

</Schema>

The DRD link 899 eliminates the need for the RTE agents 600 to

know how to communicate with the tools in the IDE 800. The system 799 creates

the proper linkages between the IDE 800 and the RTE 900 using only the

information in the DRD link 899. An example of the data returning from the RTE

900 to the IDE 800 is shown below:

<?xml version="1.0" ?>

- <Report xmlns="x-schema:KEELDataSchemaxml.xml">

<ProjectTitle>UAVl </ProjectTitle>

- <InDat>

<Index>0</Index>

<Value>l 00</Value>

</InDat>

- <InDat>

<Index> 1<yindex>

<Value>22</Value>

</InDat>

- <InDat>

<Ihdex>2</Index>

<Value>82</Value>

</InDat>

- <InDat>

<Index>3</Index>

<Value>60</Value>

</InDat>

- <InDat>

<Index>4</Index>

<Value>64</Value>

</InDat>

- <InDat>

</Report>

Referring back to FIG. 8, preferably, the IDE 800 has three levels of

development activity for users of the system 799 with corresponding tools and

processes. These three levels are requirements management, design, and

implementation. The system 799 creates a linked dyadic tool pair for functions and

diagnostics at each level in the IDE 800.

At the top of FIG. 8 is the activity called requirements management.

Typical model-driven, object-oriented (OO) development tools for requirements

management (RM) are IBM/Rational Requisite Pro™ and Telelogic DOORS™.

The lifecycle method creates a new dyadic capability for RM by augmenting

existing OO RM tools with an issue-based information (IBIS) tool such as the

Compsim Management Tool™ (CMT).

The IDE 800 includes a first RM 802, a second RM 804, a first

design tool 806, a second design tool 808, a third design tool 810, a first deployment

tool 812, a second deployment tool 814, and a third deployment tool 816.

Preferably, the first RM 802 is implemented as OO RM Tool, and the second RM

804 is implemented as an IBIS RM Tool. The first design tool 806 is implemented

as an OO model-driven function design tool, such as IBM/Rational Rose™, iLogix's

Rhapsody™, the MathWorks's Simulink™ or ETAS's ASCET/SD™.

The second design tool 808 is implemented as a knowledge-based

diagnostics design tool. The third design tool 810 is implemented as a model-based

diagnostics design tool. The second design tool 808 and the third design tool 810

comprise a diagnostic builder tool suite that contains both knowledge-based

diagnostic design tools and model-based diagnostic design tools. These tools enable

the user of the system 799 to develop run-time diagnostic agents for the

corresponding designed vehicle functions. The diagnostic agents are intended to run

on the three levels of the RTE 900, FIG. 9. The diagnostic builder suite specifies the

targeted level of the RTE 900 for each diagnostic agent and builds the links shown

in FIG. 9 between the agents in the RTE 900. An example of a knowledge-based

agent development tool is Compsim's KEEL™. An example of a model-based

agent development tools is R.O.S.E. s Rodon™.

The first deployment tool 812 is implemented as a software function

code generation, management, and deployment tools such as ASCET/SD™. The

second deployment tool 814 is implemented as a software diagnostic code

generation, management, and deployment tool. And, the third deployment tool 816

is implemented as a software diagnostic code generation, management, and

deployment tool.

The first RM 802 is linked to the second RM 804 via link 818. The

link 818 is any standard communication link known in the art. The link 818 is a bi-

directional, integrated link that enables capturing the knowledge, assumption, and

decision logic behind the requirements captured in the first RM 802. Preferably, the

system 799 implements link 818 by passing unique XML function identifier

descriptors (FIDs - RM) for objects in the first RM 802 to the second RM 804 and

by building a data relationship with XML diagnostic identifier descriptors (DIDs-

RM). The dyadic relationship for link 818 is stored in the DRD link 899. By

windowing the second RM 804 into the graphic user interface of the first RM 802,

the system 799 enables the user to define the decision logic behind the requirement

being captured as objects in the first RM 802, such as a use case. The logic in the

second RM 804, corresponding to the object in the first RM 802, is defined as

unique XML diagnostic identifier descriptors (DIDs).

The first design tool 806 is linked to the second and third design tools

808, 810 via link 820. Link 820 bi-directionally passes unique XML defined

function identifier descriptors for design (-D) and diagnostic identifier descriptors

for design (-D) and integrates the graphical user interface of the separate tools at the

design level.

The first deployment tool 812, or functional module, is linked to the

second and third deployment tools 814, 816, or diagnostic agents, via link 822. Link

822 bi-directionally passes unique XML defined function identifier descriptors for

implementation (-1) and diagnostic identifier descriptors (-1) and integrates the

graphic user interface of the implementation tools. Link 822 is implemented by

defining the ECU memory locations and data types for the information

corresponding to vehicle modules. ASAM MCD™ with XML is an example of

such a link. Tools, such as ETAS's ASCET/SD™ and INCA™, can be used to

implement link 822.

The first RM 802 is also linked to the first design tool 806 via link

824. The first design tool 806 is also linked to the first deployment tool 812 via link

826 for implementation. Links 824, 826 enable what is called round-trip

engineering for functions in the development environment. Objects corresponding

to requirements can be traced through design to the source code in implementation

and back up to design and requirements.

Likewise, the second RM tool 804 is linked to the second and third

design tools 808, 810 via links 828, 830, respectively. The second and third design

tools 808, 810 are linked to the second and third deployment tools 814, 816 via links

832, 834, respectively. Links 832, 834 enable round-trip engineering for diagnostics

in the development environment. XML defined design objects for diagnostics are

linked to source code for diagnostics.

The system 799 integrates model-based diagnostic design tools, such

as R.O.S.E's Rodon™, that generate source code with tools, such as ASCET/SD™,

to generate executable code on a real-time operating system for implementation on

the RTE 900, FIG. 9.

Referring to FIG. 9, the RTE 900 has three levels of software and

hardware. Using the tools in the IDE 800, the DRD Link 899, and processes, the

system 799 enables the building of a diagnostic application as a collection of linked

diagnostic agents that run on the three levels. Some of the agents can be

downloaded onto level 2 using OSGi™.

The RTE 900 includes a first database 902, a server application 904,

a second database 906, a broker 908, an electronic control unit (ECU) 910, learning

agents 912, and agents 912, 914. Preferably, the first database 902 is an embedded

distributed database known in the art. The server application 904 is a server

diagnostic software application and meshed network of KBD modules. The second

database 906 is an embedded distributed database. The broker 908 manages KBD

bundles of diagnostic agents and data. The ECU 910 includes software and other

hardware connected to the ECU. The learning agents 912 include software learning

model-based diagnostic agents and data in ECU's. The agents 914 include software

model-based diagnostic (MBD) agents and data in ECU's.

The first database 902 is linked to the server application 904 via link

916. The second database 906 is linked to the broker 908 via link 918. The ECU

910 is linked to the learning agents 912 and the agents 914 via link 920. The server

application 904 is also linked to the broker 908 via link 922. The broker 908 is

linked to the learning agents 912 and agents 914 via link 924.

The IDE 800 and RTE 900 are linked via link 899. Link 899 is a

Development, Run-time, Development (DRD) link. Preferably, the DRD link 899 is

implemented using a telecommunications and operations infrastructure (TOI)

containing combinations of a distributed database and software interprocess

communication (IPC) mechanisms. In the DRD link 899, the information sent

through the database or IPC mechanisms are defined by XML schemas and contain

both IDE 800 and RTE 900 data. The XML schema could be sent in messages or

optionally be used to configure a distributed database.

During development, new diagnostic tools in the IDE 800 are used to

guide users to follow a spiral "V" process "down" and "up" the "V" to build IDE

model linkages (as is described in more detail below) between functions uniquely

identified with function identifier descriptors (FIDs) and corresponding diagnostics

uniquely identified with diagnostic identifier descriptors (DIDs) at the levels of

requirements, design, and implementation. The EDE dyadic (function-diagnostic)

model linkages with FIDs and DDDs are stored in the DRD link 899 database.

Consequently as the method follows the spiral "V" process over

iterative prototyping cycles during development, a new dyadic system model is built

in the IDE 800 and the DRD link database 899. An RTE 900 is also built for the

vehicle. The RTE 900 contains a three-tier level of diagnostic agents that are linked

together into an integrated diagnostic application architecture (DAA) and linked to

the vehicle functions including software with corresponding calibration parameters

in ECU'S.

The three-tier RTE 900 includes managers on the servers 904 and

brokers 908 on the TCUs for dynamically deploying the agents 912, 914 onto

vehicles such as downloading agents to a vehicle's TCU or a vehicle service module

(VSM).

In the RTE 900, run-time linkages or run-time binding between

software objects is performed by the agent manager and brokers using the BDE

defined XML schemas and data such as the FIDs and DIDs contained in the DRD

link 899. This enables linking agents together and linking agents with functions.

An example of the linking is connecting a diagnostic agent with a

calibration parameter in an engine ECU. In an DDE 800 using UML, these

connections might also include ports and protocols. In an DDE 800 and a RTE 900

complying with the Association for Standardization of Automation and

Measurement (ASAM), additional access methods for measurement, calibration and

diagnosis (MCD) that relate to ECU's in vehicles would be defined. These access

methods would still be contained in the DRD link 899 and represented as XML

schemas with embedded data.

Referring to FIG. 11, a lifecycle diagnostic method manages vehicles

in a distributed system 1180. The distributed system include a database, 1181,

servers 1182, vehicles 1184, tools for development, production and service, 1186,

1188, 1190 and modules inside the vehicle such as TCUs 1192 and ECUs 1194.

Preferably, the architecture that the method uses to define the system is the ISO

Open System Interconnection (OSI) seven layer reference model. The layers are

application, presentation, session, transport, network, data link, and physical. The

DAA comprises the top three layers of the seven layer "stack" for a node, and the

TOI comprises the bottom four layers of the stack.

Root cause tracing occurs with lifecycle round-trip engineering that

links the detected failures in the vehicle RTE 900, FIG. 9, with the elements of the

model in the IDE 800, FIG. 8. The linkage is implemented by using the IDE 800

linkages stored in the database. By tracing the linkages built with tools in an IDE

800, the candidates for root cause in requirements, design, and implementation can

be determined.

A spiral lifecycle process is triggered by the likely detection of

failures by cooperative, autonomous diagnostic agents in the vehicle RTE 900, FIG.

9. The agents would apply a range of algorithms and technologies that can be

classified in several categories: model-based diagnostics (MBD), learning model-

based diagnostics (LMBD) or knowledge based diagnostics (KBD). Current OBD

diagnostic agents use MBD that frequently applies exponential moving averages,

which are first order Kalman filters, to design acceptable Type 1 and Type 2

statistical error profiles.

The trigger can be assisted by service tools connected to the vehicle

RTE 900, FIG. 9. The trigger sends information through messages or a distributed

database to the vehicle's diagnostic application running on one or more servers. The

messages or database transactions from the vehicle to the servers) are created by the

vehicle's TCU after being fed information from a combination of MBD and LMBD

agents running in ECU's and a combination of MBD, LMBD, and KBD agents

running in the TCU.

In a possible embodiment, LMBD agents can apply time-frequency

based performance assessment technology for anomaly detection and fault isolation.

Time-frequency analysis (TFA) based performance assessment provides a tool for

managing a combined time-frequency representation of a signal or a set of signals

that represent the normal behavior of a system into a model of that system. The

behavior can vary over time and frequency. TFA is a method for detecting both

slow degradation and abrupt failures.

