(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2009/126647 A2

(19) World Intellectual Property Organization /’@?‘?’3\
International Bureau v{ 0
Al
(43) International Publication Date \'{_5___,/
15 October 2009 (15.10.2009) PCT
(51) International Patent Classification:
HO04L 29/06 (2006.01)
(21) International Application Number:
PCT/US2009/039805
(22) International Filing Date:
7 April 2009 (07.04.2009)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
61/043,007 7 April 2008 (07.04.2008) US
61/081,756 18 July 2008 (18.07.2008) US
(71) Applicant (for all designated States except US): INTER-
DIGITAL PATENT HOLDINGS, INC. [US/US]; 3411
Silverside Road, Concord Plaza, Suite 105, Hagley Build-
ing, Wilmington, DE 19810 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): GUCCIONE,

Louis, J. [US/US]; 211 Lincoln Place, East Chester, NY
10709 (US). DODIS, Yevgeniy [US/US]; 2 Washington
Square Village #12h, New York, NY 10012 (US).
SHAH, Yogendra, C. [GB/US]; 10 Regency Court, Ex-
ton, PA 19341 (US). CHA, Imhyok [US/US]; 510
Southridge Circle, Yardley, PA 19067 (US).

(74) Agent: KLINE, Adam, D.; Volpe And Koenig, P.c.,
United Plaza, Suite 1600, 30 South 17th Street, Philadel-
phia, PA 19103 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO,
NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA,
UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE,
ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR),
OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML,
MR, NE, SN, TD, TG).

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: SECURE SESSION KEY GENERATION

IDENTIFY
SECRET

[~515

FIG. 5 110 120
uce |« INTERFACE » TERMINAL

IDENTIFY
SECRET

[~3510

| ESTABLISH TUNNEL WITH SECRETS

I’VSQO

| SHARE DATA VIA TUNNEL

f~s25

GENESRATE L 535
U

GENESRATE L 530
T

| ESTABLISH SECURE CHANNEL WITH S:.S

|
}»540

PERFORM GBA_U AND AKA VIA
SECURE CHANNEL

|’\-55O

20097126647 A2 |1 I 000 0 01 OO O

<

W

(57) Abstract: A method and apparatus for securing the interface between a Universal Integrated Circuit Card (UICC) and a Ter-
minal in wireless communications is disclosed. The security of Authentication and Key Agreement (AKA) and application level
generic bootstrapping architecture (GBA) with UICC-based enhancements (GBA_U) procedures is improved. A secure shared
session key is used to encrypt communications between the UICC and the Terminal. The secure shared session key generated us-
ing authenticating or non-authenticating procedures.

WO 2009/126647 PCT/US2009/039805

[0001] SECURE SESSION KEY GENERATION

[0002] FIELD OF INVENTION

[0003] This application is related to wireless communications.

[0004] BACKGROUND

[0005] The Authentication and Key Agreement (AKA) procedure is used for

establishing authentication and shared secret keys for a wireless
transmit/receive unit (WTRU) in a 3¢ Generation Partnership Project (3GPP)
communication network. The AKA provides for secure mutual authentication
between two parties. In addition, the application level generic bootstrapping
architecture (GBA) with UICC-based enhancements (GBA_U), which is based on
AKA procedures, provides a means to enable application security. However, the
AKA and the application level generic bootstrapping architecture (GBA) with
UICC-based enhancements (GBA_U) procedures do not protect the security of the
interface connecting the Universal Integrated Circuit Card (UICC) and Terminal
of the WTRU. Critical key related material passes from the UICC to the
Terminal during the AKA and GBA_U processes. As a result, the session keys
(for example CK/IK and Ks_ext_NAF), are exposed during initial provisioning of
the Terminal at the point of sale, when a local key has not yet been established
and when an established local key expires.

[0006] Existing protocols that are designed to protect the connection
between the UICC and the Terminal cannot be initiated until the AKA and
GBA_U processes are complete. As a result, these protocols allow for
eavesdropping of the keys. Attempts to secure the link between the Terminal and
the UICC, after the AKA and GBA_U process, for other application level
processes through interactions with and participation by the wireless network
components, do not resolve these deficiencies.

[0007] Therefore, there exists a need for an improved method and

apparatus for securing communications between a Terminal and a UICC.

WO 2009/126647 PCT/US2009/039805

[0008] SUMMARY

[0009] A method and apparatus for securing the interface between a
Universal Integrated Circuit Card (UICC) and a Terminal in wireless
communications is disclosed. The security of the Authentication and Key
Agreement (AKA) and the application level generic bootstrapping architecture
(GBA) with UICC-based enhancements (GBA_U) procedures is improved. A
secure shared session key is used to encrypt communications between the UICC
and the Terminal. The secure shared session key generated using authenticating

or non-authenticating procedures.

[0010] BRIEF DESCRIPTION OF THE DRAWINGS

[0011] A more detailed understanding may be had from the following
description, given by way of example in conjunction with the accompanying
drawings wherein:

[0012] Figure 1 shows an example of a wireless transmit/receive unit for
performing secure session key generation;

[0013] Figure 2 shows an example of a Terminal configured as a handset
for performing wireless communications;

[0014] Figure 3 shows an example of a wireless transmit/receive unit for

performing secure session key generation in conjunction with connected device;

[0015] Figure 4 shows an example of a network for performing wireless
communications;
[0016] Figure 5 is an example of session key generation for securing

communications between the Universal Integrated Circuit Card and the

Terminal;

[0017] Figure 6 shows an example of explicit mutual authentication using
the AKA procedure;

[0018] Figure 7 shows an example of explicit mutual authentication using

one-time authenticated encryption;
[0019] Figure 8 shows an example of explicit mutual authentication using
one-time authenticated encryption and replay protection;

[0020] Figure 9 shows an example of implicit mutual authentication;

9.

WO 2009/126647 PCT/US2009/039805

[0021] Figure 10 shows an example of implicit mutual authentication with
replay protection; and
[0022] Figure 11 shows an example of shared secret key establishment

without authentication.

[0023] DETAILED DESCRIPTION

[0024] When referred to hereafter, the terminology "wireless
transmit/receive unit (WTRU)" includes but is not limited to a user equipment
(UE), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular
telephone, a personal digital assistant (PDA), a computer, or any other type
of user device capable of operating in a wireless environment. When referred to
hereafter, the terminology "base station" includes but is not limited to a Node-B,
a site controller, an access point (AP), or any other type of interfacing device
capable of operating in a wireless environment. The terminology “WTRU” and
“base station” are not mutually exclusive.

[0025] Figure 1 is an example block diagram of a wireless transmit/receive
unit (WTRU) 100 for performing secure session key generation. The WTRU 100
includes a Universal Integrated Circuit Card (UICC) 110 and a Terminal 120.
The UICC communicates with the Terminal via interface 130. The WTRU 100 is
shown as including the UICC 110 and the Terminal 120 for illustrative purposes.
The UICC 110 or the Terminal 120 may be configured in any manner so long as
they are able to communicate as described herein. For example, Figure 3 shows
an example wherein the Terminal 120 is located in a connected device.

[0026] Figure 2 is an example block diagram of an expanded view of the
Terminal 120 configured as a handset for performing wireless communication.
The Terminal 120 includes a processor 210, an antenna 220, a user interface 230,
and a display 240.

[0027] Figure 3 is an example block diagram of a wireless transmit/receive
unit (WTRU) 100 for performing secure session key generation in conjunction
with a connected device 300. The UICC 10 in the WTRU 100 communicates with
the Terminal 120 in a connected device 300 via the interface 130. The connected

device 300 may be a personal computer (PC), or any other device configured as

-3-

WO 2009/126647 PCT/US2009/039805

the Terminal 120. The interface 130 may be a wired or a wireless interface. The
method and apparatus recited herein includes any other combination or
configuration of a UICC 110 and a Terminal 120. Optionally, the Terminal 120
may include an internal or external UICC reader.

[0028] For example, the connected device 300 may be a laptop computer.
The laptop may be connected to the internet via an Ethernet connection. The
laptop may also be connected to the WTRU 100 via a Bluetooth interface 130.
The UICC 110 in the WTRU 100 may then use the Terminal 120 in the laptop for
performing communications requiring a secure connection. Alternatively, the
Terminal 120 in the laptop may use the UICC 110 in the WTRU 100 for
performing communications requiring a secure connection.

[0029] Figure 4 is an example block diagram of a network 400 for
performing wireless communications. The network 400 includes the WTRU 100, a
radio access network (RAN) 410, and a core network (CN) 420. The RAN 410
includes a base station 430, and a Radio Network Controller (RNC) 440. The CN
420 includes a Visitor Location Register (VLR) 450 and a Home Location Register
(HLR) 460. The network 400 also includes an eavesdropper (EVE) 490. The base
station 430 serves as a point of network entry for the RAN 410. The RNC 440
carries out various functions in wireless communication, such as radio resource
management, mobility management functions, and encryption functions. The
VLR 450 stores information about the WTRU 100, such as a copy of a user service
profile and a device location area, which is used for wireless communications. The
HLR 460, which stores a master copy of a user service profile, carries out
switching functions and manages the wireless communications between the
WTRU 100 and the network 400.

[0030] Figure 5 is an example of session key generation for securing the
interface 130 between the UICC 110 and the Terminal 120. The Terminal 120
identifies a secret that can be used to encrypt communications with the UICC
110, at 510. Similarly, the UICC identifies a secret that can be used to encrypt
communications with the Terminal 120, at 515. Optionally, the identified secrets
are a pre-provisioned shared secret. A tunnel is established on the interface 130

using the secrets, at 520, such that a channel between the UICC 110 and the

4-

WO 2009/126647 PCT/US2009/039805

Terminal 120 is secured with the respective secrets. The tunnel is used to share
data for use in deriving a secure shared session key, at 525.

[0031] Next, the Terminal 120 derives a secure shared session key St from
it’s secret, at 530. Similarly, the UICC 110 derives a secure shared session key Su
from it’s secret, at 535. Optionally, the UICC 110 and the Terminal 120 also
perform mutual authentication, at 530, 535. The secure shared session keys ST,
Su are used to establish a secure channel between the UICC 110 and the
Terminal 120, at 540, such that the confidentiality and integrity of information
passing through the secure channel are protected. The UICC 110 and the
Terminal 120 then carry out the AKA 300 and GBA_U 400 procedures via the
secure channel, at 550.

[0032] In some embodiments, the shared secret K is used to perform a
keyed pseudorandom function (PRF) that is capable of accommodating arbitrary-
length inputs, such as HMAC with SHA-256, encrypted CBC MAC with AES-128,
or the AKA security functions. A PRF using a shared secret K and an input, x,
may be denoted as fk(x). Similarly, the notation fk(x,y) indicates that the PRF is
performed on a concatenation of the arguments shown. A PRF family is a set of
related one-way, non-invertible, PRFs, wherein a value of variable bit-length is
transformed to a bit sequence of fixed length (i.e., 128 or 256). For example a first
PRF in a PRF family may be denoted as fx(0, Y, Z) and a second PRF in the PRF
family may be denoted as fk(1, Y, Z), such that the PRF having the leading 0
produces a different result than the PRF having the leading 1.

[0033] In some embodiments, the Terminal 120 is configured to generate a
random challenge (RAND), an anonymity key (AK), and a sequence number
(SQN). Terminal 120 is also configured to compute a message authentication code
(MAC), an Expected Response (XRES), an expected sequence number (XSQN), or
an authentication value (Tag). Similarly, the UICC 110 is configured to generate
a response (RES) or an expected authentication value (XTag). One having
ordinary skill in the art would recognize that a RAND, an AK, a SQN, a MAC,
and a XRES may be produced in accordance with any of a number of respective
functions known in the art. Optionally, the functions may be the key generation

functions defined by the 3t¢ generation partnership project (3GPP). The

-5-

WO 2009/126647 PCT/US2009/039805

Terminal 120 is also configured to send the calculated values to the UICC 110.
The Terminal 120 is also configured to receive a response (RES) from the UICC
110 and to compare calculated values with received values for authentication of
the UICC 110. Similarly, the UICC 110 is configured to send the values to the
Terminal 120, and to compare calculated values with received values for
authentication of the UICC 110. The Terminal 120 and UICC 110 are also
configured to independently derive shared values, such as shared session keys
and anonymity keys. For clarity, values produced at the UICC 110 may be
indicated with the subscript U, and values produced at the Terminal 120 may be
indicated with the subscript T. For example, AKy at the UICC 110 has the same
value as AKr at the Terminal 120.