Newly developed TFA signal representation methods can identify the

behavior of a system's signature in ways that are difficult or impossible using time-

series or spectral analysis. Optimal design methods for TFA include the Reduced

Interference Distribution or RDD. RID charts of time frequency distributions

achieves the goal of providing high resolution time-frequency representations with

desirable mathematical properties such as time, frequency, and scale shift

covariance, time and frequency marginal property, group delay and constant

frequency properties and suppression of cross-terms (Cohen). Learning MBD

agents built with RID TFA technology exhibit many desirable properties such as

very rapid identification of failures without using a model, with minimal processing

and with engineered statistical confidence in the detection.

LMBD and other diagnostic agents can alternately apply local linear

models in combination with growing structure competitive learning to detect system

anomalies while minimizing error, even in extremely nonlinear systems. Local

linear models provide an easily-computable, close estimation that represents the

normal behavior of a system. Local linear model usage avoids complicated,

computationally-intensive analysis, and can therefore easily be adapted to real-time

applications.

Consider a general dynamic system to be tested whose input-output

relationship is described by the following differential equations, in which u

represents system inputs, y represents outputs, x represents state variables, and τ

denotes the matrix transposition operator:

If the tested system inputs and outputs are observable, and the state

variables can be reconstructed from system observation, then the system can be

described by a nonlinear autoregressive with exogenous inputs (NARX) model

which takes the following form:

further embodiments, additional models can be used, including a

Takagi-Sugeno method, auto-regressive with exogenous inputs (ARX) and a

combination of these models.

In these systems, the problem of nonlinear dynamic modeling reduces

to the problem of approximating the functional relationship of Fm(s()) in the above

equation by using a set of local models focused on a small region in the space

occupied by the system spanned by vectors of the form:

the model structure is such that it is linear with respect to its

parameters, then the model parameters can be estimated by recursively non-linearly

minimizing in the least squares sense the modeling errors in the training set. One

example model useful in this context is a local model, in particular a local linear

model. Local linear models are a good choice for use because of their limited

computational demands.

Diagnostic agents can use local models to detect anomalous system

behavior by setting a threshold on residual error. In one possible embodiment, a

local linear model can be used. The threshold on residual error is set with respect to

each operational region in order to avoid detection of anomalies in regions sparsely

populated during the training process, which would result in high missed detection

and false alarm rates. By splitting the entire operational space of the tested system

into sufficiently small regions at places where nonlinearity is high, a linear model

provides an acceptable and easily computable estimate of actual system operation.

Either of the preceding methods for detecting anomalies, using time-

frequency analysis or local linear modeling, are suitable for usage consistent with

the present disclosure, either for initial detection of anomalies or for comparison of

error-prone systems to identify and root-cause newly encountered anomalies. Use of

these techniques is discussed in greater depth in conjunction with Figures 24-37.

Referring back to FIGS. 8 and 9, a possible embodiment of a

learning model-based lifecycle diagnostics system 799 includes an IDE 800,

linkages within the IDE between IDE tools, an RTE 900, linkages within the RTE

900, and a DRD link 899. These linkages, operating with agents and tools in the

RTE 900 and tools in the IDE 800, enable the system to trace failures, or anomalies,

detected in the RTE back to the root cause as model anomalies in the IDE.

To trace model failures back from the RTE 900 to the IDE 800, the

method implements round-trip engineering between diagnostic agents in the RTE

900 and diagnostics linked to the corresponding vehicle functions in the IDE 800.

The functions are represented as a model with objects. Because the agents,

processes, tools, and linkages operate together in a spiral process to learn model

anomalies over a vehicle's lifecycle, the method is called lifecycle learning-model

based diagnostics.

An IDE 800 is an integral part of the lifecycle method in addition to a

RTE 900 for software on the vehicle and software that supports the production and

service of the vehicle. Service of the vehicle includes service operations at dealers

and a telematic service such as OnStar™. Preferably, the RTE 900 includes fleets of

vehicles, the electronic control units (ECU's), networks, sensors, actuators and user

interface devices such as speedometers on dashboards on individual vehicles, and a

telecommunications and operations infrastructure (TOI) that includes computers

such as distributed servers, communication networks such as cellular and wireless

LAN's such as WIFI, and tools such as diagnostic scan tools generally found at

OEM dealerships and independent aftermarket (IAM) repair shops.

Preferably, the IDE 800 is a computing laboratory and experimental

driving environment with a collection of development tools for developing and

maintaining vehicle functions such as power train electronics, including the ECU's,

sensors, and actuators for an engine and transmission, body electronics, such as the

ECU's, sensors, and actuators for lighting systems, and chassis electronics, such as

the ECU's, sensors, and actuators for anti-lock braking systems (ABS). The vehicle

functions are implemented in systems such as power train and corresponding

subsystems, such as engine cooling. These systems and subsystems include both

hardware and software. The IDE 800 is also used to develop the enterprise

application software (alternately called the information technology or IT software)

to support vehicle production and service operations.

The software that implements vehicle functions generally runs on

electronic control units (ECU's) and an optional telematic control unit (TCU)

residing on the vehicle. The application software runs on computers such as servers

and PC's and for service tools such as diagnostic scan tools. The development of

vehicle diagnostic software for service operations is commonly called authoring.

The diagnostic software on the vehicle is called on-board diagnostics (OBD).

The processes used in the methods of the IDE 800, FIG. 8, are

illustrated in FIGS. 12-21. As these processes are followed, the linked tools in the

IDE 800 build information in the DRD 899 to link the diagnostic application and

agents in the RTE 900 with the IDE 800. Those agents read the DRD 899 to find

FIDs linked with DIDs.

FIG. 12 is a process diagram illustrating a vehicle product

development lifecycle 1200, according to an exemplary embodiment of the present

disclosure. The product development process for a specific model year of a vehicle

over its lifecycle is conceptually divided into three phases including a development

phase 1202, a production phase 1204, and a service phase 1206. Development,

production and service activities require the management of large amounts of

software. Software creates a major part of the vehicle function and a major part of a

business information system to support the vehicle's lifecycle.

Development of a production and service capability including the

tools for production and service occurs during the development phase 1202.

Capability is defined as people with knowledge, tools, technology, and processes.

There is an associated architecture that represents the structure of the capability,

including a business information system, represented by tools and technology.

There is a large amount of software in the business system. The associated

architecture also includes the structure of the vehicle, including its subsystems,

which include its on-board information system. There is also a board diagnostic

(OBD) system in the vehicle. This OBD system includes a large amount of

software. Part of the OBD system is required by government regulations to

indirectly monitor the vehicle's emissions by monitoring the operation of the

vehicle's emission control systems. Typically, there is almost as much diagnostic

software in a vehicle's power train ECUs as there is control software.

The information system on the vehicle typically includes many

electronic control units (ECUs). Vehicles typically have fifty or more ECUs. These

ECUs contain a large amount of software. The architecture of a vehicle, and its

production and service systems, are completely defined during development. The

development phase 1202 typically begins with a large part of the architecture

previously determined in a research and development (R&D) phase (not shown) that

precedes the development phase 1202. The architectural model for a vehicle model

is typically derived from a platform model, which includes power train, chassis

body, and other subsystem components.

The product development process enables development, production,

and service of both the vehicle and the business system as a product. The process

operates with the corresponding business system that supports the vehicle during

development, production, and service.

The product and the business system are supported by the process,

which is part of an organizational capability. The capability has an associated

architecture. The architecture relates to both the vehicle and the business system.

The capability includes internal and external (outsourced) services with people and

their knowledge, applications, tools, platforms, components, and technology. The

capability supports the vehicle as a product and the business system in the supply

and service chains. These chains support the original equipment manufacturer

(OEM) and the vehicle as a product over the lifecycle.

The lifecycle for a vehicle typically lasts more than ten years. The

development phase 1202 is about two to three years, followed by several years of the

production phase 1204 for several model years. The production phase 1204 is

followed by many years of the service phase 1206. The initial part of the service

phase 1206 for a specific vehicle typically includes an original equipment service

(OES) warranty period of three or more years that is followed by a service period

that includes the independent aftermarket (IAM).

These development, production, and service phases 1202, 1204, 1206

are illustrated as following each other sequentially over time, but there is overlap

that will be illustrated in subsequent figures. The production phase 1204 begins

with the start of production (SOP). The service phase 1206 begins with the first

customer shipment (FCS) of a vehicle. As many vehicles are produced for a model

year, the production and service phases 1204, 1206 overlap.

In each phase 1202, 1204, 1206 of the process, there is an RTE and

an IDE. The RTE is specific to a phase. D-RTE 1208 represents a development-

RTE; P-RTE 1210 represents a production RTE; and S-RTE 1212 represents a

service RTE. A manufacturing plant with production tools would be included in the

P-RTE 910. An OEM dealer's service department with service tools would be

included in the S-RTE 1212. A single IDE 1214 with development tools is common

to all phases and linked to each specific RTE 1208, 1210, 1212. The IDE 1214

would typically be applied in the supply and service chains, and in the OEM and its

business partners. The specific RTEs 1208, 1210, 1212 are connected to the IDE

1214 through a DRD Link 1216.

FIG. 13 is a process diagram illustrating the spiral lifecycle process

1300 used during the development phase 1202, FIG. 12, of the lifecycle to produce

prototype cycles, according to an exemplary embodiment of the present disclosure.

The development phase 1202, FIG. 12, of the product development

process is used to develop prototypes with a spiral sub process 1300. The sub

process 1100 fits inside the development phase 1202. The vehicle model, and its

supporting business system to be developed, consists of components in the

categories of requirements, design, and implementation. Development typically

begins with an activity to determine and specify some parts of the requirements

model for the vehicle and its supporting business system, and then development

proceeds to determine and specify some part of the design model for the vehicle and

its supporting business system, which includes the RTE with its development,

production, and service tools.

Development tools typically support simulation of design models,

which enable testing to occur without fully implemented vehicles and supporting

systems. Development tools with simulation and testing capabilities such as

hardware in the loop (HIL) or software in the loop (SEL) are used to permit

incremental development of subsystems before a completed vehicle is available. As

development proceeds, some part of an implementation model can be determined

and specified. The spiral process is used to incrementally complete parts of

requirements, design, and implementation. The spiral process permits repeated

forward sequences such as implementation determination and specification that

follows design or reverse sequences such as requirements development that follow

either design or implementation. Modern software engineering and corresponding

tools encourages use of a spiral process during development to speed development,

improve quality, and lower development cost.

FIG. 14 is a process diagram illustrating the spiral lifecycle process

1400, with periods of concurrent development and service operations, according to

an exemplary embodiment of the present disclosure.

The Lifecycle Spiral Process 1400 is required because during the

service phase of the vehicle's lifecycle, faults and anomalies will be encountered.

Faults are failures that have been previously analyzed and are predicted from a

failure mode model. A procedure for determining root cause is probably known and

can be effectively applied. Faults can typically be corrected in the field by repair

procedures that include swapping or replacing parts.

Anomalies are failures that have not been previously analyzed and

are not predicted from a failure mode model. A large part of the anomalies will have

root causes in model anomalies, such as software bugs. Model anomalies will be

found in the implementation of the vehicle and/or its supporting business system.

The correction of these anomalies must be performed by returning to a development

phase. The development phase operates concurrently with service operations as

shown.