[0034] Figure 6 shows an example of an explicit mutual authentication and
session key generation method 600. First, the Terminal 120 generates a RAND
and a SQNr, at 610. The Terminal 120 also computes a MAC, an XRES, an AKTr,
and a XSQN, at 620. The MAC is computed based on the shared secret K, the
RAND, and the SQNr. The XRES represents an authentication code and is
computed using the shared secret K and the RAND. The AKr is generated using
the shared secret K and the RAND. Optionally, the AKr is the same size as the
SQNr. The XSQN is computed by performing a bitwise exclusive-or (XOR or @) of
the SQN and the AKr.

[0035] Next, the Terminal 120 sends the MAC, the RAND, and the XSQN
to the UICC 110 over the interface 130, at 630. The UICC 110 computes an AKy,
a SQNuy, and an expected MAC (XMAC), at 640. The AKy is calculated using the
shared secret K and the received RAND. The SQNuy is calculated by performing a
bitwise exclusive-or of the AKy and the XSQN. The XMAC is calculated using the
shared secret K, the RAND, and the SQNu. Optionally, the function used to
calculate the AKy at the UICC 110 is identical to the function used to calculate
the AKr at the Terminal 120.

[0036] Next the UICC 110 compares the XMAC with MAC, at 650. If the
XMAC and the MAC are not equal, the authentication process fails and
terminates with a fail condition, at 655. Optionally, the authentication process

may be restarted after a predetermined interval. Otherwise, the Terminal 1201s

-6-

WO 2009/126647 PCT/US2009/039805

authenticated, and the UICC 110 computes a RES using the shared secret Kand
RAND, at 660. The UICC 110 sends the RES to the Terminal 120, at 670, and
derives a shared session key Su, at 680. For example, the shared session keys are
derived using the RAND and the shared secret K.

[0037] Finally, the Terminal 120 compares the RES with the XRES, at 690.
If the RES and the XRES are not equal, the authentication process fails and
terminates with a fail condition, at 691. Optionally, the authentication process
may be restarted after a predetermined interval. Otherwise, the UICC 110 is
authenticated, and the Terminal 120 derives a shared session key St, at 692. The
UICC 110 and the Terminal 120 then use the shared session key Su, St to
perform the GBA_U 400 and AKA 300 procedures.

[0038] Figure 7 shows an example of an explicit mutual authentication
and session key generation method 700 using one-time authenticated encryption.
The Terminal 120 generates a session key St and a nonce R, at 705. Optionally,
the nonce R is selected using a counter and the counter is incremented. The
Terminal 120 computes the encrypted session key e of the session key St using
the shared secret K, the nonce R, and a tuple E of the nonce R and the encrypted
session key e at 710. The tuple E is generated by an encryption process according

to the following vector notation:

E = R, e=fk(0,R) ® Sr).
Equation (1)

[0039] The Terminal 120 then calculates an authentication value Tag using
the shared secret K, the nonce R and the encrypted session key e at 720,

according to the following equation:

Tag = fx(0,R,e).
Equation (2)

[0040] Next, the Terminal 120 sends the tuple E and the authentication
value Tag to the UICC 110 over the interface 130, at 730. The UICC 110 uses the

-

WO 2009/126647 PCT/US2009/039805

shared secret K and the received tuple E to validate the received authentication

value Tag, at 740. This validation may be denoted as:

Tag == fx(0,R,e).
Equation (3)

[0041] If the received authentication value Tag is not validated, the
authentication process fails and terminates with a fail condition, at 745.
Optionally, the authentication process may be restarted after a predetermined
interval. Otherwise, the Terminal 120 is authenticated and the UICC decrypts

the session key Su, at 750, according to the following equation:

Su =fk(0O,R) @ e.
Equation (4)

[0042] Next, the UICC 110 computes an expected authentication value
(XTag), at 760. This computation may be denoted as:

XTag = fk(1,R).
Equation (5)

[0043] The UICC 110 sends the expected authentication value XTag to the
Terminal 120 over the interface 130, at 770. The Terminal 120 uses the shared
secret K and the nonce R to validate the received XTag, at 780. This validation

may be denoted as:

XTag == fk(1,R).
Equation (6)

[0044] If the XTag is validated the UICC 110 is authenticated, at 790.

Otherwise, the authentication process fails and terminates with a fail condition,

WO 2009/126647 PCT/US2009/039805

at 791. Optionally, the authentication process may be restarted after a
predetermined interval.

[0045] Figure 8 shows an example of an explicit mutual authentication and
session key generation method 800 using one-time authenticated encryption and
replay attack protection. The UICC 110 generates a nonce N at 805. Although a
nonce is shown in figure 8, any appropriate pre-key negotiation parameter may
be used. Optionally, the nonce N is generated using a counter and the counter is
incremented. The UICC 110 then sends the nonce N to the Terminal 120 over the
interface 130, at 810.

[0046] The Terminal 120 generates a session key St and a nonce R, at 820.
Optionally, the nonce R is generated using a counter and the counter is
incremented. The Terminal 120 computes the encrypted session key e of the
session key St using the shared secret K and the nonce R per Equation 1, at 830.
The Terminal 120 then calculates an authentication value Tag, using the shared
secret K, the nonce R, the encrypted session key e, and the nonce N, at 840. This

calculation may be denoted as:

Tag = fx(0,R,e, N).
Equation (7)

[0047] Next, the Terminal 120 sends the authentication value Tag and a
tuple E of the nonce R, and the encrypted session key e to the UICC 110 over the
interface 130, at 850. The UICC 110 uses the shared secret K, the received tuple
E, and the nonce N, to validate the received authentication value Tag, at 860.

This validation may be denoted as:

Tag == fx(0,R,e, N).
Equation (8)

[0048] If the received authentication value Tag is not validated, the
authentication process fails and terminates with a fail condition, at 865.

Optionally, the authentication process may be restarted after a predetermined

9.