FIG. 15 is a process diagram illustrating the vehicle development

phase containing prototype cycles 1500 as conceptual "V" cycles, according to an

exemplary embodiment of the present disclosure.

The Development Phase 1202, FIG. 12, includes prototype cycles

1500 that follow the shape of a "V". The "V" begins with the development of some

parts of a vehicle model and business system as requirements, then optionally

proceeds to development of parts of the design model and then optionally to

development of parts of the implementation model. At the bottom of the "V", the

focus of development activity then shifts to integration, testing, calibration, and

validation of the parts of the model that have been developed.

The "down cycle" is on the left and the "up cycle" is on the right side

of the diagram. Horizontally across the "V" is a corresponding part of the model to

be integrated, tested, calibrated, or validated. After being partially developed,

components of requirements can be integrated, tested, and validated through

methods like simulation. An early prototype "V" cycle might only include

development and testing of requirements. After some parts of the design or

implementation model have been developed, that part of the model can be

integrated, tested, and validated with the previous parts of the model for the vehicle

and business system. Each prototype cycle develops, integrates, tests, and validates

more parts of the model, with components that include requirements, design, and

implementation.

FIG. 16 is a process diagram illustrating how the lifecycle method

progresses using the spiral process through requirements, design, and

implementation, according to an exemplary embodiment of the present disclosure.

The development phase 1202, FIG. 12, progresses through

prototyping cycles 1602, 1604, 1606. Each cycle initially moves through a "down

cycle" of the "V" cycle that includes the development of the model in terms of the

attributes of requirements, then design, and finally implementation. Early "down

cycles" need only develop requirements before entering an "up cycle" to begin

testing and validating the requirements. Most prototyping cycles in the development

phase will include the development of the model in terms of the attributes of

requirements, design, and implementation in the "down cycle".

FIG. 17 is a process diagram illustrating how the lifecycle method

applies a spiral sub process, according to an exemplary embodiment of the present

disclosure.

The development phase 1202, FIG. 12, includes prototype cycles

1700. The cycles 1700 use a spiral process to move through the "V" initially in a

"down cycle" as illustrated. With the spiral process, parts of the requirements

attributes of the prototype model are developed and then tested, followed by parts of

the design being developed and then tested, and then parts of the implementation

attributes are developed and then tested.

FIG. 18 is a process diagram illustrating how the lifecycle method is

applied with a linked IDE and RTE, according to an exemplary embodiment of the

present disclosure.

The development phase 1202, FIG. 12, has prototype cycles 1800 and

uses a spiral process to move through the "V". In developing parts of the model, an

IDE 1802 is required. In testing, calibrating, and validating parts of the

implementation model, a RTE 1804 is required. To effectively move along the

spiral process, the IDE 1802 and RTE 1804 should be linked via a DRD link 1806.

The IDE 1802 is mainly applied on the top and middle of the "V", and the RTE

1804 is applied on the bottom of the "V". The spiral process that moves through the

"V" is enabled by the linked IDE 1802 and RTE 1804. The linkage is required

during "down cycles" and "up cycles". In the "down cycle" the information flow is

mainly from the IDE 1802 to the RTE 1804 because the focus is on ending with an

implementation as a RTE 1804.

FIG. 19 is a process diagram illustrating how the lifecycle method

progresses, according to an exemplary embodiment of the present disclosure.

The development phase 1202, FIG. 12, progresses through

prototyping cycles 1902, 1904, 1906. Each cycle eventually moves through an "up

cycle" in the "V" that includes the integration, testing, calibration, and validation of

the model in terms of the attributes of implementation, then design, and finally

requirements. Early "up cycles" involve only requirements. Later "up cycles'

involve requirements and design. Most prototyping cycles in the development phase

will include the development of the model in terms of the attributes of requirements,

design, and implementation in the "down cycle" followed by the integration, testing,

calibration, and validation of the implementation, design, and requirements in an "up

cycle".

FIG. 20 is a process diagram illustrating how the lifecycle method

applies a spiral sub process, according to an exemplary embodiment of the present

disclosure.

The development phase 1202, FIG. 12, includes prototype cycles.

The cycles use a spiral process 2000 to move through the "V" initially in a "down

cycle" and then in an "up cycle" as illustrated. With the spiral process, parts of the

implementation attributes of the prototype model are integrated and then tested,

followed by parts of the design being developed and then tested, and then parts of

the requirements attributes are then tested and validated.

FIG. 2 1 is a process diagram illustrating how the lifecycle method is

applied in the spiral sub process, according to an exemplary embodiment of the

present disclosure.

The development phase 1202, FIG. 12, has prototype cycles and uses

a spiral process 2100 to move through the "V". In developing parts of the model, an

IDE 2102 is required. In testing, calibrating, and validating parts of the

implementation model, a RTE 2104 is required. To effectively move along the

spiral process, the IDE 2102 and RTE 2104 should be linked via a DRD link 2106.

The IDE 2102 is mainly applied on the top and middle of the "V", and the RTE

2104 is applied on the bottom of the "V". The spiral process 2100 that moves

through the "V" is enabled by the linked the IDE 2102 and the RTE 2104. The

linkage is required during "down cycles" and "up cycles". In the "up cycle", the

information flow is mainly from the RTE 2104 to the IDE 2102 because the focus is

on ending with a validated model with a set of requirements and a design in the IDE.

As shown in FIG. 22, a diagnostic agent, built with a specific DID-I

that it reads as internal data, can detect a failure in a corresponding function's

module in the RTE 900. The agent then accesses the DRD 899 to find the FID-I

linkage to write information into the DRD 899 that can be read by any of the tools in

the IDE 800 or by additional agents in the RTE 900. If the agent is in an ECU and

the ECU has no direct access to the DRD 899, the agent sends a message to an agent

in the TCU, which does have access to the DRD 899.

Once linked to the EDE 800, round-trip engineering of the diagnostics

to functions is enabled using the linkages inside the IDE 800 guided by the

information created in the DRD 899 by the RTE 900.

As shown in FIG. 23, the system 799 uses first and second agents

2312, 2314 to detect failures, faults, or anomalies. The second agent 2314 is a

model-based diagnostic (MBD) agent that can use model and iterative procedures to

determine a root cause for known failure modes. Examples of such agents are the

MBD agents built using a tool, such as R.O.S.E. Rodon™. These MBD agents are

not effective with new failures that were not anticipated in the model. To

compensate for that gap in detection capability, the system 799 creates and applies

the first agent 2312, or a learning model-based diagnostic (LMBD) agent, using

embedded data mining algorithms, such as time-frequency analysis (TFA) or local

models, that learn a model by observing an operating vehicle. These algorithms are

trained and calibrated during specific normal operating times and then placed in a

watch mode at run-time in the vehicle RTE 900.

In the system 799, the LMBD agents 2312 detect a superset of the

failures detected by the MBD agents 2314. The LMBD failures can be classified as

either (1) a previously anticipated failure that can be fixed in the field, or (2) a new

failure that can be either a model error or another new type of hardware failure. The

classification occurs by comparing the output of the MBD agents 23 14 with the

LMBD agents 23 12. If the MBD agents 2314 have seen the failure mode before

with a statistical confidence factor, then the failure is probably not a model error. If

the MBD agents 2314 have a low confidence factor indicating a new failure mode

not previously seen, then a model error needs to be investigated and the service

technician is told not to swap a part in the field.

An investigation occurs as the RTE agents write information into the

DRD link 899, FIG. 9, which enables the IDE 800, FIG. 8, to trace the failures back

to the levels of the model represented at the levels of implementation, design and

requirements. The system 799 identifies which functions are linked to the failure as

discussed in the herein disclosed hierarchical or failure mode error determinations.

A simulation can be run in the IDE 800, FIG. 8, to duplicate the failure mode. The

simulation assists in the determination of the root cause. Thus, the LMBD agents

2012 can detect anomalies.

Referring now to FIG. 24, a schematic representation of methods and

systems 2400 for anomaly detection is shown according to an exemplary

embodiment of the present disclosure. System 2400 includes a regionalization tool

2402. The regionalization tool 2402 is responsive to data indicative of a tested

system's operation. The regionalization tool 2402 is configured to use the data to

identify a current operational region of the tested system. For example, the

regionalization tool 2402 may accept as inputs the input of a hardware or software

system. The regionalization tool 2402 determines the current operational region of

the tested system based on the data.

The regionalization tool 2402 is linked to a performance assessment

tool 2404 and can communicate the current operational region to that tool. The

performance assessment tool 2404 compares actual operational behavior of the

tested system in the current operational region to normal operational behavior of the

tested system in the current operational region. The tested system can be partitioned

into a plurality of operational regions, each having a relatively consistent system

behavior. The tested system determines normal operational behavior from a model

for the current operational region. The model can be a local linear model as

described below.

Referring now to FIG. 25, a schematic representation of methods and

systems 2500 for training an anomaly detector for a system are shown according to

an exemplary embodiment of the present disclosure. In general, such methods and

systems are used to provide a prediction of system behavior based on a discrete

number of training observations, and may be embodied in a variety of hardware or

software tools. System 2500 includes a collection module 2502. The collection

module 2502 accepts data representative of the inputs and outputs of the tested

system.

The system 2500 further includes a partition module 2504. The

partition module 2504 is configured to partition the tested system into a plurality of

operational regions. The partition module 2504 can train a regionalization tool in

the anomaly detector in accordance with data. The data can be, for example, the

data collected by the collection module 2502.

The system 2500 also includes a compute module 2506. The

compute module 2506 computes a model 2508 of normal operational behavior of the

tested system. The compute module 2506 may do such a computation for each of

the plurality of regions created by the partition module 2504, and does so for at least

one of the plurality of regions of the tested system. The compute module 2506 can

be configured to operate on each of the plurality of regions serially, producing a

model for each region on a "one region at a time" basis.

Referring now to FIG. 26, a schematic representation of methods and

systems 2600 for anomaly detection are shown according to an exemplary

embodiment of the present disclosure. The system 2600, as shown, is instantiated

by a start module 2602. Following the start module 2602, operational flow is passed

to a collection module 2604. The collection module 2604 accepts data from a tested

system. The data should be representative of the inputs and outputs of the tested

system. From observed outputs, initial conditions of the outputs can be estimated as

well. For example, the collection module 2604 can accept inputs and known state

values for a tested system. The tested system can be a system for which normal

operation is expected, and to which the anomaly detection system 2600 can compare

subsequent performance.

The system 2600 includes a partition module 2606. The partition

module 2606 is configured to partition the tested system into a number of

operational regions. The partition module 2606 can train a regionalization tool, such

as regionalization module 2610 below, in accordance with data. The data used to

partition the tested system can be, for example, the data collected by the collection

module 2604.

The system 2600 includes a compute module 2608. The compute

module 2608 is configured to compute a local model of normal operational behavior.

The model of normal operational behavior can be based on the data collected by the

data collection module. The compute module 2608 can do such a computation for

each of the plurality of regions created by the partition module, and preferably does

so for at least one of the plurality of regions of the tested system.

In the operation of a possible embodiment, the collection module

2604, partition module 2606, and compute module 2608 execute concurrently. For

example, the collection module 2604 can collect a variety of data samples from a

"baseline" normally operating system to be tested. The partition module 2606 may

partition the tested system into a number of operational regions, or may partition

those operational regions into a larger number of smaller-sized operational regions

as additional data is collected by the collection module 2604.

The compute module 2608 can generate a model, such as a local

linear model, from the collected data in the current operational region. The current

operational region can be determined, for example, by a regionalization module

2610, described below. The compute module 2608 can update an estimated model

using subsequent data it can receive from the collection module 2604. Further, the

compute module 2608 can be configured to participate in generation or updating of

an estimated model in other regions, such as neighbor regions to the current

operational region.

The combination of the collection module 2604, the partition module

2606, and the execute module 2608 produce an estimated model of the tested system

representative of normal operational behavior based on the data collected by the

collection module 2604.

The system 2600 further includes a regionalization module 2610.

The regionalization module 2610 is responsive to data indicative of the tested

system's operation. The regionalization module 2610 is configured to identify a

current operational region of the tested system. The regionalization module 2610

may accept as inputs the inputs and outputs of a hardware or software system to be

tested. The regionalization module 2610 determines the current operational region

of the tested system based on those inputs and outputs. The regionalization module

2610 selects from among the plurality of operational regions created by the partition

module 2606.

The system 2600 includes a performance module 2612. In operation,

the performance module 2612 compares actual operational behavior of the tested

system in the current operational region to normal operational behavior of the tested

system in the current operational region. The normal operational behavior of the

tested system is based on a model derived from data collected from a normally

operating system.

The system 2600 determines normal operational behavior from an

estimated model for the current operational region. The estimated model, as

generated by the compute module 2608, can be a local linear model. In an alternate

embodiment, Time Frequency Analysis can be used.

Operational flow among the operations 2604-2612 is again ordered

generally from training to testing. However, this does not require strict ordering, in

that operations can execute in various orders, or in serial or parallel. Some ordering

is apparent, in that some amount of initial data collection will take place before any

partitioning module 2606 can execute and the compute module 2608 can derive a

model. Furthermore, at least one operational region must exist for the

regionalization module 2610 to determine the current operational region, and some

"normal" and actual operational behavior must be available to determine

performance in the performance module 2612.

The system 2600 terminates at an end module 2614.

FIG. 27 is a flow chart representing logical operations of a learning

model-based diagnostic system 2700. System 2700 can be used to implement

aspects of the present disclosure, specifically when used in conjunction with the

systems described below in FIGS 30-32. Entrance to the operational flow of the

learning model-based diagnostic system 2700 begins at a flow connection 2702. A

detect operation 2704 detects an anomaly. It is noted that anomaly detection agents,

such as those previously described herein, continuously monitor a vehicle's

functions. Such agents can be located within the RTE, such as RTE 900 of FIG. 9,

operating on a vehicle. A found module 2706 determines if an anomaly has been

found. If the found module 2706 determines that a failure has not been found,

operational flow branches "No" to the detect operation 2704. In this manner, the

vehicle is continuously monitored for failures.

If the found module 2706 determines that an anomaly has been

found, operational flow branches "Yes" to a known module 2708. The known

module 2708 determines if the failure is a known failure. If the known module 2708

determines that the failure is a known failure, operational flow branches "Yes" to an

identify operation 2710. The identify operation 2710 identifies the remedy for the

known failure. Operational flow ends at termination point 2712.

If the known module 2708 determines that the failure is not a known

failure, operational flow branches "No" to a write operation 2714. The write

operation 2714 writes the failure information to a link, such as the DRD link 899 of

FIG. 9. A read operation 2716 reads the failure information from the link. The

failure is read into the IDE, such as IDE 800 of FIG. 8. A model operation 2718

identifies the model error, which may be an error is the requirements, design, or

implementation level of the IDE. Operational flow ends at termination point 2712.

FIG. 28 is a block diagram illustrating a diagnostic layer 2800 that

includes software diagnostic systems 2802 and hardware diagnostic systems 2804,

which can contain for example, the LMBD agents 2012 of FIG. 20, or other anomaly

detection agents or diagnostic agents. The diagnostic layer 2800 can run in an RTE,

for example, the RTE 900 of FIG. 20. The diagnostic layer 2800 monitors a vehicle

system 2810. The vehicle system 2810 includes a control system 2812 and a

hardware system 2814. The control system 2812 receives driver inputs 2816 and

provides control inputs 2818 to the hardware system 2814. The hardware system

2814 provides vehicle outputs 2820 to operate the vehicle.

The software diagnostic systems 2802 monitor the control system

2812. Likewise, the hardware diagnostic systems 2804 monitor the hardware system

2814. Preferably, the diagnostic systems 2802, 2804 detect anomalies in accordance

with an anomaly detection scheme based on regionalization using self-organizing

maps and local linear models or time frequency analysis. Of course, other suitable

methods can be used.

Self-Organizing Maps (SOM) define a nonparametric regression

solution to a class of vector quantization problems. Self-Organizing Maps are first

described generally, followed by a specific application using growing structure and

local modeling or Time Frequency Analysis in conjunction with the SOM for

anomaly detection. This nonparametric regression method involves fitting a number

of ordered discrete reference vectors to the probability distributions of input

vectorial samples. SOM is similar to a Vector Quantization (VQ) technique, which

is a classical data compression method that usually forms an approximation to the

probability density function p(x) of stochastic vectors x e 91" , using a finite

number of code vectors or code words ξ, e 91", ϊ = 1,2,. ..,M . For each codeword ξ,. ,

a Voronoi set, or cell, can be defined as follows,

that contains all the vectors that are the nearest neighbors to the corresponding code

vector ξ . AU the Voronoi sets construct a partition of the entire vector space 91" .

Therefore, once the codebook is determined according to some optimization

criterion, then for any input vector x , it can be encoded into a scalar number c,

called Best Matching Unit (BMU), whose associated code vector is closest to x , i.e.

possible selection of the codewords ξ. 9T,i = 1,2,. ...M shall

minimize the average expected quantization error function:

It is noted that the index cis a function of input vector x and all the

code vectors ξ,- . It can be easily observed that c can change discontinuously. As a

result, the gradient of expected quantization error E with respect to

ξ . e 91" , i = 1, 2, ...,M is not continuously differentiable. Since the close form

solutions for ξ e 9t", = 1,2,..., M that minimize are generally not available, one has

to iteratively approximate the optimal solutions. It has been shown, in a particular

case, when f(d(x,ξc)) = ||x - ξc | , the steepest descent can be obtained in the

direction of - V E\k=2 δ . (x(k) - ξ (Jc)) at iteration step t, where δ
cj

is the

Rronecker delta function. If one defines the step size by the learning rate factor

a(t) that includes the constant -2 from the gradient V E\k= - 2 δ
cj

(x(Ar) - ξ .(Ar)) ,

then one arrives at an updating formula:

ξ,(* + l) ,(0 + ά (*)-«y -(x() - ξ,(*))

The set of vectors ξ . e , i = 1,2,...,Af obtained, which minimize the

average expected quantization error E , can map the space of input vectors into a set

of finite codebook reference vectors. However, the indexing of those reference

vectors can be arranged in an arbitrary way, i.e. the mapping is still unordered. The

reason is, for any input vector χ , it can only affect the code vector that is nearest to

it because of the delta function δcj used in the updating formula.

The SOM can be interpreted as a nonlinear projection of a high-

dimension sample vector space onto a virtually one or two dimension array that is

represented by a set of self-organized nodes. Unlike the VQ technique, SOM is able

to map high dimensional data onto a much lower dimensional grid, while preserving

the most important topological and metric relationships of the original data

elements. This kind of regularity of the neighboring reference vectors is coming

from their local interactions, i.e. the reference vectors of adjacent nodes in the low

dimensional grid up to a certain geometric distance will activate each other to learn

something from the same input vector x e " . This results in a local smoothing

effect on the reference vectors of the nodes within the same neighborhood and leads

to global ordering. Due to this order property, the map tends to reveal the natural

clusters inherent to input vector space and their relationships. Each node in the SOM

is associated with a reference vector that has the same dimension as the input vector.

The distance measure used in this disclosure is the well-known Euclidean distance.

In simple terms, the reference vector associated with the BMU yields

the minimum Euclidean distance with respect to the input vector x . To ensure the

global ordering of the SOM during learning process, one has to expand the influence

region of the input vector, instead of only updating the reference vector of the BMU.

One alternative is to replace the delta function δcj with a new neighborhood

function A(») that depends on time k and the distance between two nodes c and i

on the low dimensional grid. This gives the following formula for the reference

vectors:

(+ l) = () + a(*)A(*,dis(r e ,rJ)(x(*)-^(*))

where k =0,1,... is the discrete time index, a(k) is the learning rate factor and

rc ,r are locations of nodes c and i in the low dimensional grid respectively. This is

similar to the vector quantization updating function above, but is different at least in

that it allows soft competitive learning, i.e. system training outside the current

operational region. For convergence of the network, it is necessary that as

(fc,dis(rc ,τ;.)) — 0 when k - >∞ . In addition, the degree of the "elasticity" of the

network is related to the average width of the neighborhood function ,

where h(k,dis(rc,r.)) —>0 with increasing dis(rc,η) . A common choice for the

neighborhood function is

where and <τ{k) defines the width of the neighborhood function. They are both

monotonically decreasing functions of time.

For small sized SOMs, the choice of those parameters is not

important, for example, a few hundred nodes. However, for very large SOM, those

parameters have to be chosen carefully to ensure convergence and global ordering of

the reference vectors. The computation steps of the algorithm can be summarized as

follows:

1. Choose the size and topology of the maps, initialize the set of

reference vectors ξ e 9T,z = 1,2 M by setting them randomly, or for instance,

choose the first k copies of the first training vectors x .

2. Find the BMU for the input vector x(f) , and adjust the

reference vectors of BMU and its neighborhood units.

3. Repeat step 2, until the changes of reference vectors are not

significant.

A batch computation algorithm of SOMs (Batch Map) is also

available if all the training samples are assumed to be available when learning

begins. It resembles the K-means algorithms for VQ, particularly at the last phase of

the learning process when the neighborhood shrinks to a set only containing the

BMU. This Batch Map algorithm contains no learning rate factor, thus has no

convergence problems and yields more stable values for the reference vectors

ξ,. e 1RV = l,2,...,M .

Different learning process parameters, initialization of the reference

vectors ξ,(0) e 5R",i = 1,2,..., M , and sequence of training vectors x(*)can result in

different maps. Depending on the criterion of optimality, different SOMs can be

considered optimal, for example, the average quantization error. The average

quantization error, which is the mean o , is a meaningful performance index

that can measure how well the map is fitted to the set of training samples. Further

information regarding SOMs can be found in the following references, and the

references therein, all of which are incorporated herein by reference:

Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.(1996), "

Engineering applications of the self-organizing map", Proceedings of the IEEE, v

84, n 10, p 1358-1384

Kohonen, T.(1995), Self-Organizing Maps. Springer, Berlin,

Heidelberg.

A variety of partitioning methods can be used to partition the system

dynamic behaviors into different operational regions. To accomplish this

regionalization, one first might attempt to find an appropriate base on which the

regionalization can be conducted. In one embodiment, variety of the physical

system, such as mechanical, electrical, electromechanical, thermal, and hydraulic

systems, might be modeled by « order ordinary differential equations, such as those

of the following form,

>= (, , ; , .. . '- I>,u,u',...,u ("l))

where v' v ' " ' v(n)
are the derivatives of the system outputs up to n <* order and

u,u ,..., u g m e inputs n their derivatives up to m order. If the inputs,

denoted as u = = u u 2(.t),—, *P (ty] , have been specified as piecewise

continuously differentiable functions up to 771 order, we can eliminate u and its

derivatives to yield

It can be proven using the global existence and uniqueness theorem in

Khalil, H.(2002), Nonlinear Systems, 3rd edition. Prentice-Hall, NJ, that if

Υ y y y ---y) {s piece-wise continuous in t and satisfies the Lipschitz

condition

where and L is a finite positive number, then the * order

ordinary differential equation with initial conditions

. .
has a unique solution over the time

interval o o r .