WO 2009/126647 PCT/US2009/039805

interval. Otherwise, the UICC decrypts the session key Su, per Equation 4, at
870. Next, the UICC 110 computes an expected authentication value XTag per
Equation 5, at 880.

[0049] The UICC 110 sends the XTag to the Terminal 120 over the
interface 130, at 890. The Terminal 120 uses the nonce R to validate the received
XTag per Equation 6, at 892. If the XTag is validated, the UICC 110 is
authenticated, at 894. Otherwise, the authentication process fails and terminates
with a fail condition, at 896. Optionally, the authentication process may be
restarted after a predetermined interval.

[0050] Figure 9 shows an example of implicit mutual authentication and
session key generation. The Terminal 120 generates a nonce R, at 900.
Optionally, the nonce R is generated using a counter and the counter is
incremented. The Terminal 120 then calculates an authentication value Tag

using the shared secret K and the nonce R, at 910. This calculation may be

denoted as:
Tag = fx(0, R).
Equation (9)
[0051] Next, the Terminal 120 sends nonce R and the authentication value

Tag to the UICC 110 over the interface 130, at 920. The UICC 110 uses the
shared secret K and the nonce R to validate the received authentication value

Tag, at 930. This validation may be denoted as:

Tag == fk(0,R).
Equation (10)

[0052] If the received authentication value Tag is not validated, the
authentication process fails and terminates with a fail condition, at 935.
Optionally, the authentication process may be restarted after a predetermined

interval. Otherwise, the Terminal 120 is authenticated and the UICC 110

-10-

WO 2009/126647 PCT/US2009/039805

computes session key Sy using the shared secret K and the nonce R, at 940. The

session key computation may be denoted as:

Su = fk(2,R).
Equation (11)

[0053] Next, the UICC 110 computes an expected authentication value
XTag per Equation 5, at 950. The UICC 110 sends the expected authentication
value XTag to the Terminal 120 over the interface 130, at 960. The Terminal 120
uses the nonce R to validate the received expected authentication value XTag per
Equation 6, at 970. If the received expected authentication value XTag is not
validated the authentication process fails and terminates with a fail condition, at
975. Optionally, the authentication process may be restarted after a
predetermined interval. Otherwise, the UICC 110 is authenticated, and the
Terminal 120 computes the session key St using the shared secret K and the

nonce R, at 980. The session key computation may be denoted as:

St =fk(2,R).
Equation (12)

[0054] Figure 10 shows an example of implicit mutual authentication and
session key generation with replay protection. The UICC 110 generates a nonce
N, at 1005. Optionally, the nonce N is generated using a counter and the counter
is incremented. The UICC 110 then sends the nonce N to the Terminal 120 over
the interface 130, at 1010.

[0055] The Terminal 120 generates a nonce R, at 1020. Optionally, the
nonce R is generated using a counter and the counter is incremented. The
Terminal 120 then calculates an authentication value Tag using the nonce R and

the nonce N, at 1030. This calculation may be denoted as:

Tag = fx(0, R, N).
Equation (13)

A11-

WO 2009/126647 PCT/US2009/039805

[0056] Next, the Terminal 120 sends nonce R and the authentication value
Tag to the UICC 110 over the interface 130, at 1040. The UICC 110 uses the
shared secret K, the nonce R, and the nonce N to validate the received

authentication value Tag, at 1050. This validation may be denoted as:

Tag == fk(0, R, N).
Equation (14)

[0057] If the received authentication value Tag is not validated, the
authentication process fails and terminates with a fail condition, at 1055.
Optionally, the authentication process may be restarted after a predetermined
interval. Otherwise, the Terminal 120 is authenticated and the UICC 110
computes the session key Su using the shared secret K and the nonce R, per
Equation 11, at 1060. Next, the UICC 110 computes an expected authentication
value XTag, per Equation 5, at 1070. The UICC 110 sends the expected
authentication value XTag to the Terminal 120 over the interface 130, at 1080.
[0058] Next, the Terminal 120 uses the nonce R to validate the received
expected authentication value XTag per Equation 6, at 1090. If the received
expected authentication value XTag is not validated the authentication process
fails and terminates with a fail condition, at 1091. Optionally, the authentication
process may be restarted after a predetermined interval. Otherwise, the UICC
110 is authenticated and the Terminal 120 computes the session key St, using
the shared secret K and the nonce R, at 1092. The session key computation may

be denoted as:

St = fk(2,R).
Equation (15)

[0059] Figure 11 shows an example of shared secret key establishment
without authentication using a Diffie-Hellman key exchange protocol. First, the

UICC 110 and the Terminal 120 agree upon a very large prime number, p, and a

-12-

WO 2009/126647 PCT/US2009/039805

generator, g, at 1100. The algebraic structure employed is the multiplicative

group F ; , derived from the field F,. F, ; is cyclic and contains the generator g,
such that, for any member aof F ; an integer ncan be found such

thata = g" mod p. The values pand gare known publically, and represent a

public key part of a key pair.
[0060] Next, the Terminal 120 randomly selects a private key, RAND;, such
that the private key RAND; is at least one (1) and is not greater than two (2) less

than the very large prime number p, at 1110. The Terminal 120 computes g,
from the private key RAND;, at 1120. This computation may be denoted as:
8 ranp, = g™ modp. Equation

(16)

[0061] Similarly, the UICC 110 selects a private key, FRESH, such that the
private key FRESH is at least one (1) and is not greater than two (2) less than
the very large prime number p, at 1130. Then the UICC 110 computes g,,..,

from the private key FRESH, at 1140. This computation may be denoted as:

_ FRESH

Crresy = & mod p . Equation
17

[0062] Next, the UICC 110 and the Terminal 120 exchange g, and

sy OVer the interface 130, at 1150.

[0063] Next, the Terminal 120 computes the shared secret, K, using the
private key RAND; and the received g,,.,,, at 1160. This computation may be

denoted as:

K=gh™ modp. Equation

(18)

-13-

WO 2009/126647 PCT/US2009/039805

[0064] Similarly, the UICC 110 computes the shared secret, K, using the
private key FRESH and the received g ranp, » @t 1170. This computation may be

denoted as:
K = gﬁfﬁg’f mod p . Equation
(19)
[0065] The Terminal 120 and the UICC 110 now possess a shared secret, K’

= K, which is then used to compute a secure secret session key S, at 1165, 1175.
The secure secret session key S is used to perform the GBA_U and AKA
procedures by securing the interface 130, at 1180.

[0066] Although features and elements are described above in particular
combinations, each feature or element can be used alone without the other
features and elements or in various combinations with or without other features
and elements. The methods or flow charts provided herein may be implemented
in a computer program, software, or firmware incorporated in a computer-
readable storage medium for execution by a general purpose computer or a
processor. Examples of computer-readable storage mediums include a read only
memory (ROM), a random access memory (RAM), a register, cache memory,
semiconductor memory devices, magnetic media such as internal hard disks and
removable disks, magneto-optical media, and optical media such as CD-ROM
disks, and digital versatile disks (DVDs).

[0067] Suitable processors include, by way of example, a general purpose
processor, a special purpose processor, a conventional processor, a digital signal
processor (DSP), a plurality of microprocessors, one or more microprocessors in
association with a DSP core, a controller, a microcontroller, Application Specific
Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGASs) circuits,
any other type of integrated circuit (IC), and/or a state machine.

[0068] Embodiments

1. A method for securing communications between a Universal

Integrated Circuit Card (UICC) and a Terminal.
-14-

WO 2009/126647 PCT/US2009/039805

2. A method as in any one of the preceding embodiments, wherein

securing communications includes generating a secure shared session key

3. A method as in any one of the preceding embodiments, wherein
securing communications includes encrypting communications between the UICC

and the Terminal with the secure shared session key.

4, A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes deriving the secure shared

session key from a shared secret.

5. A method as in any one of the preceding embodiments, wherein
deriving the secure shared session key from a shared secret includes generating a

shared secret from a secret.

6. A method as in any one of the preceding embodiments, wherein
deriving the secure shared session key includes performing a pseudorandom

function (PRF) using the shared secret.

7. A method as in any one of the preceding embodiments, wherein

encrypting communications includes establishing a secure channel.

8. A method as in any one of the preceding embodiments, further
comprising:
performing an application level generic bootstrapping architecture (GBA)

with UICC-based enhancements (GBA_U) procedure, using the secure channel

9. A method as in any one of the preceding embodiments, further
comprising:
performing an Authentication and Key Agreement (AKA) procedure, using

the secure channel.

-15-

WO 2009/126647 PCT/US2009/039805

10. A method as in any one of the preceding embodiments, further
comprising:

creating a tunnel on an interface between the UICC and the Terminal.

11. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes determining whether a secure

shared session key exists between the UICC and the Terminal.

12. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes generating a new secure shared

session key on a condition that a secure shared session key does not exist.

13. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes producing a produced key

negotiation parameter.

14. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes reporting the produced key

negotiation parameter to the UICC.

15. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes receiving a received key

negotiation parameter.

16. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes creating the secure shared
session key using the produced key negotiation parameter and the received key

negotiation parameter.

-16-

WO 2009/126647 PCT/US2009/039805

17. A method as in any one of the preceding embodiments, wherein the
creating includes determining whether the produced key negotiation parameter

is the same as the received key negotiation parameter.

18. A method as in any one of the preceding embodiments, wherein the
creating includes deriving a secure shared session key on a condition that the
produced key negotiation parameter is the same as the received key negotiation

parameter.

19. A method as in any one of the preceding embodiments, wherein the

producing includes selecting a random challenge (RAND) and a sequence number

(SQN).

20. A method as in any one of the preceding embodiments, wherein the

producing includes calculating an anonymity key (AK).

21. A method as in any one of the preceding embodiments, wherein the

producing includes calculating a message authentication code (MAC).

22. A method as in any one of the preceding embodiments, wherein the

producing includes calculating an expected response (XRES)

23. A method as in any one of the preceding embodiments, wherein the

producing includes calculating an expected sequence (XSQN)
24. A method as in any one of the preceding embodiments, wherein the
producing includes combining the RAND, the MAC, and the XSQN to produce the

produced key negotiation parameter.

25. A method as in any one of the preceding embodiments, wherein the

calculating includes computing the AK using a shared secret and the RAND.

-17-

WO 2009/126647 PCT/US2009/039805

26. A method as in any one of the preceding embodiments, wherein the
calculating includes computing the MAC using the shared secret, the RAND, and
the SQN.

27. A method as in any one of the preceding embodiments, wherein the

calculating includes computing the XRES using the shared secret and the RAND.

28. A method as in any one of the preceding embodiments, wherein the

calculating includes computing the XSQN using the SQN and the AK.

29. A method as in any one of the preceding embodiments, wherein the

producing includes selecting a nonce.

30. A method as in any one of the preceding embodiments, wherein the

producing includes calculating an authentication value (Tag).

31. A method as in any one of the preceding embodiments, wherein the
producing includes combining the nonce and the Tag to produce the produced key

negotiation parameter.

32. A method as in any one of the preceding embodiments, wherein the

producing includes selecting a session key.

33. A method as in any one of the preceding embodiments, wherein the

producing includes calculating an encrypted session key.
34. A method as in any one of the preceding embodiments, wherein the

producing includes using the encrypted session key to produce the key

negotiation parameter.

18-

WO 2009/126647 PCT/US2009/039805

35. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes receiving a received key

negotiation parameter.

36. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes producing a produced key

negotiation parameter.

37. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes reporting the produced key

negotiation parameter to the Terminal.

38. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes creating the secure shared
session key using the received key negotiation parameter and the produced key

negotiation parameter.

39. A method as in any one of the preceding embodiments, wherein the
creating includes determining whether the produced key negotiation parameter

is the same as the received key negotiation parameter.

40. A method as in any one of the preceding embodiments, wherein the
creating includes deriving a secure shared session key on a condition that the
produced key negotiation parameter is the same as the received key negotiation

parameter.
41. A method as in any one of the preceding embodiments, wherein the

producing includes extracting a random challenge (RAND) from the received key

negotiation parameter.

-19-

WO 2009/126647 PCT/US2009/039805

42. A method as in any one of the preceding embodiments, wherein the
producing includes extracting a message authentication code (MAC) from the

received key negotiation parameter.