Suppose that * is piece-wise continuous in t and it arguments,

then it follows from the assumption that the inputs and their derivatives

u, u ,..., u piece-Λvise continuous in t, Y y y y *-~y) [s always piece-

wise continuous in t. Therefore, once the Lipschitz condition is satisfied, the system

output y over the time interval 0 ' l ° + τ can be uniquely determined by the inputs

u during time interval 0 ' ° + T
- and the initial conditions

of output y at time Therefore, the

concatenated vector of the output and its derivatives at time' 0 , and the input

sequences u during a given time interval 0 ' 0 + T

contains all t information necessary to determine the system outputs during the

time interval^O'O + r . This observation indicates that the regionalization can be

based on the concatenated vector in the form of (4.4).

We note that the condition specified above is only a sufficient

condition for the outputs during o» o + τ \ o e uniquely determined by the initial

conditions of the output at time °and the inputs during > ° + r . For general

nonlinear system, obtaining a necessary and sufficient condition is well beyond the

scope of this paper i general, the condition is closely related to system

observability.

A tremendous number of system behavior patterns impose a great

challenge on anomaly detection and localization, or regionalization. Traditional

model-based faults diagnosis techniques are unsuitable for many cases, since

detailed knowledge about the underlying physical system is not available. The

system can only be viewed as a black box. Therefore, there is a need to find a way

that can approximately build a model that relates the system inputs and outputs.

Preferably, the system is partitioned into different regions, based on the inputs

sequences and initial conditions of outputs.

If we concatenate the initial conditions of the outputs including

m Pu t sequences u(f) during a certain time

interval [0 , ,] together to form a big vector as follows:

where and so on. This

vector contains all the information necessary to determine the system outputs.

However, in real applications, this vector usually has a very high dimension.

Therefore, SOMs is used to regionalize the space spanned by those vectors, because

of its excellent capability of visualization of high dimensional data. The Voronoi

sets use all the reference vectors of the trained SOM, to form a partition of the entire

space spanned by the vectors. The Voronoi set is referred to as a system

"operational region".

Methodologies for anomaly detection, such as the time-frequency

analysis and local modeling described herein, can be enhanced by the

regionalization accomplished using a Self-Organizing Map. In the general SOM

case, the problem of determining the precise number of regions is largely unsolved,

since no prior knowledge may be available about the system except its input and

output signals. In the above description of Self-Ordering Map initialization, the

number of Voronoi cells included in the map must be judiciously chosen before

system operation using guesses about system behavior. This is particularly the case

when SOMs are used in conjunction with a local model, which would tend to have

increased error in sparsely populated operational regions. In such a SOM,

frequently visited regions will have finer partitions and generally smaller fitting

areas. However, regions having high nonlinearity that are not frequently visited are

poorly approximated. In such regions a linear model may be non-optimal due to the

inherent error of modeling a nonlinear system with a linear model.

This disclosure contemplates a solution that allows for more uniform

organization of observed values by starting with a very low number of nodes and

adding additional nodes to areas in which the system is most highly nonlinear or

where modeling errors are the highest. This node addition results in creating smaller

Voronoi sets, or operational regions in this disclosure, in regions which are likely to

be highly nonlinear. This Voronoi cell-splitting technique allows models to more

accurately represent these regions by improving their linearity. This node addition,

referred to herein under the generalized term "growing structure competitive

learning", is accomplished during the training process, growing the size of the SOM

as additional inputs are added to the various operational regions.

In the generalized SOM, the regionalization of data points is optimal

only in the sense of minimizing the expected square of quantization error,

represented as - , where ξ , i = 1, . . ., M is a set of weight vectors

and c is the index of the best matching unit, as described above. Conversely, the

systems according to the preferred embodiment can be configured to add nodes

while attempting to minimize the square of the expected modeling error,

This splitting strategy promotes evenly distributed accumulated

modeling error, a tradeoff between density and modeling errors corresponding to

each local model. Additional embodiments may incorporate a penalty term

expressing a relative nonlinearity measure dependent on fitting errors.

In an alternate embodiment, the system may insert additional nodes

near the region where the dynamic nonlinearity is high, or equivalently, where the

local expected mean square error is large. Since the mean square modeling error is

not affected by the visiting frequency to the operational region, this may be

favorable for approximating the distribution of the tested system's dynamic

nonlinearities.

In order to incorporate such a growing mechanism into the growing

structure model, the local model adaptations must be fast enough to follow the

dynamics of the modified configurations due to the newly inserted nodes in the

network. In a preferred embodiment a recursive least square algorithm with

exponential forgetting is used for local linear model parameter estimation. The

updating rate can be adjusted through the forgetting factor λ in the local linear

model estimations discussed below. For example, varying the forgetting factor λ

from 0.95 to 0.99 corresponds approximately to remembering the 20 to 100 most

recent inputs in generating the local model estimation.

By using a growing structure competitive learning system, the

anomaly detection scheme of this disclosure can be instantiated with a small number

of operational regions when initialized, adding more operational regions where the

tested system is nonlinear, i.e. the squared expected modeling error is high.

Two methods for anomaly detection contemplated by the present

disclosure incorporate either time-frequency analysis or local modeling to predict

behavior of a tested system. Each compares the tested system's "expected" output to

its actual output. If the actual output is, in general, far enough "off 1from the

expected output, then an anomaly is considered to be present. Each of these

methods is now described briefly.

Time frequency analysis (TFA) has long been recognized as a

powerful non-stationary signal processing method and has been widely applied into

different areas, such as radar technology, marine biology, and biomedical

engineering. Unlike the well-known Fast Fourier Transform (FFT) that can only

decompose the signal into frequency components, but does not depict the time

location related information, TFA is capable of decomposing the signal into both

time and frequency simultaneously. This makes TFA an appropriate method to

analyze signals, in which the frequency contents of the signal change over time. It

may be difficult to detect permutations of signal components in a control system

using FFT, but is much easier using TFA. Capability of dealing with non-stationary

signals makes TFA quite suitable to process signals from complex control systems,

such as automobiles or aircrafts.

Consider a two-dimensional distribution/?^ (x,y) , whose

characteristic function is given by:

It can be approximated by a Taylor series, Cohen, L. (1994), Time-

Frequency Analysis, Prentice Hall, incorporated herein by reference, and the

characteristic function can be expressed as

Since the time-frequency distribution can be uniquely determined by

its characteristic function, the sequence of moments E(X p Y") can be used to

describe the distribution p x γ (x, y) .

However, the moment sequence is infinitely long and hence cannot

be directly used as a feature set. Furthermore, moments of different orders are

highly correlated with each other. Nevertheless, only moments of the lower order

describe the general properties of the time frequency distribution, and hence we can

truncate the moment sequence in order to approximately represent a time frequency

distribution. In order to remove connections between moments and to reduce

dimensionality of the moment vector, further processing is necessary. This can be

achieved through Principal Component Analysis (PCA), Richard, O. Duta, P., David

G. (2000), Pattern Classification, Wiley, 2nd edition, incorporated herein by

reference, which is an appropriate dimensional reduction method since the time

frequency moments are asymptotically Gaussian, Zalubas, E.J., O'Neill, J.C.,

Williams, WJ. and Hero, A.O., "Shift and Scale Invariant Detection," in Proc. IEEE

Int. Conf. Acoustic, Speech, and Signal Processing, vol.5, 1996, pp. 3637-3640,

incorporated herein by reference.

Due to asymptotic Gaussianity and independence of the principle

components, the Mahalanobis distances between feature vectors are asymptotically

following the χ 2distribution with r degrees of freedom, where r is the number of

extracted principal components. Therefore, the deviation of the signals from the

training set, which represents the normal distribution, can be measured by the

probability that the Mahalanobis distance is within a certain range. This probability

is referred to as a confidence value (CV) indicating the degree of the deviation from

normal state. For more detailed information, see Djurdjanovic, D., Widmalm, S. E.,

Willians, W. J., Koh, C. K.H. and Yang, K. P. (2000), "Computerized Classification

of Temporomandibular Joint Sounds", IEEE transaction on biomedical engineering,

vol. 47, No.8, herein incorporated by reference.

Local models provide an efficient method for deriving "normal"

operational behavior of a system based on a finite training sample set. Such models

are used in the present disclosure in the context of growing, self-ordering maps.

Local modules are used herein as follows. Assume the system dynamics can be

described by a Nonlinear Auto-Regressive model with exogenous input (NARX)

y(k +l) =¥(y(k),...,y(k-n a +V),u(k-nd),...Mk-n d - nb +iy)

where u(£) are the system inputs, y(&) 91* are the system out-puts, n is the

time lag from the moment that the excitation is applied until the effects are

manifested through the outputs, and na and nb are the order of the model.

If F(») is differentiable at a point S0 in the reconstruction space,

which is spanned by vectors of the form

sr (*) = [y τ (k\. ..,y τ (k-n a +l),uτ (k-n d),..., ur k - nd - nb + 1)] , the Taylor series

expansion of F(*) is provided as

The higher order terms such that the limit of the absolute value of their squares is

zero as s approaches Sø. So, within a small region around sø, the approximation

errors can be arbitrarily small. For example, if we choose the first two terms of the

Taylor series expansion, F(s) can be approximated using a set of local models as

follows:

Notice that t local model is linear in terms of its parameters b,- and a,- that need to

be estimated. It is noted that in instances where local models are nonlinear in terms

of their parameters, a more sophisticated optimization procedure may be required to

find the model parameters. Some physical insights into the system to be tested may

be valuable in simplifying the local model structures chosen.

In still other alternative embodiments, other functional forms can be

used to locally approximate the nonlinear function within a small region around a

point, such as order polynomials. Such alternative representations may have

additional parameters that must be estimated.

The overall system dynamics can then be approximated through the

combination of the local models through a gating function as follows:

where g,(s k) could be the Kronecker delta function:

In this case, only one local model can "win" the competition to be the current

operational region. Other types of gating function can also be used here to weight

local models together to approximate the global system dynamics, such as radial

basis functions.

Without loss of generality, we assume the dimension of the input and

output is one for notation convenience. A widely accepted method for local model

identification is to find the model parameters that minimize the sum of the weighted

squared residuals in each operation region.

In this embodiment, model parameters θ represent the model

parameters to be estimated for the Ith region, and λ is the forgetting factor that

adjusts the speed of the adaptation of parameter estimation. This forgetting factor is

necessary to allow the system to adapt to changes of regionalization that will occur

as the model is trained. w,{s(k)) is the weight for the k observation when updating

the model parameters for the Ith region.