43. A method as in any one of the preceding embodiments, wherein the
producing includes extracting an expected sequence (XSQN) from the received

key negotiation parameter.

44. A method as in any one of the preceding embodiments, wherein the

producing includes calculating an anonymity key (AK).

45. A method as in any one of the preceding embodiments, wherein the

producing includes calculating an expected message authentication code (XMAC).

46. A method as in any one of the preceding embodiments, wherein the

producing includes calculating a sequence number (SQN).

47. A method as in any one of the preceding embodiments, wherein the

producing includes determining whether the XMAC is the same as the MAC.
48. A method as in any one of the preceding embodiments, wherein the
producing includes computing a response (RES) using a shared secret and the

RAND on a condition that the XMAC is the same as the MAC.

49. A method as in any one of the preceding embodiments, wherein the

calculating includes computing the AK using the shared secret and the RAND.

50. A method as in any one of the preceding embodiments, wherein the

calculating includes computing the SQN using the XSQN and the AK.

-20-

WO 2009/126647 PCT/US2009/039805

51. A method as in any one of the preceding embodiments, wherein the
calculating includes computing the XMAC using the shared secret, the RAND,
and the SQN.

52. A method as in any one of the preceding embodiments, wherein the
producing includes extracting a nonce and a Tag from the received key

negotiation parameter.

53. A method as in any one of the preceding embodiments, wherein the

producing includes validating the Tag.

54. A method as in any one of the preceding embodiments, wherein the
producing includes deriving a session key and computing an expected

authentication value (XTag) on a condition that the Tag is valid.

55. A method as in any one of the preceding embodiments, wherein the
producing includes producing the produced key negotiation parameter using the

XTag.

56. A method as in any one of the preceding embodiments, wherein the
producing includes extracting the encrypted session key from the received key

negotiation parameter.

57. A method as in any one of the preceding embodiments, wherein the
producing includes deriving a session key includes decrypting the encrypted

session key.
58. A method as in any one of the preceding embodiments, wherein

generating a secure shared session key includes generating a pre-key negotiation

parameter.

21-

WO 2009/126647 PCT/US2009/039805

59. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes reporting the pre-key negotiation

parameter to the terminal.

60. A method as in any one of the preceding embodiments, wherein
generating a secure shared session key includes receiving a pre-key negotiation

parameter from the UICC.

61. A method as in any one of the preceding embodiments, wherein the

generating includes performing a Diffie-Hellman key exchange protocol.

62. A wireless transmit/receive unit (WTRU) configured to perform at

least part of any one of the preceding embodiments.

63. A base station configured to perform at least part of any one of the

preceding embodiments.

64. Anintegrated circuit configured to perform at least part of any one

of the preceding embodiments.

[0069] A processor in association with software may be used to implement
a radio frequency transceiver for use in a wireless transmit receive unit (WTRU),
user equipment (UE), Terminal, base station, radio network controller (RNC), or
any host computer. The WTRU may be used in conjunction with modules,
implemented in hardware and/or software, such as a camera, a video camera
module, a videophone, a speakerphone, a vibration device, a speaker, a
microphone, a television transceiver, a hands free headset, a keyboard, a
Bluetooth® module, a frequency modulated (FM) radio unit, a liquid crystal
display (LLCD) display unit, an organic light-emitting diode (OLED) display unit,
a digital music player, a media player, a video game player module, an Internet
browser, and/or any wireless local area network (WLAN) or Ultra Wide Band
(UWB) module.

.29.

WO 2009/126647 PCT/US2009/039805

CLAIMS

What is claimed is:

1. A method for securing communications between a Universal
Integrated Circuit Card (UICC) and a Terminal, the method comprising:

generating a secure shared session key; and

encrypting communications between the UICC and the Terminal with the

secure shared session key.

2. The method of claim 1, wherein generating a secure shared session

key includes deriving the secure shared session key from a shared secret.

3. The method of claim 2, wherein deriving the secure shared session

key from a shared secret includes generating a shared secret from a secret.

4, The method of claim 2, wherein deriving the secure shared session

key includes performing a pseudorandom function (PRF) using the shared secret.

5. The method of claim 1, wherein encrypting communications includes

establishing a secure channel.

6. The method of claim 5, further comprising:
performing at least one of an application level generic bootstrapping
architecture (GBA) with UICC-based enhancements (GBA_U) procedure or an

Authentication and Key Agreement (AKA) procedure, using the secure channel.

7. The method of claim 1, further comprising:

creating a tunnel on an interface between the UICC and the Terminal.

8. The method of claim 1, wherein generating a secure shared session

key includes:

-93-

WO 2009/126647 PCT/US2009/039805

determining whether a secure shared session key exists between the UICC
and the Terminal; and
on a condition that a secure shared session key does not exist, generating a

new secure shared session key.

9. The method of claim 1, wherein generating a secure shared session
key includes:

producing a produced key negotiation parameter;

reporting the produced key negotiation parameter to the UICC;

receiving a received key negotiation parameter;

creating the secure shared session key using the produced key negotiation

parameter and the received key negotiation parameter.

10. The method of claim 9, wherein the creating includes:

determining whether the produced key negotiation parameter is the same
as the received key negotiation parameter; and

on a condition that the produced key negotiation parameter is the same as

the received key negotiation parameter, deriving a secure shared session key.

11. The method of claim 9, wherein the producing includes:

selecting a random challenge (RAND) and a sequence number (SQN);

calculating an anonymity key (AK), a message authentication code (MAC),
an expected response (XRES), and an expected sequence (XSQN); and

combining the RAND, the MAC, and the XSQN to produce the produced

key negotiation parameter.

12. The method of claim 11, wherein the calculating includes:
computing the AK using a shared secret and the RAND;

computing the MAC using the shared secret, the RAND, and the SQN;
computing the XRES using the shared secret and the RAND; and
computing the XSQN using the SQN and the AK.

-24.-

WO 2009/126647 PCT/US2009/039805

13. The method of claim 9, wherein the producing includes:

selecting a nonce;

calculating an authentication value (Tag); and

combining the nonce and the Tag to produce the produced key negotiation

parameter.

14. The method of claim 9, wherein the producing includes:
selecting a session key;
calculating an encrypted session key; and

using the encrypted session key to produce the key negotiation parameter.