Since using the SOM training process above results in the operational

space being divided into small regions, during the training process, whenever a

training pair s(£) — y(k) becomes available, after finding the BMU based on vector

s(A:) it is advantageous to update the local models of the BMU and the models of

other adjacent regions. In updating the adjacent, or "neighborhood" regions, not all

weights can be the same, in order to prevent the system's convergence to a single

local model. Therefore, as the region gets farther away from the BMU, the smaller

the weight applied to that region. Specifically, this cooperative learning strategy

among neighboring regions can improve the convergence speed of the algorithm and

the effects are more significant at the beginning of the learning. In addition, this

neighborhood updating process allows for smoothing effects at the boundaries of

operational regions, and additionally allows for global ordering of the local models

A weighting factor w,(s(/)) is introduced that determines the importance of

observation s(f) on the estimation of the parameters of local model in region i . In

one implementation, the weights can be inversely proportional to the distance

between the location of the region and BMU on the network. For example, the

neighborhood function which measures memberships of a given observation can be

used

Minimizing J (Q) is performed recursively, as follows, using

P (O) = P0 (a diagonal matrix whose elements is large) and θ,(0) = θ,0 as initial

values for the recursion to startup:

During the training process, the local model should be updated as additional data

points become available and as additional operational regions are created.

Besides the local model parameters, the structural parameters

including the locations of operational regions have to be identified. Most of the local

modeling techniques utilizing self-organizing networks in the literature separate the

modeling procedure into two independent stages: regionalization and local model

fitting. The conventional self-organizing network normally aimed at minimizing the

expected square of the quantization error. Non-uniformity in the distribution of

visiting frequencies in the training data set may result in more weight vectors being

associated with the region which the system frequently visits. This may result in

regions which are highly nonlinear, but not frequently visited, being poorly

approximated by fewer local models. Therefore, it is clear that in order to achieve a

better modeling performance for a specific application, one needs to balance

between the visiting frequencies and modeling errors across different regions. This

will be realized by adding a penalty term to the learning rate of the weight vector

updating

+) a(k)ζi(k)Kk,dis(re,ri))(x(k)- i(k))

where ζ {k) is the penalty term penalizing the amount of movement to achieve a

balance between the effects of visiting frequency and modeling errors in different

regions.

Introduction of such a penalty term is to achieve finer partitions

where the local model fitting errors are high. In this paper, the normalized modeling

errors are used to penalize the movements of the weight vectors in each region at

training step k for sequential training

"(*)
where

training step k. The "ewma" designation reflects the fact that the error is based on an

exponential weighted moving average of training points, and becomes less

significant when the corresponding node is further away from the best matching unit

on the network. This provides a direct feedback from the local model fitting errors to

the system regionalization process. It has the effect of moving the weight vectors

toward the region where system nonlinearity is high.

Once a diagnostic agent is trained using a normally operating or

known-erroneous system, the same diagnostic agent can detect suddenly occurring

as well as gradually occurring anomalies by comparing actual system output to the

model or distribution based on tested system input. The current operational region is

determined, and a determination is made as to whether the difference between the

actual and known output is outside a residual error threshold. The residual error

threshold is based generally on the tested system's predictability, and can be

computed independently for each region.

The residual error threshold can be set for each operational region to

prevent false anomaly detection in sparsely trained regions. A lower predictability

(i.e. by higher nonlinearity within a region) will indicate a less predictable region,

and will have a looser threshold. Therefore, a large variation from the normal

operational behavior would be required for an anomaly to be detected. Conversely,

a higher predictability will result in a lower threshold. In such cases, the residual

error would be expected to be tighter in that operational region, so a smaller

deviation from normal operational behavior would be detected as an anomaly.

FIG. 29 is a flow chart representing a sequential training system

2900. System 2900 can be used for a growing structure competitive learning model,

such as are disclosed herein. Operational flow to the system 2900 is instantiated at a

begin operation 2902. An update operation 2904 can update model parameters, such

as the parameters θ.(k) of the local models. Operational flow proceeds to a

nonlinearity module 2906. The nonlinearity module can calculate a nonlinearity

measure, such as nonlinearity ζ () of the / operational region. Operational flow

proceeds to an update module 2908. The update module 2908 updates the weight

vectors in the self-ordering network, such as via the previously discussed equation

ξ.(+ l) ξ,.() + (K ()Λ(,dis(rc ,/;.))(x(A:)-ξ .W) .

A stop operation 2910 determines if the stopping criteria are met.

Stopping criteria may be set, for example, based on the desired accuracy, actual test

runtime, or other factors related to the detected error rate of the system 2900. If the

stopping criteria are met, operational flow branches "yes" to a tuning module 2912.

If the stopping criteria are not met, operational flow branches "no" to a sample

counting operation 2914.

The sample counting operation 2914 determines whether the number

of samples taken is equal to or exceeds N-Multiple of the current size of the self

organizing network. If the number of samples has not been reached, operational

flow branches "no" and returns to the update module 2904, allowing the system to

continue its learning process. If that number of samples has been reached in the

training process, operational flow branches "yes" to an insert module 2916. The

insert module 2916 inserts a new node in a location (i.e. in a region) where the

system nonlinearity is at its highest.

Operational flow from the insert module 2916 proceeds to a deletion

module 2918. The deletion module 2918 removes at least one node which has no

near neighbors. This node is in a region which the system 2900 likely cannot model

well, and that node is therefore deleted.

It is understood that the growing structure competitive learning

system 2900 disclosed herein can be used in conjunction with a wide variety of

types of models for each region, such as a local linear model. It is further

understood that multiple models can be used in implementing the present disclosure.

FIG. 30 shows an anomaly detection system 3000 in greater detail

after the SOM has been trained to define a plurality of operational regions 3002.

Data 3004 indicative of the operation of the dynamic system is analyzed in

accordance with the plurality of operational regions 3002 to determine both a current

operational region and a quantization error. If the quantization error is below a

certain threshold, an error determination module 3006 passes control to an anomaly

detection module 3008 for assessment of the performance via the above described

techniques, i.e. TFA or local models. In some embodiments, the anomaly detection

module 3008 may include a switch or trigger 3010 to enable such processing. The

anomaly detection module can include one or more memories 3012 that can store

normal as well as previously observed faulty operational behavior in each region in

the form of a local model or time frequency moments distribution parameters (e.g.

the mean vector and covariance matrix of the distribution). Using the identified

current operation region, one of the records of the memory 3012 is accessed and

compared to the distribution or model 3014 generated from the system output data

3016 indicative of current operation. The manner in which the distribution data or

models are stored in the memory 3012 is not important for purposes of the present

disclosure, and any of a number of data storage devices can be used to implement

such a system 3000. In some cases, the error determination module 3006 can be

coupled to one or more elements (not shown) configured to generate an alarm or

other notification or data that the system 3000 is being operated outside of known,

expected, or permissible limits.

FIG. 3 1 illustrates a diagnostic system 3100 for which performance

can be evaluated, according to an example embodiment hi this example

embodiment, TFA is used, but it is understood that any other predictive analysis

methodology would be suitable, such as a linear model. A system 3101 includes

inputs 3102, initial conditions of the outputs 3104, and outputs 3106.

Regionalization can be accomplished using a SOM 3108 based on the inputs 3102

and initial conditions 3104. A model-based performance assessment technique can

be directly applied within operational regions 3110 based on a current output. An

assumption is made that no knowledge about the model or structure of the system

3101 is available. The only assumption is that the inputs 3102 and outputs 3106 are

available when the system 3101 is operating normally.

Preferably, the system 3101 is a vehicle 3120; however, the system

3120 can be any suitable system. FIG. 32 illustrates a vehicle 3220 in more detail.

The vehicle 3220 includes an engine 3222, a drivetrain 3224, other components

3226, and vehicle dynamics 3228. A driver 3230 can provide inputs 3202 into the

system 3201, FIG. 32. An environment 3232 also provides inputs 3202 into the

system 3201, FIG. 32, such as temperature, wind speed, road slope, and atmospheric

pressure.

In applying the anomaly detection techniques described herein to the

vehicle 3220, the vehicle 3220 might be regionalized into a first subsystem 3300,

FIG. 33. In an example embodiment, the first subsystem 3300, or regionalized

system, is a throttle plate subsystem 3302. The throttle plate subsystem 3302 could

include a throttle plate controller 3304, a throttle plate 3306, a controller 3308 and a

plant 3310.

The input, for example, the inputs 3302 of FIG. 33, to the throttle .

plate subsystem 3302 is a control signal 331 1 from the throttle plate controller 3304,

which regulates a throttle plate angle 3316 in the throttle plate 3306. The actual

throttle angle is measured by sensors and fed back into the integrated system 3300.

There are two inputs to the throttle plate controller 3304 when the vehicle 3320 is

operating: a relative accelerator position 3312 and an engine speed 3314. Based on

these two inputs 3312, 3314, the throttle plate controller 3304 calculates the control

signal 331 1 and sends it back to the throttle plate 3306 that sets the absolute throttle

angle 3316.

An anomaly detection system 3350 detects the gradual parameter

degradation of either the plant (throttle mechanism) 3310 or the controller 3308, as

the system 3302 is operating. Moreover, the anomaly detection system 3350 should

be able to locate any anomalies, whether the anomalies happen in the controller

3308 or in the plant 3310. Preferably, the anomaly detection system 3350 includes a

first anomaly detector 3352 and a second anomaly detector 3354. The first anomaly

detector 3352 detects anomalies on the control side while the second anomaly

detector 3354 detects anomalies on the plant side. Each of the anomaly detectors

3352, 3354 are generated independently based on the divide and conquer approaches

as described above.

In the implementation shown, the relative accelerator signal

(Accelerator) 3312, the engine speed (n _ Engine) 3314, the control signal

(al _ThrottleECU) 331 1, and the absolute throttle angle (al Throttle) 3316, can

be sampled frequently, such as every 5 milliseconds for the case shown here, which

corresponds to a sampling rate of approximately 200 Hz. In this embodiment, these

signals might then be downsampled by two to reduce the sampling rate to 100 Hz. It

is understood that other sampling rates can be used, and can optionally be used in

conjunction with any of a number of downsampling methods.

The relative accelerator signal (Accelerator) 3312, the engine speed

(n _ Engine) 33 14, the control signal (al _ ThrottleECU) 33 11, and the absolute

throttle angle (al _Throttle) 3316 are first collected as the vehicle 3320 operates

under normal conditions, or as determined in an IDE, for example, the IDE 800 of

FIG. 8.

The following table illustrates the training and testing data sets:

The following illustrates the mechanical throttle plate 3306 within the vehicle

3320:

The input to the subsystem 3300 is labeled as al _ThrottleECU 331 1,

which is the control signal 331 1 coming from the throttle plate controller 3304,

usually ranging from 0~l. By varying the al ThrottleECU signal 331 1, one can

regulate the output of the throttle plate 3306, labeled as al Throttle 3316, which is

the absolute throttle angle, as shown above. Two parameters al _ThrottleMin and

al ThrottleDelta define the range that the throttle plate 3306 can open. The

dynamics of the throttle plate 3306 are modeled as a second order dynamic system

with three parameters: the mass M , the viscous damping coefficient C and the

stiffness K . The nominal values for the parameters of this throttle plate 3306 are

M =X, C=IO, K =40, al _ThrottleDelta =80 and al _ThrottleMin =S.

The following figure illustrates the signals that are collected when all

the parameters of throttle plate 3306 are set to the nominal values:

As described above, system dynamic behaviors are partitioned into different

operational regions, and within each of the regions training is necessary to establish

the distribution or local model using the output sequences. This training information

can be information learned from the IDE, for example IDE 800 of FIG. 8, through

the DRD link 899. The example regionalization below uses time frequency analysis

and a uniform size SOM for this throttle plate subsystem 3300 is based on the initial

conditions of output, which is the absolute throttle angle (al_Throttle) 3316, and the

input data, which is the control signal 331 1 from the throttle plate controller 3304,

al ThrottleECU 331 1. It is recognized that growing structure competitive learning

and/or local modeling could be used to produce the predictive behavior models in

regions of the SOM as well.

alJThrottleECU is denoted as u and al_Throttle is denoted as y . To

include all the information about initial conditions of output and input, we

concatenate them together into a big feature vector as

,... are

the initial value, 1st derivative, and 2nd derivative etc. of the system output.

u(to),...,u(t 0 +τ) is the input sequence during time interval [tQ,t0 +τ] . The

corresponding output sequence is [y(to),...,y(t 0 +τ)]T . Similarly, one can shift the

window of length r to another start point , , giving another big feature vector

and its corresponding output sequence

Ly(O»—».y('i + r)]r 3 illustrated. In this way, two sets of vectors are collected: one

containing all the information of the initial conditions of the output together with the

input sequence, and the other consisting of the output sequence of the same time

interval. Moreover, there is a one-to-one correspondence between these two sets of

feature vectors.

hi some instances, only the signals with highly dynamic inputs might

be used for training and later used for testing. Relatively static inputs may not

stimulate dynamic modes of the system and hence would not reveal faults caused by

dynamic system parameter drifts. Therefore, to detect static changes (such as the

gain change) as well as dynamic changes of the system, the training set of only

rapidly changing signals can be used. One possible way is to set a threshold on the

variance of the input sequences. Only the input sequences whose variances are

greater than the predefined threshold are selected as a training set. Although this

may not be the optimal way, it is easier to implement.

After collecting all the feature vectors, regionalization can be done

using SOM based on the vectors consisting of input sequence and initial conditions

of output. In this example embodiment for the throttle plate subsystem 3302, a data

sequence length is chosen as 0.6 seconds, which corresponds to 60 points after the

original data has been downsampled by two, as described above. For the initial

conditions of output, only the initial value, and the first and second derivatives are

included. Since the input to the throttle plate subsystem 3302 is a number from 0~l,

no normalization is necessary for the input sequence. The initial conditions of the

output, including the initial value, and the first and second derivatives, has been

normalized using the following formula:

X -E(X)
normalized

σ x

where E(X) and σx are the mean and the deviation of variable X .

This step is necessary to eliminate the situation in which there is huge magnitude of

difference in the feature vector elements, because the features of big magnitude will

dominate the effects on the resulting SOM. An example software package that can

be used is SOM Toolbox, Alhoniemi, E., Himberg, J., Kiviluoto, K., Parviainen, J .

and Vesanto, J.(1997), SOM toolbox for Matlab, available via WWW at

fttp.V/www. cis.hut.fi/somtoolbox/.

Note that while collecting the training data, regionalization is done

using the SOM and growing model, based on the input sequence and initial

conditions of output.

Relatively static inputs do not stimulate dynamic modes of the system

and hence cannot reveal faults caused by dynamic system parameter changes.

Therefore, to detect the gain change parameter (which is a change in a static system

parameter) as well as dynamic change parameter of the system, the training set of

only rapidly changing signals might be used. One possible way is to set a threshold

on the variance of the input sequences, and select for training or later for testing only

the input sequences whose variances are greater than the predefined threshold.

In creating the SOM, there is a trade-off between a degree of

generalization and quantization accuracy of SOM. A small SOM has good

generalization of the training feature vectors but poor quantization accuracy. A

large SOM can have high quantization accuracy, but the training feature vectors are

not well generalized, and it consumes more computation power. Two possible

SOMs obtained from the training process are illustrated below, although there is no

constraint that operational regions remain the same size (and in most instances will

not be):

U-matrix

In the case of local models, the SOM size selection process is largely

eliminated, as the size of the SOM created is based on minimizing the square of the

expected modeling error, This splitting strategy promotes evenly

distributed accumulated modeling error, a tradeoff between density approximation

and nonlinearity optimization.

While the SOM is training by determining expected modeling error,

the distribution or models update, therefore updating the expected error or variance

threshold within the region. As more normal data is collected by the system, the

expected modeling error or variance is reduced and the SOM converges to a

relatively stable state. Once the models are fully trained, the anomaly detector can

be used to accurately compare actual output to the modeled output.

FIG. 34 illustrates a logical flow diagram of an anomaly detector

3400. Operational flow begins at a start terminal 3402. An output operation 3404

allocates a current output, and its corresponding inputs and initial conditions, into an

operational region. A calculate operation 3406 calculates a quantization error.

An error module 3408 determines if the quantization error is smaller

than a preset threshold, which is the distance from the observed vector or inputs and

initial conditions to the best matching unit in the SOM. If the error module 3408

determines that the quantization error is not smaller than the predetermined

threshold, operational flow branches "NO", indicating the presence of a newly

observed operating condition. Operational flow proceeds to a learning module 3413,

which triggers additional development of the anomaly models or distributions

consistent with the disclosure above. No alert is triggered, because no model exists

for the region near the newly observed vector of inputs and initial conditions. If the

error module 3408 determines that the quantization error is smaller, operational flow

branches "YES" to an anomaly operation 3410 and an anomaly detection alert is

triggered in an output module 3412. Operational flow ends at terminal point 3414.

The logical flow of the anomaly detector of FIG. 34 is seen in the

following figure, which illustrates some example results of the anomaly detector on

the throttle plate subsystem 3302 of FIG. 33:

The horizontal axis shows the system parameter values, and each

point represents the mean of confidence values when the system parameter is set to

the specified value as indicated in along x axis. Such comparisons can be made

within each trained region. In addition, the 3- σ limits are also illustrated as intervals

made of short solid lines. As discussed herein previously, the nominal values for

viscous damping coefficient C and stiffness K are 10 and 40 respectively. It can be

observed that as the parameters degrade away from the nominal value, the

confidence value drops down. This in turn provides an indication that the system

performance is deviating away from the normal behaviors. Similar trends have also

been observed for the other two parameters, the mass M and the ThrottleDelta. This

indicates the anomaly detector is capable of detecting different kinds of anomalies

and the gradual degradation of the system parameters without a priory presenting

signatures characterizing those faults to the anomaly detector.

Unlike the throttle plate 3306, FIG. 33, where there is only one input,

the throttle plate controller 3304 has two inputs: Accelerator 3312 and n Engine

33 14. A parameter can be introduced into the throttle plate controller 3304 to scale

one of the tables in the nonlinear throttle plate controller 3304. The nominal value

for this gain factor is 1 and the following figure illustrates the sample signals

collected when the gain factor is set to its nominal value:

Like the anomaly detection on the plant, a similar procedure can also

be applied here. Regionalization is based is on two input sequences from

Accelerator 3312 and n_Engine 3314 and the initial conditions of the output

al ThrottleECU 331 1. A SOM is created during the training process based on the

training data to regionalize the system dynamics behaviors, and local models are

also computed and updated as training data is introduced. After the training is

complete, the controller detector is likewise tested.

After the training is complete, the controller detector has been tested

on the testing data. The following figure illustrates the results from the anomaly

detector associated with the controller:

In this example, it can be observed that as the gain factor of the

controller is reduced from its nominal value of 1 to 0.65, the confidence value

decreases, while the variance increases.

Individual anomaly detectors are capable of sensing gradual

degradations of system parameters. If we combine the results from different

anomaly detectors, we can also locate the anomalies using a hierarchical root cause

identification. To demonstrate this capability, two scenarios are discussed. In the

first scenario, the stiffness K, which is a parameter of the plant, is made to gradually

decrease from the nominal value 40 to 24 in about 700 seconds. Other parameters

including parameters of the controller and the plant, are kept at their nominal values.

In the second scenario, disturbance is introduced to the gain factor, which is a

parameter of the controller, and is also made to exponentially decrease from the

nominal value 1 to 0.6 in about 700 seconds. The following illustrates the time

varying parameters in the two scenarios.

The two anomaly detectors discussed previously are then tested on

standard driving profiles, which are not used for training. The first scenario is tested

on a first driving profile ECE2, and the second scenario is tested on a second driving

profile FTP75. These two particular driving profiles correspond to driving profiles

within LABCAR®, a product of ETAS. The following illustrates the anomaly

detection results:

Controller confidence values Plant confidence values

Scenario 1

Controller confidence values Plant confidence values

Scenario 2

In order to filter out the noise, the exponential weighted moving

average (EWMA) operator can be applied to the confidence values. The straight

line across the window is the lower control limit that has been calculated based on

the statistics of the confidence values observed on the training data set.

It can be observed, that for the first scenario, the confidence values

from the controller are high all the time, but the confidence values from the anomaly

detector on the plant gradually decrease and finally go out of the control limits. This

indicates that an anomaly occurred in the plant but the controller is still operating

normally. For the second scenario, since disturbance was introduced into the

controller parameter, the confidence values from the controller anomaly detector

decrease and go out the control limits, while the confidence values from the plant

anomaly detector remain within the control limit. Thus, one can easily determine

the location of the anomalies, in the controller, the plant, or both. The ability to

decouple plant and controller anomalies as demonstrated is important for finding the

locations of the anomalies.

FIGS. 35-36 show a schematic representation of a root cause

identification system according to an exemplary embodiment of the present

disclosure. Specifically, FIGS. 35-36 show two possible configurations of a

hierarchical root cause identification system 3500, 3600 as connected to a gasoline

engine vehicle model exhibiting further embodiments of root cause identification.

Generally speaking, multiple diagnostic agents distributed throughout a control

system may target the set of faults known a priori.

In the embodiment shown in FIG. 35, the system 3500 has a

diagnostic agent 3502 connected across a throttle plate controller 3508, throttle plate

3510, and engine system 3512. In contrast, the embodiment shown in FIG. 35

shows a system 3600 having separate, dedicated diagnostic agents 3602, 3604, 3606

trained on the throttle plate controller 3608, throttle plate 3610, and engine system

3612, respectively.

In considering both FIGS. 35 and 36, the distribution of diagnostic

agents 3502, 3602, 3604, 3606 involves a hierarchical control architecture, in which

a primitive fault tree is provided by distributing the diagnostic agents through the

overall system 3500, 3600. Such hierarchical decomposition of the system can be

applied for purposes of fault isolation. FIG. 35 shows a system 3500 in which the

lowest level at which a diagnostic agent is located is at the engine control subsystem.

In the system 3500, the anomaly detector can determine whether a system anomaly

occurs in the subsystem shown by determining if the anomaly is detected by

diagnostic agent 3502. FIG. 36 shows a system 3600 in which each component has

a dedicated diagnostic agent 3602, 3604, 3606. The system 3600, having a larger

number of diagnostic agents dedicated to smaller subcomponents of the system,

allows for narrower root cause isolation of potential anomalies in the system.

In operation, the root cause identification system may isolate a fault

through the identification of the lowest level segment of the system on which a

diagnostic agent has detected a fault. In the embodiment shown in FIG. 35, that

would be the GEVM. In the embodiment shown in FIG. 36, the error could be

traced down to the throttle plate controller 3608, throttle plate 3610, or engine

system 3612. Of course, other subsystems or components of the tested system can

have diagnostic agents dedicated thereto as well. For example, one diagnostic agent

may be configured to detect an anomalous connection between accelerator position

and rotational speed of the engine with the throttle valve position, an additional

diagnostic agent can observe the condition of the controller of the electronic throttle

mechanism, and the condition of the throttle mechanism.

A further embodiment of the root cause identification system, which

can be used in conjunction with hierarchical root cause identification, requires a

number of diagnostic agents specialized to identify specific failure modes. In this

approach, separate diagnostic agents such as those described herein are specifically

trained to detect designated failure mode, such as at some predetermined threshold.

This alternate embodiment is best illustrated with an example. For

purposes of example, the faults are identified herein as FO, Fl, F2, and F3. Further,

it is assumed that the input-output signals corresponding with the faults FO, Fl, and

F2 are known, while the signature of fault F3 is unknown. So, a system is trained

using the known operating condition data for the three known faults consistent with

the present disclosure. In this case, the operating condition data corresponding with

the fault replaces the data corresponding to normal operational behavior. So, using

TFA for example, a distribution of vector moments may be generated for each fault.

Instead of a confidence value for whether the system is operating normally as

described with general anomaly detection above, in this case the confidence value is

to whether the diagnostic agent detects its particular trained error with confidence.

The fault may thus be detected by the simultaneous drop in the confidence level of

the normal behavior diagnostic agent measuring proximity to normal behavior, along

with the growth in confidence level of the diagnostic agent associated with the

known fault. This indicates proximity of the tested system's behavior to the

particular fault for which that second diagnostic agent is trained.

Using the foregoing example assumptions, the following signature

may be seen by the normal operation diagnostic agent as well as the diagnostic

agents trained to detect specific errors:

It is apparent in the above signature that from time 0-500, the F O

error is occurring, because the FO diagnostic agent has high confidence in its

occurrence, simultaneously to relatively low confidence values for other diagnostic

agents. The same can be said for the Fl error between times 500 and 1500, as well

as F2 between times 2500 and 3500. In the timeframe between times 1500 and

2500, none of the diagnostic agents have a confidence value above their determined

threshold. This is consistent with the index, which shows that error F3 is occurring

at this point. Because no diagnostic agents are trained to recognize F3, it may be an

undetected anomaly that can be root caused using a combination of this method and

the hierarchical methods previously described.

FIG. 37 is an example flow diagram of an anomaly detection system

3700 according to a specific embodiment. The anomaly detection system 3700 can

be used, for example, in multiple aspects of the error detection system, such as in the

diagnostic agent or for the failure mode root cause detection described above.

Operational flow begins at a start point 3702. A partition operation 3704 partitions a

run-time environment into at least one operational region. This partitioning can be

called regionalization. A learn operation 3706 learns known behaviors operating

within the operational region. This learning can be called training. A monitor

operation 3708 monitors current behaviors. A compare operation 3710 compares

the known behaviors to the current operating behaviors. A detect operation 3712

detects behavior modes when a deviation exists between the current operating

behaviors and the known operating behaviors. A trace operation 3714 can trace the

unknown behavior modes back to an integrated development environment through a

link. An identify operation 3716 identifies the unknown anomalies in the integrated

development environment based on the tracing of the anomalies.

As discussed herein, a novel root cause identification system that is

capable of localizing anomalies is disclosed. The proposed approaches do not

require detailed knowledge of the system dynamics. The existence of normal inputs

and outputs signals is the only assumption for the proposed method.

This approach is capable of building the input-output relationship

statistically through SOM based regionalization and local model based performance

assessment using the normal input-output signals, regardless of system type, linear

or nonlinear. The model building process is quite efficient. This significantly

reduces the development time of the diagnostic system.

The disclosed method has been demonstrated on a subsystem of a

gasoline engine vehicle model. It has been shown that the anomaly detector can

detect and can root cause different kinds of parameter drifts of the system.

Moreover, the multiple anomaly detectors can decouple the plant and controller

anomalies. Based on the results of the anomaly detectors, one can localize the

anomalies in the plant, controller, or both.

One skilled in the art would recognize that the system described

herein can be implemented using any number of software configurations, network

configurations, hardware configurations, and the like.

The logical operations of the various embodiments illustrated herein

are implemented (1) as a sequence of computer implemented steps or program

modules running on a computing system and/or (2) as interconnected logic circuits

or circuit modules within the computing system. The implementation is a matter of

choice dependent on the performance requirements of the computing system

implementing the invention. Accordingly, the logical operations making up the

embodiments of the present invention described herein are referred to variously as

operations, steps, engines, or modules.

The above specification, examples and data provide a complete

description of the manufacture and use of the composition of the invention. Since

many embodiments of the invention can be made without departing from the spirit

and scope of the invention, the invention resides in the claims hereinafter appended.

CLAIMS:

1. A system for detecting anomalies, the system comprising:

a diagnostic agent comprising:

a regionalization tool responsive to data indicative of system

operation, the regionalization tool configured to identify a current

operational region;

a performance assessment tool configured to compare actual

operational behavior of the system in the current operational region to

normal operational behavior of the system in the current operational region;

wherein the normal operational behavior is determined from a local

model for the current operational region.

2. The system of claim 1, further comprising:

a first hardware system that generates outputs, the hardware system

arranged such that anomalies in the first hardware system are detected by the

diagnostic agent;

a first run-time environment having a bi-directional link to an

integrated development environment, the first run-time environment including:

a first control system that controls the hardware system

through control inputs to the hardware system; and

a second diagnostic agent for detecting anomalies in the

control system.

3. The system of claim 2, wherein the first and second diagnostic agents

can detect anomalies by detecting gradual degradation of performance of the system.

4. The system of claim 2, wherein:

the integrated development environment includes a collection of

software and hardware development tools operating within the integrated

development environment that enable deployment of the first and second diagnostic

agents into the run-time environment.

5. The system of claim 2, wherein:

the hardware system comprises a plurality of hardware systems.

6. The system of claim 2, wherein:

the diagnostic agent comprises a plurality of diagnostic agents.

7. The system of claim 2, wherein:

the second diagnostic agent comprises a plurality of second

diagnostic agents.

8. The system of claim 2, wherein:

the bi-directional link receives the anomalies from the first run-time

environment and passes the anomalies to the integrated development environment.

9. The system of claim 1, wherein:

the performance assessment tool generates a performance indicator

representative of deviation of the actual operational behavior from the normal

operational behavior within the current operational region.

10. The system of claim 9, wherein:

the performance assessment tool detects anomalies based on the

performance indicator.

11. The system of claim 1, wherein:

the performance assessment tool sets a threshold on residual error

within the current operational region.

12. The system of claim 11, wherein:

the performance assessment tool determines whether the difference in

output is within the threshold on residual error.

13. The system of claim 1, wherein:

the regionalization tool is configured to identify a Voronoi cell in a

self-organizing map to identify the current operational region.

14. A method of detecting anomalies in a system comprising:

identifying a current operational region of a system, the current

operational region selected from a plurality of operational regions;

comparing actual operational behavior of the system with normal

operational behavior within the current operational region to calculate a performance

indicator, the performance indicator representative of a degree of deviation from the

normal operational behavior within the current operational region;

wherein the normal operational behavior is determined from a local

model for the current operational region.

15. The method of claim 14, wherein:

identifying includes selecting the current operational region based on

current data values of a system input to the system and of an initial condition of an

output of the dynamic system.

16. The method of claim 14, wherein:

identifying includes selecting the current operational region generated

by vector quantization.

17. The method of claim 16, wherein:

identifying includes selecting the current operational region of a self-

organizing map trained in accordance with data indicative of the normal operational

behavior.

18. The method of claim 17, wherein:

identifying includes determining a best-matching unit in the self-

organizing map for operation of the system.

19. The method of claim 18, wherein:

identifying includes identifying a Voronoi cell in a self-organizing

map as the current operational region.

20. The method of claim 14, further comprising:

detecting anomalies based on the performance indicator.

21. The method of claim 14, further comprising:

tracing the anomalies back to an integrated development environment

through a link from a run-time environment;

22. The method of claim 21, further comprising:

identifying the anomalies in the integrated development environment

based on the tracing of the anomalies.

23. The method of claim 14, wherein:

comparing includes determining whether the difference in output is

within the threshold on residual error.

24. A method of training an anomaly detector for a system, the method

comprising:

collecting normal operational data indicative of normal operational

behavior of a system, the operational data comprising system input data and initial

condition data for an output of the system;

partitioning the system into a plurality of operational regions to train

a regionalization tool in the anomaly detector in accordance with the normal

operational data; and

computing a local model of the normal operational behavior for at

least one of the plurality of operational regions of the system.

25. The method of claim 24, wherein:

partitioning incorporates growing structure competitive learning.

26. The method of claim 24, wherein:

partitioning generates a number of operational regions proportional to

nonlinearity of the system.

27. The method of claim 24, wherein:

partitioning includes partitioning an operational region having a high

relative expected modeling error.

28. The method of claim 24, wherein:

computing includes estimating a local linear model for at least one

neighborhood region to the at least one of the plurality of operational regions.

29. The method of claim 24, wherein

partitioning includes creating new operational regions in operational

regions where the system is highly nonlinear.

30. A computer program product readable by a computing system and

encoding instructions diagnosing anomalies in a system, the computer process

comprising:

collecting normal operational data indicative of normal operational

behavior of a system, the operational data comprising system input data and initial

condition data for an output of the system;

partitioning the system into a plurality of operational regions to train

a regionalization tool in the anomaly detector in accordance with the normal

operational data; and

computing a local model of the normal operational behavior for at

least one of the plurality of operational regions of the system;

identifying the current operational region of a system, the current

operational region selected from a plurality of operational regions; and

comparing actual operational behavior of the system with normal

operational behavior within the current operational region to calculate a performance

indicator, the performance indicator representative of a degree of deviation from the

normal operational behavior within the current operational region.

31. The computer program product of claim 30, wherein:

partitioning includes growing structure competitive learning.

32. The computer program product of claim 30, wherein:

the computer process further comprises detecting anomalies based on

the performance indicator.

33. The computer program product of claim 30, wherein:

comparing includes determining whether the difference in output is

within the threshold on residual error.

34. The computer program product of claim 30, wherein:

partitioning incorporates growing structure competitive learning.

35. The computer program product of claim 30, wherein:

partitioning generates a number of operational regions according to

normalized local modeling errors.

36. The computer program product of claim 30, wherein:

partitioning includes partitioning an operational region having a high

relative expected modeling error.

37. A system for detecting anomalies, the system comprising:

a training agent comprising:

a collection tool configured to collect normal operational data

indicative of normal operational behavior of a system, the operational data

comprising system input data and initial condition data for an output of the system;

a partition tool configured to separate the system into a

plurality of operational regions based on growing structure competitive learning;

a compute tool configured to generate a local model of the

normal operational behavior for at least one of the plurality of operational regions of

the system;

a diagnostic agent comprising:

a regionalization tool responsive to data indicative of system

operation, the regionalization tool configured to identify the current operational

region; and

a performance assessment tool configured to compare actual

operational behavior of the system in the current operational region to normal

operational behavior of the system in the current operational region.

38. A method for detecting anomalies comprising:

collecting normal operational data indicative of normal operational

behavior of a system, the operational data comprising system input data and initial

condition data for an output of the system;

partitioning the system into a plurality of operational regions based

on growing structure competitive learning;

computing a local model of the normal operational behavior for at

least one of the plurality of operational regions of the system;

identifying the current operational region of a system, the current

operational region selected from a plurality of operational regions; and

comparing actual operational behavior of the system with the normal

operational behavior within the current operational region to calculate a performance

indicator, the performance indicator representative of a degree of deviation from the

normal operational behavior within the current operational region.

	front-page
	description
	claims
	drawings