15. The method of claim 1, wherein generating a secure shared session
key includes:

receiving a received key negotiation parameter;

producing a produced key negotiation parameter;

reporting the produced key negotiation parameter to the Terminal; and

creating the secure shared session key using the received key negotiation

parameter and the produced key negotiation parameter.

16. The method of claim 15, wherein the creating includes:

determining whether the produced key negotiation parameter is the same
as the received key negotiation parameter; and

on a condition that the produced key negotiation parameter is the same as

the received key negotiation parameter, deriving a secure shared session key.

17. The method of claim 15, wherein the producing includes:
extracting a random challenge (RAND), a message authentication code
(MAC), and an expected sequence (XSQN) from the received key negotiation

parameter;

-925-

WO 2009/126647 PCT/US2009/039805

calculating an anonymity key (AK), an expected message authentication
code (XMAC), and a sequence number (SQN);

determining whether the XMAC is the same as the MAC; and

on a condition that the XMAC is the same as the MAC, computing a
response (RES) using a shared secret and the RAND.

18. The method of claim 17, wherein the calculating includes:
computing the AK using the shared secret and the RAND;

computing the SQN using the XSQN and the AK; and

computing the XMAC using the shared secret, the RAND, and the SQN.

19. The method of claim 15, wherein the producing includes:

extracting a nonce and a Tag from the received key negotiation parameter;

validating the Tag;

on a condition that the Tag is valid, deriving a session key and computing
an expected authentication value (XTag); and

producing the produced key negotiation parameter using the XTag.

20. The method of claim 19, wherein the producing includes extracting
the encrypted session key from the received key negotiation parameter; and

deriving a session key includes decrypting the encrypted session key.

21. The method of claim 1, wherein generating a secure shared session
key includes:
generating a pre-key negotiation parameter; and

reporting the pre-key negotiation parameter to the terminal.
22. The method of claim 1, wherein generating a secure shared session

key includes:

receiving a pre-key negotiation parameter from the UICC.

-926-

WO 2009/126647 PCT/US2009/039805

23. The method of claim 1, wherein the generating includes performing

a Diffie-Hellman key exchange protocol.

24. A wireless transmit/receive unit (WTRU), the WTRU comprising:
a Universal Integrated Circuit Card (UICC) configured to:
generate a secure shared session key,
encrypt communications with the secure shared session key,
transmit the encrypted communications, and
decrypt received encrypted communications using the secure shared
session key; and
a Terminal configured to
generate the secure shared session key,
encrypt communications with the secure shared session key,
transmit the encrypted communications, and
decrypt received encrypted communications using the secure shared

session key.

25. The WTRU of claim 24, wherein the UICC is configured to generate
the secure shared session key by deriving the secure shared session key from a
shared secret, and the Terminal is configured to generate the secure shared

session key by deriving the secure shared session key from the shared secret.

26. The WTRU of claim 25, wherein the UICC is configured to derive
the secure shared session key from the shared secret by generating the shared
secret from a first secret, and the Terminal is configured to derive the secure
shared session key from the shared secret by generating the shared secret from a

second secret.

27. The WTRU of claim 25, wherein the UICC is configured to derive
the secure shared session key by performing a pseudorandom function (PRF)

using the shared secret, and the Terminal is configured to derive the secure

-927-

WO 2009/126647 PCT/US2009/039805

shared session key by performing the pseudorandom function (PRF) using the

shared secret.

28. The WTRU of claim 24, wherein the UICC is configured to establish
a secure channel with the Terminal, and the Terminal is configured to establish a

secure channel with the UICC.

29. The WTRU of claim 28, wherein the Terminal is configured use the
secure channel to perform at least one of an application level generic
bootstrapping architecture (GBA) with UICC-based enhancements (GBA_U)

procedure or an Authentication and Key Agreement (AKA) procedure.

30. The WTRU of claim 24, wherein the Terminal is configured to:
produce a produced key negotiation parameter;

report the produced key negotiation parameter to the UICC;

receive a received key negotiation parameter from the UICC; and
generate the secure shared session key using the produced key negotiation

parameter and the received key negotiation parameter.

31. The WTRU of claim 30, wherein the Terminal is configured to:

determine whether the produced key negotiation parameter is the same as
the received key negotiation parameter; and

generate the secure shared session key, on a condition that the produced

key negotiation parameter is the same as the received key negotiation parameter.

32. The WTRU of claim 30, wherein the Terminal is configured to:

select a random challenge (RAND) and a sequence number (SQN);

calculate an anonymity key (AK), a message authentication code (MAC),
an expected response (XRES), and an expected sequence (XSQN); and

produce the produced key negotiation parameter using the RAND, the
MAC, and the XSQN.

98-

WO 2009/126647 PCT/US2009/039805

33. The WTRU of claim 32, wherein the Terminal is configured to:
calculate the AK using a shared secret and the RAND;

calculate the MAC using the shared secret, the RAND, and the SQN;
calculate the XRES using the shared secret and the RAND; and
calculate the XSQN using the SQN and the AK.

34. The WTRU of claim 10, wherein the Terminal is configured to:
select a nonce;

calculate an authentication value (Tag); and

produce the produced key negotiation parameter using the nonce and the

Tag.

35. The WTRU of claim 30, wherein the Terminal is configured to:
select a session key;

calculate an encrypted session key; and

produce the produced key negotiation parameter using the encrypted

session key.

36. The WTRU of claim 24, wherein the UICC is configured to:
receive a received key negotiation parameter from the Terminal;
produce a produced key negotiation parameter;

report the produced key negotiation parameter to the Terminal; and
generate the secure shared session key using the received key negotiation

parameter and the produced key negotiation parameter.

37. The WTRU of claim 36, wherein the UICC is configured to:

determine whether the produced key negotiation parameter is the same as
the received key negotiation parameter; and

generate the secure shared session key, on a condition that the produced

key negotiation parameter is the same as the received key negotiation parameter.

-929.

WO 2009/126647 PCT/US2009/039805

38. The WTRU of claim 36, wherein the UICC is configured to:

extract a random challenge (RAND), a message authentication code
(MAC), and an expected sequence (XSQN) from the received key negotiation
parameter;

calculate an anonymity key (AK), an expected message authentication code
(XMAC), and a sequence number (SQN);

determine whether the XMAC is the same as the MAC;

compute a response (RES) using a shared secret and the RAND, on a
condition that the XMAC is the same as the MAC; and

produce the produced key negotiation parameter using the RES.

39. The WTRU of claim 38, wherein the UICC is configured to:
calculate the AK using the shared secret and the RAND;

calculate the SQN using the XSQN and the AK; and

calculate the XMAC using the shared secret, the RAND, and the SQN.

40. The WTRU of claim 36, wherein the UICC is configured to:
extract a nonce and a Tag from the received key negotiation parameter;
validate the Tag;

compute an expected authentication value (XTag); and

produce the produced key negotiation parameter using the Xtag.

41. The WTRU of claim 40, wherein the UICC is configured to:

extract an encrypted session key from the received key negotiation
parameter;

decrypt the encrypted session key; and

generate the secure shared session key using the decrypted session key.

42. The WTRU of claim 24, wherein the UICC is configured to:

generate a pre-key negotiation parameter; and

-30-

WO 2009/126647 PCT/US2009/039805

report the pre-key negotiation parameter to the terminal.

43. The WTRU of claim 24, wherein the Terminal is configured to:

receive a pre-key negotiation parameter from the UICC.
44. The WTRU of claim 24, wherein the UICC is configured to perform a

Diffie-Hellman key exchange protocol, and the Terminal is configured to perform

a Diffie-Hellman key exchange protocol.

-31-

PCT/US2009/039805

WO 2009/126647

1/10

¢ Ol

0¢€¢

OlLZ

0¥ ¢

. _ d0S5300dd

AV1dSId

0¢¢

//ON_

L "Old

0¢l —

0g L]

0Ll ~

/._ IVNINGEL

a3IN

//oo_

WO 2009/126647 PCT/US2009/039805
2/10

o
N
)
—
<
<
4 =
]
o
o —
M
™
[]
O
3 O
\ LL.
@)
)

100
\\
UICC

PCT/US2009/039805

WO 2009/126647

3/10

¥ "Old

o
o

01534 INT
o Nvy O
_ _
| [o [NOIIVLS | NHLM
| | 1 3svs |
_ oi\ oQ\ _ 001
- - - _

WO 2009/126647

4/10

PCT/US2009/039805

110 120~
UICC INTERFACE »| TERMINAL
IDENTIFY IDENTIFY

SECRET 515 SECRET >10

ESTABLISH TUNNEL WITH SECRETS }»520

SHARE DATA VIA TUNNEL

GENERATE
S 535
U

GENERATE
S 530
T

ESTABLISH SECURE CHANNEL WITH S5,5

540

FIG. 5

PERFORM GBA_U AND AKA VIA 550
SECURE CHANNEL

WO 2009/126647

110
D)

5/10

5/10
INTERFACE

PCT/US2009/039805

120
)

» TERMINAL |

uIcC }4

130*)

(MAC, RAND, XSQN)

GENERATE:
RAND
SQN;

|
COMPUTE:
MAC
XRES
AK+
XSQN

610

620

<

COMPUTE:
AKy
SQN|,
XMAC

630‘)

640

DOES

650
NO

XMAC=MAC?
655
TERMINAL
AUTHENTICATED |60
COMPUTE:
2 670 ~
RES

‘ DESRIVE: | 580
= 691—

NO

FIG. 6

690

DOES
XRES=RES?

UICC
AUTHENTICATED
DERIVE:

St

692

WO 2009/126647

110
D)

PCT/US2009/039805

6/10

uIcC }4

TERMINAL
AUTHENTICATED
DECRYPT:
Sy

COMPUTE:
XTAG

750

I'»76O

6/10 120~ 700
'NTBRFACE > TERMINAL |
130
GENERATE:
St 705
R
|
COMPUTE:
e 710
e
CALCULATE:
TAG }”720
(E,TAG)
730

745

xTAG 77O ™

785

UICC
AUTHENTICATED

FIG. 7

780

I’»79O

WO 2009/126647 PCT/US2009/039805
7/10

110 7/10 120~ 800
uIcC |< 'NTBRFACE » TERMINAL |
130

‘ GENENRATE: | 805
810
N
\ >

GENERATE:
St 820
R

COMPUTE:

© 830
E

CALCULATE: |
TAG 840

TERMINAL
AUTHENTICATED
DECRYPT:

SU

COMPUTE:
XTAG I’”BBO

870

892

UICC
AUTHENTICATEDI’\894

FIG. 8

WO 2009/126647

110
D)

8/10

PCT/US2009/039805

uIcC |<

TERMINAL
AUTHENTICATED
COMPUTE:
SU

COMPUTE:
XTAG

8/10 120~ 900
'NTBRFACE > TERMINAL |
130
GENERATE: | 005
CALCT)X(ISATE: }\910
(R.TAG)
920

935

940

|’»950

XTAG

975—

FIG. 9

970

UICC
AUTHENTICATED
COMPUTE:
ST

980

WO 2009/126647 PCT/US2009/039805
9/10

110 9/10 120~ 1000
uIcC |< 'NTBRFACE >TERMINALI
130
‘ GENENRATE: | 1005 .
N
\ >
GENERRATE: }\1020
CALCULATE:
TG 1030
TERMINAL
AUTHENTICATED
COMPUTE: 1060
SU
CO)I\(/ITF;\L(J;TE: }\1070
XTAG 1080 ™
)
1090

1091

UICC
AUTHENTICATED
COMPUTE:
ST

1092

FIG. 10

WO 2009/126647 PCT/US2009/039805
10/10

110 10/10 120~ 1100
uIcC |< 'NTBRFACE » TERMINAL |
130

AGREE ON p,g I/xﬂoo
SELECT: SELECT:
FRESH |‘”3O RAND |~111o
COMPUTE: COMPUTE:
ity |~1 140 i |~1 120

GRAND;
B Crres: 7
FRESH 4150
COMP’UTE: 1170 COMPUTE: 1160
K K
GENERATE: 1175 GENERATE: 1165
Su | St |
PERFORM GBA_U AND AKA I*»1 180

FIG. 11

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - claims
	Page 32 - claims
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings

